sched: Fix race between task_group and sched_task_group
[linux-2.6/btrfs-unstable.git] / mm / mmap.c
blob7f855206e7fb2bb1f9a30fcf7745bff7a2ae3adb
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
50 #include "internal.h"
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
60 static void unmap_region(struct mm_struct *mm,
61 struct vm_area_struct *vma, struct vm_area_struct *prev,
62 unsigned long start, unsigned long end);
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
68 * map_type prot
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
79 pgprot_t protection_map[16] = {
80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 return __pgprot(pgprot_val(protection_map[vm_flags &
87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 EXPORT_SYMBOL(vm_get_page_prot);
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
100 unsigned long vm_flags = vma->vm_flags;
102 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 if (vma_wants_writenotify(vma)) {
104 vm_flags &= ~VM_SHARED;
105 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 vm_flags);
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 * Make sure vm_committed_as in one cacheline and not cacheline shared with
119 * other variables. It can be updated by several CPUs frequently.
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
124 * The global memory commitment made in the system can be a metric
125 * that can be used to drive ballooning decisions when Linux is hosted
126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127 * balancing memory across competing virtual machines that are hosted.
128 * Several metrics drive this policy engine including the guest reported
129 * memory commitment.
131 unsigned long vm_memory_committed(void)
133 return percpu_counter_read_positive(&vm_committed_as);
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
138 * Check that a process has enough memory to allocate a new virtual
139 * mapping. 0 means there is enough memory for the allocation to
140 * succeed and -ENOMEM implies there is not.
142 * We currently support three overcommit policies, which are set via the
143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146 * Additional code 2002 Jul 20 by Robert Love.
148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150 * Note this is a helper function intended to be used by LSMs which
151 * wish to use this logic.
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 unsigned long free, allowed, reserve;
157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 -(s64)vm_committed_as_batch * num_online_cpus(),
159 "memory commitment underflow");
161 vm_acct_memory(pages);
164 * Sometimes we want to use more memory than we have
166 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 return 0;
169 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 free = global_page_state(NR_FREE_PAGES);
171 free += global_page_state(NR_FILE_PAGES);
174 * shmem pages shouldn't be counted as free in this
175 * case, they can't be purged, only swapped out, and
176 * that won't affect the overall amount of available
177 * memory in the system.
179 free -= global_page_state(NR_SHMEM);
181 free += get_nr_swap_pages();
184 * Any slabs which are created with the
185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 * which are reclaimable, under pressure. The dentry
187 * cache and most inode caches should fall into this
189 free += global_page_state(NR_SLAB_RECLAIMABLE);
192 * Leave reserved pages. The pages are not for anonymous pages.
194 if (free <= totalreserve_pages)
195 goto error;
196 else
197 free -= totalreserve_pages;
200 * Reserve some for root
202 if (!cap_sys_admin)
203 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205 if (free > pages)
206 return 0;
208 goto error;
211 allowed = vm_commit_limit();
213 * Reserve some for root
215 if (!cap_sys_admin)
216 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
219 * Don't let a single process grow so big a user can't recover
221 if (mm) {
222 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 allowed -= min(mm->total_vm / 32, reserve);
226 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 return 0;
228 error:
229 vm_unacct_memory(pages);
231 return -ENOMEM;
235 * Requires inode->i_mapping->i_mmap_mutex
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 struct file *file, struct address_space *mapping)
240 if (vma->vm_flags & VM_DENYWRITE)
241 atomic_inc(&file_inode(file)->i_writecount);
242 if (vma->vm_flags & VM_SHARED)
243 mapping_unmap_writable(mapping);
245 flush_dcache_mmap_lock(mapping);
246 if (unlikely(vma->vm_flags & VM_NONLINEAR))
247 list_del_init(&vma->shared.nonlinear);
248 else
249 vma_interval_tree_remove(vma, &mapping->i_mmap);
250 flush_dcache_mmap_unlock(mapping);
254 * Unlink a file-based vm structure from its interval tree, to hide
255 * vma from rmap and vmtruncate before freeing its page tables.
257 void unlink_file_vma(struct vm_area_struct *vma)
259 struct file *file = vma->vm_file;
261 if (file) {
262 struct address_space *mapping = file->f_mapping;
263 mutex_lock(&mapping->i_mmap_mutex);
264 __remove_shared_vm_struct(vma, file, mapping);
265 mutex_unlock(&mapping->i_mmap_mutex);
270 * Close a vm structure and free it, returning the next.
272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
274 struct vm_area_struct *next = vma->vm_next;
276 might_sleep();
277 if (vma->vm_ops && vma->vm_ops->close)
278 vma->vm_ops->close(vma);
279 if (vma->vm_file)
280 fput(vma->vm_file);
281 mpol_put(vma_policy(vma));
282 kmem_cache_free(vm_area_cachep, vma);
283 return next;
286 static unsigned long do_brk(unsigned long addr, unsigned long len);
288 SYSCALL_DEFINE1(brk, unsigned long, brk)
290 unsigned long retval;
291 unsigned long newbrk, oldbrk;
292 struct mm_struct *mm = current->mm;
293 unsigned long min_brk;
294 bool populate;
296 down_write(&mm->mmap_sem);
298 #ifdef CONFIG_COMPAT_BRK
300 * CONFIG_COMPAT_BRK can still be overridden by setting
301 * randomize_va_space to 2, which will still cause mm->start_brk
302 * to be arbitrarily shifted
304 if (current->brk_randomized)
305 min_brk = mm->start_brk;
306 else
307 min_brk = mm->end_data;
308 #else
309 min_brk = mm->start_brk;
310 #endif
311 if (brk < min_brk)
312 goto out;
315 * Check against rlimit here. If this check is done later after the test
316 * of oldbrk with newbrk then it can escape the test and let the data
317 * segment grow beyond its set limit the in case where the limit is
318 * not page aligned -Ram Gupta
320 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321 mm->end_data, mm->start_data))
322 goto out;
324 newbrk = PAGE_ALIGN(brk);
325 oldbrk = PAGE_ALIGN(mm->brk);
326 if (oldbrk == newbrk)
327 goto set_brk;
329 /* Always allow shrinking brk. */
330 if (brk <= mm->brk) {
331 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332 goto set_brk;
333 goto out;
336 /* Check against existing mmap mappings. */
337 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338 goto out;
340 /* Ok, looks good - let it rip. */
341 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342 goto out;
344 set_brk:
345 mm->brk = brk;
346 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347 up_write(&mm->mmap_sem);
348 if (populate)
349 mm_populate(oldbrk, newbrk - oldbrk);
350 return brk;
352 out:
353 retval = mm->brk;
354 up_write(&mm->mmap_sem);
355 return retval;
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
360 unsigned long max, subtree_gap;
361 max = vma->vm_start;
362 if (vma->vm_prev)
363 max -= vma->vm_prev->vm_end;
364 if (vma->vm_rb.rb_left) {
365 subtree_gap = rb_entry(vma->vm_rb.rb_left,
366 struct vm_area_struct, vm_rb)->rb_subtree_gap;
367 if (subtree_gap > max)
368 max = subtree_gap;
370 if (vma->vm_rb.rb_right) {
371 subtree_gap = rb_entry(vma->vm_rb.rb_right,
372 struct vm_area_struct, vm_rb)->rb_subtree_gap;
373 if (subtree_gap > max)
374 max = subtree_gap;
376 return max;
379 #ifdef CONFIG_DEBUG_VM_RB
380 static int browse_rb(struct rb_root *root)
382 int i = 0, j, bug = 0;
383 struct rb_node *nd, *pn = NULL;
384 unsigned long prev = 0, pend = 0;
386 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 struct vm_area_struct *vma;
388 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 if (vma->vm_start < prev) {
390 pr_emerg("vm_start %lx < prev %lx\n",
391 vma->vm_start, prev);
392 bug = 1;
394 if (vma->vm_start < pend) {
395 pr_emerg("vm_start %lx < pend %lx\n",
396 vma->vm_start, pend);
397 bug = 1;
399 if (vma->vm_start > vma->vm_end) {
400 pr_emerg("vm_start %lx > vm_end %lx\n",
401 vma->vm_start, vma->vm_end);
402 bug = 1;
404 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
405 pr_emerg("free gap %lx, correct %lx\n",
406 vma->rb_subtree_gap,
407 vma_compute_subtree_gap(vma));
408 bug = 1;
410 i++;
411 pn = nd;
412 prev = vma->vm_start;
413 pend = vma->vm_end;
415 j = 0;
416 for (nd = pn; nd; nd = rb_prev(nd))
417 j++;
418 if (i != j) {
419 pr_emerg("backwards %d, forwards %d\n", j, i);
420 bug = 1;
422 return bug ? -1 : i;
425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
427 struct rb_node *nd;
429 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
430 struct vm_area_struct *vma;
431 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
432 VM_BUG_ON_VMA(vma != ignore &&
433 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
434 vma);
438 static void validate_mm(struct mm_struct *mm)
440 int bug = 0;
441 int i = 0;
442 unsigned long highest_address = 0;
443 struct vm_area_struct *vma = mm->mmap;
445 while (vma) {
446 struct anon_vma_chain *avc;
448 vma_lock_anon_vma(vma);
449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 anon_vma_interval_tree_verify(avc);
451 vma_unlock_anon_vma(vma);
452 highest_address = vma->vm_end;
453 vma = vma->vm_next;
454 i++;
456 if (i != mm->map_count) {
457 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458 bug = 1;
460 if (highest_address != mm->highest_vm_end) {
461 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
462 mm->highest_vm_end, highest_address);
463 bug = 1;
465 i = browse_rb(&mm->mm_rb);
466 if (i != mm->map_count) {
467 if (i != -1)
468 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469 bug = 1;
471 VM_BUG_ON_MM(bug, mm);
473 #else
474 #define validate_mm_rb(root, ignore) do { } while (0)
475 #define validate_mm(mm) do { } while (0)
476 #endif
478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
479 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
482 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
483 * vma->vm_prev->vm_end values changed, without modifying the vma's position
484 * in the rbtree.
486 static void vma_gap_update(struct vm_area_struct *vma)
489 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
490 * function that does exacltly what we want.
492 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
495 static inline void vma_rb_insert(struct vm_area_struct *vma,
496 struct rb_root *root)
498 /* All rb_subtree_gap values must be consistent prior to insertion */
499 validate_mm_rb(root, NULL);
501 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
507 * All rb_subtree_gap values must be consistent prior to erase,
508 * with the possible exception of the vma being erased.
510 validate_mm_rb(root, vma);
513 * Note rb_erase_augmented is a fairly large inline function,
514 * so make sure we instantiate it only once with our desired
515 * augmented rbtree callbacks.
517 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
521 * vma has some anon_vma assigned, and is already inserted on that
522 * anon_vma's interval trees.
524 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
525 * vma must be removed from the anon_vma's interval trees using
526 * anon_vma_interval_tree_pre_update_vma().
528 * After the update, the vma will be reinserted using
529 * anon_vma_interval_tree_post_update_vma().
531 * The entire update must be protected by exclusive mmap_sem and by
532 * the root anon_vma's mutex.
534 static inline void
535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
537 struct anon_vma_chain *avc;
539 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
540 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
543 static inline void
544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
546 struct anon_vma_chain *avc;
548 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
549 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
552 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
553 unsigned long end, struct vm_area_struct **pprev,
554 struct rb_node ***rb_link, struct rb_node **rb_parent)
556 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
558 __rb_link = &mm->mm_rb.rb_node;
559 rb_prev = __rb_parent = NULL;
561 while (*__rb_link) {
562 struct vm_area_struct *vma_tmp;
564 __rb_parent = *__rb_link;
565 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
567 if (vma_tmp->vm_end > addr) {
568 /* Fail if an existing vma overlaps the area */
569 if (vma_tmp->vm_start < end)
570 return -ENOMEM;
571 __rb_link = &__rb_parent->rb_left;
572 } else {
573 rb_prev = __rb_parent;
574 __rb_link = &__rb_parent->rb_right;
578 *pprev = NULL;
579 if (rb_prev)
580 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
581 *rb_link = __rb_link;
582 *rb_parent = __rb_parent;
583 return 0;
586 static unsigned long count_vma_pages_range(struct mm_struct *mm,
587 unsigned long addr, unsigned long end)
589 unsigned long nr_pages = 0;
590 struct vm_area_struct *vma;
592 /* Find first overlaping mapping */
593 vma = find_vma_intersection(mm, addr, end);
594 if (!vma)
595 return 0;
597 nr_pages = (min(end, vma->vm_end) -
598 max(addr, vma->vm_start)) >> PAGE_SHIFT;
600 /* Iterate over the rest of the overlaps */
601 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
602 unsigned long overlap_len;
604 if (vma->vm_start > end)
605 break;
607 overlap_len = min(end, vma->vm_end) - vma->vm_start;
608 nr_pages += overlap_len >> PAGE_SHIFT;
611 return nr_pages;
614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
615 struct rb_node **rb_link, struct rb_node *rb_parent)
617 /* Update tracking information for the gap following the new vma. */
618 if (vma->vm_next)
619 vma_gap_update(vma->vm_next);
620 else
621 mm->highest_vm_end = vma->vm_end;
624 * vma->vm_prev wasn't known when we followed the rbtree to find the
625 * correct insertion point for that vma. As a result, we could not
626 * update the vma vm_rb parents rb_subtree_gap values on the way down.
627 * So, we first insert the vma with a zero rb_subtree_gap value
628 * (to be consistent with what we did on the way down), and then
629 * immediately update the gap to the correct value. Finally we
630 * rebalance the rbtree after all augmented values have been set.
632 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633 vma->rb_subtree_gap = 0;
634 vma_gap_update(vma);
635 vma_rb_insert(vma, &mm->mm_rb);
638 static void __vma_link_file(struct vm_area_struct *vma)
640 struct file *file;
642 file = vma->vm_file;
643 if (file) {
644 struct address_space *mapping = file->f_mapping;
646 if (vma->vm_flags & VM_DENYWRITE)
647 atomic_dec(&file_inode(file)->i_writecount);
648 if (vma->vm_flags & VM_SHARED)
649 atomic_inc(&mapping->i_mmap_writable);
651 flush_dcache_mmap_lock(mapping);
652 if (unlikely(vma->vm_flags & VM_NONLINEAR))
653 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
654 else
655 vma_interval_tree_insert(vma, &mapping->i_mmap);
656 flush_dcache_mmap_unlock(mapping);
660 static void
661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
662 struct vm_area_struct *prev, struct rb_node **rb_link,
663 struct rb_node *rb_parent)
665 __vma_link_list(mm, vma, prev, rb_parent);
666 __vma_link_rb(mm, vma, rb_link, rb_parent);
669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
670 struct vm_area_struct *prev, struct rb_node **rb_link,
671 struct rb_node *rb_parent)
673 struct address_space *mapping = NULL;
675 if (vma->vm_file) {
676 mapping = vma->vm_file->f_mapping;
677 mutex_lock(&mapping->i_mmap_mutex);
680 __vma_link(mm, vma, prev, rb_link, rb_parent);
681 __vma_link_file(vma);
683 if (mapping)
684 mutex_unlock(&mapping->i_mmap_mutex);
686 mm->map_count++;
687 validate_mm(mm);
691 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
692 * mm's list and rbtree. It has already been inserted into the interval tree.
694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
696 struct vm_area_struct *prev;
697 struct rb_node **rb_link, *rb_parent;
699 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
700 &prev, &rb_link, &rb_parent))
701 BUG();
702 __vma_link(mm, vma, prev, rb_link, rb_parent);
703 mm->map_count++;
706 static inline void
707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
708 struct vm_area_struct *prev)
710 struct vm_area_struct *next;
712 vma_rb_erase(vma, &mm->mm_rb);
713 prev->vm_next = next = vma->vm_next;
714 if (next)
715 next->vm_prev = prev;
717 /* Kill the cache */
718 vmacache_invalidate(mm);
722 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
723 * is already present in an i_mmap tree without adjusting the tree.
724 * The following helper function should be used when such adjustments
725 * are necessary. The "insert" vma (if any) is to be inserted
726 * before we drop the necessary locks.
728 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
731 struct mm_struct *mm = vma->vm_mm;
732 struct vm_area_struct *next = vma->vm_next;
733 struct vm_area_struct *importer = NULL;
734 struct address_space *mapping = NULL;
735 struct rb_root *root = NULL;
736 struct anon_vma *anon_vma = NULL;
737 struct file *file = vma->vm_file;
738 bool start_changed = false, end_changed = false;
739 long adjust_next = 0;
740 int remove_next = 0;
742 if (next && !insert) {
743 struct vm_area_struct *exporter = NULL;
745 if (end >= next->vm_end) {
747 * vma expands, overlapping all the next, and
748 * perhaps the one after too (mprotect case 6).
750 again: remove_next = 1 + (end > next->vm_end);
751 end = next->vm_end;
752 exporter = next;
753 importer = vma;
754 } else if (end > next->vm_start) {
756 * vma expands, overlapping part of the next:
757 * mprotect case 5 shifting the boundary up.
759 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
760 exporter = next;
761 importer = vma;
762 } else if (end < vma->vm_end) {
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
774 * Easily overlooked: when mprotect shifts the boundary,
775 * make sure the expanding vma has anon_vma set if the
776 * shrinking vma had, to cover any anon pages imported.
778 if (exporter && exporter->anon_vma && !importer->anon_vma) {
779 if (anon_vma_clone(importer, exporter))
780 return -ENOMEM;
781 importer->anon_vma = exporter->anon_vma;
785 if (file) {
786 mapping = file->f_mapping;
787 if (!(vma->vm_flags & VM_NONLINEAR)) {
788 root = &mapping->i_mmap;
789 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
791 if (adjust_next)
792 uprobe_munmap(next, next->vm_start,
793 next->vm_end);
796 mutex_lock(&mapping->i_mmap_mutex);
797 if (insert) {
799 * Put into interval tree now, so instantiated pages
800 * are visible to arm/parisc __flush_dcache_page
801 * throughout; but we cannot insert into address
802 * space until vma start or end is updated.
804 __vma_link_file(insert);
808 vma_adjust_trans_huge(vma, start, end, adjust_next);
810 anon_vma = vma->anon_vma;
811 if (!anon_vma && adjust_next)
812 anon_vma = next->anon_vma;
813 if (anon_vma) {
814 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
815 anon_vma != next->anon_vma, next);
816 anon_vma_lock_write(anon_vma);
817 anon_vma_interval_tree_pre_update_vma(vma);
818 if (adjust_next)
819 anon_vma_interval_tree_pre_update_vma(next);
822 if (root) {
823 flush_dcache_mmap_lock(mapping);
824 vma_interval_tree_remove(vma, root);
825 if (adjust_next)
826 vma_interval_tree_remove(next, root);
829 if (start != vma->vm_start) {
830 vma->vm_start = start;
831 start_changed = true;
833 if (end != vma->vm_end) {
834 vma->vm_end = end;
835 end_changed = true;
837 vma->vm_pgoff = pgoff;
838 if (adjust_next) {
839 next->vm_start += adjust_next << PAGE_SHIFT;
840 next->vm_pgoff += adjust_next;
843 if (root) {
844 if (adjust_next)
845 vma_interval_tree_insert(next, root);
846 vma_interval_tree_insert(vma, root);
847 flush_dcache_mmap_unlock(mapping);
850 if (remove_next) {
852 * vma_merge has merged next into vma, and needs
853 * us to remove next before dropping the locks.
855 __vma_unlink(mm, next, vma);
856 if (file)
857 __remove_shared_vm_struct(next, file, mapping);
858 } else if (insert) {
860 * split_vma has split insert from vma, and needs
861 * us to insert it before dropping the locks
862 * (it may either follow vma or precede it).
864 __insert_vm_struct(mm, insert);
865 } else {
866 if (start_changed)
867 vma_gap_update(vma);
868 if (end_changed) {
869 if (!next)
870 mm->highest_vm_end = end;
871 else if (!adjust_next)
872 vma_gap_update(next);
876 if (anon_vma) {
877 anon_vma_interval_tree_post_update_vma(vma);
878 if (adjust_next)
879 anon_vma_interval_tree_post_update_vma(next);
880 anon_vma_unlock_write(anon_vma);
882 if (mapping)
883 mutex_unlock(&mapping->i_mmap_mutex);
885 if (root) {
886 uprobe_mmap(vma);
888 if (adjust_next)
889 uprobe_mmap(next);
892 if (remove_next) {
893 if (file) {
894 uprobe_munmap(next, next->vm_start, next->vm_end);
895 fput(file);
897 if (next->anon_vma)
898 anon_vma_merge(vma, next);
899 mm->map_count--;
900 mpol_put(vma_policy(next));
901 kmem_cache_free(vm_area_cachep, next);
903 * In mprotect's case 6 (see comments on vma_merge),
904 * we must remove another next too. It would clutter
905 * up the code too much to do both in one go.
907 next = vma->vm_next;
908 if (remove_next == 2)
909 goto again;
910 else if (next)
911 vma_gap_update(next);
912 else
913 mm->highest_vm_end = end;
915 if (insert && file)
916 uprobe_mmap(insert);
918 validate_mm(mm);
920 return 0;
924 * If the vma has a ->close operation then the driver probably needs to release
925 * per-vma resources, so we don't attempt to merge those.
927 static inline int is_mergeable_vma(struct vm_area_struct *vma,
928 struct file *file, unsigned long vm_flags)
931 * VM_SOFTDIRTY should not prevent from VMA merging, if we
932 * match the flags but dirty bit -- the caller should mark
933 * merged VMA as dirty. If dirty bit won't be excluded from
934 * comparison, we increase pressue on the memory system forcing
935 * the kernel to generate new VMAs when old one could be
936 * extended instead.
938 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
939 return 0;
940 if (vma->vm_file != file)
941 return 0;
942 if (vma->vm_ops && vma->vm_ops->close)
943 return 0;
944 return 1;
947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
948 struct anon_vma *anon_vma2,
949 struct vm_area_struct *vma)
952 * The list_is_singular() test is to avoid merging VMA cloned from
953 * parents. This can improve scalability caused by anon_vma lock.
955 if ((!anon_vma1 || !anon_vma2) && (!vma ||
956 list_is_singular(&vma->anon_vma_chain)))
957 return 1;
958 return anon_vma1 == anon_vma2;
962 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
963 * in front of (at a lower virtual address and file offset than) the vma.
965 * We cannot merge two vmas if they have differently assigned (non-NULL)
966 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
968 * We don't check here for the merged mmap wrapping around the end of pagecache
969 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
970 * wrap, nor mmaps which cover the final page at index -1UL.
972 static int
973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
974 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
976 if (is_mergeable_vma(vma, file, vm_flags) &&
977 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978 if (vma->vm_pgoff == vm_pgoff)
979 return 1;
981 return 0;
985 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
986 * beyond (at a higher virtual address and file offset than) the vma.
988 * We cannot merge two vmas if they have differently assigned (non-NULL)
989 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
991 static int
992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
993 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
995 if (is_mergeable_vma(vma, file, vm_flags) &&
996 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
997 pgoff_t vm_pglen;
998 vm_pglen = vma_pages(vma);
999 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1000 return 1;
1002 return 0;
1006 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1007 * whether that can be merged with its predecessor or its successor.
1008 * Or both (it neatly fills a hole).
1010 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1011 * certain not to be mapped by the time vma_merge is called; but when
1012 * called for mprotect, it is certain to be already mapped (either at
1013 * an offset within prev, or at the start of next), and the flags of
1014 * this area are about to be changed to vm_flags - and the no-change
1015 * case has already been eliminated.
1017 * The following mprotect cases have to be considered, where AAAA is
1018 * the area passed down from mprotect_fixup, never extending beyond one
1019 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1021 * AAAA AAAA AAAA AAAA
1022 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1023 * cannot merge might become might become might become
1024 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1025 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1026 * mremap move: PPPPNNNNNNNN 8
1027 * AAAA
1028 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1029 * might become case 1 below case 2 below case 3 below
1031 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1032 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1034 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1035 struct vm_area_struct *prev, unsigned long addr,
1036 unsigned long end, unsigned long vm_flags,
1037 struct anon_vma *anon_vma, struct file *file,
1038 pgoff_t pgoff, struct mempolicy *policy)
1040 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1041 struct vm_area_struct *area, *next;
1042 int err;
1045 * We later require that vma->vm_flags == vm_flags,
1046 * so this tests vma->vm_flags & VM_SPECIAL, too.
1048 if (vm_flags & VM_SPECIAL)
1049 return NULL;
1051 if (prev)
1052 next = prev->vm_next;
1053 else
1054 next = mm->mmap;
1055 area = next;
1056 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1057 next = next->vm_next;
1060 * Can it merge with the predecessor?
1062 if (prev && prev->vm_end == addr &&
1063 mpol_equal(vma_policy(prev), policy) &&
1064 can_vma_merge_after(prev, vm_flags,
1065 anon_vma, file, pgoff)) {
1067 * OK, it can. Can we now merge in the successor as well?
1069 if (next && end == next->vm_start &&
1070 mpol_equal(policy, vma_policy(next)) &&
1071 can_vma_merge_before(next, vm_flags,
1072 anon_vma, file, pgoff+pglen) &&
1073 is_mergeable_anon_vma(prev->anon_vma,
1074 next->anon_vma, NULL)) {
1075 /* cases 1, 6 */
1076 err = vma_adjust(prev, prev->vm_start,
1077 next->vm_end, prev->vm_pgoff, NULL);
1078 } else /* cases 2, 5, 7 */
1079 err = vma_adjust(prev, prev->vm_start,
1080 end, prev->vm_pgoff, NULL);
1081 if (err)
1082 return NULL;
1083 khugepaged_enter_vma_merge(prev);
1084 return prev;
1088 * Can this new request be merged in front of next?
1090 if (next && end == next->vm_start &&
1091 mpol_equal(policy, vma_policy(next)) &&
1092 can_vma_merge_before(next, vm_flags,
1093 anon_vma, file, pgoff+pglen)) {
1094 if (prev && addr < prev->vm_end) /* case 4 */
1095 err = vma_adjust(prev, prev->vm_start,
1096 addr, prev->vm_pgoff, NULL);
1097 else /* cases 3, 8 */
1098 err = vma_adjust(area, addr, next->vm_end,
1099 next->vm_pgoff - pglen, NULL);
1100 if (err)
1101 return NULL;
1102 khugepaged_enter_vma_merge(area);
1103 return area;
1106 return NULL;
1110 * Rough compatbility check to quickly see if it's even worth looking
1111 * at sharing an anon_vma.
1113 * They need to have the same vm_file, and the flags can only differ
1114 * in things that mprotect may change.
1116 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1117 * we can merge the two vma's. For example, we refuse to merge a vma if
1118 * there is a vm_ops->close() function, because that indicates that the
1119 * driver is doing some kind of reference counting. But that doesn't
1120 * really matter for the anon_vma sharing case.
1122 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1124 return a->vm_end == b->vm_start &&
1125 mpol_equal(vma_policy(a), vma_policy(b)) &&
1126 a->vm_file == b->vm_file &&
1127 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1128 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1132 * Do some basic sanity checking to see if we can re-use the anon_vma
1133 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1134 * the same as 'old', the other will be the new one that is trying
1135 * to share the anon_vma.
1137 * NOTE! This runs with mm_sem held for reading, so it is possible that
1138 * the anon_vma of 'old' is concurrently in the process of being set up
1139 * by another page fault trying to merge _that_. But that's ok: if it
1140 * is being set up, that automatically means that it will be a singleton
1141 * acceptable for merging, so we can do all of this optimistically. But
1142 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1144 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1145 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1146 * is to return an anon_vma that is "complex" due to having gone through
1147 * a fork).
1149 * We also make sure that the two vma's are compatible (adjacent,
1150 * and with the same memory policies). That's all stable, even with just
1151 * a read lock on the mm_sem.
1153 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1155 if (anon_vma_compatible(a, b)) {
1156 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1158 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1159 return anon_vma;
1161 return NULL;
1165 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1166 * neighbouring vmas for a suitable anon_vma, before it goes off
1167 * to allocate a new anon_vma. It checks because a repetitive
1168 * sequence of mprotects and faults may otherwise lead to distinct
1169 * anon_vmas being allocated, preventing vma merge in subsequent
1170 * mprotect.
1172 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1174 struct anon_vma *anon_vma;
1175 struct vm_area_struct *near;
1177 near = vma->vm_next;
1178 if (!near)
1179 goto try_prev;
1181 anon_vma = reusable_anon_vma(near, vma, near);
1182 if (anon_vma)
1183 return anon_vma;
1184 try_prev:
1185 near = vma->vm_prev;
1186 if (!near)
1187 goto none;
1189 anon_vma = reusable_anon_vma(near, near, vma);
1190 if (anon_vma)
1191 return anon_vma;
1192 none:
1194 * There's no absolute need to look only at touching neighbours:
1195 * we could search further afield for "compatible" anon_vmas.
1196 * But it would probably just be a waste of time searching,
1197 * or lead to too many vmas hanging off the same anon_vma.
1198 * We're trying to allow mprotect remerging later on,
1199 * not trying to minimize memory used for anon_vmas.
1201 return NULL;
1204 #ifdef CONFIG_PROC_FS
1205 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1206 struct file *file, long pages)
1208 const unsigned long stack_flags
1209 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1211 mm->total_vm += pages;
1213 if (file) {
1214 mm->shared_vm += pages;
1215 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1216 mm->exec_vm += pages;
1217 } else if (flags & stack_flags)
1218 mm->stack_vm += pages;
1220 #endif /* CONFIG_PROC_FS */
1223 * If a hint addr is less than mmap_min_addr change hint to be as
1224 * low as possible but still greater than mmap_min_addr
1226 static inline unsigned long round_hint_to_min(unsigned long hint)
1228 hint &= PAGE_MASK;
1229 if (((void *)hint != NULL) &&
1230 (hint < mmap_min_addr))
1231 return PAGE_ALIGN(mmap_min_addr);
1232 return hint;
1235 static inline int mlock_future_check(struct mm_struct *mm,
1236 unsigned long flags,
1237 unsigned long len)
1239 unsigned long locked, lock_limit;
1241 /* mlock MCL_FUTURE? */
1242 if (flags & VM_LOCKED) {
1243 locked = len >> PAGE_SHIFT;
1244 locked += mm->locked_vm;
1245 lock_limit = rlimit(RLIMIT_MEMLOCK);
1246 lock_limit >>= PAGE_SHIFT;
1247 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1248 return -EAGAIN;
1250 return 0;
1254 * The caller must hold down_write(&current->mm->mmap_sem).
1257 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1258 unsigned long len, unsigned long prot,
1259 unsigned long flags, unsigned long pgoff,
1260 unsigned long *populate)
1262 struct mm_struct *mm = current->mm;
1263 vm_flags_t vm_flags;
1265 *populate = 0;
1268 * Does the application expect PROT_READ to imply PROT_EXEC?
1270 * (the exception is when the underlying filesystem is noexec
1271 * mounted, in which case we dont add PROT_EXEC.)
1273 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1274 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1275 prot |= PROT_EXEC;
1277 if (!len)
1278 return -EINVAL;
1280 if (!(flags & MAP_FIXED))
1281 addr = round_hint_to_min(addr);
1283 /* Careful about overflows.. */
1284 len = PAGE_ALIGN(len);
1285 if (!len)
1286 return -ENOMEM;
1288 /* offset overflow? */
1289 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1290 return -EOVERFLOW;
1292 /* Too many mappings? */
1293 if (mm->map_count > sysctl_max_map_count)
1294 return -ENOMEM;
1296 /* Obtain the address to map to. we verify (or select) it and ensure
1297 * that it represents a valid section of the address space.
1299 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1300 if (addr & ~PAGE_MASK)
1301 return addr;
1303 /* Do simple checking here so the lower-level routines won't have
1304 * to. we assume access permissions have been handled by the open
1305 * of the memory object, so we don't do any here.
1307 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1308 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1310 if (flags & MAP_LOCKED)
1311 if (!can_do_mlock())
1312 return -EPERM;
1314 if (mlock_future_check(mm, vm_flags, len))
1315 return -EAGAIN;
1317 if (file) {
1318 struct inode *inode = file_inode(file);
1320 switch (flags & MAP_TYPE) {
1321 case MAP_SHARED:
1322 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1323 return -EACCES;
1326 * Make sure we don't allow writing to an append-only
1327 * file..
1329 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1330 return -EACCES;
1333 * Make sure there are no mandatory locks on the file.
1335 if (locks_verify_locked(file))
1336 return -EAGAIN;
1338 vm_flags |= VM_SHARED | VM_MAYSHARE;
1339 if (!(file->f_mode & FMODE_WRITE))
1340 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1342 /* fall through */
1343 case MAP_PRIVATE:
1344 if (!(file->f_mode & FMODE_READ))
1345 return -EACCES;
1346 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1347 if (vm_flags & VM_EXEC)
1348 return -EPERM;
1349 vm_flags &= ~VM_MAYEXEC;
1352 if (!file->f_op->mmap)
1353 return -ENODEV;
1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355 return -EINVAL;
1356 break;
1358 default:
1359 return -EINVAL;
1361 } else {
1362 switch (flags & MAP_TYPE) {
1363 case MAP_SHARED:
1364 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365 return -EINVAL;
1367 * Ignore pgoff.
1369 pgoff = 0;
1370 vm_flags |= VM_SHARED | VM_MAYSHARE;
1371 break;
1372 case MAP_PRIVATE:
1374 * Set pgoff according to addr for anon_vma.
1376 pgoff = addr >> PAGE_SHIFT;
1377 break;
1378 default:
1379 return -EINVAL;
1384 * Set 'VM_NORESERVE' if we should not account for the
1385 * memory use of this mapping.
1387 if (flags & MAP_NORESERVE) {
1388 /* We honor MAP_NORESERVE if allowed to overcommit */
1389 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1390 vm_flags |= VM_NORESERVE;
1392 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1393 if (file && is_file_hugepages(file))
1394 vm_flags |= VM_NORESERVE;
1397 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1398 if (!IS_ERR_VALUE(addr) &&
1399 ((vm_flags & VM_LOCKED) ||
1400 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1401 *populate = len;
1402 return addr;
1405 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1406 unsigned long, prot, unsigned long, flags,
1407 unsigned long, fd, unsigned long, pgoff)
1409 struct file *file = NULL;
1410 unsigned long retval = -EBADF;
1412 if (!(flags & MAP_ANONYMOUS)) {
1413 audit_mmap_fd(fd, flags);
1414 file = fget(fd);
1415 if (!file)
1416 goto out;
1417 if (is_file_hugepages(file))
1418 len = ALIGN(len, huge_page_size(hstate_file(file)));
1419 retval = -EINVAL;
1420 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1421 goto out_fput;
1422 } else if (flags & MAP_HUGETLB) {
1423 struct user_struct *user = NULL;
1424 struct hstate *hs;
1426 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1427 if (!hs)
1428 return -EINVAL;
1430 len = ALIGN(len, huge_page_size(hs));
1432 * VM_NORESERVE is used because the reservations will be
1433 * taken when vm_ops->mmap() is called
1434 * A dummy user value is used because we are not locking
1435 * memory so no accounting is necessary
1437 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1438 VM_NORESERVE,
1439 &user, HUGETLB_ANONHUGE_INODE,
1440 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1441 if (IS_ERR(file))
1442 return PTR_ERR(file);
1445 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1447 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1448 out_fput:
1449 if (file)
1450 fput(file);
1451 out:
1452 return retval;
1455 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1456 struct mmap_arg_struct {
1457 unsigned long addr;
1458 unsigned long len;
1459 unsigned long prot;
1460 unsigned long flags;
1461 unsigned long fd;
1462 unsigned long offset;
1465 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1467 struct mmap_arg_struct a;
1469 if (copy_from_user(&a, arg, sizeof(a)))
1470 return -EFAULT;
1471 if (a.offset & ~PAGE_MASK)
1472 return -EINVAL;
1474 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1475 a.offset >> PAGE_SHIFT);
1477 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1480 * Some shared mappigns will want the pages marked read-only
1481 * to track write events. If so, we'll downgrade vm_page_prot
1482 * to the private version (using protection_map[] without the
1483 * VM_SHARED bit).
1485 int vma_wants_writenotify(struct vm_area_struct *vma)
1487 vm_flags_t vm_flags = vma->vm_flags;
1489 /* If it was private or non-writable, the write bit is already clear */
1490 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1491 return 0;
1493 /* The backer wishes to know when pages are first written to? */
1494 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1495 return 1;
1497 /* The open routine did something to the protections that pgprot_modify
1498 * won't preserve? */
1499 if (pgprot_val(vma->vm_page_prot) !=
1500 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1501 return 0;
1503 /* Do we need to track softdirty? */
1504 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1505 return 1;
1507 /* Specialty mapping? */
1508 if (vm_flags & VM_PFNMAP)
1509 return 0;
1511 /* Can the mapping track the dirty pages? */
1512 return vma->vm_file && vma->vm_file->f_mapping &&
1513 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1517 * We account for memory if it's a private writeable mapping,
1518 * not hugepages and VM_NORESERVE wasn't set.
1520 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1523 * hugetlb has its own accounting separate from the core VM
1524 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1526 if (file && is_file_hugepages(file))
1527 return 0;
1529 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1532 unsigned long mmap_region(struct file *file, unsigned long addr,
1533 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1535 struct mm_struct *mm = current->mm;
1536 struct vm_area_struct *vma, *prev;
1537 int error;
1538 struct rb_node **rb_link, *rb_parent;
1539 unsigned long charged = 0;
1541 /* Check against address space limit. */
1542 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1543 unsigned long nr_pages;
1546 * MAP_FIXED may remove pages of mappings that intersects with
1547 * requested mapping. Account for the pages it would unmap.
1549 if (!(vm_flags & MAP_FIXED))
1550 return -ENOMEM;
1552 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1554 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1555 return -ENOMEM;
1558 /* Clear old maps */
1559 error = -ENOMEM;
1560 munmap_back:
1561 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1562 if (do_munmap(mm, addr, len))
1563 return -ENOMEM;
1564 goto munmap_back;
1568 * Private writable mapping: check memory availability
1570 if (accountable_mapping(file, vm_flags)) {
1571 charged = len >> PAGE_SHIFT;
1572 if (security_vm_enough_memory_mm(mm, charged))
1573 return -ENOMEM;
1574 vm_flags |= VM_ACCOUNT;
1578 * Can we just expand an old mapping?
1580 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1581 if (vma)
1582 goto out;
1585 * Determine the object being mapped and call the appropriate
1586 * specific mapper. the address has already been validated, but
1587 * not unmapped, but the maps are removed from the list.
1589 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1590 if (!vma) {
1591 error = -ENOMEM;
1592 goto unacct_error;
1595 vma->vm_mm = mm;
1596 vma->vm_start = addr;
1597 vma->vm_end = addr + len;
1598 vma->vm_flags = vm_flags;
1599 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1600 vma->vm_pgoff = pgoff;
1601 INIT_LIST_HEAD(&vma->anon_vma_chain);
1603 if (file) {
1604 if (vm_flags & VM_DENYWRITE) {
1605 error = deny_write_access(file);
1606 if (error)
1607 goto free_vma;
1609 if (vm_flags & VM_SHARED) {
1610 error = mapping_map_writable(file->f_mapping);
1611 if (error)
1612 goto allow_write_and_free_vma;
1615 /* ->mmap() can change vma->vm_file, but must guarantee that
1616 * vma_link() below can deny write-access if VM_DENYWRITE is set
1617 * and map writably if VM_SHARED is set. This usually means the
1618 * new file must not have been exposed to user-space, yet.
1620 vma->vm_file = get_file(file);
1621 error = file->f_op->mmap(file, vma);
1622 if (error)
1623 goto unmap_and_free_vma;
1625 /* Can addr have changed??
1627 * Answer: Yes, several device drivers can do it in their
1628 * f_op->mmap method. -DaveM
1629 * Bug: If addr is changed, prev, rb_link, rb_parent should
1630 * be updated for vma_link()
1632 WARN_ON_ONCE(addr != vma->vm_start);
1634 addr = vma->vm_start;
1635 vm_flags = vma->vm_flags;
1636 } else if (vm_flags & VM_SHARED) {
1637 error = shmem_zero_setup(vma);
1638 if (error)
1639 goto free_vma;
1642 vma_link(mm, vma, prev, rb_link, rb_parent);
1643 /* Once vma denies write, undo our temporary denial count */
1644 if (file) {
1645 if (vm_flags & VM_SHARED)
1646 mapping_unmap_writable(file->f_mapping);
1647 if (vm_flags & VM_DENYWRITE)
1648 allow_write_access(file);
1650 file = vma->vm_file;
1651 out:
1652 perf_event_mmap(vma);
1654 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1655 if (vm_flags & VM_LOCKED) {
1656 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1657 vma == get_gate_vma(current->mm)))
1658 mm->locked_vm += (len >> PAGE_SHIFT);
1659 else
1660 vma->vm_flags &= ~VM_LOCKED;
1663 if (file)
1664 uprobe_mmap(vma);
1667 * New (or expanded) vma always get soft dirty status.
1668 * Otherwise user-space soft-dirty page tracker won't
1669 * be able to distinguish situation when vma area unmapped,
1670 * then new mapped in-place (which must be aimed as
1671 * a completely new data area).
1673 vma->vm_flags |= VM_SOFTDIRTY;
1675 vma_set_page_prot(vma);
1677 return addr;
1679 unmap_and_free_vma:
1680 vma->vm_file = NULL;
1681 fput(file);
1683 /* Undo any partial mapping done by a device driver. */
1684 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1685 charged = 0;
1686 if (vm_flags & VM_SHARED)
1687 mapping_unmap_writable(file->f_mapping);
1688 allow_write_and_free_vma:
1689 if (vm_flags & VM_DENYWRITE)
1690 allow_write_access(file);
1691 free_vma:
1692 kmem_cache_free(vm_area_cachep, vma);
1693 unacct_error:
1694 if (charged)
1695 vm_unacct_memory(charged);
1696 return error;
1699 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1702 * We implement the search by looking for an rbtree node that
1703 * immediately follows a suitable gap. That is,
1704 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1705 * - gap_end = vma->vm_start >= info->low_limit + length;
1706 * - gap_end - gap_start >= length
1709 struct mm_struct *mm = current->mm;
1710 struct vm_area_struct *vma;
1711 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1713 /* Adjust search length to account for worst case alignment overhead */
1714 length = info->length + info->align_mask;
1715 if (length < info->length)
1716 return -ENOMEM;
1718 /* Adjust search limits by the desired length */
1719 if (info->high_limit < length)
1720 return -ENOMEM;
1721 high_limit = info->high_limit - length;
1723 if (info->low_limit > high_limit)
1724 return -ENOMEM;
1725 low_limit = info->low_limit + length;
1727 /* Check if rbtree root looks promising */
1728 if (RB_EMPTY_ROOT(&mm->mm_rb))
1729 goto check_highest;
1730 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1731 if (vma->rb_subtree_gap < length)
1732 goto check_highest;
1734 while (true) {
1735 /* Visit left subtree if it looks promising */
1736 gap_end = vma->vm_start;
1737 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1738 struct vm_area_struct *left =
1739 rb_entry(vma->vm_rb.rb_left,
1740 struct vm_area_struct, vm_rb);
1741 if (left->rb_subtree_gap >= length) {
1742 vma = left;
1743 continue;
1747 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1748 check_current:
1749 /* Check if current node has a suitable gap */
1750 if (gap_start > high_limit)
1751 return -ENOMEM;
1752 if (gap_end >= low_limit && gap_end - gap_start >= length)
1753 goto found;
1755 /* Visit right subtree if it looks promising */
1756 if (vma->vm_rb.rb_right) {
1757 struct vm_area_struct *right =
1758 rb_entry(vma->vm_rb.rb_right,
1759 struct vm_area_struct, vm_rb);
1760 if (right->rb_subtree_gap >= length) {
1761 vma = right;
1762 continue;
1766 /* Go back up the rbtree to find next candidate node */
1767 while (true) {
1768 struct rb_node *prev = &vma->vm_rb;
1769 if (!rb_parent(prev))
1770 goto check_highest;
1771 vma = rb_entry(rb_parent(prev),
1772 struct vm_area_struct, vm_rb);
1773 if (prev == vma->vm_rb.rb_left) {
1774 gap_start = vma->vm_prev->vm_end;
1775 gap_end = vma->vm_start;
1776 goto check_current;
1781 check_highest:
1782 /* Check highest gap, which does not precede any rbtree node */
1783 gap_start = mm->highest_vm_end;
1784 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1785 if (gap_start > high_limit)
1786 return -ENOMEM;
1788 found:
1789 /* We found a suitable gap. Clip it with the original low_limit. */
1790 if (gap_start < info->low_limit)
1791 gap_start = info->low_limit;
1793 /* Adjust gap address to the desired alignment */
1794 gap_start += (info->align_offset - gap_start) & info->align_mask;
1796 VM_BUG_ON(gap_start + info->length > info->high_limit);
1797 VM_BUG_ON(gap_start + info->length > gap_end);
1798 return gap_start;
1801 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1803 struct mm_struct *mm = current->mm;
1804 struct vm_area_struct *vma;
1805 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1807 /* Adjust search length to account for worst case alignment overhead */
1808 length = info->length + info->align_mask;
1809 if (length < info->length)
1810 return -ENOMEM;
1813 * Adjust search limits by the desired length.
1814 * See implementation comment at top of unmapped_area().
1816 gap_end = info->high_limit;
1817 if (gap_end < length)
1818 return -ENOMEM;
1819 high_limit = gap_end - length;
1821 if (info->low_limit > high_limit)
1822 return -ENOMEM;
1823 low_limit = info->low_limit + length;
1825 /* Check highest gap, which does not precede any rbtree node */
1826 gap_start = mm->highest_vm_end;
1827 if (gap_start <= high_limit)
1828 goto found_highest;
1830 /* Check if rbtree root looks promising */
1831 if (RB_EMPTY_ROOT(&mm->mm_rb))
1832 return -ENOMEM;
1833 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1834 if (vma->rb_subtree_gap < length)
1835 return -ENOMEM;
1837 while (true) {
1838 /* Visit right subtree if it looks promising */
1839 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1840 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1841 struct vm_area_struct *right =
1842 rb_entry(vma->vm_rb.rb_right,
1843 struct vm_area_struct, vm_rb);
1844 if (right->rb_subtree_gap >= length) {
1845 vma = right;
1846 continue;
1850 check_current:
1851 /* Check if current node has a suitable gap */
1852 gap_end = vma->vm_start;
1853 if (gap_end < low_limit)
1854 return -ENOMEM;
1855 if (gap_start <= high_limit && gap_end - gap_start >= length)
1856 goto found;
1858 /* Visit left subtree if it looks promising */
1859 if (vma->vm_rb.rb_left) {
1860 struct vm_area_struct *left =
1861 rb_entry(vma->vm_rb.rb_left,
1862 struct vm_area_struct, vm_rb);
1863 if (left->rb_subtree_gap >= length) {
1864 vma = left;
1865 continue;
1869 /* Go back up the rbtree to find next candidate node */
1870 while (true) {
1871 struct rb_node *prev = &vma->vm_rb;
1872 if (!rb_parent(prev))
1873 return -ENOMEM;
1874 vma = rb_entry(rb_parent(prev),
1875 struct vm_area_struct, vm_rb);
1876 if (prev == vma->vm_rb.rb_right) {
1877 gap_start = vma->vm_prev ?
1878 vma->vm_prev->vm_end : 0;
1879 goto check_current;
1884 found:
1885 /* We found a suitable gap. Clip it with the original high_limit. */
1886 if (gap_end > info->high_limit)
1887 gap_end = info->high_limit;
1889 found_highest:
1890 /* Compute highest gap address at the desired alignment */
1891 gap_end -= info->length;
1892 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1894 VM_BUG_ON(gap_end < info->low_limit);
1895 VM_BUG_ON(gap_end < gap_start);
1896 return gap_end;
1899 /* Get an address range which is currently unmapped.
1900 * For shmat() with addr=0.
1902 * Ugly calling convention alert:
1903 * Return value with the low bits set means error value,
1904 * ie
1905 * if (ret & ~PAGE_MASK)
1906 * error = ret;
1908 * This function "knows" that -ENOMEM has the bits set.
1910 #ifndef HAVE_ARCH_UNMAPPED_AREA
1911 unsigned long
1912 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1913 unsigned long len, unsigned long pgoff, unsigned long flags)
1915 struct mm_struct *mm = current->mm;
1916 struct vm_area_struct *vma;
1917 struct vm_unmapped_area_info info;
1919 if (len > TASK_SIZE - mmap_min_addr)
1920 return -ENOMEM;
1922 if (flags & MAP_FIXED)
1923 return addr;
1925 if (addr) {
1926 addr = PAGE_ALIGN(addr);
1927 vma = find_vma(mm, addr);
1928 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1929 (!vma || addr + len <= vma->vm_start))
1930 return addr;
1933 info.flags = 0;
1934 info.length = len;
1935 info.low_limit = mm->mmap_base;
1936 info.high_limit = TASK_SIZE;
1937 info.align_mask = 0;
1938 return vm_unmapped_area(&info);
1940 #endif
1943 * This mmap-allocator allocates new areas top-down from below the
1944 * stack's low limit (the base):
1946 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1947 unsigned long
1948 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1949 const unsigned long len, const unsigned long pgoff,
1950 const unsigned long flags)
1952 struct vm_area_struct *vma;
1953 struct mm_struct *mm = current->mm;
1954 unsigned long addr = addr0;
1955 struct vm_unmapped_area_info info;
1957 /* requested length too big for entire address space */
1958 if (len > TASK_SIZE - mmap_min_addr)
1959 return -ENOMEM;
1961 if (flags & MAP_FIXED)
1962 return addr;
1964 /* requesting a specific address */
1965 if (addr) {
1966 addr = PAGE_ALIGN(addr);
1967 vma = find_vma(mm, addr);
1968 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1969 (!vma || addr + len <= vma->vm_start))
1970 return addr;
1973 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1974 info.length = len;
1975 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1976 info.high_limit = mm->mmap_base;
1977 info.align_mask = 0;
1978 addr = vm_unmapped_area(&info);
1981 * A failed mmap() very likely causes application failure,
1982 * so fall back to the bottom-up function here. This scenario
1983 * can happen with large stack limits and large mmap()
1984 * allocations.
1986 if (addr & ~PAGE_MASK) {
1987 VM_BUG_ON(addr != -ENOMEM);
1988 info.flags = 0;
1989 info.low_limit = TASK_UNMAPPED_BASE;
1990 info.high_limit = TASK_SIZE;
1991 addr = vm_unmapped_area(&info);
1994 return addr;
1996 #endif
1998 unsigned long
1999 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2000 unsigned long pgoff, unsigned long flags)
2002 unsigned long (*get_area)(struct file *, unsigned long,
2003 unsigned long, unsigned long, unsigned long);
2005 unsigned long error = arch_mmap_check(addr, len, flags);
2006 if (error)
2007 return error;
2009 /* Careful about overflows.. */
2010 if (len > TASK_SIZE)
2011 return -ENOMEM;
2013 get_area = current->mm->get_unmapped_area;
2014 if (file && file->f_op->get_unmapped_area)
2015 get_area = file->f_op->get_unmapped_area;
2016 addr = get_area(file, addr, len, pgoff, flags);
2017 if (IS_ERR_VALUE(addr))
2018 return addr;
2020 if (addr > TASK_SIZE - len)
2021 return -ENOMEM;
2022 if (addr & ~PAGE_MASK)
2023 return -EINVAL;
2025 addr = arch_rebalance_pgtables(addr, len);
2026 error = security_mmap_addr(addr);
2027 return error ? error : addr;
2030 EXPORT_SYMBOL(get_unmapped_area);
2032 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2033 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2035 struct rb_node *rb_node;
2036 struct vm_area_struct *vma;
2038 /* Check the cache first. */
2039 vma = vmacache_find(mm, addr);
2040 if (likely(vma))
2041 return vma;
2043 rb_node = mm->mm_rb.rb_node;
2044 vma = NULL;
2046 while (rb_node) {
2047 struct vm_area_struct *tmp;
2049 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2051 if (tmp->vm_end > addr) {
2052 vma = tmp;
2053 if (tmp->vm_start <= addr)
2054 break;
2055 rb_node = rb_node->rb_left;
2056 } else
2057 rb_node = rb_node->rb_right;
2060 if (vma)
2061 vmacache_update(addr, vma);
2062 return vma;
2065 EXPORT_SYMBOL(find_vma);
2068 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2070 struct vm_area_struct *
2071 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2072 struct vm_area_struct **pprev)
2074 struct vm_area_struct *vma;
2076 vma = find_vma(mm, addr);
2077 if (vma) {
2078 *pprev = vma->vm_prev;
2079 } else {
2080 struct rb_node *rb_node = mm->mm_rb.rb_node;
2081 *pprev = NULL;
2082 while (rb_node) {
2083 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2084 rb_node = rb_node->rb_right;
2087 return vma;
2091 * Verify that the stack growth is acceptable and
2092 * update accounting. This is shared with both the
2093 * grow-up and grow-down cases.
2095 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2097 struct mm_struct *mm = vma->vm_mm;
2098 struct rlimit *rlim = current->signal->rlim;
2099 unsigned long new_start;
2101 /* address space limit tests */
2102 if (!may_expand_vm(mm, grow))
2103 return -ENOMEM;
2105 /* Stack limit test */
2106 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2107 return -ENOMEM;
2109 /* mlock limit tests */
2110 if (vma->vm_flags & VM_LOCKED) {
2111 unsigned long locked;
2112 unsigned long limit;
2113 locked = mm->locked_vm + grow;
2114 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2115 limit >>= PAGE_SHIFT;
2116 if (locked > limit && !capable(CAP_IPC_LOCK))
2117 return -ENOMEM;
2120 /* Check to ensure the stack will not grow into a hugetlb-only region */
2121 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2122 vma->vm_end - size;
2123 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2124 return -EFAULT;
2127 * Overcommit.. This must be the final test, as it will
2128 * update security statistics.
2130 if (security_vm_enough_memory_mm(mm, grow))
2131 return -ENOMEM;
2133 /* Ok, everything looks good - let it rip */
2134 if (vma->vm_flags & VM_LOCKED)
2135 mm->locked_vm += grow;
2136 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2137 return 0;
2140 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2142 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2143 * vma is the last one with address > vma->vm_end. Have to extend vma.
2145 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2147 int error;
2149 if (!(vma->vm_flags & VM_GROWSUP))
2150 return -EFAULT;
2153 * We must make sure the anon_vma is allocated
2154 * so that the anon_vma locking is not a noop.
2156 if (unlikely(anon_vma_prepare(vma)))
2157 return -ENOMEM;
2158 vma_lock_anon_vma(vma);
2161 * vma->vm_start/vm_end cannot change under us because the caller
2162 * is required to hold the mmap_sem in read mode. We need the
2163 * anon_vma lock to serialize against concurrent expand_stacks.
2164 * Also guard against wrapping around to address 0.
2166 if (address < PAGE_ALIGN(address+4))
2167 address = PAGE_ALIGN(address+4);
2168 else {
2169 vma_unlock_anon_vma(vma);
2170 return -ENOMEM;
2172 error = 0;
2174 /* Somebody else might have raced and expanded it already */
2175 if (address > vma->vm_end) {
2176 unsigned long size, grow;
2178 size = address - vma->vm_start;
2179 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2181 error = -ENOMEM;
2182 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2183 error = acct_stack_growth(vma, size, grow);
2184 if (!error) {
2186 * vma_gap_update() doesn't support concurrent
2187 * updates, but we only hold a shared mmap_sem
2188 * lock here, so we need to protect against
2189 * concurrent vma expansions.
2190 * vma_lock_anon_vma() doesn't help here, as
2191 * we don't guarantee that all growable vmas
2192 * in a mm share the same root anon vma.
2193 * So, we reuse mm->page_table_lock to guard
2194 * against concurrent vma expansions.
2196 spin_lock(&vma->vm_mm->page_table_lock);
2197 anon_vma_interval_tree_pre_update_vma(vma);
2198 vma->vm_end = address;
2199 anon_vma_interval_tree_post_update_vma(vma);
2200 if (vma->vm_next)
2201 vma_gap_update(vma->vm_next);
2202 else
2203 vma->vm_mm->highest_vm_end = address;
2204 spin_unlock(&vma->vm_mm->page_table_lock);
2206 perf_event_mmap(vma);
2210 vma_unlock_anon_vma(vma);
2211 khugepaged_enter_vma_merge(vma);
2212 validate_mm(vma->vm_mm);
2213 return error;
2215 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2218 * vma is the first one with address < vma->vm_start. Have to extend vma.
2220 int expand_downwards(struct vm_area_struct *vma,
2221 unsigned long address)
2223 int error;
2226 * We must make sure the anon_vma is allocated
2227 * so that the anon_vma locking is not a noop.
2229 if (unlikely(anon_vma_prepare(vma)))
2230 return -ENOMEM;
2232 address &= PAGE_MASK;
2233 error = security_mmap_addr(address);
2234 if (error)
2235 return error;
2237 vma_lock_anon_vma(vma);
2240 * vma->vm_start/vm_end cannot change under us because the caller
2241 * is required to hold the mmap_sem in read mode. We need the
2242 * anon_vma lock to serialize against concurrent expand_stacks.
2245 /* Somebody else might have raced and expanded it already */
2246 if (address < vma->vm_start) {
2247 unsigned long size, grow;
2249 size = vma->vm_end - address;
2250 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2252 error = -ENOMEM;
2253 if (grow <= vma->vm_pgoff) {
2254 error = acct_stack_growth(vma, size, grow);
2255 if (!error) {
2257 * vma_gap_update() doesn't support concurrent
2258 * updates, but we only hold a shared mmap_sem
2259 * lock here, so we need to protect against
2260 * concurrent vma expansions.
2261 * vma_lock_anon_vma() doesn't help here, as
2262 * we don't guarantee that all growable vmas
2263 * in a mm share the same root anon vma.
2264 * So, we reuse mm->page_table_lock to guard
2265 * against concurrent vma expansions.
2267 spin_lock(&vma->vm_mm->page_table_lock);
2268 anon_vma_interval_tree_pre_update_vma(vma);
2269 vma->vm_start = address;
2270 vma->vm_pgoff -= grow;
2271 anon_vma_interval_tree_post_update_vma(vma);
2272 vma_gap_update(vma);
2273 spin_unlock(&vma->vm_mm->page_table_lock);
2275 perf_event_mmap(vma);
2279 vma_unlock_anon_vma(vma);
2280 khugepaged_enter_vma_merge(vma);
2281 validate_mm(vma->vm_mm);
2282 return error;
2286 * Note how expand_stack() refuses to expand the stack all the way to
2287 * abut the next virtual mapping, *unless* that mapping itself is also
2288 * a stack mapping. We want to leave room for a guard page, after all
2289 * (the guard page itself is not added here, that is done by the
2290 * actual page faulting logic)
2292 * This matches the behavior of the guard page logic (see mm/memory.c:
2293 * check_stack_guard_page()), which only allows the guard page to be
2294 * removed under these circumstances.
2296 #ifdef CONFIG_STACK_GROWSUP
2297 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2299 struct vm_area_struct *next;
2301 address &= PAGE_MASK;
2302 next = vma->vm_next;
2303 if (next && next->vm_start == address + PAGE_SIZE) {
2304 if (!(next->vm_flags & VM_GROWSUP))
2305 return -ENOMEM;
2307 return expand_upwards(vma, address);
2310 struct vm_area_struct *
2311 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2313 struct vm_area_struct *vma, *prev;
2315 addr &= PAGE_MASK;
2316 vma = find_vma_prev(mm, addr, &prev);
2317 if (vma && (vma->vm_start <= addr))
2318 return vma;
2319 if (!prev || expand_stack(prev, addr))
2320 return NULL;
2321 if (prev->vm_flags & VM_LOCKED)
2322 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2323 return prev;
2325 #else
2326 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2328 struct vm_area_struct *prev;
2330 address &= PAGE_MASK;
2331 prev = vma->vm_prev;
2332 if (prev && prev->vm_end == address) {
2333 if (!(prev->vm_flags & VM_GROWSDOWN))
2334 return -ENOMEM;
2336 return expand_downwards(vma, address);
2339 struct vm_area_struct *
2340 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2342 struct vm_area_struct *vma;
2343 unsigned long start;
2345 addr &= PAGE_MASK;
2346 vma = find_vma(mm, addr);
2347 if (!vma)
2348 return NULL;
2349 if (vma->vm_start <= addr)
2350 return vma;
2351 if (!(vma->vm_flags & VM_GROWSDOWN))
2352 return NULL;
2353 start = vma->vm_start;
2354 if (expand_stack(vma, addr))
2355 return NULL;
2356 if (vma->vm_flags & VM_LOCKED)
2357 __mlock_vma_pages_range(vma, addr, start, NULL);
2358 return vma;
2360 #endif
2363 * Ok - we have the memory areas we should free on the vma list,
2364 * so release them, and do the vma updates.
2366 * Called with the mm semaphore held.
2368 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2370 unsigned long nr_accounted = 0;
2372 /* Update high watermark before we lower total_vm */
2373 update_hiwater_vm(mm);
2374 do {
2375 long nrpages = vma_pages(vma);
2377 if (vma->vm_flags & VM_ACCOUNT)
2378 nr_accounted += nrpages;
2379 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2380 vma = remove_vma(vma);
2381 } while (vma);
2382 vm_unacct_memory(nr_accounted);
2383 validate_mm(mm);
2387 * Get rid of page table information in the indicated region.
2389 * Called with the mm semaphore held.
2391 static void unmap_region(struct mm_struct *mm,
2392 struct vm_area_struct *vma, struct vm_area_struct *prev,
2393 unsigned long start, unsigned long end)
2395 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2396 struct mmu_gather tlb;
2398 lru_add_drain();
2399 tlb_gather_mmu(&tlb, mm, start, end);
2400 update_hiwater_rss(mm);
2401 unmap_vmas(&tlb, vma, start, end);
2402 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2403 next ? next->vm_start : USER_PGTABLES_CEILING);
2404 tlb_finish_mmu(&tlb, start, end);
2408 * Create a list of vma's touched by the unmap, removing them from the mm's
2409 * vma list as we go..
2411 static void
2412 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2413 struct vm_area_struct *prev, unsigned long end)
2415 struct vm_area_struct **insertion_point;
2416 struct vm_area_struct *tail_vma = NULL;
2418 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2419 vma->vm_prev = NULL;
2420 do {
2421 vma_rb_erase(vma, &mm->mm_rb);
2422 mm->map_count--;
2423 tail_vma = vma;
2424 vma = vma->vm_next;
2425 } while (vma && vma->vm_start < end);
2426 *insertion_point = vma;
2427 if (vma) {
2428 vma->vm_prev = prev;
2429 vma_gap_update(vma);
2430 } else
2431 mm->highest_vm_end = prev ? prev->vm_end : 0;
2432 tail_vma->vm_next = NULL;
2434 /* Kill the cache */
2435 vmacache_invalidate(mm);
2439 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2440 * munmap path where it doesn't make sense to fail.
2442 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2443 unsigned long addr, int new_below)
2445 struct vm_area_struct *new;
2446 int err = -ENOMEM;
2448 if (is_vm_hugetlb_page(vma) && (addr &
2449 ~(huge_page_mask(hstate_vma(vma)))))
2450 return -EINVAL;
2452 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2453 if (!new)
2454 goto out_err;
2456 /* most fields are the same, copy all, and then fixup */
2457 *new = *vma;
2459 INIT_LIST_HEAD(&new->anon_vma_chain);
2461 if (new_below)
2462 new->vm_end = addr;
2463 else {
2464 new->vm_start = addr;
2465 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2468 err = vma_dup_policy(vma, new);
2469 if (err)
2470 goto out_free_vma;
2472 if (anon_vma_clone(new, vma))
2473 goto out_free_mpol;
2475 if (new->vm_file)
2476 get_file(new->vm_file);
2478 if (new->vm_ops && new->vm_ops->open)
2479 new->vm_ops->open(new);
2481 if (new_below)
2482 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2483 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2484 else
2485 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2487 /* Success. */
2488 if (!err)
2489 return 0;
2491 /* Clean everything up if vma_adjust failed. */
2492 if (new->vm_ops && new->vm_ops->close)
2493 new->vm_ops->close(new);
2494 if (new->vm_file)
2495 fput(new->vm_file);
2496 unlink_anon_vmas(new);
2497 out_free_mpol:
2498 mpol_put(vma_policy(new));
2499 out_free_vma:
2500 kmem_cache_free(vm_area_cachep, new);
2501 out_err:
2502 return err;
2506 * Split a vma into two pieces at address 'addr', a new vma is allocated
2507 * either for the first part or the tail.
2509 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2510 unsigned long addr, int new_below)
2512 if (mm->map_count >= sysctl_max_map_count)
2513 return -ENOMEM;
2515 return __split_vma(mm, vma, addr, new_below);
2518 /* Munmap is split into 2 main parts -- this part which finds
2519 * what needs doing, and the areas themselves, which do the
2520 * work. This now handles partial unmappings.
2521 * Jeremy Fitzhardinge <jeremy@goop.org>
2523 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2525 unsigned long end;
2526 struct vm_area_struct *vma, *prev, *last;
2528 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2529 return -EINVAL;
2531 len = PAGE_ALIGN(len);
2532 if (len == 0)
2533 return -EINVAL;
2535 /* Find the first overlapping VMA */
2536 vma = find_vma(mm, start);
2537 if (!vma)
2538 return 0;
2539 prev = vma->vm_prev;
2540 /* we have start < vma->vm_end */
2542 /* if it doesn't overlap, we have nothing.. */
2543 end = start + len;
2544 if (vma->vm_start >= end)
2545 return 0;
2548 * If we need to split any vma, do it now to save pain later.
2550 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2551 * unmapped vm_area_struct will remain in use: so lower split_vma
2552 * places tmp vma above, and higher split_vma places tmp vma below.
2554 if (start > vma->vm_start) {
2555 int error;
2558 * Make sure that map_count on return from munmap() will
2559 * not exceed its limit; but let map_count go just above
2560 * its limit temporarily, to help free resources as expected.
2562 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2563 return -ENOMEM;
2565 error = __split_vma(mm, vma, start, 0);
2566 if (error)
2567 return error;
2568 prev = vma;
2571 /* Does it split the last one? */
2572 last = find_vma(mm, end);
2573 if (last && end > last->vm_start) {
2574 int error = __split_vma(mm, last, end, 1);
2575 if (error)
2576 return error;
2578 vma = prev ? prev->vm_next : mm->mmap;
2581 * unlock any mlock()ed ranges before detaching vmas
2583 if (mm->locked_vm) {
2584 struct vm_area_struct *tmp = vma;
2585 while (tmp && tmp->vm_start < end) {
2586 if (tmp->vm_flags & VM_LOCKED) {
2587 mm->locked_vm -= vma_pages(tmp);
2588 munlock_vma_pages_all(tmp);
2590 tmp = tmp->vm_next;
2595 * Remove the vma's, and unmap the actual pages
2597 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2598 unmap_region(mm, vma, prev, start, end);
2600 /* Fix up all other VM information */
2601 remove_vma_list(mm, vma);
2603 return 0;
2606 int vm_munmap(unsigned long start, size_t len)
2608 int ret;
2609 struct mm_struct *mm = current->mm;
2611 down_write(&mm->mmap_sem);
2612 ret = do_munmap(mm, start, len);
2613 up_write(&mm->mmap_sem);
2614 return ret;
2616 EXPORT_SYMBOL(vm_munmap);
2618 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2620 profile_munmap(addr);
2621 return vm_munmap(addr, len);
2624 static inline void verify_mm_writelocked(struct mm_struct *mm)
2626 #ifdef CONFIG_DEBUG_VM
2627 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2628 WARN_ON(1);
2629 up_read(&mm->mmap_sem);
2631 #endif
2635 * this is really a simplified "do_mmap". it only handles
2636 * anonymous maps. eventually we may be able to do some
2637 * brk-specific accounting here.
2639 static unsigned long do_brk(unsigned long addr, unsigned long len)
2641 struct mm_struct *mm = current->mm;
2642 struct vm_area_struct *vma, *prev;
2643 unsigned long flags;
2644 struct rb_node **rb_link, *rb_parent;
2645 pgoff_t pgoff = addr >> PAGE_SHIFT;
2646 int error;
2648 len = PAGE_ALIGN(len);
2649 if (!len)
2650 return addr;
2652 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2654 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2655 if (error & ~PAGE_MASK)
2656 return error;
2658 error = mlock_future_check(mm, mm->def_flags, len);
2659 if (error)
2660 return error;
2663 * mm->mmap_sem is required to protect against another thread
2664 * changing the mappings in case we sleep.
2666 verify_mm_writelocked(mm);
2669 * Clear old maps. this also does some error checking for us
2671 munmap_back:
2672 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2673 if (do_munmap(mm, addr, len))
2674 return -ENOMEM;
2675 goto munmap_back;
2678 /* Check against address space limits *after* clearing old maps... */
2679 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2680 return -ENOMEM;
2682 if (mm->map_count > sysctl_max_map_count)
2683 return -ENOMEM;
2685 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2686 return -ENOMEM;
2688 /* Can we just expand an old private anonymous mapping? */
2689 vma = vma_merge(mm, prev, addr, addr + len, flags,
2690 NULL, NULL, pgoff, NULL);
2691 if (vma)
2692 goto out;
2695 * create a vma struct for an anonymous mapping
2697 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2698 if (!vma) {
2699 vm_unacct_memory(len >> PAGE_SHIFT);
2700 return -ENOMEM;
2703 INIT_LIST_HEAD(&vma->anon_vma_chain);
2704 vma->vm_mm = mm;
2705 vma->vm_start = addr;
2706 vma->vm_end = addr + len;
2707 vma->vm_pgoff = pgoff;
2708 vma->vm_flags = flags;
2709 vma->vm_page_prot = vm_get_page_prot(flags);
2710 vma_link(mm, vma, prev, rb_link, rb_parent);
2711 out:
2712 perf_event_mmap(vma);
2713 mm->total_vm += len >> PAGE_SHIFT;
2714 if (flags & VM_LOCKED)
2715 mm->locked_vm += (len >> PAGE_SHIFT);
2716 vma->vm_flags |= VM_SOFTDIRTY;
2717 return addr;
2720 unsigned long vm_brk(unsigned long addr, unsigned long len)
2722 struct mm_struct *mm = current->mm;
2723 unsigned long ret;
2724 bool populate;
2726 down_write(&mm->mmap_sem);
2727 ret = do_brk(addr, len);
2728 populate = ((mm->def_flags & VM_LOCKED) != 0);
2729 up_write(&mm->mmap_sem);
2730 if (populate)
2731 mm_populate(addr, len);
2732 return ret;
2734 EXPORT_SYMBOL(vm_brk);
2736 /* Release all mmaps. */
2737 void exit_mmap(struct mm_struct *mm)
2739 struct mmu_gather tlb;
2740 struct vm_area_struct *vma;
2741 unsigned long nr_accounted = 0;
2743 /* mm's last user has gone, and its about to be pulled down */
2744 mmu_notifier_release(mm);
2746 if (mm->locked_vm) {
2747 vma = mm->mmap;
2748 while (vma) {
2749 if (vma->vm_flags & VM_LOCKED)
2750 munlock_vma_pages_all(vma);
2751 vma = vma->vm_next;
2755 arch_exit_mmap(mm);
2757 vma = mm->mmap;
2758 if (!vma) /* Can happen if dup_mmap() received an OOM */
2759 return;
2761 lru_add_drain();
2762 flush_cache_mm(mm);
2763 tlb_gather_mmu(&tlb, mm, 0, -1);
2764 /* update_hiwater_rss(mm) here? but nobody should be looking */
2765 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2766 unmap_vmas(&tlb, vma, 0, -1);
2768 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2769 tlb_finish_mmu(&tlb, 0, -1);
2772 * Walk the list again, actually closing and freeing it,
2773 * with preemption enabled, without holding any MM locks.
2775 while (vma) {
2776 if (vma->vm_flags & VM_ACCOUNT)
2777 nr_accounted += vma_pages(vma);
2778 vma = remove_vma(vma);
2780 vm_unacct_memory(nr_accounted);
2782 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2783 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2786 /* Insert vm structure into process list sorted by address
2787 * and into the inode's i_mmap tree. If vm_file is non-NULL
2788 * then i_mmap_mutex is taken here.
2790 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2792 struct vm_area_struct *prev;
2793 struct rb_node **rb_link, *rb_parent;
2796 * The vm_pgoff of a purely anonymous vma should be irrelevant
2797 * until its first write fault, when page's anon_vma and index
2798 * are set. But now set the vm_pgoff it will almost certainly
2799 * end up with (unless mremap moves it elsewhere before that
2800 * first wfault), so /proc/pid/maps tells a consistent story.
2802 * By setting it to reflect the virtual start address of the
2803 * vma, merges and splits can happen in a seamless way, just
2804 * using the existing file pgoff checks and manipulations.
2805 * Similarly in do_mmap_pgoff and in do_brk.
2807 if (!vma->vm_file) {
2808 BUG_ON(vma->anon_vma);
2809 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2811 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2812 &prev, &rb_link, &rb_parent))
2813 return -ENOMEM;
2814 if ((vma->vm_flags & VM_ACCOUNT) &&
2815 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2816 return -ENOMEM;
2818 vma_link(mm, vma, prev, rb_link, rb_parent);
2819 return 0;
2823 * Copy the vma structure to a new location in the same mm,
2824 * prior to moving page table entries, to effect an mremap move.
2826 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2827 unsigned long addr, unsigned long len, pgoff_t pgoff,
2828 bool *need_rmap_locks)
2830 struct vm_area_struct *vma = *vmap;
2831 unsigned long vma_start = vma->vm_start;
2832 struct mm_struct *mm = vma->vm_mm;
2833 struct vm_area_struct *new_vma, *prev;
2834 struct rb_node **rb_link, *rb_parent;
2835 bool faulted_in_anon_vma = true;
2838 * If anonymous vma has not yet been faulted, update new pgoff
2839 * to match new location, to increase its chance of merging.
2841 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2842 pgoff = addr >> PAGE_SHIFT;
2843 faulted_in_anon_vma = false;
2846 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2847 return NULL; /* should never get here */
2848 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2849 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2850 if (new_vma) {
2852 * Source vma may have been merged into new_vma
2854 if (unlikely(vma_start >= new_vma->vm_start &&
2855 vma_start < new_vma->vm_end)) {
2857 * The only way we can get a vma_merge with
2858 * self during an mremap is if the vma hasn't
2859 * been faulted in yet and we were allowed to
2860 * reset the dst vma->vm_pgoff to the
2861 * destination address of the mremap to allow
2862 * the merge to happen. mremap must change the
2863 * vm_pgoff linearity between src and dst vmas
2864 * (in turn preventing a vma_merge) to be
2865 * safe. It is only safe to keep the vm_pgoff
2866 * linear if there are no pages mapped yet.
2868 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2869 *vmap = vma = new_vma;
2871 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2872 } else {
2873 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2874 if (new_vma) {
2875 *new_vma = *vma;
2876 new_vma->vm_start = addr;
2877 new_vma->vm_end = addr + len;
2878 new_vma->vm_pgoff = pgoff;
2879 if (vma_dup_policy(vma, new_vma))
2880 goto out_free_vma;
2881 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2882 if (anon_vma_clone(new_vma, vma))
2883 goto out_free_mempol;
2884 if (new_vma->vm_file)
2885 get_file(new_vma->vm_file);
2886 if (new_vma->vm_ops && new_vma->vm_ops->open)
2887 new_vma->vm_ops->open(new_vma);
2888 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2889 *need_rmap_locks = false;
2892 return new_vma;
2894 out_free_mempol:
2895 mpol_put(vma_policy(new_vma));
2896 out_free_vma:
2897 kmem_cache_free(vm_area_cachep, new_vma);
2898 return NULL;
2902 * Return true if the calling process may expand its vm space by the passed
2903 * number of pages
2905 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2907 unsigned long cur = mm->total_vm; /* pages */
2908 unsigned long lim;
2910 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2912 if (cur + npages > lim)
2913 return 0;
2914 return 1;
2917 static int special_mapping_fault(struct vm_area_struct *vma,
2918 struct vm_fault *vmf);
2921 * Having a close hook prevents vma merging regardless of flags.
2923 static void special_mapping_close(struct vm_area_struct *vma)
2927 static const char *special_mapping_name(struct vm_area_struct *vma)
2929 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2932 static const struct vm_operations_struct special_mapping_vmops = {
2933 .close = special_mapping_close,
2934 .fault = special_mapping_fault,
2935 .name = special_mapping_name,
2938 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2939 .close = special_mapping_close,
2940 .fault = special_mapping_fault,
2943 static int special_mapping_fault(struct vm_area_struct *vma,
2944 struct vm_fault *vmf)
2946 pgoff_t pgoff;
2947 struct page **pages;
2950 * special mappings have no vm_file, and in that case, the mm
2951 * uses vm_pgoff internally. So we have to subtract it from here.
2952 * We are allowed to do this because we are the mm; do not copy
2953 * this code into drivers!
2955 pgoff = vmf->pgoff - vma->vm_pgoff;
2957 if (vma->vm_ops == &legacy_special_mapping_vmops)
2958 pages = vma->vm_private_data;
2959 else
2960 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2961 pages;
2963 for (; pgoff && *pages; ++pages)
2964 pgoff--;
2966 if (*pages) {
2967 struct page *page = *pages;
2968 get_page(page);
2969 vmf->page = page;
2970 return 0;
2973 return VM_FAULT_SIGBUS;
2976 static struct vm_area_struct *__install_special_mapping(
2977 struct mm_struct *mm,
2978 unsigned long addr, unsigned long len,
2979 unsigned long vm_flags, const struct vm_operations_struct *ops,
2980 void *priv)
2982 int ret;
2983 struct vm_area_struct *vma;
2985 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2986 if (unlikely(vma == NULL))
2987 return ERR_PTR(-ENOMEM);
2989 INIT_LIST_HEAD(&vma->anon_vma_chain);
2990 vma->vm_mm = mm;
2991 vma->vm_start = addr;
2992 vma->vm_end = addr + len;
2994 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2995 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2997 vma->vm_ops = ops;
2998 vma->vm_private_data = priv;
3000 ret = insert_vm_struct(mm, vma);
3001 if (ret)
3002 goto out;
3004 mm->total_vm += len >> PAGE_SHIFT;
3006 perf_event_mmap(vma);
3008 return vma;
3010 out:
3011 kmem_cache_free(vm_area_cachep, vma);
3012 return ERR_PTR(ret);
3016 * Called with mm->mmap_sem held for writing.
3017 * Insert a new vma covering the given region, with the given flags.
3018 * Its pages are supplied by the given array of struct page *.
3019 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3020 * The region past the last page supplied will always produce SIGBUS.
3021 * The array pointer and the pages it points to are assumed to stay alive
3022 * for as long as this mapping might exist.
3024 struct vm_area_struct *_install_special_mapping(
3025 struct mm_struct *mm,
3026 unsigned long addr, unsigned long len,
3027 unsigned long vm_flags, const struct vm_special_mapping *spec)
3029 return __install_special_mapping(mm, addr, len, vm_flags,
3030 &special_mapping_vmops, (void *)spec);
3033 int install_special_mapping(struct mm_struct *mm,
3034 unsigned long addr, unsigned long len,
3035 unsigned long vm_flags, struct page **pages)
3037 struct vm_area_struct *vma = __install_special_mapping(
3038 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3039 (void *)pages);
3041 return PTR_ERR_OR_ZERO(vma);
3044 static DEFINE_MUTEX(mm_all_locks_mutex);
3046 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3048 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3050 * The LSB of head.next can't change from under us
3051 * because we hold the mm_all_locks_mutex.
3053 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3055 * We can safely modify head.next after taking the
3056 * anon_vma->root->rwsem. If some other vma in this mm shares
3057 * the same anon_vma we won't take it again.
3059 * No need of atomic instructions here, head.next
3060 * can't change from under us thanks to the
3061 * anon_vma->root->rwsem.
3063 if (__test_and_set_bit(0, (unsigned long *)
3064 &anon_vma->root->rb_root.rb_node))
3065 BUG();
3069 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3071 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3073 * AS_MM_ALL_LOCKS can't change from under us because
3074 * we hold the mm_all_locks_mutex.
3076 * Operations on ->flags have to be atomic because
3077 * even if AS_MM_ALL_LOCKS is stable thanks to the
3078 * mm_all_locks_mutex, there may be other cpus
3079 * changing other bitflags in parallel to us.
3081 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3082 BUG();
3083 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3088 * This operation locks against the VM for all pte/vma/mm related
3089 * operations that could ever happen on a certain mm. This includes
3090 * vmtruncate, try_to_unmap, and all page faults.
3092 * The caller must take the mmap_sem in write mode before calling
3093 * mm_take_all_locks(). The caller isn't allowed to release the
3094 * mmap_sem until mm_drop_all_locks() returns.
3096 * mmap_sem in write mode is required in order to block all operations
3097 * that could modify pagetables and free pages without need of
3098 * altering the vma layout (for example populate_range() with
3099 * nonlinear vmas). It's also needed in write mode to avoid new
3100 * anon_vmas to be associated with existing vmas.
3102 * A single task can't take more than one mm_take_all_locks() in a row
3103 * or it would deadlock.
3105 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3106 * mapping->flags avoid to take the same lock twice, if more than one
3107 * vma in this mm is backed by the same anon_vma or address_space.
3109 * We can take all the locks in random order because the VM code
3110 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3111 * takes more than one of them in a row. Secondly we're protected
3112 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3114 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3115 * that may have to take thousand of locks.
3117 * mm_take_all_locks() can fail if it's interrupted by signals.
3119 int mm_take_all_locks(struct mm_struct *mm)
3121 struct vm_area_struct *vma;
3122 struct anon_vma_chain *avc;
3124 BUG_ON(down_read_trylock(&mm->mmap_sem));
3126 mutex_lock(&mm_all_locks_mutex);
3128 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3129 if (signal_pending(current))
3130 goto out_unlock;
3131 if (vma->vm_file && vma->vm_file->f_mapping)
3132 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3135 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3136 if (signal_pending(current))
3137 goto out_unlock;
3138 if (vma->anon_vma)
3139 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3140 vm_lock_anon_vma(mm, avc->anon_vma);
3143 return 0;
3145 out_unlock:
3146 mm_drop_all_locks(mm);
3147 return -EINTR;
3150 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3152 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3154 * The LSB of head.next can't change to 0 from under
3155 * us because we hold the mm_all_locks_mutex.
3157 * We must however clear the bitflag before unlocking
3158 * the vma so the users using the anon_vma->rb_root will
3159 * never see our bitflag.
3161 * No need of atomic instructions here, head.next
3162 * can't change from under us until we release the
3163 * anon_vma->root->rwsem.
3165 if (!__test_and_clear_bit(0, (unsigned long *)
3166 &anon_vma->root->rb_root.rb_node))
3167 BUG();
3168 anon_vma_unlock_write(anon_vma);
3172 static void vm_unlock_mapping(struct address_space *mapping)
3174 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3176 * AS_MM_ALL_LOCKS can't change to 0 from under us
3177 * because we hold the mm_all_locks_mutex.
3179 mutex_unlock(&mapping->i_mmap_mutex);
3180 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3181 &mapping->flags))
3182 BUG();
3187 * The mmap_sem cannot be released by the caller until
3188 * mm_drop_all_locks() returns.
3190 void mm_drop_all_locks(struct mm_struct *mm)
3192 struct vm_area_struct *vma;
3193 struct anon_vma_chain *avc;
3195 BUG_ON(down_read_trylock(&mm->mmap_sem));
3196 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3198 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3199 if (vma->anon_vma)
3200 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3201 vm_unlock_anon_vma(avc->anon_vma);
3202 if (vma->vm_file && vma->vm_file->f_mapping)
3203 vm_unlock_mapping(vma->vm_file->f_mapping);
3206 mutex_unlock(&mm_all_locks_mutex);
3210 * initialise the VMA slab
3212 void __init mmap_init(void)
3214 int ret;
3216 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3217 VM_BUG_ON(ret);
3221 * Initialise sysctl_user_reserve_kbytes.
3223 * This is intended to prevent a user from starting a single memory hogging
3224 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3225 * mode.
3227 * The default value is min(3% of free memory, 128MB)
3228 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3230 static int init_user_reserve(void)
3232 unsigned long free_kbytes;
3234 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3236 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3237 return 0;
3239 subsys_initcall(init_user_reserve);
3242 * Initialise sysctl_admin_reserve_kbytes.
3244 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3245 * to log in and kill a memory hogging process.
3247 * Systems with more than 256MB will reserve 8MB, enough to recover
3248 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3249 * only reserve 3% of free pages by default.
3251 static int init_admin_reserve(void)
3253 unsigned long free_kbytes;
3255 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3257 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3258 return 0;
3260 subsys_initcall(init_admin_reserve);
3263 * Reinititalise user and admin reserves if memory is added or removed.
3265 * The default user reserve max is 128MB, and the default max for the
3266 * admin reserve is 8MB. These are usually, but not always, enough to
3267 * enable recovery from a memory hogging process using login/sshd, a shell,
3268 * and tools like top. It may make sense to increase or even disable the
3269 * reserve depending on the existence of swap or variations in the recovery
3270 * tools. So, the admin may have changed them.
3272 * If memory is added and the reserves have been eliminated or increased above
3273 * the default max, then we'll trust the admin.
3275 * If memory is removed and there isn't enough free memory, then we
3276 * need to reset the reserves.
3278 * Otherwise keep the reserve set by the admin.
3280 static int reserve_mem_notifier(struct notifier_block *nb,
3281 unsigned long action, void *data)
3283 unsigned long tmp, free_kbytes;
3285 switch (action) {
3286 case MEM_ONLINE:
3287 /* Default max is 128MB. Leave alone if modified by operator. */
3288 tmp = sysctl_user_reserve_kbytes;
3289 if (0 < tmp && tmp < (1UL << 17))
3290 init_user_reserve();
3292 /* Default max is 8MB. Leave alone if modified by operator. */
3293 tmp = sysctl_admin_reserve_kbytes;
3294 if (0 < tmp && tmp < (1UL << 13))
3295 init_admin_reserve();
3297 break;
3298 case MEM_OFFLINE:
3299 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3301 if (sysctl_user_reserve_kbytes > free_kbytes) {
3302 init_user_reserve();
3303 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3304 sysctl_user_reserve_kbytes);
3307 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3308 init_admin_reserve();
3309 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3310 sysctl_admin_reserve_kbytes);
3312 break;
3313 default:
3314 break;
3316 return NOTIFY_OK;
3319 static struct notifier_block reserve_mem_nb = {
3320 .notifier_call = reserve_mem_notifier,
3323 static int __meminit init_reserve_notifier(void)
3325 if (register_hotmemory_notifier(&reserve_mem_nb))
3326 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3328 return 0;
3330 subsys_initcall(init_reserve_notifier);