cgroup: mount cgroupns-root when inside non-init cgroupns
[linux-2.6/btrfs-unstable.git] / kernel / cgroup.c
blob24989022ff62ea5f6476ae78a3b63fb93f9e33ad
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/proc_ns.h>
65 #include <net/sock.h>
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
73 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
75 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
88 #ifdef CONFIG_PROVE_RCU
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 EXPORT_SYMBOL_GPL(cgroup_mutex);
92 EXPORT_SYMBOL_GPL(css_set_lock);
93 #else
94 static DEFINE_MUTEX(cgroup_mutex);
95 static DEFINE_SPINLOCK(css_set_lock);
96 #endif
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
102 static DEFINE_SPINLOCK(cgroup_idr_lock);
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
108 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
114 static DEFINE_SPINLOCK(release_agent_path_lock);
116 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
118 #define cgroup_assert_mutex_or_rcu_locked() \
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
121 "cgroup_mutex or RCU read lock required");
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
129 static struct workqueue_struct *cgroup_destroy_wq;
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
135 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
137 /* generate an array of cgroup subsystem pointers */
138 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
139 static struct cgroup_subsys *cgroup_subsys[] = {
140 #include <linux/cgroup_subsys.h>
142 #undef SUBSYS
144 /* array of cgroup subsystem names */
145 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146 static const char *cgroup_subsys_name[] = {
147 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
151 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152 #define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157 #include <linux/cgroup_subsys.h>
158 #undef SUBSYS
160 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161 static struct static_key_true *cgroup_subsys_enabled_key[] = {
162 #include <linux/cgroup_subsys.h>
164 #undef SUBSYS
166 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168 #include <linux/cgroup_subsys.h>
170 #undef SUBSYS
173 * The default hierarchy, reserved for the subsystems that are otherwise
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
177 struct cgroup_root cgrp_dfl_root;
178 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
184 static bool cgrp_dfl_root_visible;
186 /* Controllers blocked by the commandline in v1 */
187 static unsigned long cgroup_no_v1_mask;
189 /* some controllers are not supported in the default hierarchy */
190 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
192 /* The list of hierarchy roots */
194 static LIST_HEAD(cgroup_roots);
195 static int cgroup_root_count;
197 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
198 static DEFINE_IDR(cgroup_hierarchy_idr);
201 * Assign a monotonically increasing serial number to csses. It guarantees
202 * cgroups with bigger numbers are newer than those with smaller numbers.
203 * Also, as csses are always appended to the parent's ->children list, it
204 * guarantees that sibling csses are always sorted in the ascending serial
205 * number order on the list. Protected by cgroup_mutex.
207 static u64 css_serial_nr_next = 1;
210 * These bitmask flags indicate whether tasks in the fork and exit paths have
211 * fork/exit handlers to call. This avoids us having to do extra work in the
212 * fork/exit path to check which subsystems have fork/exit callbacks.
214 static unsigned long have_fork_callback __read_mostly;
215 static unsigned long have_exit_callback __read_mostly;
216 static unsigned long have_free_callback __read_mostly;
218 /* cgroup namespace for init task */
219 struct cgroup_namespace init_cgroup_ns = {
220 .count = { .counter = 2, },
221 .user_ns = &init_user_ns,
222 .ns.ops = &cgroupns_operations,
223 .ns.inum = PROC_CGROUP_INIT_INO,
224 .root_cset = &init_css_set,
227 /* Ditto for the can_fork callback. */
228 static unsigned long have_canfork_callback __read_mostly;
230 static struct file_system_type cgroup2_fs_type;
231 static struct cftype cgroup_dfl_base_files[];
232 static struct cftype cgroup_legacy_base_files[];
234 static int rebind_subsystems(struct cgroup_root *dst_root,
235 unsigned long ss_mask);
236 static void css_task_iter_advance(struct css_task_iter *it);
237 static int cgroup_destroy_locked(struct cgroup *cgrp);
238 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
239 bool visible);
240 static void css_release(struct percpu_ref *ref);
241 static void kill_css(struct cgroup_subsys_state *css);
242 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
243 struct cgroup *cgrp, struct cftype cfts[],
244 bool is_add);
247 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
248 * @ssid: subsys ID of interest
250 * cgroup_subsys_enabled() can only be used with literal subsys names which
251 * is fine for individual subsystems but unsuitable for cgroup core. This
252 * is slower static_key_enabled() based test indexed by @ssid.
254 static bool cgroup_ssid_enabled(int ssid)
256 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
259 static bool cgroup_ssid_no_v1(int ssid)
261 return cgroup_no_v1_mask & (1 << ssid);
265 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
266 * @cgrp: the cgroup of interest
268 * The default hierarchy is the v2 interface of cgroup and this function
269 * can be used to test whether a cgroup is on the default hierarchy for
270 * cases where a subsystem should behave differnetly depending on the
271 * interface version.
273 * The set of behaviors which change on the default hierarchy are still
274 * being determined and the mount option is prefixed with __DEVEL__.
276 * List of changed behaviors:
278 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
279 * and "name" are disallowed.
281 * - When mounting an existing superblock, mount options should match.
283 * - Remount is disallowed.
285 * - rename(2) is disallowed.
287 * - "tasks" is removed. Everything should be at process granularity. Use
288 * "cgroup.procs" instead.
290 * - "cgroup.procs" is not sorted. pids will be unique unless they got
291 * recycled inbetween reads.
293 * - "release_agent" and "notify_on_release" are removed. Replacement
294 * notification mechanism will be implemented.
296 * - "cgroup.clone_children" is removed.
298 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
299 * and its descendants contain no task; otherwise, 1. The file also
300 * generates kernfs notification which can be monitored through poll and
301 * [di]notify when the value of the file changes.
303 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
304 * take masks of ancestors with non-empty cpus/mems, instead of being
305 * moved to an ancestor.
307 * - cpuset: a task can be moved into an empty cpuset, and again it takes
308 * masks of ancestors.
310 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
311 * is not created.
313 * - blkcg: blk-throttle becomes properly hierarchical.
315 * - debug: disallowed on the default hierarchy.
317 static bool cgroup_on_dfl(const struct cgroup *cgrp)
319 return cgrp->root == &cgrp_dfl_root;
322 /* IDR wrappers which synchronize using cgroup_idr_lock */
323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
324 gfp_t gfp_mask)
326 int ret;
328 idr_preload(gfp_mask);
329 spin_lock_bh(&cgroup_idr_lock);
330 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
331 spin_unlock_bh(&cgroup_idr_lock);
332 idr_preload_end();
333 return ret;
336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
338 void *ret;
340 spin_lock_bh(&cgroup_idr_lock);
341 ret = idr_replace(idr, ptr, id);
342 spin_unlock_bh(&cgroup_idr_lock);
343 return ret;
346 static void cgroup_idr_remove(struct idr *idr, int id)
348 spin_lock_bh(&cgroup_idr_lock);
349 idr_remove(idr, id);
350 spin_unlock_bh(&cgroup_idr_lock);
353 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
355 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
357 if (parent_css)
358 return container_of(parent_css, struct cgroup, self);
359 return NULL;
363 * cgroup_css - obtain a cgroup's css for the specified subsystem
364 * @cgrp: the cgroup of interest
365 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
367 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
368 * function must be called either under cgroup_mutex or rcu_read_lock() and
369 * the caller is responsible for pinning the returned css if it wants to
370 * keep accessing it outside the said locks. This function may return
371 * %NULL if @cgrp doesn't have @subsys_id enabled.
373 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
374 struct cgroup_subsys *ss)
376 if (ss)
377 return rcu_dereference_check(cgrp->subsys[ss->id],
378 lockdep_is_held(&cgroup_mutex));
379 else
380 return &cgrp->self;
384 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
385 * @cgrp: the cgroup of interest
386 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
388 * Similar to cgroup_css() but returns the effective css, which is defined
389 * as the matching css of the nearest ancestor including self which has @ss
390 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
391 * function is guaranteed to return non-NULL css.
393 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
394 struct cgroup_subsys *ss)
396 lockdep_assert_held(&cgroup_mutex);
398 if (!ss)
399 return &cgrp->self;
401 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
402 return NULL;
405 * This function is used while updating css associations and thus
406 * can't test the csses directly. Use ->child_subsys_mask.
408 while (cgroup_parent(cgrp) &&
409 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
410 cgrp = cgroup_parent(cgrp);
412 return cgroup_css(cgrp, ss);
416 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
417 * @cgrp: the cgroup of interest
418 * @ss: the subsystem of interest
420 * Find and get the effective css of @cgrp for @ss. The effective css is
421 * defined as the matching css of the nearest ancestor including self which
422 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
423 * the root css is returned, so this function always returns a valid css.
424 * The returned css must be put using css_put().
426 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
427 struct cgroup_subsys *ss)
429 struct cgroup_subsys_state *css;
431 rcu_read_lock();
433 do {
434 css = cgroup_css(cgrp, ss);
436 if (css && css_tryget_online(css))
437 goto out_unlock;
438 cgrp = cgroup_parent(cgrp);
439 } while (cgrp);
441 css = init_css_set.subsys[ss->id];
442 css_get(css);
443 out_unlock:
444 rcu_read_unlock();
445 return css;
448 /* convenient tests for these bits */
449 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
451 return !(cgrp->self.flags & CSS_ONLINE);
454 static void cgroup_get(struct cgroup *cgrp)
456 WARN_ON_ONCE(cgroup_is_dead(cgrp));
457 css_get(&cgrp->self);
460 static bool cgroup_tryget(struct cgroup *cgrp)
462 return css_tryget(&cgrp->self);
465 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
467 struct cgroup *cgrp = of->kn->parent->priv;
468 struct cftype *cft = of_cft(of);
471 * This is open and unprotected implementation of cgroup_css().
472 * seq_css() is only called from a kernfs file operation which has
473 * an active reference on the file. Because all the subsystem
474 * files are drained before a css is disassociated with a cgroup,
475 * the matching css from the cgroup's subsys table is guaranteed to
476 * be and stay valid until the enclosing operation is complete.
478 if (cft->ss)
479 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
480 else
481 return &cgrp->self;
483 EXPORT_SYMBOL_GPL(of_css);
485 static int notify_on_release(const struct cgroup *cgrp)
487 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
491 * for_each_css - iterate all css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
496 * Should be called under cgroup_[tree_]mutex.
498 #define for_each_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = rcu_dereference_check( \
501 (cgrp)->subsys[(ssid)], \
502 lockdep_is_held(&cgroup_mutex)))) { } \
503 else
506 * for_each_e_css - iterate all effective css's of a cgroup
507 * @css: the iteration cursor
508 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
509 * @cgrp: the target cgroup to iterate css's of
511 * Should be called under cgroup_[tree_]mutex.
513 #define for_each_e_css(css, ssid, cgrp) \
514 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
515 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
517 else
520 * for_each_subsys - iterate all enabled cgroup subsystems
521 * @ss: the iteration cursor
522 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
524 #define for_each_subsys(ss, ssid) \
525 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
526 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
529 * for_each_subsys_which - filter for_each_subsys with a bitmask
530 * @ss: the iteration cursor
531 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
532 * @ss_maskp: a pointer to the bitmask
534 * The block will only run for cases where the ssid-th bit (1 << ssid) of
535 * mask is set to 1.
537 #define for_each_subsys_which(ss, ssid, ss_maskp) \
538 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
539 (ssid) = 0; \
540 else \
541 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
542 if (((ss) = cgroup_subsys[ssid]) && false) \
543 break; \
544 else
546 /* iterate across the hierarchies */
547 #define for_each_root(root) \
548 list_for_each_entry((root), &cgroup_roots, root_list)
550 /* iterate over child cgrps, lock should be held throughout iteration */
551 #define cgroup_for_each_live_child(child, cgrp) \
552 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
553 if (({ lockdep_assert_held(&cgroup_mutex); \
554 cgroup_is_dead(child); })) \
556 else
558 static void cgroup_release_agent(struct work_struct *work);
559 static void check_for_release(struct cgroup *cgrp);
562 * A cgroup can be associated with multiple css_sets as different tasks may
563 * belong to different cgroups on different hierarchies. In the other
564 * direction, a css_set is naturally associated with multiple cgroups.
565 * This M:N relationship is represented by the following link structure
566 * which exists for each association and allows traversing the associations
567 * from both sides.
569 struct cgrp_cset_link {
570 /* the cgroup and css_set this link associates */
571 struct cgroup *cgrp;
572 struct css_set *cset;
574 /* list of cgrp_cset_links anchored at cgrp->cset_links */
575 struct list_head cset_link;
577 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
578 struct list_head cgrp_link;
582 * The default css_set - used by init and its children prior to any
583 * hierarchies being mounted. It contains a pointer to the root state
584 * for each subsystem. Also used to anchor the list of css_sets. Not
585 * reference-counted, to improve performance when child cgroups
586 * haven't been created.
588 struct css_set init_css_set = {
589 .refcount = ATOMIC_INIT(1),
590 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
591 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
592 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
593 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
594 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
595 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
598 static int css_set_count = 1; /* 1 for init_css_set */
601 * css_set_populated - does a css_set contain any tasks?
602 * @cset: target css_set
604 static bool css_set_populated(struct css_set *cset)
606 lockdep_assert_held(&css_set_lock);
608 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
612 * cgroup_update_populated - updated populated count of a cgroup
613 * @cgrp: the target cgroup
614 * @populated: inc or dec populated count
616 * One of the css_sets associated with @cgrp is either getting its first
617 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
618 * count is propagated towards root so that a given cgroup's populated_cnt
619 * is zero iff the cgroup and all its descendants don't contain any tasks.
621 * @cgrp's interface file "cgroup.populated" is zero if
622 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
623 * changes from or to zero, userland is notified that the content of the
624 * interface file has changed. This can be used to detect when @cgrp and
625 * its descendants become populated or empty.
627 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
629 lockdep_assert_held(&css_set_lock);
631 do {
632 bool trigger;
634 if (populated)
635 trigger = !cgrp->populated_cnt++;
636 else
637 trigger = !--cgrp->populated_cnt;
639 if (!trigger)
640 break;
642 check_for_release(cgrp);
643 cgroup_file_notify(&cgrp->events_file);
645 cgrp = cgroup_parent(cgrp);
646 } while (cgrp);
650 * css_set_update_populated - update populated state of a css_set
651 * @cset: target css_set
652 * @populated: whether @cset is populated or depopulated
654 * @cset is either getting the first task or losing the last. Update the
655 * ->populated_cnt of all associated cgroups accordingly.
657 static void css_set_update_populated(struct css_set *cset, bool populated)
659 struct cgrp_cset_link *link;
661 lockdep_assert_held(&css_set_lock);
663 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
664 cgroup_update_populated(link->cgrp, populated);
668 * css_set_move_task - move a task from one css_set to another
669 * @task: task being moved
670 * @from_cset: css_set @task currently belongs to (may be NULL)
671 * @to_cset: new css_set @task is being moved to (may be NULL)
672 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
674 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
675 * css_set, @from_cset can be NULL. If @task is being disassociated
676 * instead of moved, @to_cset can be NULL.
678 * This function automatically handles populated_cnt updates and
679 * css_task_iter adjustments but the caller is responsible for managing
680 * @from_cset and @to_cset's reference counts.
682 static void css_set_move_task(struct task_struct *task,
683 struct css_set *from_cset, struct css_set *to_cset,
684 bool use_mg_tasks)
686 lockdep_assert_held(&css_set_lock);
688 if (from_cset) {
689 struct css_task_iter *it, *pos;
691 WARN_ON_ONCE(list_empty(&task->cg_list));
694 * @task is leaving, advance task iterators which are
695 * pointing to it so that they can resume at the next
696 * position. Advancing an iterator might remove it from
697 * the list, use safe walk. See css_task_iter_advance*()
698 * for details.
700 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
701 iters_node)
702 if (it->task_pos == &task->cg_list)
703 css_task_iter_advance(it);
705 list_del_init(&task->cg_list);
706 if (!css_set_populated(from_cset))
707 css_set_update_populated(from_cset, false);
708 } else {
709 WARN_ON_ONCE(!list_empty(&task->cg_list));
712 if (to_cset) {
714 * We are synchronized through cgroup_threadgroup_rwsem
715 * against PF_EXITING setting such that we can't race
716 * against cgroup_exit() changing the css_set to
717 * init_css_set and dropping the old one.
719 WARN_ON_ONCE(task->flags & PF_EXITING);
721 if (!css_set_populated(to_cset))
722 css_set_update_populated(to_cset, true);
723 rcu_assign_pointer(task->cgroups, to_cset);
724 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
725 &to_cset->tasks);
730 * hash table for cgroup groups. This improves the performance to find
731 * an existing css_set. This hash doesn't (currently) take into
732 * account cgroups in empty hierarchies.
734 #define CSS_SET_HASH_BITS 7
735 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
737 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
739 unsigned long key = 0UL;
740 struct cgroup_subsys *ss;
741 int i;
743 for_each_subsys(ss, i)
744 key += (unsigned long)css[i];
745 key = (key >> 16) ^ key;
747 return key;
750 static void put_css_set_locked(struct css_set *cset)
752 struct cgrp_cset_link *link, *tmp_link;
753 struct cgroup_subsys *ss;
754 int ssid;
756 lockdep_assert_held(&css_set_lock);
758 if (!atomic_dec_and_test(&cset->refcount))
759 return;
761 /* This css_set is dead. unlink it and release cgroup and css refs */
762 for_each_subsys(ss, ssid) {
763 list_del(&cset->e_cset_node[ssid]);
764 css_put(cset->subsys[ssid]);
766 hash_del(&cset->hlist);
767 css_set_count--;
769 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
770 list_del(&link->cset_link);
771 list_del(&link->cgrp_link);
772 if (cgroup_parent(link->cgrp))
773 cgroup_put(link->cgrp);
774 kfree(link);
777 kfree_rcu(cset, rcu_head);
780 static void put_css_set(struct css_set *cset)
783 * Ensure that the refcount doesn't hit zero while any readers
784 * can see it. Similar to atomic_dec_and_lock(), but for an
785 * rwlock
787 if (atomic_add_unless(&cset->refcount, -1, 1))
788 return;
790 spin_lock_bh(&css_set_lock);
791 put_css_set_locked(cset);
792 spin_unlock_bh(&css_set_lock);
796 * refcounted get/put for css_set objects
798 static inline void get_css_set(struct css_set *cset)
800 atomic_inc(&cset->refcount);
804 * compare_css_sets - helper function for find_existing_css_set().
805 * @cset: candidate css_set being tested
806 * @old_cset: existing css_set for a task
807 * @new_cgrp: cgroup that's being entered by the task
808 * @template: desired set of css pointers in css_set (pre-calculated)
810 * Returns true if "cset" matches "old_cset" except for the hierarchy
811 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
813 static bool compare_css_sets(struct css_set *cset,
814 struct css_set *old_cset,
815 struct cgroup *new_cgrp,
816 struct cgroup_subsys_state *template[])
818 struct list_head *l1, *l2;
821 * On the default hierarchy, there can be csets which are
822 * associated with the same set of cgroups but different csses.
823 * Let's first ensure that csses match.
825 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
826 return false;
829 * Compare cgroup pointers in order to distinguish between
830 * different cgroups in hierarchies. As different cgroups may
831 * share the same effective css, this comparison is always
832 * necessary.
834 l1 = &cset->cgrp_links;
835 l2 = &old_cset->cgrp_links;
836 while (1) {
837 struct cgrp_cset_link *link1, *link2;
838 struct cgroup *cgrp1, *cgrp2;
840 l1 = l1->next;
841 l2 = l2->next;
842 /* See if we reached the end - both lists are equal length. */
843 if (l1 == &cset->cgrp_links) {
844 BUG_ON(l2 != &old_cset->cgrp_links);
845 break;
846 } else {
847 BUG_ON(l2 == &old_cset->cgrp_links);
849 /* Locate the cgroups associated with these links. */
850 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
851 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
852 cgrp1 = link1->cgrp;
853 cgrp2 = link2->cgrp;
854 /* Hierarchies should be linked in the same order. */
855 BUG_ON(cgrp1->root != cgrp2->root);
858 * If this hierarchy is the hierarchy of the cgroup
859 * that's changing, then we need to check that this
860 * css_set points to the new cgroup; if it's any other
861 * hierarchy, then this css_set should point to the
862 * same cgroup as the old css_set.
864 if (cgrp1->root == new_cgrp->root) {
865 if (cgrp1 != new_cgrp)
866 return false;
867 } else {
868 if (cgrp1 != cgrp2)
869 return false;
872 return true;
876 * find_existing_css_set - init css array and find the matching css_set
877 * @old_cset: the css_set that we're using before the cgroup transition
878 * @cgrp: the cgroup that we're moving into
879 * @template: out param for the new set of csses, should be clear on entry
881 static struct css_set *find_existing_css_set(struct css_set *old_cset,
882 struct cgroup *cgrp,
883 struct cgroup_subsys_state *template[])
885 struct cgroup_root *root = cgrp->root;
886 struct cgroup_subsys *ss;
887 struct css_set *cset;
888 unsigned long key;
889 int i;
892 * Build the set of subsystem state objects that we want to see in the
893 * new css_set. while subsystems can change globally, the entries here
894 * won't change, so no need for locking.
896 for_each_subsys(ss, i) {
897 if (root->subsys_mask & (1UL << i)) {
899 * @ss is in this hierarchy, so we want the
900 * effective css from @cgrp.
902 template[i] = cgroup_e_css(cgrp, ss);
903 } else {
905 * @ss is not in this hierarchy, so we don't want
906 * to change the css.
908 template[i] = old_cset->subsys[i];
912 key = css_set_hash(template);
913 hash_for_each_possible(css_set_table, cset, hlist, key) {
914 if (!compare_css_sets(cset, old_cset, cgrp, template))
915 continue;
917 /* This css_set matches what we need */
918 return cset;
921 /* No existing cgroup group matched */
922 return NULL;
925 static void free_cgrp_cset_links(struct list_head *links_to_free)
927 struct cgrp_cset_link *link, *tmp_link;
929 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
930 list_del(&link->cset_link);
931 kfree(link);
936 * allocate_cgrp_cset_links - allocate cgrp_cset_links
937 * @count: the number of links to allocate
938 * @tmp_links: list_head the allocated links are put on
940 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
941 * through ->cset_link. Returns 0 on success or -errno.
943 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
945 struct cgrp_cset_link *link;
946 int i;
948 INIT_LIST_HEAD(tmp_links);
950 for (i = 0; i < count; i++) {
951 link = kzalloc(sizeof(*link), GFP_KERNEL);
952 if (!link) {
953 free_cgrp_cset_links(tmp_links);
954 return -ENOMEM;
956 list_add(&link->cset_link, tmp_links);
958 return 0;
962 * link_css_set - a helper function to link a css_set to a cgroup
963 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
964 * @cset: the css_set to be linked
965 * @cgrp: the destination cgroup
967 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
968 struct cgroup *cgrp)
970 struct cgrp_cset_link *link;
972 BUG_ON(list_empty(tmp_links));
974 if (cgroup_on_dfl(cgrp))
975 cset->dfl_cgrp = cgrp;
977 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
978 link->cset = cset;
979 link->cgrp = cgrp;
982 * Always add links to the tail of the lists so that the lists are
983 * in choronological order.
985 list_move_tail(&link->cset_link, &cgrp->cset_links);
986 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
988 if (cgroup_parent(cgrp))
989 cgroup_get(cgrp);
993 * find_css_set - return a new css_set with one cgroup updated
994 * @old_cset: the baseline css_set
995 * @cgrp: the cgroup to be updated
997 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
998 * substituted into the appropriate hierarchy.
1000 static struct css_set *find_css_set(struct css_set *old_cset,
1001 struct cgroup *cgrp)
1003 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1004 struct css_set *cset;
1005 struct list_head tmp_links;
1006 struct cgrp_cset_link *link;
1007 struct cgroup_subsys *ss;
1008 unsigned long key;
1009 int ssid;
1011 lockdep_assert_held(&cgroup_mutex);
1013 /* First see if we already have a cgroup group that matches
1014 * the desired set */
1015 spin_lock_bh(&css_set_lock);
1016 cset = find_existing_css_set(old_cset, cgrp, template);
1017 if (cset)
1018 get_css_set(cset);
1019 spin_unlock_bh(&css_set_lock);
1021 if (cset)
1022 return cset;
1024 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1025 if (!cset)
1026 return NULL;
1028 /* Allocate all the cgrp_cset_link objects that we'll need */
1029 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1030 kfree(cset);
1031 return NULL;
1034 atomic_set(&cset->refcount, 1);
1035 INIT_LIST_HEAD(&cset->cgrp_links);
1036 INIT_LIST_HEAD(&cset->tasks);
1037 INIT_LIST_HEAD(&cset->mg_tasks);
1038 INIT_LIST_HEAD(&cset->mg_preload_node);
1039 INIT_LIST_HEAD(&cset->mg_node);
1040 INIT_LIST_HEAD(&cset->task_iters);
1041 INIT_HLIST_NODE(&cset->hlist);
1043 /* Copy the set of subsystem state objects generated in
1044 * find_existing_css_set() */
1045 memcpy(cset->subsys, template, sizeof(cset->subsys));
1047 spin_lock_bh(&css_set_lock);
1048 /* Add reference counts and links from the new css_set. */
1049 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1050 struct cgroup *c = link->cgrp;
1052 if (c->root == cgrp->root)
1053 c = cgrp;
1054 link_css_set(&tmp_links, cset, c);
1057 BUG_ON(!list_empty(&tmp_links));
1059 css_set_count++;
1061 /* Add @cset to the hash table */
1062 key = css_set_hash(cset->subsys);
1063 hash_add(css_set_table, &cset->hlist, key);
1065 for_each_subsys(ss, ssid) {
1066 struct cgroup_subsys_state *css = cset->subsys[ssid];
1068 list_add_tail(&cset->e_cset_node[ssid],
1069 &css->cgroup->e_csets[ssid]);
1070 css_get(css);
1073 spin_unlock_bh(&css_set_lock);
1075 return cset;
1078 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1080 struct cgroup *root_cgrp = kf_root->kn->priv;
1082 return root_cgrp->root;
1085 static int cgroup_init_root_id(struct cgroup_root *root)
1087 int id;
1089 lockdep_assert_held(&cgroup_mutex);
1091 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1092 if (id < 0)
1093 return id;
1095 root->hierarchy_id = id;
1096 return 0;
1099 static void cgroup_exit_root_id(struct cgroup_root *root)
1101 lockdep_assert_held(&cgroup_mutex);
1103 if (root->hierarchy_id) {
1104 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1105 root->hierarchy_id = 0;
1109 static void cgroup_free_root(struct cgroup_root *root)
1111 if (root) {
1112 /* hierarchy ID should already have been released */
1113 WARN_ON_ONCE(root->hierarchy_id);
1115 idr_destroy(&root->cgroup_idr);
1116 kfree(root);
1120 static void cgroup_destroy_root(struct cgroup_root *root)
1122 struct cgroup *cgrp = &root->cgrp;
1123 struct cgrp_cset_link *link, *tmp_link;
1125 mutex_lock(&cgroup_mutex);
1127 BUG_ON(atomic_read(&root->nr_cgrps));
1128 BUG_ON(!list_empty(&cgrp->self.children));
1130 /* Rebind all subsystems back to the default hierarchy */
1131 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1134 * Release all the links from cset_links to this hierarchy's
1135 * root cgroup
1137 spin_lock_bh(&css_set_lock);
1139 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1140 list_del(&link->cset_link);
1141 list_del(&link->cgrp_link);
1142 kfree(link);
1145 spin_unlock_bh(&css_set_lock);
1147 if (!list_empty(&root->root_list)) {
1148 list_del(&root->root_list);
1149 cgroup_root_count--;
1152 cgroup_exit_root_id(root);
1154 mutex_unlock(&cgroup_mutex);
1156 kernfs_destroy_root(root->kf_root);
1157 cgroup_free_root(root);
1160 /* look up cgroup associated with given css_set on the specified hierarchy */
1161 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1162 struct cgroup_root *root)
1164 struct cgroup *res = NULL;
1166 lockdep_assert_held(&cgroup_mutex);
1167 lockdep_assert_held(&css_set_lock);
1169 if (cset == &init_css_set) {
1170 res = &root->cgrp;
1171 } else {
1172 struct cgrp_cset_link *link;
1174 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1175 struct cgroup *c = link->cgrp;
1177 if (c->root == root) {
1178 res = c;
1179 break;
1184 BUG_ON(!res);
1185 return res;
1189 * Return the cgroup for "task" from the given hierarchy. Must be
1190 * called with cgroup_mutex and css_set_lock held.
1192 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1193 struct cgroup_root *root)
1196 * No need to lock the task - since we hold cgroup_mutex the
1197 * task can't change groups, so the only thing that can happen
1198 * is that it exits and its css is set back to init_css_set.
1200 return cset_cgroup_from_root(task_css_set(task), root);
1204 * A task must hold cgroup_mutex to modify cgroups.
1206 * Any task can increment and decrement the count field without lock.
1207 * So in general, code holding cgroup_mutex can't rely on the count
1208 * field not changing. However, if the count goes to zero, then only
1209 * cgroup_attach_task() can increment it again. Because a count of zero
1210 * means that no tasks are currently attached, therefore there is no
1211 * way a task attached to that cgroup can fork (the other way to
1212 * increment the count). So code holding cgroup_mutex can safely
1213 * assume that if the count is zero, it will stay zero. Similarly, if
1214 * a task holds cgroup_mutex on a cgroup with zero count, it
1215 * knows that the cgroup won't be removed, as cgroup_rmdir()
1216 * needs that mutex.
1218 * A cgroup can only be deleted if both its 'count' of using tasks
1219 * is zero, and its list of 'children' cgroups is empty. Since all
1220 * tasks in the system use _some_ cgroup, and since there is always at
1221 * least one task in the system (init, pid == 1), therefore, root cgroup
1222 * always has either children cgroups and/or using tasks. So we don't
1223 * need a special hack to ensure that root cgroup cannot be deleted.
1225 * P.S. One more locking exception. RCU is used to guard the
1226 * update of a tasks cgroup pointer by cgroup_attach_task()
1229 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1230 static const struct file_operations proc_cgroupstats_operations;
1232 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1233 char *buf)
1235 struct cgroup_subsys *ss = cft->ss;
1237 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1238 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1239 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1240 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1241 cft->name);
1242 else
1243 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1244 return buf;
1248 * cgroup_file_mode - deduce file mode of a control file
1249 * @cft: the control file in question
1251 * S_IRUGO for read, S_IWUSR for write.
1253 static umode_t cgroup_file_mode(const struct cftype *cft)
1255 umode_t mode = 0;
1257 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1258 mode |= S_IRUGO;
1260 if (cft->write_u64 || cft->write_s64 || cft->write) {
1261 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1262 mode |= S_IWUGO;
1263 else
1264 mode |= S_IWUSR;
1267 return mode;
1271 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1272 * @cgrp: the target cgroup
1273 * @subtree_control: the new subtree_control mask to consider
1275 * On the default hierarchy, a subsystem may request other subsystems to be
1276 * enabled together through its ->depends_on mask. In such cases, more
1277 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1279 * This function calculates which subsystems need to be enabled if
1280 * @subtree_control is to be applied to @cgrp. The returned mask is always
1281 * a superset of @subtree_control and follows the usual hierarchy rules.
1283 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1284 unsigned long subtree_control)
1286 struct cgroup *parent = cgroup_parent(cgrp);
1287 unsigned long cur_ss_mask = subtree_control;
1288 struct cgroup_subsys *ss;
1289 int ssid;
1291 lockdep_assert_held(&cgroup_mutex);
1293 if (!cgroup_on_dfl(cgrp))
1294 return cur_ss_mask;
1296 while (true) {
1297 unsigned long new_ss_mask = cur_ss_mask;
1299 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1300 new_ss_mask |= ss->depends_on;
1303 * Mask out subsystems which aren't available. This can
1304 * happen only if some depended-upon subsystems were bound
1305 * to non-default hierarchies.
1307 if (parent)
1308 new_ss_mask &= parent->child_subsys_mask;
1309 else
1310 new_ss_mask &= cgrp->root->subsys_mask;
1312 if (new_ss_mask == cur_ss_mask)
1313 break;
1314 cur_ss_mask = new_ss_mask;
1317 return cur_ss_mask;
1321 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1322 * @cgrp: the target cgroup
1324 * Update @cgrp->child_subsys_mask according to the current
1325 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1327 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1329 cgrp->child_subsys_mask =
1330 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1334 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1335 * @kn: the kernfs_node being serviced
1337 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1338 * the method finishes if locking succeeded. Note that once this function
1339 * returns the cgroup returned by cgroup_kn_lock_live() may become
1340 * inaccessible any time. If the caller intends to continue to access the
1341 * cgroup, it should pin it before invoking this function.
1343 static void cgroup_kn_unlock(struct kernfs_node *kn)
1345 struct cgroup *cgrp;
1347 if (kernfs_type(kn) == KERNFS_DIR)
1348 cgrp = kn->priv;
1349 else
1350 cgrp = kn->parent->priv;
1352 mutex_unlock(&cgroup_mutex);
1354 kernfs_unbreak_active_protection(kn);
1355 cgroup_put(cgrp);
1359 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1360 * @kn: the kernfs_node being serviced
1362 * This helper is to be used by a cgroup kernfs method currently servicing
1363 * @kn. It breaks the active protection, performs cgroup locking and
1364 * verifies that the associated cgroup is alive. Returns the cgroup if
1365 * alive; otherwise, %NULL. A successful return should be undone by a
1366 * matching cgroup_kn_unlock() invocation.
1368 * Any cgroup kernfs method implementation which requires locking the
1369 * associated cgroup should use this helper. It avoids nesting cgroup
1370 * locking under kernfs active protection and allows all kernfs operations
1371 * including self-removal.
1373 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1375 struct cgroup *cgrp;
1377 if (kernfs_type(kn) == KERNFS_DIR)
1378 cgrp = kn->priv;
1379 else
1380 cgrp = kn->parent->priv;
1383 * We're gonna grab cgroup_mutex which nests outside kernfs
1384 * active_ref. cgroup liveliness check alone provides enough
1385 * protection against removal. Ensure @cgrp stays accessible and
1386 * break the active_ref protection.
1388 if (!cgroup_tryget(cgrp))
1389 return NULL;
1390 kernfs_break_active_protection(kn);
1392 mutex_lock(&cgroup_mutex);
1394 if (!cgroup_is_dead(cgrp))
1395 return cgrp;
1397 cgroup_kn_unlock(kn);
1398 return NULL;
1401 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1403 char name[CGROUP_FILE_NAME_MAX];
1405 lockdep_assert_held(&cgroup_mutex);
1407 if (cft->file_offset) {
1408 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1409 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1411 spin_lock_irq(&cgroup_file_kn_lock);
1412 cfile->kn = NULL;
1413 spin_unlock_irq(&cgroup_file_kn_lock);
1416 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1420 * css_clear_dir - remove subsys files in a cgroup directory
1421 * @css: taget css
1422 * @cgrp_override: specify if target cgroup is different from css->cgroup
1424 static void css_clear_dir(struct cgroup_subsys_state *css,
1425 struct cgroup *cgrp_override)
1427 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1428 struct cftype *cfts;
1430 list_for_each_entry(cfts, &css->ss->cfts, node)
1431 cgroup_addrm_files(css, cgrp, cfts, false);
1435 * css_populate_dir - create subsys files in a cgroup directory
1436 * @css: target css
1437 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1439 * On failure, no file is added.
1441 static int css_populate_dir(struct cgroup_subsys_state *css,
1442 struct cgroup *cgrp_override)
1444 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1445 struct cftype *cfts, *failed_cfts;
1446 int ret;
1448 if (!css->ss) {
1449 if (cgroup_on_dfl(cgrp))
1450 cfts = cgroup_dfl_base_files;
1451 else
1452 cfts = cgroup_legacy_base_files;
1454 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1457 list_for_each_entry(cfts, &css->ss->cfts, node) {
1458 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1459 if (ret < 0) {
1460 failed_cfts = cfts;
1461 goto err;
1464 return 0;
1465 err:
1466 list_for_each_entry(cfts, &css->ss->cfts, node) {
1467 if (cfts == failed_cfts)
1468 break;
1469 cgroup_addrm_files(css, cgrp, cfts, false);
1471 return ret;
1474 static int rebind_subsystems(struct cgroup_root *dst_root,
1475 unsigned long ss_mask)
1477 struct cgroup *dcgrp = &dst_root->cgrp;
1478 struct cgroup_subsys *ss;
1479 unsigned long tmp_ss_mask;
1480 int ssid, i, ret;
1482 lockdep_assert_held(&cgroup_mutex);
1484 for_each_subsys_which(ss, ssid, &ss_mask) {
1485 /* if @ss has non-root csses attached to it, can't move */
1486 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1487 return -EBUSY;
1489 /* can't move between two non-dummy roots either */
1490 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1491 return -EBUSY;
1494 /* skip creating root files on dfl_root for inhibited subsystems */
1495 tmp_ss_mask = ss_mask;
1496 if (dst_root == &cgrp_dfl_root)
1497 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1499 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1500 struct cgroup *scgrp = &ss->root->cgrp;
1501 int tssid;
1503 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1504 if (!ret)
1505 continue;
1508 * Rebinding back to the default root is not allowed to
1509 * fail. Using both default and non-default roots should
1510 * be rare. Moving subsystems back and forth even more so.
1511 * Just warn about it and continue.
1513 if (dst_root == &cgrp_dfl_root) {
1514 if (cgrp_dfl_root_visible) {
1515 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1516 ret, ss_mask);
1517 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1519 continue;
1522 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1523 if (tssid == ssid)
1524 break;
1525 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1527 return ret;
1531 * Nothing can fail from this point on. Remove files for the
1532 * removed subsystems and rebind each subsystem.
1534 for_each_subsys_which(ss, ssid, &ss_mask) {
1535 struct cgroup_root *src_root = ss->root;
1536 struct cgroup *scgrp = &src_root->cgrp;
1537 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1538 struct css_set *cset;
1540 WARN_ON(!css || cgroup_css(dcgrp, ss));
1542 css_clear_dir(css, NULL);
1544 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1545 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1546 ss->root = dst_root;
1547 css->cgroup = dcgrp;
1549 spin_lock_bh(&css_set_lock);
1550 hash_for_each(css_set_table, i, cset, hlist)
1551 list_move_tail(&cset->e_cset_node[ss->id],
1552 &dcgrp->e_csets[ss->id]);
1553 spin_unlock_bh(&css_set_lock);
1555 src_root->subsys_mask &= ~(1 << ssid);
1556 scgrp->subtree_control &= ~(1 << ssid);
1557 cgroup_refresh_child_subsys_mask(scgrp);
1559 /* default hierarchy doesn't enable controllers by default */
1560 dst_root->subsys_mask |= 1 << ssid;
1561 if (dst_root == &cgrp_dfl_root) {
1562 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1563 } else {
1564 dcgrp->subtree_control |= 1 << ssid;
1565 cgroup_refresh_child_subsys_mask(dcgrp);
1566 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1569 if (ss->bind)
1570 ss->bind(css);
1573 kernfs_activate(dcgrp->kn);
1574 return 0;
1577 static int cgroup_show_options(struct seq_file *seq,
1578 struct kernfs_root *kf_root)
1580 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1581 struct cgroup_subsys *ss;
1582 int ssid;
1584 if (root != &cgrp_dfl_root)
1585 for_each_subsys(ss, ssid)
1586 if (root->subsys_mask & (1 << ssid))
1587 seq_show_option(seq, ss->legacy_name, NULL);
1588 if (root->flags & CGRP_ROOT_NOPREFIX)
1589 seq_puts(seq, ",noprefix");
1590 if (root->flags & CGRP_ROOT_XATTR)
1591 seq_puts(seq, ",xattr");
1593 spin_lock(&release_agent_path_lock);
1594 if (strlen(root->release_agent_path))
1595 seq_show_option(seq, "release_agent",
1596 root->release_agent_path);
1597 spin_unlock(&release_agent_path_lock);
1599 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1600 seq_puts(seq, ",clone_children");
1601 if (strlen(root->name))
1602 seq_show_option(seq, "name", root->name);
1603 return 0;
1606 struct cgroup_sb_opts {
1607 unsigned long subsys_mask;
1608 unsigned int flags;
1609 char *release_agent;
1610 bool cpuset_clone_children;
1611 char *name;
1612 /* User explicitly requested empty subsystem */
1613 bool none;
1616 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1618 char *token, *o = data;
1619 bool all_ss = false, one_ss = false;
1620 unsigned long mask = -1UL;
1621 struct cgroup_subsys *ss;
1622 int nr_opts = 0;
1623 int i;
1625 #ifdef CONFIG_CPUSETS
1626 mask = ~(1U << cpuset_cgrp_id);
1627 #endif
1629 memset(opts, 0, sizeof(*opts));
1631 while ((token = strsep(&o, ",")) != NULL) {
1632 nr_opts++;
1634 if (!*token)
1635 return -EINVAL;
1636 if (!strcmp(token, "none")) {
1637 /* Explicitly have no subsystems */
1638 opts->none = true;
1639 continue;
1641 if (!strcmp(token, "all")) {
1642 /* Mutually exclusive option 'all' + subsystem name */
1643 if (one_ss)
1644 return -EINVAL;
1645 all_ss = true;
1646 continue;
1648 if (!strcmp(token, "noprefix")) {
1649 opts->flags |= CGRP_ROOT_NOPREFIX;
1650 continue;
1652 if (!strcmp(token, "clone_children")) {
1653 opts->cpuset_clone_children = true;
1654 continue;
1656 if (!strcmp(token, "xattr")) {
1657 opts->flags |= CGRP_ROOT_XATTR;
1658 continue;
1660 if (!strncmp(token, "release_agent=", 14)) {
1661 /* Specifying two release agents is forbidden */
1662 if (opts->release_agent)
1663 return -EINVAL;
1664 opts->release_agent =
1665 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1666 if (!opts->release_agent)
1667 return -ENOMEM;
1668 continue;
1670 if (!strncmp(token, "name=", 5)) {
1671 const char *name = token + 5;
1672 /* Can't specify an empty name */
1673 if (!strlen(name))
1674 return -EINVAL;
1675 /* Must match [\w.-]+ */
1676 for (i = 0; i < strlen(name); i++) {
1677 char c = name[i];
1678 if (isalnum(c))
1679 continue;
1680 if ((c == '.') || (c == '-') || (c == '_'))
1681 continue;
1682 return -EINVAL;
1684 /* Specifying two names is forbidden */
1685 if (opts->name)
1686 return -EINVAL;
1687 opts->name = kstrndup(name,
1688 MAX_CGROUP_ROOT_NAMELEN - 1,
1689 GFP_KERNEL);
1690 if (!opts->name)
1691 return -ENOMEM;
1693 continue;
1696 for_each_subsys(ss, i) {
1697 if (strcmp(token, ss->legacy_name))
1698 continue;
1699 if (!cgroup_ssid_enabled(i))
1700 continue;
1701 if (cgroup_ssid_no_v1(i))
1702 continue;
1704 /* Mutually exclusive option 'all' + subsystem name */
1705 if (all_ss)
1706 return -EINVAL;
1707 opts->subsys_mask |= (1 << i);
1708 one_ss = true;
1710 break;
1712 if (i == CGROUP_SUBSYS_COUNT)
1713 return -ENOENT;
1717 * If the 'all' option was specified select all the subsystems,
1718 * otherwise if 'none', 'name=' and a subsystem name options were
1719 * not specified, let's default to 'all'
1721 if (all_ss || (!one_ss && !opts->none && !opts->name))
1722 for_each_subsys(ss, i)
1723 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1724 opts->subsys_mask |= (1 << i);
1727 * We either have to specify by name or by subsystems. (So all
1728 * empty hierarchies must have a name).
1730 if (!opts->subsys_mask && !opts->name)
1731 return -EINVAL;
1734 * Option noprefix was introduced just for backward compatibility
1735 * with the old cpuset, so we allow noprefix only if mounting just
1736 * the cpuset subsystem.
1738 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1739 return -EINVAL;
1741 /* Can't specify "none" and some subsystems */
1742 if (opts->subsys_mask && opts->none)
1743 return -EINVAL;
1745 return 0;
1748 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1750 int ret = 0;
1751 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1752 struct cgroup_sb_opts opts;
1753 unsigned long added_mask, removed_mask;
1755 if (root == &cgrp_dfl_root) {
1756 pr_err("remount is not allowed\n");
1757 return -EINVAL;
1760 mutex_lock(&cgroup_mutex);
1762 /* See what subsystems are wanted */
1763 ret = parse_cgroupfs_options(data, &opts);
1764 if (ret)
1765 goto out_unlock;
1767 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1768 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1769 task_tgid_nr(current), current->comm);
1771 added_mask = opts.subsys_mask & ~root->subsys_mask;
1772 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1774 /* Don't allow flags or name to change at remount */
1775 if ((opts.flags ^ root->flags) ||
1776 (opts.name && strcmp(opts.name, root->name))) {
1777 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1778 opts.flags, opts.name ?: "", root->flags, root->name);
1779 ret = -EINVAL;
1780 goto out_unlock;
1783 /* remounting is not allowed for populated hierarchies */
1784 if (!list_empty(&root->cgrp.self.children)) {
1785 ret = -EBUSY;
1786 goto out_unlock;
1789 ret = rebind_subsystems(root, added_mask);
1790 if (ret)
1791 goto out_unlock;
1793 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1795 if (opts.release_agent) {
1796 spin_lock(&release_agent_path_lock);
1797 strcpy(root->release_agent_path, opts.release_agent);
1798 spin_unlock(&release_agent_path_lock);
1800 out_unlock:
1801 kfree(opts.release_agent);
1802 kfree(opts.name);
1803 mutex_unlock(&cgroup_mutex);
1804 return ret;
1808 * To reduce the fork() overhead for systems that are not actually using
1809 * their cgroups capability, we don't maintain the lists running through
1810 * each css_set to its tasks until we see the list actually used - in other
1811 * words after the first mount.
1813 static bool use_task_css_set_links __read_mostly;
1815 static void cgroup_enable_task_cg_lists(void)
1817 struct task_struct *p, *g;
1819 spin_lock_bh(&css_set_lock);
1821 if (use_task_css_set_links)
1822 goto out_unlock;
1824 use_task_css_set_links = true;
1827 * We need tasklist_lock because RCU is not safe against
1828 * while_each_thread(). Besides, a forking task that has passed
1829 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1830 * is not guaranteed to have its child immediately visible in the
1831 * tasklist if we walk through it with RCU.
1833 read_lock(&tasklist_lock);
1834 do_each_thread(g, p) {
1835 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1836 task_css_set(p) != &init_css_set);
1839 * We should check if the process is exiting, otherwise
1840 * it will race with cgroup_exit() in that the list
1841 * entry won't be deleted though the process has exited.
1842 * Do it while holding siglock so that we don't end up
1843 * racing against cgroup_exit().
1845 spin_lock_irq(&p->sighand->siglock);
1846 if (!(p->flags & PF_EXITING)) {
1847 struct css_set *cset = task_css_set(p);
1849 if (!css_set_populated(cset))
1850 css_set_update_populated(cset, true);
1851 list_add_tail(&p->cg_list, &cset->tasks);
1852 get_css_set(cset);
1854 spin_unlock_irq(&p->sighand->siglock);
1855 } while_each_thread(g, p);
1856 read_unlock(&tasklist_lock);
1857 out_unlock:
1858 spin_unlock_bh(&css_set_lock);
1861 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1863 struct cgroup_subsys *ss;
1864 int ssid;
1866 INIT_LIST_HEAD(&cgrp->self.sibling);
1867 INIT_LIST_HEAD(&cgrp->self.children);
1868 INIT_LIST_HEAD(&cgrp->cset_links);
1869 INIT_LIST_HEAD(&cgrp->pidlists);
1870 mutex_init(&cgrp->pidlist_mutex);
1871 cgrp->self.cgroup = cgrp;
1872 cgrp->self.flags |= CSS_ONLINE;
1874 for_each_subsys(ss, ssid)
1875 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1877 init_waitqueue_head(&cgrp->offline_waitq);
1878 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1881 static void init_cgroup_root(struct cgroup_root *root,
1882 struct cgroup_sb_opts *opts)
1884 struct cgroup *cgrp = &root->cgrp;
1886 INIT_LIST_HEAD(&root->root_list);
1887 atomic_set(&root->nr_cgrps, 1);
1888 cgrp->root = root;
1889 init_cgroup_housekeeping(cgrp);
1890 idr_init(&root->cgroup_idr);
1892 root->flags = opts->flags;
1893 if (opts->release_agent)
1894 strcpy(root->release_agent_path, opts->release_agent);
1895 if (opts->name)
1896 strcpy(root->name, opts->name);
1897 if (opts->cpuset_clone_children)
1898 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1901 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1903 LIST_HEAD(tmp_links);
1904 struct cgroup *root_cgrp = &root->cgrp;
1905 struct css_set *cset;
1906 int i, ret;
1908 lockdep_assert_held(&cgroup_mutex);
1910 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1911 if (ret < 0)
1912 goto out;
1913 root_cgrp->id = ret;
1914 root_cgrp->ancestor_ids[0] = ret;
1916 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1917 GFP_KERNEL);
1918 if (ret)
1919 goto out;
1922 * We're accessing css_set_count without locking css_set_lock here,
1923 * but that's OK - it can only be increased by someone holding
1924 * cgroup_lock, and that's us. The worst that can happen is that we
1925 * have some link structures left over
1927 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1928 if (ret)
1929 goto cancel_ref;
1931 ret = cgroup_init_root_id(root);
1932 if (ret)
1933 goto cancel_ref;
1935 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1936 KERNFS_ROOT_CREATE_DEACTIVATED,
1937 root_cgrp);
1938 if (IS_ERR(root->kf_root)) {
1939 ret = PTR_ERR(root->kf_root);
1940 goto exit_root_id;
1942 root_cgrp->kn = root->kf_root->kn;
1944 ret = css_populate_dir(&root_cgrp->self, NULL);
1945 if (ret)
1946 goto destroy_root;
1948 ret = rebind_subsystems(root, ss_mask);
1949 if (ret)
1950 goto destroy_root;
1953 * There must be no failure case after here, since rebinding takes
1954 * care of subsystems' refcounts, which are explicitly dropped in
1955 * the failure exit path.
1957 list_add(&root->root_list, &cgroup_roots);
1958 cgroup_root_count++;
1961 * Link the root cgroup in this hierarchy into all the css_set
1962 * objects.
1964 spin_lock_bh(&css_set_lock);
1965 hash_for_each(css_set_table, i, cset, hlist) {
1966 link_css_set(&tmp_links, cset, root_cgrp);
1967 if (css_set_populated(cset))
1968 cgroup_update_populated(root_cgrp, true);
1970 spin_unlock_bh(&css_set_lock);
1972 BUG_ON(!list_empty(&root_cgrp->self.children));
1973 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1975 kernfs_activate(root_cgrp->kn);
1976 ret = 0;
1977 goto out;
1979 destroy_root:
1980 kernfs_destroy_root(root->kf_root);
1981 root->kf_root = NULL;
1982 exit_root_id:
1983 cgroup_exit_root_id(root);
1984 cancel_ref:
1985 percpu_ref_exit(&root_cgrp->self.refcnt);
1986 out:
1987 free_cgrp_cset_links(&tmp_links);
1988 return ret;
1991 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1992 int flags, const char *unused_dev_name,
1993 void *data)
1995 bool is_v2 = fs_type == &cgroup2_fs_type;
1996 struct super_block *pinned_sb = NULL;
1997 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1998 struct cgroup_subsys *ss;
1999 struct cgroup_root *root;
2000 struct cgroup_sb_opts opts;
2001 struct dentry *dentry;
2002 int ret;
2003 int i;
2004 bool new_sb;
2006 get_cgroup_ns(ns);
2008 /* Check if the caller has permission to mount. */
2009 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2010 put_cgroup_ns(ns);
2011 return ERR_PTR(-EPERM);
2015 * The first time anyone tries to mount a cgroup, enable the list
2016 * linking each css_set to its tasks and fix up all existing tasks.
2018 if (!use_task_css_set_links)
2019 cgroup_enable_task_cg_lists();
2021 if (is_v2) {
2022 if (data) {
2023 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2024 put_cgroup_ns(ns);
2025 return ERR_PTR(-EINVAL);
2027 cgrp_dfl_root_visible = true;
2028 root = &cgrp_dfl_root;
2029 cgroup_get(&root->cgrp);
2030 goto out_mount;
2033 mutex_lock(&cgroup_mutex);
2035 /* First find the desired set of subsystems */
2036 ret = parse_cgroupfs_options(data, &opts);
2037 if (ret)
2038 goto out_unlock;
2041 * Destruction of cgroup root is asynchronous, so subsystems may
2042 * still be dying after the previous unmount. Let's drain the
2043 * dying subsystems. We just need to ensure that the ones
2044 * unmounted previously finish dying and don't care about new ones
2045 * starting. Testing ref liveliness is good enough.
2047 for_each_subsys(ss, i) {
2048 if (!(opts.subsys_mask & (1 << i)) ||
2049 ss->root == &cgrp_dfl_root)
2050 continue;
2052 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2053 mutex_unlock(&cgroup_mutex);
2054 msleep(10);
2055 ret = restart_syscall();
2056 goto out_free;
2058 cgroup_put(&ss->root->cgrp);
2061 for_each_root(root) {
2062 bool name_match = false;
2064 if (root == &cgrp_dfl_root)
2065 continue;
2068 * If we asked for a name then it must match. Also, if
2069 * name matches but sybsys_mask doesn't, we should fail.
2070 * Remember whether name matched.
2072 if (opts.name) {
2073 if (strcmp(opts.name, root->name))
2074 continue;
2075 name_match = true;
2079 * If we asked for subsystems (or explicitly for no
2080 * subsystems) then they must match.
2082 if ((opts.subsys_mask || opts.none) &&
2083 (opts.subsys_mask != root->subsys_mask)) {
2084 if (!name_match)
2085 continue;
2086 ret = -EBUSY;
2087 goto out_unlock;
2090 if (root->flags ^ opts.flags)
2091 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2094 * We want to reuse @root whose lifetime is governed by its
2095 * ->cgrp. Let's check whether @root is alive and keep it
2096 * that way. As cgroup_kill_sb() can happen anytime, we
2097 * want to block it by pinning the sb so that @root doesn't
2098 * get killed before mount is complete.
2100 * With the sb pinned, tryget_live can reliably indicate
2101 * whether @root can be reused. If it's being killed,
2102 * drain it. We can use wait_queue for the wait but this
2103 * path is super cold. Let's just sleep a bit and retry.
2105 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2106 if (IS_ERR(pinned_sb) ||
2107 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2108 mutex_unlock(&cgroup_mutex);
2109 if (!IS_ERR_OR_NULL(pinned_sb))
2110 deactivate_super(pinned_sb);
2111 msleep(10);
2112 ret = restart_syscall();
2113 goto out_free;
2116 ret = 0;
2117 goto out_unlock;
2121 * No such thing, create a new one. name= matching without subsys
2122 * specification is allowed for already existing hierarchies but we
2123 * can't create new one without subsys specification.
2125 if (!opts.subsys_mask && !opts.none) {
2126 ret = -EINVAL;
2127 goto out_unlock;
2131 * We know this subsystem has not yet been bound. Users in a non-init
2132 * user namespace may only mount hierarchies with no bound subsystems,
2133 * i.e. 'none,name=user1'
2135 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2136 ret = -EPERM;
2137 goto out_unlock;
2140 root = kzalloc(sizeof(*root), GFP_KERNEL);
2141 if (!root) {
2142 ret = -ENOMEM;
2143 goto out_unlock;
2146 init_cgroup_root(root, &opts);
2148 ret = cgroup_setup_root(root, opts.subsys_mask);
2149 if (ret)
2150 cgroup_free_root(root);
2152 out_unlock:
2153 mutex_unlock(&cgroup_mutex);
2154 out_free:
2155 kfree(opts.release_agent);
2156 kfree(opts.name);
2158 if (ret) {
2159 put_cgroup_ns(ns);
2160 return ERR_PTR(ret);
2162 out_mount:
2163 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2164 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2165 &new_sb);
2168 * In non-init cgroup namespace, instead of root cgroup's
2169 * dentry, we return the dentry corresponding to the
2170 * cgroupns->root_cgrp.
2172 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2173 struct dentry *nsdentry;
2174 struct cgroup *cgrp;
2176 mutex_lock(&cgroup_mutex);
2177 spin_lock_bh(&css_set_lock);
2179 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2181 spin_unlock_bh(&css_set_lock);
2182 mutex_unlock(&cgroup_mutex);
2184 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2185 dput(dentry);
2186 dentry = nsdentry;
2189 if (IS_ERR(dentry) || !new_sb)
2190 cgroup_put(&root->cgrp);
2193 * If @pinned_sb, we're reusing an existing root and holding an
2194 * extra ref on its sb. Mount is complete. Put the extra ref.
2196 if (pinned_sb) {
2197 WARN_ON(new_sb);
2198 deactivate_super(pinned_sb);
2201 put_cgroup_ns(ns);
2202 return dentry;
2205 static void cgroup_kill_sb(struct super_block *sb)
2207 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2208 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2211 * If @root doesn't have any mounts or children, start killing it.
2212 * This prevents new mounts by disabling percpu_ref_tryget_live().
2213 * cgroup_mount() may wait for @root's release.
2215 * And don't kill the default root.
2217 if (!list_empty(&root->cgrp.self.children) ||
2218 root == &cgrp_dfl_root)
2219 cgroup_put(&root->cgrp);
2220 else
2221 percpu_ref_kill(&root->cgrp.self.refcnt);
2223 kernfs_kill_sb(sb);
2226 static struct file_system_type cgroup_fs_type = {
2227 .name = "cgroup",
2228 .mount = cgroup_mount,
2229 .kill_sb = cgroup_kill_sb,
2232 static struct file_system_type cgroup2_fs_type = {
2233 .name = "cgroup2",
2234 .mount = cgroup_mount,
2235 .kill_sb = cgroup_kill_sb,
2238 static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2239 struct cgroup_namespace *ns)
2241 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2242 int ret;
2244 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2245 if (ret < 0 || ret >= buflen)
2246 return NULL;
2247 return buf;
2250 char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2251 struct cgroup_namespace *ns)
2253 char *ret;
2255 mutex_lock(&cgroup_mutex);
2256 spin_lock_bh(&css_set_lock);
2258 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2260 spin_unlock_bh(&css_set_lock);
2261 mutex_unlock(&cgroup_mutex);
2263 return ret;
2265 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2268 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2269 * @task: target task
2270 * @buf: the buffer to write the path into
2271 * @buflen: the length of the buffer
2273 * Determine @task's cgroup on the first (the one with the lowest non-zero
2274 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2275 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2276 * cgroup controller callbacks.
2278 * Return value is the same as kernfs_path().
2280 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2282 struct cgroup_root *root;
2283 struct cgroup *cgrp;
2284 int hierarchy_id = 1;
2285 char *path = NULL;
2287 mutex_lock(&cgroup_mutex);
2288 spin_lock_bh(&css_set_lock);
2290 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2292 if (root) {
2293 cgrp = task_cgroup_from_root(task, root);
2294 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2295 } else {
2296 /* if no hierarchy exists, everyone is in "/" */
2297 if (strlcpy(buf, "/", buflen) < buflen)
2298 path = buf;
2301 spin_unlock_bh(&css_set_lock);
2302 mutex_unlock(&cgroup_mutex);
2303 return path;
2305 EXPORT_SYMBOL_GPL(task_cgroup_path);
2307 /* used to track tasks and other necessary states during migration */
2308 struct cgroup_taskset {
2309 /* the src and dst cset list running through cset->mg_node */
2310 struct list_head src_csets;
2311 struct list_head dst_csets;
2313 /* the subsys currently being processed */
2314 int ssid;
2317 * Fields for cgroup_taskset_*() iteration.
2319 * Before migration is committed, the target migration tasks are on
2320 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2321 * the csets on ->dst_csets. ->csets point to either ->src_csets
2322 * or ->dst_csets depending on whether migration is committed.
2324 * ->cur_csets and ->cur_task point to the current task position
2325 * during iteration.
2327 struct list_head *csets;
2328 struct css_set *cur_cset;
2329 struct task_struct *cur_task;
2332 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2333 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2334 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2335 .csets = &tset.src_csets, \
2339 * cgroup_taskset_add - try to add a migration target task to a taskset
2340 * @task: target task
2341 * @tset: target taskset
2343 * Add @task, which is a migration target, to @tset. This function becomes
2344 * noop if @task doesn't need to be migrated. @task's css_set should have
2345 * been added as a migration source and @task->cg_list will be moved from
2346 * the css_set's tasks list to mg_tasks one.
2348 static void cgroup_taskset_add(struct task_struct *task,
2349 struct cgroup_taskset *tset)
2351 struct css_set *cset;
2353 lockdep_assert_held(&css_set_lock);
2355 /* @task either already exited or can't exit until the end */
2356 if (task->flags & PF_EXITING)
2357 return;
2359 /* leave @task alone if post_fork() hasn't linked it yet */
2360 if (list_empty(&task->cg_list))
2361 return;
2363 cset = task_css_set(task);
2364 if (!cset->mg_src_cgrp)
2365 return;
2367 list_move_tail(&task->cg_list, &cset->mg_tasks);
2368 if (list_empty(&cset->mg_node))
2369 list_add_tail(&cset->mg_node, &tset->src_csets);
2370 if (list_empty(&cset->mg_dst_cset->mg_node))
2371 list_move_tail(&cset->mg_dst_cset->mg_node,
2372 &tset->dst_csets);
2376 * cgroup_taskset_first - reset taskset and return the first task
2377 * @tset: taskset of interest
2378 * @dst_cssp: output variable for the destination css
2380 * @tset iteration is initialized and the first task is returned.
2382 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2383 struct cgroup_subsys_state **dst_cssp)
2385 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2386 tset->cur_task = NULL;
2388 return cgroup_taskset_next(tset, dst_cssp);
2392 * cgroup_taskset_next - iterate to the next task in taskset
2393 * @tset: taskset of interest
2394 * @dst_cssp: output variable for the destination css
2396 * Return the next task in @tset. Iteration must have been initialized
2397 * with cgroup_taskset_first().
2399 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2400 struct cgroup_subsys_state **dst_cssp)
2402 struct css_set *cset = tset->cur_cset;
2403 struct task_struct *task = tset->cur_task;
2405 while (&cset->mg_node != tset->csets) {
2406 if (!task)
2407 task = list_first_entry(&cset->mg_tasks,
2408 struct task_struct, cg_list);
2409 else
2410 task = list_next_entry(task, cg_list);
2412 if (&task->cg_list != &cset->mg_tasks) {
2413 tset->cur_cset = cset;
2414 tset->cur_task = task;
2417 * This function may be called both before and
2418 * after cgroup_taskset_migrate(). The two cases
2419 * can be distinguished by looking at whether @cset
2420 * has its ->mg_dst_cset set.
2422 if (cset->mg_dst_cset)
2423 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2424 else
2425 *dst_cssp = cset->subsys[tset->ssid];
2427 return task;
2430 cset = list_next_entry(cset, mg_node);
2431 task = NULL;
2434 return NULL;
2438 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2439 * @tset: taget taskset
2440 * @dst_cgrp: destination cgroup
2442 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2443 * ->can_attach callbacks fails and guarantees that either all or none of
2444 * the tasks in @tset are migrated. @tset is consumed regardless of
2445 * success.
2447 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2448 struct cgroup *dst_cgrp)
2450 struct cgroup_subsys_state *css, *failed_css = NULL;
2451 struct task_struct *task, *tmp_task;
2452 struct css_set *cset, *tmp_cset;
2453 int i, ret;
2455 /* methods shouldn't be called if no task is actually migrating */
2456 if (list_empty(&tset->src_csets))
2457 return 0;
2459 /* check that we can legitimately attach to the cgroup */
2460 for_each_e_css(css, i, dst_cgrp) {
2461 if (css->ss->can_attach) {
2462 tset->ssid = i;
2463 ret = css->ss->can_attach(tset);
2464 if (ret) {
2465 failed_css = css;
2466 goto out_cancel_attach;
2472 * Now that we're guaranteed success, proceed to move all tasks to
2473 * the new cgroup. There are no failure cases after here, so this
2474 * is the commit point.
2476 spin_lock_bh(&css_set_lock);
2477 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2478 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2479 struct css_set *from_cset = task_css_set(task);
2480 struct css_set *to_cset = cset->mg_dst_cset;
2482 get_css_set(to_cset);
2483 css_set_move_task(task, from_cset, to_cset, true);
2484 put_css_set_locked(from_cset);
2487 spin_unlock_bh(&css_set_lock);
2490 * Migration is committed, all target tasks are now on dst_csets.
2491 * Nothing is sensitive to fork() after this point. Notify
2492 * controllers that migration is complete.
2494 tset->csets = &tset->dst_csets;
2496 for_each_e_css(css, i, dst_cgrp) {
2497 if (css->ss->attach) {
2498 tset->ssid = i;
2499 css->ss->attach(tset);
2503 ret = 0;
2504 goto out_release_tset;
2506 out_cancel_attach:
2507 for_each_e_css(css, i, dst_cgrp) {
2508 if (css == failed_css)
2509 break;
2510 if (css->ss->cancel_attach) {
2511 tset->ssid = i;
2512 css->ss->cancel_attach(tset);
2515 out_release_tset:
2516 spin_lock_bh(&css_set_lock);
2517 list_splice_init(&tset->dst_csets, &tset->src_csets);
2518 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2519 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2520 list_del_init(&cset->mg_node);
2522 spin_unlock_bh(&css_set_lock);
2523 return ret;
2527 * cgroup_migrate_finish - cleanup after attach
2528 * @preloaded_csets: list of preloaded css_sets
2530 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2531 * those functions for details.
2533 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2535 struct css_set *cset, *tmp_cset;
2537 lockdep_assert_held(&cgroup_mutex);
2539 spin_lock_bh(&css_set_lock);
2540 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2541 cset->mg_src_cgrp = NULL;
2542 cset->mg_dst_cset = NULL;
2543 list_del_init(&cset->mg_preload_node);
2544 put_css_set_locked(cset);
2546 spin_unlock_bh(&css_set_lock);
2550 * cgroup_migrate_add_src - add a migration source css_set
2551 * @src_cset: the source css_set to add
2552 * @dst_cgrp: the destination cgroup
2553 * @preloaded_csets: list of preloaded css_sets
2555 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2556 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2557 * up by cgroup_migrate_finish().
2559 * This function may be called without holding cgroup_threadgroup_rwsem
2560 * even if the target is a process. Threads may be created and destroyed
2561 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2562 * into play and the preloaded css_sets are guaranteed to cover all
2563 * migrations.
2565 static void cgroup_migrate_add_src(struct css_set *src_cset,
2566 struct cgroup *dst_cgrp,
2567 struct list_head *preloaded_csets)
2569 struct cgroup *src_cgrp;
2571 lockdep_assert_held(&cgroup_mutex);
2572 lockdep_assert_held(&css_set_lock);
2574 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2576 if (!list_empty(&src_cset->mg_preload_node))
2577 return;
2579 WARN_ON(src_cset->mg_src_cgrp);
2580 WARN_ON(!list_empty(&src_cset->mg_tasks));
2581 WARN_ON(!list_empty(&src_cset->mg_node));
2583 src_cset->mg_src_cgrp = src_cgrp;
2584 get_css_set(src_cset);
2585 list_add(&src_cset->mg_preload_node, preloaded_csets);
2589 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2590 * @dst_cgrp: the destination cgroup (may be %NULL)
2591 * @preloaded_csets: list of preloaded source css_sets
2593 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2594 * have been preloaded to @preloaded_csets. This function looks up and
2595 * pins all destination css_sets, links each to its source, and append them
2596 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2597 * source css_set is assumed to be its cgroup on the default hierarchy.
2599 * This function must be called after cgroup_migrate_add_src() has been
2600 * called on each migration source css_set. After migration is performed
2601 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2602 * @preloaded_csets.
2604 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2605 struct list_head *preloaded_csets)
2607 LIST_HEAD(csets);
2608 struct css_set *src_cset, *tmp_cset;
2610 lockdep_assert_held(&cgroup_mutex);
2613 * Except for the root, child_subsys_mask must be zero for a cgroup
2614 * with tasks so that child cgroups don't compete against tasks.
2616 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2617 dst_cgrp->child_subsys_mask)
2618 return -EBUSY;
2620 /* look up the dst cset for each src cset and link it to src */
2621 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2622 struct css_set *dst_cset;
2624 dst_cset = find_css_set(src_cset,
2625 dst_cgrp ?: src_cset->dfl_cgrp);
2626 if (!dst_cset)
2627 goto err;
2629 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2632 * If src cset equals dst, it's noop. Drop the src.
2633 * cgroup_migrate() will skip the cset too. Note that we
2634 * can't handle src == dst as some nodes are used by both.
2636 if (src_cset == dst_cset) {
2637 src_cset->mg_src_cgrp = NULL;
2638 list_del_init(&src_cset->mg_preload_node);
2639 put_css_set(src_cset);
2640 put_css_set(dst_cset);
2641 continue;
2644 src_cset->mg_dst_cset = dst_cset;
2646 if (list_empty(&dst_cset->mg_preload_node))
2647 list_add(&dst_cset->mg_preload_node, &csets);
2648 else
2649 put_css_set(dst_cset);
2652 list_splice_tail(&csets, preloaded_csets);
2653 return 0;
2654 err:
2655 cgroup_migrate_finish(&csets);
2656 return -ENOMEM;
2660 * cgroup_migrate - migrate a process or task to a cgroup
2661 * @leader: the leader of the process or the task to migrate
2662 * @threadgroup: whether @leader points to the whole process or a single task
2663 * @cgrp: the destination cgroup
2665 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2666 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2667 * caller is also responsible for invoking cgroup_migrate_add_src() and
2668 * cgroup_migrate_prepare_dst() on the targets before invoking this
2669 * function and following up with cgroup_migrate_finish().
2671 * As long as a controller's ->can_attach() doesn't fail, this function is
2672 * guaranteed to succeed. This means that, excluding ->can_attach()
2673 * failure, when migrating multiple targets, the success or failure can be
2674 * decided for all targets by invoking group_migrate_prepare_dst() before
2675 * actually starting migrating.
2677 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2678 struct cgroup *cgrp)
2680 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2681 struct task_struct *task;
2684 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2685 * already PF_EXITING could be freed from underneath us unless we
2686 * take an rcu_read_lock.
2688 spin_lock_bh(&css_set_lock);
2689 rcu_read_lock();
2690 task = leader;
2691 do {
2692 cgroup_taskset_add(task, &tset);
2693 if (!threadgroup)
2694 break;
2695 } while_each_thread(leader, task);
2696 rcu_read_unlock();
2697 spin_unlock_bh(&css_set_lock);
2699 return cgroup_taskset_migrate(&tset, cgrp);
2703 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2704 * @dst_cgrp: the cgroup to attach to
2705 * @leader: the task or the leader of the threadgroup to be attached
2706 * @threadgroup: attach the whole threadgroup?
2708 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2710 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2711 struct task_struct *leader, bool threadgroup)
2713 LIST_HEAD(preloaded_csets);
2714 struct task_struct *task;
2715 int ret;
2717 /* look up all src csets */
2718 spin_lock_bh(&css_set_lock);
2719 rcu_read_lock();
2720 task = leader;
2721 do {
2722 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2723 &preloaded_csets);
2724 if (!threadgroup)
2725 break;
2726 } while_each_thread(leader, task);
2727 rcu_read_unlock();
2728 spin_unlock_bh(&css_set_lock);
2730 /* prepare dst csets and commit */
2731 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2732 if (!ret)
2733 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2735 cgroup_migrate_finish(&preloaded_csets);
2736 return ret;
2739 static int cgroup_procs_write_permission(struct task_struct *task,
2740 struct cgroup *dst_cgrp,
2741 struct kernfs_open_file *of)
2743 const struct cred *cred = current_cred();
2744 const struct cred *tcred = get_task_cred(task);
2745 int ret = 0;
2748 * even if we're attaching all tasks in the thread group, we only
2749 * need to check permissions on one of them.
2751 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2752 !uid_eq(cred->euid, tcred->uid) &&
2753 !uid_eq(cred->euid, tcred->suid))
2754 ret = -EACCES;
2756 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2757 struct super_block *sb = of->file->f_path.dentry->d_sb;
2758 struct cgroup *cgrp;
2759 struct inode *inode;
2761 spin_lock_bh(&css_set_lock);
2762 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2763 spin_unlock_bh(&css_set_lock);
2765 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2766 cgrp = cgroup_parent(cgrp);
2768 ret = -ENOMEM;
2769 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2770 if (inode) {
2771 ret = inode_permission(inode, MAY_WRITE);
2772 iput(inode);
2776 put_cred(tcred);
2777 return ret;
2781 * Find the task_struct of the task to attach by vpid and pass it along to the
2782 * function to attach either it or all tasks in its threadgroup. Will lock
2783 * cgroup_mutex and threadgroup.
2785 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2786 size_t nbytes, loff_t off, bool threadgroup)
2788 struct task_struct *tsk;
2789 struct cgroup *cgrp;
2790 pid_t pid;
2791 int ret;
2793 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2794 return -EINVAL;
2796 cgrp = cgroup_kn_lock_live(of->kn);
2797 if (!cgrp)
2798 return -ENODEV;
2800 percpu_down_write(&cgroup_threadgroup_rwsem);
2801 rcu_read_lock();
2802 if (pid) {
2803 tsk = find_task_by_vpid(pid);
2804 if (!tsk) {
2805 ret = -ESRCH;
2806 goto out_unlock_rcu;
2808 } else {
2809 tsk = current;
2812 if (threadgroup)
2813 tsk = tsk->group_leader;
2816 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2817 * trapped in a cpuset, or RT worker may be born in a cgroup
2818 * with no rt_runtime allocated. Just say no.
2820 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2821 ret = -EINVAL;
2822 goto out_unlock_rcu;
2825 get_task_struct(tsk);
2826 rcu_read_unlock();
2828 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2829 if (!ret)
2830 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2832 put_task_struct(tsk);
2833 goto out_unlock_threadgroup;
2835 out_unlock_rcu:
2836 rcu_read_unlock();
2837 out_unlock_threadgroup:
2838 percpu_up_write(&cgroup_threadgroup_rwsem);
2839 cgroup_kn_unlock(of->kn);
2840 cpuset_post_attach_flush();
2841 return ret ?: nbytes;
2845 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2846 * @from: attach to all cgroups of a given task
2847 * @tsk: the task to be attached
2849 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2851 struct cgroup_root *root;
2852 int retval = 0;
2854 mutex_lock(&cgroup_mutex);
2855 for_each_root(root) {
2856 struct cgroup *from_cgrp;
2858 if (root == &cgrp_dfl_root)
2859 continue;
2861 spin_lock_bh(&css_set_lock);
2862 from_cgrp = task_cgroup_from_root(from, root);
2863 spin_unlock_bh(&css_set_lock);
2865 retval = cgroup_attach_task(from_cgrp, tsk, false);
2866 if (retval)
2867 break;
2869 mutex_unlock(&cgroup_mutex);
2871 return retval;
2873 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2875 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2876 char *buf, size_t nbytes, loff_t off)
2878 return __cgroup_procs_write(of, buf, nbytes, off, false);
2881 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2882 char *buf, size_t nbytes, loff_t off)
2884 return __cgroup_procs_write(of, buf, nbytes, off, true);
2887 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2888 char *buf, size_t nbytes, loff_t off)
2890 struct cgroup *cgrp;
2892 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2894 cgrp = cgroup_kn_lock_live(of->kn);
2895 if (!cgrp)
2896 return -ENODEV;
2897 spin_lock(&release_agent_path_lock);
2898 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2899 sizeof(cgrp->root->release_agent_path));
2900 spin_unlock(&release_agent_path_lock);
2901 cgroup_kn_unlock(of->kn);
2902 return nbytes;
2905 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2907 struct cgroup *cgrp = seq_css(seq)->cgroup;
2909 spin_lock(&release_agent_path_lock);
2910 seq_puts(seq, cgrp->root->release_agent_path);
2911 spin_unlock(&release_agent_path_lock);
2912 seq_putc(seq, '\n');
2913 return 0;
2916 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2918 seq_puts(seq, "0\n");
2919 return 0;
2922 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2924 struct cgroup_subsys *ss;
2925 bool printed = false;
2926 int ssid;
2928 for_each_subsys_which(ss, ssid, &ss_mask) {
2929 if (printed)
2930 seq_putc(seq, ' ');
2931 seq_printf(seq, "%s", ss->name);
2932 printed = true;
2934 if (printed)
2935 seq_putc(seq, '\n');
2938 /* show controllers which are currently attached to the default hierarchy */
2939 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2941 struct cgroup *cgrp = seq_css(seq)->cgroup;
2943 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2944 ~cgrp_dfl_root_inhibit_ss_mask);
2945 return 0;
2948 /* show controllers which are enabled from the parent */
2949 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2951 struct cgroup *cgrp = seq_css(seq)->cgroup;
2953 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2954 return 0;
2957 /* show controllers which are enabled for a given cgroup's children */
2958 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2960 struct cgroup *cgrp = seq_css(seq)->cgroup;
2962 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2963 return 0;
2967 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2968 * @cgrp: root of the subtree to update csses for
2970 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2971 * css associations need to be updated accordingly. This function looks up
2972 * all css_sets which are attached to the subtree, creates the matching
2973 * updated css_sets and migrates the tasks to the new ones.
2975 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2977 LIST_HEAD(preloaded_csets);
2978 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2979 struct cgroup_subsys_state *css;
2980 struct css_set *src_cset;
2981 int ret;
2983 lockdep_assert_held(&cgroup_mutex);
2985 percpu_down_write(&cgroup_threadgroup_rwsem);
2987 /* look up all csses currently attached to @cgrp's subtree */
2988 spin_lock_bh(&css_set_lock);
2989 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2990 struct cgrp_cset_link *link;
2992 /* self is not affected by child_subsys_mask change */
2993 if (css->cgroup == cgrp)
2994 continue;
2996 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2997 cgroup_migrate_add_src(link->cset, cgrp,
2998 &preloaded_csets);
3000 spin_unlock_bh(&css_set_lock);
3002 /* NULL dst indicates self on default hierarchy */
3003 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
3004 if (ret)
3005 goto out_finish;
3007 spin_lock_bh(&css_set_lock);
3008 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3009 struct task_struct *task, *ntask;
3011 /* src_csets precede dst_csets, break on the first dst_cset */
3012 if (!src_cset->mg_src_cgrp)
3013 break;
3015 /* all tasks in src_csets need to be migrated */
3016 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3017 cgroup_taskset_add(task, &tset);
3019 spin_unlock_bh(&css_set_lock);
3021 ret = cgroup_taskset_migrate(&tset, cgrp);
3022 out_finish:
3023 cgroup_migrate_finish(&preloaded_csets);
3024 percpu_up_write(&cgroup_threadgroup_rwsem);
3025 return ret;
3028 /* change the enabled child controllers for a cgroup in the default hierarchy */
3029 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3030 char *buf, size_t nbytes,
3031 loff_t off)
3033 unsigned long enable = 0, disable = 0;
3034 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
3035 struct cgroup *cgrp, *child;
3036 struct cgroup_subsys *ss;
3037 char *tok;
3038 int ssid, ret;
3041 * Parse input - space separated list of subsystem names prefixed
3042 * with either + or -.
3044 buf = strstrip(buf);
3045 while ((tok = strsep(&buf, " "))) {
3046 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
3048 if (tok[0] == '\0')
3049 continue;
3050 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
3051 if (!cgroup_ssid_enabled(ssid) ||
3052 strcmp(tok + 1, ss->name))
3053 continue;
3055 if (*tok == '+') {
3056 enable |= 1 << ssid;
3057 disable &= ~(1 << ssid);
3058 } else if (*tok == '-') {
3059 disable |= 1 << ssid;
3060 enable &= ~(1 << ssid);
3061 } else {
3062 return -EINVAL;
3064 break;
3066 if (ssid == CGROUP_SUBSYS_COUNT)
3067 return -EINVAL;
3070 cgrp = cgroup_kn_lock_live(of->kn);
3071 if (!cgrp)
3072 return -ENODEV;
3074 for_each_subsys(ss, ssid) {
3075 if (enable & (1 << ssid)) {
3076 if (cgrp->subtree_control & (1 << ssid)) {
3077 enable &= ~(1 << ssid);
3078 continue;
3081 /* unavailable or not enabled on the parent? */
3082 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3083 (cgroup_parent(cgrp) &&
3084 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3085 ret = -ENOENT;
3086 goto out_unlock;
3088 } else if (disable & (1 << ssid)) {
3089 if (!(cgrp->subtree_control & (1 << ssid))) {
3090 disable &= ~(1 << ssid);
3091 continue;
3094 /* a child has it enabled? */
3095 cgroup_for_each_live_child(child, cgrp) {
3096 if (child->subtree_control & (1 << ssid)) {
3097 ret = -EBUSY;
3098 goto out_unlock;
3104 if (!enable && !disable) {
3105 ret = 0;
3106 goto out_unlock;
3110 * Except for the root, subtree_control must be zero for a cgroup
3111 * with tasks so that child cgroups don't compete against tasks.
3113 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3114 ret = -EBUSY;
3115 goto out_unlock;
3119 * Update subsys masks and calculate what needs to be done. More
3120 * subsystems than specified may need to be enabled or disabled
3121 * depending on subsystem dependencies.
3123 old_sc = cgrp->subtree_control;
3124 old_ss = cgrp->child_subsys_mask;
3125 new_sc = (old_sc | enable) & ~disable;
3126 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3128 css_enable = ~old_ss & new_ss;
3129 css_disable = old_ss & ~new_ss;
3130 enable |= css_enable;
3131 disable |= css_disable;
3134 * Because css offlining is asynchronous, userland might try to
3135 * re-enable the same controller while the previous instance is
3136 * still around. In such cases, wait till it's gone using
3137 * offline_waitq.
3139 for_each_subsys_which(ss, ssid, &css_enable) {
3140 cgroup_for_each_live_child(child, cgrp) {
3141 DEFINE_WAIT(wait);
3143 if (!cgroup_css(child, ss))
3144 continue;
3146 cgroup_get(child);
3147 prepare_to_wait(&child->offline_waitq, &wait,
3148 TASK_UNINTERRUPTIBLE);
3149 cgroup_kn_unlock(of->kn);
3150 schedule();
3151 finish_wait(&child->offline_waitq, &wait);
3152 cgroup_put(child);
3154 return restart_syscall();
3158 cgrp->subtree_control = new_sc;
3159 cgrp->child_subsys_mask = new_ss;
3162 * Create new csses or make the existing ones visible. A css is
3163 * created invisible if it's being implicitly enabled through
3164 * dependency. An invisible css is made visible when the userland
3165 * explicitly enables it.
3167 for_each_subsys(ss, ssid) {
3168 if (!(enable & (1 << ssid)))
3169 continue;
3171 cgroup_for_each_live_child(child, cgrp) {
3172 if (css_enable & (1 << ssid))
3173 ret = create_css(child, ss,
3174 cgrp->subtree_control & (1 << ssid));
3175 else
3176 ret = css_populate_dir(cgroup_css(child, ss),
3177 NULL);
3178 if (ret)
3179 goto err_undo_css;
3184 * At this point, cgroup_e_css() results reflect the new csses
3185 * making the following cgroup_update_dfl_csses() properly update
3186 * css associations of all tasks in the subtree.
3188 ret = cgroup_update_dfl_csses(cgrp);
3189 if (ret)
3190 goto err_undo_css;
3193 * All tasks are migrated out of disabled csses. Kill or hide
3194 * them. A css is hidden when the userland requests it to be
3195 * disabled while other subsystems are still depending on it. The
3196 * css must not actively control resources and be in the vanilla
3197 * state if it's made visible again later. Controllers which may
3198 * be depended upon should provide ->css_reset() for this purpose.
3200 for_each_subsys(ss, ssid) {
3201 if (!(disable & (1 << ssid)))
3202 continue;
3204 cgroup_for_each_live_child(child, cgrp) {
3205 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3207 if (css_disable & (1 << ssid)) {
3208 kill_css(css);
3209 } else {
3210 css_clear_dir(css, NULL);
3211 if (ss->css_reset)
3212 ss->css_reset(css);
3218 * The effective csses of all the descendants (excluding @cgrp) may
3219 * have changed. Subsystems can optionally subscribe to this event
3220 * by implementing ->css_e_css_changed() which is invoked if any of
3221 * the effective csses seen from the css's cgroup may have changed.
3223 for_each_subsys(ss, ssid) {
3224 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3225 struct cgroup_subsys_state *css;
3227 if (!ss->css_e_css_changed || !this_css)
3228 continue;
3230 css_for_each_descendant_pre(css, this_css)
3231 if (css != this_css)
3232 ss->css_e_css_changed(css);
3235 kernfs_activate(cgrp->kn);
3236 ret = 0;
3237 out_unlock:
3238 cgroup_kn_unlock(of->kn);
3239 return ret ?: nbytes;
3241 err_undo_css:
3242 cgrp->subtree_control = old_sc;
3243 cgrp->child_subsys_mask = old_ss;
3245 for_each_subsys(ss, ssid) {
3246 if (!(enable & (1 << ssid)))
3247 continue;
3249 cgroup_for_each_live_child(child, cgrp) {
3250 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3252 if (!css)
3253 continue;
3255 if (css_enable & (1 << ssid))
3256 kill_css(css);
3257 else
3258 css_clear_dir(css, NULL);
3261 goto out_unlock;
3264 static int cgroup_events_show(struct seq_file *seq, void *v)
3266 seq_printf(seq, "populated %d\n",
3267 cgroup_is_populated(seq_css(seq)->cgroup));
3268 return 0;
3271 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3272 size_t nbytes, loff_t off)
3274 struct cgroup *cgrp = of->kn->parent->priv;
3275 struct cftype *cft = of->kn->priv;
3276 struct cgroup_subsys_state *css;
3277 int ret;
3279 if (cft->write)
3280 return cft->write(of, buf, nbytes, off);
3283 * kernfs guarantees that a file isn't deleted with operations in
3284 * flight, which means that the matching css is and stays alive and
3285 * doesn't need to be pinned. The RCU locking is not necessary
3286 * either. It's just for the convenience of using cgroup_css().
3288 rcu_read_lock();
3289 css = cgroup_css(cgrp, cft->ss);
3290 rcu_read_unlock();
3292 if (cft->write_u64) {
3293 unsigned long long v;
3294 ret = kstrtoull(buf, 0, &v);
3295 if (!ret)
3296 ret = cft->write_u64(css, cft, v);
3297 } else if (cft->write_s64) {
3298 long long v;
3299 ret = kstrtoll(buf, 0, &v);
3300 if (!ret)
3301 ret = cft->write_s64(css, cft, v);
3302 } else {
3303 ret = -EINVAL;
3306 return ret ?: nbytes;
3309 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3311 return seq_cft(seq)->seq_start(seq, ppos);
3314 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3316 return seq_cft(seq)->seq_next(seq, v, ppos);
3319 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3321 seq_cft(seq)->seq_stop(seq, v);
3324 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3326 struct cftype *cft = seq_cft(m);
3327 struct cgroup_subsys_state *css = seq_css(m);
3329 if (cft->seq_show)
3330 return cft->seq_show(m, arg);
3332 if (cft->read_u64)
3333 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3334 else if (cft->read_s64)
3335 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3336 else
3337 return -EINVAL;
3338 return 0;
3341 static struct kernfs_ops cgroup_kf_single_ops = {
3342 .atomic_write_len = PAGE_SIZE,
3343 .write = cgroup_file_write,
3344 .seq_show = cgroup_seqfile_show,
3347 static struct kernfs_ops cgroup_kf_ops = {
3348 .atomic_write_len = PAGE_SIZE,
3349 .write = cgroup_file_write,
3350 .seq_start = cgroup_seqfile_start,
3351 .seq_next = cgroup_seqfile_next,
3352 .seq_stop = cgroup_seqfile_stop,
3353 .seq_show = cgroup_seqfile_show,
3357 * cgroup_rename - Only allow simple rename of directories in place.
3359 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3360 const char *new_name_str)
3362 struct cgroup *cgrp = kn->priv;
3363 int ret;
3365 if (kernfs_type(kn) != KERNFS_DIR)
3366 return -ENOTDIR;
3367 if (kn->parent != new_parent)
3368 return -EIO;
3371 * This isn't a proper migration and its usefulness is very
3372 * limited. Disallow on the default hierarchy.
3374 if (cgroup_on_dfl(cgrp))
3375 return -EPERM;
3378 * We're gonna grab cgroup_mutex which nests outside kernfs
3379 * active_ref. kernfs_rename() doesn't require active_ref
3380 * protection. Break them before grabbing cgroup_mutex.
3382 kernfs_break_active_protection(new_parent);
3383 kernfs_break_active_protection(kn);
3385 mutex_lock(&cgroup_mutex);
3387 ret = kernfs_rename(kn, new_parent, new_name_str);
3389 mutex_unlock(&cgroup_mutex);
3391 kernfs_unbreak_active_protection(kn);
3392 kernfs_unbreak_active_protection(new_parent);
3393 return ret;
3396 /* set uid and gid of cgroup dirs and files to that of the creator */
3397 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3399 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3400 .ia_uid = current_fsuid(),
3401 .ia_gid = current_fsgid(), };
3403 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3404 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3405 return 0;
3407 return kernfs_setattr(kn, &iattr);
3410 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3411 struct cftype *cft)
3413 char name[CGROUP_FILE_NAME_MAX];
3414 struct kernfs_node *kn;
3415 struct lock_class_key *key = NULL;
3416 int ret;
3418 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3419 key = &cft->lockdep_key;
3420 #endif
3421 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3422 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3423 NULL, key);
3424 if (IS_ERR(kn))
3425 return PTR_ERR(kn);
3427 ret = cgroup_kn_set_ugid(kn);
3428 if (ret) {
3429 kernfs_remove(kn);
3430 return ret;
3433 if (cft->file_offset) {
3434 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3436 spin_lock_irq(&cgroup_file_kn_lock);
3437 cfile->kn = kn;
3438 spin_unlock_irq(&cgroup_file_kn_lock);
3441 return 0;
3445 * cgroup_addrm_files - add or remove files to a cgroup directory
3446 * @css: the target css
3447 * @cgrp: the target cgroup (usually css->cgroup)
3448 * @cfts: array of cftypes to be added
3449 * @is_add: whether to add or remove
3451 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3452 * For removals, this function never fails.
3454 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3455 struct cgroup *cgrp, struct cftype cfts[],
3456 bool is_add)
3458 struct cftype *cft, *cft_end = NULL;
3459 int ret;
3461 lockdep_assert_held(&cgroup_mutex);
3463 restart:
3464 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3465 /* does cft->flags tell us to skip this file on @cgrp? */
3466 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3467 continue;
3468 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3469 continue;
3470 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3471 continue;
3472 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3473 continue;
3475 if (is_add) {
3476 ret = cgroup_add_file(css, cgrp, cft);
3477 if (ret) {
3478 pr_warn("%s: failed to add %s, err=%d\n",
3479 __func__, cft->name, ret);
3480 cft_end = cft;
3481 is_add = false;
3482 goto restart;
3484 } else {
3485 cgroup_rm_file(cgrp, cft);
3488 return 0;
3491 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3493 LIST_HEAD(pending);
3494 struct cgroup_subsys *ss = cfts[0].ss;
3495 struct cgroup *root = &ss->root->cgrp;
3496 struct cgroup_subsys_state *css;
3497 int ret = 0;
3499 lockdep_assert_held(&cgroup_mutex);
3501 /* add/rm files for all cgroups created before */
3502 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3503 struct cgroup *cgrp = css->cgroup;
3505 if (cgroup_is_dead(cgrp))
3506 continue;
3508 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3509 if (ret)
3510 break;
3513 if (is_add && !ret)
3514 kernfs_activate(root->kn);
3515 return ret;
3518 static void cgroup_exit_cftypes(struct cftype *cfts)
3520 struct cftype *cft;
3522 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3523 /* free copy for custom atomic_write_len, see init_cftypes() */
3524 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3525 kfree(cft->kf_ops);
3526 cft->kf_ops = NULL;
3527 cft->ss = NULL;
3529 /* revert flags set by cgroup core while adding @cfts */
3530 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3534 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3536 struct cftype *cft;
3538 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3539 struct kernfs_ops *kf_ops;
3541 WARN_ON(cft->ss || cft->kf_ops);
3543 if (cft->seq_start)
3544 kf_ops = &cgroup_kf_ops;
3545 else
3546 kf_ops = &cgroup_kf_single_ops;
3549 * Ugh... if @cft wants a custom max_write_len, we need to
3550 * make a copy of kf_ops to set its atomic_write_len.
3552 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3553 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3554 if (!kf_ops) {
3555 cgroup_exit_cftypes(cfts);
3556 return -ENOMEM;
3558 kf_ops->atomic_write_len = cft->max_write_len;
3561 cft->kf_ops = kf_ops;
3562 cft->ss = ss;
3565 return 0;
3568 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3570 lockdep_assert_held(&cgroup_mutex);
3572 if (!cfts || !cfts[0].ss)
3573 return -ENOENT;
3575 list_del(&cfts->node);
3576 cgroup_apply_cftypes(cfts, false);
3577 cgroup_exit_cftypes(cfts);
3578 return 0;
3582 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3583 * @cfts: zero-length name terminated array of cftypes
3585 * Unregister @cfts. Files described by @cfts are removed from all
3586 * existing cgroups and all future cgroups won't have them either. This
3587 * function can be called anytime whether @cfts' subsys is attached or not.
3589 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3590 * registered.
3592 int cgroup_rm_cftypes(struct cftype *cfts)
3594 int ret;
3596 mutex_lock(&cgroup_mutex);
3597 ret = cgroup_rm_cftypes_locked(cfts);
3598 mutex_unlock(&cgroup_mutex);
3599 return ret;
3603 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3604 * @ss: target cgroup subsystem
3605 * @cfts: zero-length name terminated array of cftypes
3607 * Register @cfts to @ss. Files described by @cfts are created for all
3608 * existing cgroups to which @ss is attached and all future cgroups will
3609 * have them too. This function can be called anytime whether @ss is
3610 * attached or not.
3612 * Returns 0 on successful registration, -errno on failure. Note that this
3613 * function currently returns 0 as long as @cfts registration is successful
3614 * even if some file creation attempts on existing cgroups fail.
3616 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3618 int ret;
3620 if (!cgroup_ssid_enabled(ss->id))
3621 return 0;
3623 if (!cfts || cfts[0].name[0] == '\0')
3624 return 0;
3626 ret = cgroup_init_cftypes(ss, cfts);
3627 if (ret)
3628 return ret;
3630 mutex_lock(&cgroup_mutex);
3632 list_add_tail(&cfts->node, &ss->cfts);
3633 ret = cgroup_apply_cftypes(cfts, true);
3634 if (ret)
3635 cgroup_rm_cftypes_locked(cfts);
3637 mutex_unlock(&cgroup_mutex);
3638 return ret;
3642 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3643 * @ss: target cgroup subsystem
3644 * @cfts: zero-length name terminated array of cftypes
3646 * Similar to cgroup_add_cftypes() but the added files are only used for
3647 * the default hierarchy.
3649 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3651 struct cftype *cft;
3653 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3654 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3655 return cgroup_add_cftypes(ss, cfts);
3659 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3660 * @ss: target cgroup subsystem
3661 * @cfts: zero-length name terminated array of cftypes
3663 * Similar to cgroup_add_cftypes() but the added files are only used for
3664 * the legacy hierarchies.
3666 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3668 struct cftype *cft;
3670 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3671 cft->flags |= __CFTYPE_NOT_ON_DFL;
3672 return cgroup_add_cftypes(ss, cfts);
3676 * cgroup_file_notify - generate a file modified event for a cgroup_file
3677 * @cfile: target cgroup_file
3679 * @cfile must have been obtained by setting cftype->file_offset.
3681 void cgroup_file_notify(struct cgroup_file *cfile)
3683 unsigned long flags;
3685 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3686 if (cfile->kn)
3687 kernfs_notify(cfile->kn);
3688 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3692 * cgroup_task_count - count the number of tasks in a cgroup.
3693 * @cgrp: the cgroup in question
3695 * Return the number of tasks in the cgroup.
3697 static int cgroup_task_count(const struct cgroup *cgrp)
3699 int count = 0;
3700 struct cgrp_cset_link *link;
3702 spin_lock_bh(&css_set_lock);
3703 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3704 count += atomic_read(&link->cset->refcount);
3705 spin_unlock_bh(&css_set_lock);
3706 return count;
3710 * css_next_child - find the next child of a given css
3711 * @pos: the current position (%NULL to initiate traversal)
3712 * @parent: css whose children to walk
3714 * This function returns the next child of @parent and should be called
3715 * under either cgroup_mutex or RCU read lock. The only requirement is
3716 * that @parent and @pos are accessible. The next sibling is guaranteed to
3717 * be returned regardless of their states.
3719 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3720 * css which finished ->css_online() is guaranteed to be visible in the
3721 * future iterations and will stay visible until the last reference is put.
3722 * A css which hasn't finished ->css_online() or already finished
3723 * ->css_offline() may show up during traversal. It's each subsystem's
3724 * responsibility to synchronize against on/offlining.
3726 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3727 struct cgroup_subsys_state *parent)
3729 struct cgroup_subsys_state *next;
3731 cgroup_assert_mutex_or_rcu_locked();
3734 * @pos could already have been unlinked from the sibling list.
3735 * Once a cgroup is removed, its ->sibling.next is no longer
3736 * updated when its next sibling changes. CSS_RELEASED is set when
3737 * @pos is taken off list, at which time its next pointer is valid,
3738 * and, as releases are serialized, the one pointed to by the next
3739 * pointer is guaranteed to not have started release yet. This
3740 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3741 * critical section, the one pointed to by its next pointer is
3742 * guaranteed to not have finished its RCU grace period even if we
3743 * have dropped rcu_read_lock() inbetween iterations.
3745 * If @pos has CSS_RELEASED set, its next pointer can't be
3746 * dereferenced; however, as each css is given a monotonically
3747 * increasing unique serial number and always appended to the
3748 * sibling list, the next one can be found by walking the parent's
3749 * children until the first css with higher serial number than
3750 * @pos's. While this path can be slower, it happens iff iteration
3751 * races against release and the race window is very small.
3753 if (!pos) {
3754 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3755 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3756 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3757 } else {
3758 list_for_each_entry_rcu(next, &parent->children, sibling)
3759 if (next->serial_nr > pos->serial_nr)
3760 break;
3764 * @next, if not pointing to the head, can be dereferenced and is
3765 * the next sibling.
3767 if (&next->sibling != &parent->children)
3768 return next;
3769 return NULL;
3773 * css_next_descendant_pre - find the next descendant for pre-order walk
3774 * @pos: the current position (%NULL to initiate traversal)
3775 * @root: css whose descendants to walk
3777 * To be used by css_for_each_descendant_pre(). Find the next descendant
3778 * to visit for pre-order traversal of @root's descendants. @root is
3779 * included in the iteration and the first node to be visited.
3781 * While this function requires cgroup_mutex or RCU read locking, it
3782 * doesn't require the whole traversal to be contained in a single critical
3783 * section. This function will return the correct next descendant as long
3784 * as both @pos and @root are accessible and @pos is a descendant of @root.
3786 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3787 * css which finished ->css_online() is guaranteed to be visible in the
3788 * future iterations and will stay visible until the last reference is put.
3789 * A css which hasn't finished ->css_online() or already finished
3790 * ->css_offline() may show up during traversal. It's each subsystem's
3791 * responsibility to synchronize against on/offlining.
3793 struct cgroup_subsys_state *
3794 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3795 struct cgroup_subsys_state *root)
3797 struct cgroup_subsys_state *next;
3799 cgroup_assert_mutex_or_rcu_locked();
3801 /* if first iteration, visit @root */
3802 if (!pos)
3803 return root;
3805 /* visit the first child if exists */
3806 next = css_next_child(NULL, pos);
3807 if (next)
3808 return next;
3810 /* no child, visit my or the closest ancestor's next sibling */
3811 while (pos != root) {
3812 next = css_next_child(pos, pos->parent);
3813 if (next)
3814 return next;
3815 pos = pos->parent;
3818 return NULL;
3822 * css_rightmost_descendant - return the rightmost descendant of a css
3823 * @pos: css of interest
3825 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3826 * is returned. This can be used during pre-order traversal to skip
3827 * subtree of @pos.
3829 * While this function requires cgroup_mutex or RCU read locking, it
3830 * doesn't require the whole traversal to be contained in a single critical
3831 * section. This function will return the correct rightmost descendant as
3832 * long as @pos is accessible.
3834 struct cgroup_subsys_state *
3835 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3837 struct cgroup_subsys_state *last, *tmp;
3839 cgroup_assert_mutex_or_rcu_locked();
3841 do {
3842 last = pos;
3843 /* ->prev isn't RCU safe, walk ->next till the end */
3844 pos = NULL;
3845 css_for_each_child(tmp, last)
3846 pos = tmp;
3847 } while (pos);
3849 return last;
3852 static struct cgroup_subsys_state *
3853 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3855 struct cgroup_subsys_state *last;
3857 do {
3858 last = pos;
3859 pos = css_next_child(NULL, pos);
3860 } while (pos);
3862 return last;
3866 * css_next_descendant_post - find the next descendant for post-order walk
3867 * @pos: the current position (%NULL to initiate traversal)
3868 * @root: css whose descendants to walk
3870 * To be used by css_for_each_descendant_post(). Find the next descendant
3871 * to visit for post-order traversal of @root's descendants. @root is
3872 * included in the iteration and the last node to be visited.
3874 * While this function requires cgroup_mutex or RCU read locking, it
3875 * doesn't require the whole traversal to be contained in a single critical
3876 * section. This function will return the correct next descendant as long
3877 * as both @pos and @cgroup are accessible and @pos is a descendant of
3878 * @cgroup.
3880 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3881 * css which finished ->css_online() is guaranteed to be visible in the
3882 * future iterations and will stay visible until the last reference is put.
3883 * A css which hasn't finished ->css_online() or already finished
3884 * ->css_offline() may show up during traversal. It's each subsystem's
3885 * responsibility to synchronize against on/offlining.
3887 struct cgroup_subsys_state *
3888 css_next_descendant_post(struct cgroup_subsys_state *pos,
3889 struct cgroup_subsys_state *root)
3891 struct cgroup_subsys_state *next;
3893 cgroup_assert_mutex_or_rcu_locked();
3895 /* if first iteration, visit leftmost descendant which may be @root */
3896 if (!pos)
3897 return css_leftmost_descendant(root);
3899 /* if we visited @root, we're done */
3900 if (pos == root)
3901 return NULL;
3903 /* if there's an unvisited sibling, visit its leftmost descendant */
3904 next = css_next_child(pos, pos->parent);
3905 if (next)
3906 return css_leftmost_descendant(next);
3908 /* no sibling left, visit parent */
3909 return pos->parent;
3913 * css_has_online_children - does a css have online children
3914 * @css: the target css
3916 * Returns %true if @css has any online children; otherwise, %false. This
3917 * function can be called from any context but the caller is responsible
3918 * for synchronizing against on/offlining as necessary.
3920 bool css_has_online_children(struct cgroup_subsys_state *css)
3922 struct cgroup_subsys_state *child;
3923 bool ret = false;
3925 rcu_read_lock();
3926 css_for_each_child(child, css) {
3927 if (child->flags & CSS_ONLINE) {
3928 ret = true;
3929 break;
3932 rcu_read_unlock();
3933 return ret;
3937 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3938 * @it: the iterator to advance
3940 * Advance @it to the next css_set to walk.
3942 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3944 struct list_head *l = it->cset_pos;
3945 struct cgrp_cset_link *link;
3946 struct css_set *cset;
3948 lockdep_assert_held(&css_set_lock);
3950 /* Advance to the next non-empty css_set */
3951 do {
3952 l = l->next;
3953 if (l == it->cset_head) {
3954 it->cset_pos = NULL;
3955 it->task_pos = NULL;
3956 return;
3959 if (it->ss) {
3960 cset = container_of(l, struct css_set,
3961 e_cset_node[it->ss->id]);
3962 } else {
3963 link = list_entry(l, struct cgrp_cset_link, cset_link);
3964 cset = link->cset;
3966 } while (!css_set_populated(cset));
3968 it->cset_pos = l;
3970 if (!list_empty(&cset->tasks))
3971 it->task_pos = cset->tasks.next;
3972 else
3973 it->task_pos = cset->mg_tasks.next;
3975 it->tasks_head = &cset->tasks;
3976 it->mg_tasks_head = &cset->mg_tasks;
3979 * We don't keep css_sets locked across iteration steps and thus
3980 * need to take steps to ensure that iteration can be resumed after
3981 * the lock is re-acquired. Iteration is performed at two levels -
3982 * css_sets and tasks in them.
3984 * Once created, a css_set never leaves its cgroup lists, so a
3985 * pinned css_set is guaranteed to stay put and we can resume
3986 * iteration afterwards.
3988 * Tasks may leave @cset across iteration steps. This is resolved
3989 * by registering each iterator with the css_set currently being
3990 * walked and making css_set_move_task() advance iterators whose
3991 * next task is leaving.
3993 if (it->cur_cset) {
3994 list_del(&it->iters_node);
3995 put_css_set_locked(it->cur_cset);
3997 get_css_set(cset);
3998 it->cur_cset = cset;
3999 list_add(&it->iters_node, &cset->task_iters);
4002 static void css_task_iter_advance(struct css_task_iter *it)
4004 struct list_head *l = it->task_pos;
4006 lockdep_assert_held(&css_set_lock);
4007 WARN_ON_ONCE(!l);
4010 * Advance iterator to find next entry. cset->tasks is consumed
4011 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4012 * next cset.
4014 l = l->next;
4016 if (l == it->tasks_head)
4017 l = it->mg_tasks_head->next;
4019 if (l == it->mg_tasks_head)
4020 css_task_iter_advance_css_set(it);
4021 else
4022 it->task_pos = l;
4026 * css_task_iter_start - initiate task iteration
4027 * @css: the css to walk tasks of
4028 * @it: the task iterator to use
4030 * Initiate iteration through the tasks of @css. The caller can call
4031 * css_task_iter_next() to walk through the tasks until the function
4032 * returns NULL. On completion of iteration, css_task_iter_end() must be
4033 * called.
4035 void css_task_iter_start(struct cgroup_subsys_state *css,
4036 struct css_task_iter *it)
4038 /* no one should try to iterate before mounting cgroups */
4039 WARN_ON_ONCE(!use_task_css_set_links);
4041 memset(it, 0, sizeof(*it));
4043 spin_lock_bh(&css_set_lock);
4045 it->ss = css->ss;
4047 if (it->ss)
4048 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4049 else
4050 it->cset_pos = &css->cgroup->cset_links;
4052 it->cset_head = it->cset_pos;
4054 css_task_iter_advance_css_set(it);
4056 spin_unlock_bh(&css_set_lock);
4060 * css_task_iter_next - return the next task for the iterator
4061 * @it: the task iterator being iterated
4063 * The "next" function for task iteration. @it should have been
4064 * initialized via css_task_iter_start(). Returns NULL when the iteration
4065 * reaches the end.
4067 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4069 if (it->cur_task) {
4070 put_task_struct(it->cur_task);
4071 it->cur_task = NULL;
4074 spin_lock_bh(&css_set_lock);
4076 if (it->task_pos) {
4077 it->cur_task = list_entry(it->task_pos, struct task_struct,
4078 cg_list);
4079 get_task_struct(it->cur_task);
4080 css_task_iter_advance(it);
4083 spin_unlock_bh(&css_set_lock);
4085 return it->cur_task;
4089 * css_task_iter_end - finish task iteration
4090 * @it: the task iterator to finish
4092 * Finish task iteration started by css_task_iter_start().
4094 void css_task_iter_end(struct css_task_iter *it)
4096 if (it->cur_cset) {
4097 spin_lock_bh(&css_set_lock);
4098 list_del(&it->iters_node);
4099 put_css_set_locked(it->cur_cset);
4100 spin_unlock_bh(&css_set_lock);
4103 if (it->cur_task)
4104 put_task_struct(it->cur_task);
4108 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4109 * @to: cgroup to which the tasks will be moved
4110 * @from: cgroup in which the tasks currently reside
4112 * Locking rules between cgroup_post_fork() and the migration path
4113 * guarantee that, if a task is forking while being migrated, the new child
4114 * is guaranteed to be either visible in the source cgroup after the
4115 * parent's migration is complete or put into the target cgroup. No task
4116 * can slip out of migration through forking.
4118 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4120 LIST_HEAD(preloaded_csets);
4121 struct cgrp_cset_link *link;
4122 struct css_task_iter it;
4123 struct task_struct *task;
4124 int ret;
4126 mutex_lock(&cgroup_mutex);
4128 /* all tasks in @from are being moved, all csets are source */
4129 spin_lock_bh(&css_set_lock);
4130 list_for_each_entry(link, &from->cset_links, cset_link)
4131 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4132 spin_unlock_bh(&css_set_lock);
4134 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4135 if (ret)
4136 goto out_err;
4139 * Migrate tasks one-by-one until @from is empty. This fails iff
4140 * ->can_attach() fails.
4142 do {
4143 css_task_iter_start(&from->self, &it);
4144 task = css_task_iter_next(&it);
4145 if (task)
4146 get_task_struct(task);
4147 css_task_iter_end(&it);
4149 if (task) {
4150 ret = cgroup_migrate(task, false, to);
4151 put_task_struct(task);
4153 } while (task && !ret);
4154 out_err:
4155 cgroup_migrate_finish(&preloaded_csets);
4156 mutex_unlock(&cgroup_mutex);
4157 return ret;
4161 * Stuff for reading the 'tasks'/'procs' files.
4163 * Reading this file can return large amounts of data if a cgroup has
4164 * *lots* of attached tasks. So it may need several calls to read(),
4165 * but we cannot guarantee that the information we produce is correct
4166 * unless we produce it entirely atomically.
4170 /* which pidlist file are we talking about? */
4171 enum cgroup_filetype {
4172 CGROUP_FILE_PROCS,
4173 CGROUP_FILE_TASKS,
4177 * A pidlist is a list of pids that virtually represents the contents of one
4178 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4179 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4180 * to the cgroup.
4182 struct cgroup_pidlist {
4184 * used to find which pidlist is wanted. doesn't change as long as
4185 * this particular list stays in the list.
4187 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4188 /* array of xids */
4189 pid_t *list;
4190 /* how many elements the above list has */
4191 int length;
4192 /* each of these stored in a list by its cgroup */
4193 struct list_head links;
4194 /* pointer to the cgroup we belong to, for list removal purposes */
4195 struct cgroup *owner;
4196 /* for delayed destruction */
4197 struct delayed_work destroy_dwork;
4201 * The following two functions "fix" the issue where there are more pids
4202 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4203 * TODO: replace with a kernel-wide solution to this problem
4205 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4206 static void *pidlist_allocate(int count)
4208 if (PIDLIST_TOO_LARGE(count))
4209 return vmalloc(count * sizeof(pid_t));
4210 else
4211 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4214 static void pidlist_free(void *p)
4216 kvfree(p);
4220 * Used to destroy all pidlists lingering waiting for destroy timer. None
4221 * should be left afterwards.
4223 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4225 struct cgroup_pidlist *l, *tmp_l;
4227 mutex_lock(&cgrp->pidlist_mutex);
4228 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4229 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4230 mutex_unlock(&cgrp->pidlist_mutex);
4232 flush_workqueue(cgroup_pidlist_destroy_wq);
4233 BUG_ON(!list_empty(&cgrp->pidlists));
4236 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4238 struct delayed_work *dwork = to_delayed_work(work);
4239 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4240 destroy_dwork);
4241 struct cgroup_pidlist *tofree = NULL;
4243 mutex_lock(&l->owner->pidlist_mutex);
4246 * Destroy iff we didn't get queued again. The state won't change
4247 * as destroy_dwork can only be queued while locked.
4249 if (!delayed_work_pending(dwork)) {
4250 list_del(&l->links);
4251 pidlist_free(l->list);
4252 put_pid_ns(l->key.ns);
4253 tofree = l;
4256 mutex_unlock(&l->owner->pidlist_mutex);
4257 kfree(tofree);
4261 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4262 * Returns the number of unique elements.
4264 static int pidlist_uniq(pid_t *list, int length)
4266 int src, dest = 1;
4269 * we presume the 0th element is unique, so i starts at 1. trivial
4270 * edge cases first; no work needs to be done for either
4272 if (length == 0 || length == 1)
4273 return length;
4274 /* src and dest walk down the list; dest counts unique elements */
4275 for (src = 1; src < length; src++) {
4276 /* find next unique element */
4277 while (list[src] == list[src-1]) {
4278 src++;
4279 if (src == length)
4280 goto after;
4282 /* dest always points to where the next unique element goes */
4283 list[dest] = list[src];
4284 dest++;
4286 after:
4287 return dest;
4291 * The two pid files - task and cgroup.procs - guaranteed that the result
4292 * is sorted, which forced this whole pidlist fiasco. As pid order is
4293 * different per namespace, each namespace needs differently sorted list,
4294 * making it impossible to use, for example, single rbtree of member tasks
4295 * sorted by task pointer. As pidlists can be fairly large, allocating one
4296 * per open file is dangerous, so cgroup had to implement shared pool of
4297 * pidlists keyed by cgroup and namespace.
4299 * All this extra complexity was caused by the original implementation
4300 * committing to an entirely unnecessary property. In the long term, we
4301 * want to do away with it. Explicitly scramble sort order if on the
4302 * default hierarchy so that no such expectation exists in the new
4303 * interface.
4305 * Scrambling is done by swapping every two consecutive bits, which is
4306 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4308 static pid_t pid_fry(pid_t pid)
4310 unsigned a = pid & 0x55555555;
4311 unsigned b = pid & 0xAAAAAAAA;
4313 return (a << 1) | (b >> 1);
4316 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4318 if (cgroup_on_dfl(cgrp))
4319 return pid_fry(pid);
4320 else
4321 return pid;
4324 static int cmppid(const void *a, const void *b)
4326 return *(pid_t *)a - *(pid_t *)b;
4329 static int fried_cmppid(const void *a, const void *b)
4331 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4334 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4335 enum cgroup_filetype type)
4337 struct cgroup_pidlist *l;
4338 /* don't need task_nsproxy() if we're looking at ourself */
4339 struct pid_namespace *ns = task_active_pid_ns(current);
4341 lockdep_assert_held(&cgrp->pidlist_mutex);
4343 list_for_each_entry(l, &cgrp->pidlists, links)
4344 if (l->key.type == type && l->key.ns == ns)
4345 return l;
4346 return NULL;
4350 * find the appropriate pidlist for our purpose (given procs vs tasks)
4351 * returns with the lock on that pidlist already held, and takes care
4352 * of the use count, or returns NULL with no locks held if we're out of
4353 * memory.
4355 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4356 enum cgroup_filetype type)
4358 struct cgroup_pidlist *l;
4360 lockdep_assert_held(&cgrp->pidlist_mutex);
4362 l = cgroup_pidlist_find(cgrp, type);
4363 if (l)
4364 return l;
4366 /* entry not found; create a new one */
4367 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4368 if (!l)
4369 return l;
4371 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4372 l->key.type = type;
4373 /* don't need task_nsproxy() if we're looking at ourself */
4374 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4375 l->owner = cgrp;
4376 list_add(&l->links, &cgrp->pidlists);
4377 return l;
4381 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4383 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4384 struct cgroup_pidlist **lp)
4386 pid_t *array;
4387 int length;
4388 int pid, n = 0; /* used for populating the array */
4389 struct css_task_iter it;
4390 struct task_struct *tsk;
4391 struct cgroup_pidlist *l;
4393 lockdep_assert_held(&cgrp->pidlist_mutex);
4396 * If cgroup gets more users after we read count, we won't have
4397 * enough space - tough. This race is indistinguishable to the
4398 * caller from the case that the additional cgroup users didn't
4399 * show up until sometime later on.
4401 length = cgroup_task_count(cgrp);
4402 array = pidlist_allocate(length);
4403 if (!array)
4404 return -ENOMEM;
4405 /* now, populate the array */
4406 css_task_iter_start(&cgrp->self, &it);
4407 while ((tsk = css_task_iter_next(&it))) {
4408 if (unlikely(n == length))
4409 break;
4410 /* get tgid or pid for procs or tasks file respectively */
4411 if (type == CGROUP_FILE_PROCS)
4412 pid = task_tgid_vnr(tsk);
4413 else
4414 pid = task_pid_vnr(tsk);
4415 if (pid > 0) /* make sure to only use valid results */
4416 array[n++] = pid;
4418 css_task_iter_end(&it);
4419 length = n;
4420 /* now sort & (if procs) strip out duplicates */
4421 if (cgroup_on_dfl(cgrp))
4422 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4423 else
4424 sort(array, length, sizeof(pid_t), cmppid, NULL);
4425 if (type == CGROUP_FILE_PROCS)
4426 length = pidlist_uniq(array, length);
4428 l = cgroup_pidlist_find_create(cgrp, type);
4429 if (!l) {
4430 pidlist_free(array);
4431 return -ENOMEM;
4434 /* store array, freeing old if necessary */
4435 pidlist_free(l->list);
4436 l->list = array;
4437 l->length = length;
4438 *lp = l;
4439 return 0;
4443 * cgroupstats_build - build and fill cgroupstats
4444 * @stats: cgroupstats to fill information into
4445 * @dentry: A dentry entry belonging to the cgroup for which stats have
4446 * been requested.
4448 * Build and fill cgroupstats so that taskstats can export it to user
4449 * space.
4451 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4453 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4454 struct cgroup *cgrp;
4455 struct css_task_iter it;
4456 struct task_struct *tsk;
4458 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4459 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4460 kernfs_type(kn) != KERNFS_DIR)
4461 return -EINVAL;
4463 mutex_lock(&cgroup_mutex);
4466 * We aren't being called from kernfs and there's no guarantee on
4467 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4468 * @kn->priv is RCU safe. Let's do the RCU dancing.
4470 rcu_read_lock();
4471 cgrp = rcu_dereference(kn->priv);
4472 if (!cgrp || cgroup_is_dead(cgrp)) {
4473 rcu_read_unlock();
4474 mutex_unlock(&cgroup_mutex);
4475 return -ENOENT;
4477 rcu_read_unlock();
4479 css_task_iter_start(&cgrp->self, &it);
4480 while ((tsk = css_task_iter_next(&it))) {
4481 switch (tsk->state) {
4482 case TASK_RUNNING:
4483 stats->nr_running++;
4484 break;
4485 case TASK_INTERRUPTIBLE:
4486 stats->nr_sleeping++;
4487 break;
4488 case TASK_UNINTERRUPTIBLE:
4489 stats->nr_uninterruptible++;
4490 break;
4491 case TASK_STOPPED:
4492 stats->nr_stopped++;
4493 break;
4494 default:
4495 if (delayacct_is_task_waiting_on_io(tsk))
4496 stats->nr_io_wait++;
4497 break;
4500 css_task_iter_end(&it);
4502 mutex_unlock(&cgroup_mutex);
4503 return 0;
4508 * seq_file methods for the tasks/procs files. The seq_file position is the
4509 * next pid to display; the seq_file iterator is a pointer to the pid
4510 * in the cgroup->l->list array.
4513 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4516 * Initially we receive a position value that corresponds to
4517 * one more than the last pid shown (or 0 on the first call or
4518 * after a seek to the start). Use a binary-search to find the
4519 * next pid to display, if any
4521 struct kernfs_open_file *of = s->private;
4522 struct cgroup *cgrp = seq_css(s)->cgroup;
4523 struct cgroup_pidlist *l;
4524 enum cgroup_filetype type = seq_cft(s)->private;
4525 int index = 0, pid = *pos;
4526 int *iter, ret;
4528 mutex_lock(&cgrp->pidlist_mutex);
4531 * !NULL @of->priv indicates that this isn't the first start()
4532 * after open. If the matching pidlist is around, we can use that.
4533 * Look for it. Note that @of->priv can't be used directly. It
4534 * could already have been destroyed.
4536 if (of->priv)
4537 of->priv = cgroup_pidlist_find(cgrp, type);
4540 * Either this is the first start() after open or the matching
4541 * pidlist has been destroyed inbetween. Create a new one.
4543 if (!of->priv) {
4544 ret = pidlist_array_load(cgrp, type,
4545 (struct cgroup_pidlist **)&of->priv);
4546 if (ret)
4547 return ERR_PTR(ret);
4549 l = of->priv;
4551 if (pid) {
4552 int end = l->length;
4554 while (index < end) {
4555 int mid = (index + end) / 2;
4556 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4557 index = mid;
4558 break;
4559 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4560 index = mid + 1;
4561 else
4562 end = mid;
4565 /* If we're off the end of the array, we're done */
4566 if (index >= l->length)
4567 return NULL;
4568 /* Update the abstract position to be the actual pid that we found */
4569 iter = l->list + index;
4570 *pos = cgroup_pid_fry(cgrp, *iter);
4571 return iter;
4574 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4576 struct kernfs_open_file *of = s->private;
4577 struct cgroup_pidlist *l = of->priv;
4579 if (l)
4580 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4581 CGROUP_PIDLIST_DESTROY_DELAY);
4582 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4585 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4587 struct kernfs_open_file *of = s->private;
4588 struct cgroup_pidlist *l = of->priv;
4589 pid_t *p = v;
4590 pid_t *end = l->list + l->length;
4592 * Advance to the next pid in the array. If this goes off the
4593 * end, we're done
4595 p++;
4596 if (p >= end) {
4597 return NULL;
4598 } else {
4599 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4600 return p;
4604 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4606 seq_printf(s, "%d\n", *(int *)v);
4608 return 0;
4611 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4612 struct cftype *cft)
4614 return notify_on_release(css->cgroup);
4617 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4618 struct cftype *cft, u64 val)
4620 if (val)
4621 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4622 else
4623 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4624 return 0;
4627 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4628 struct cftype *cft)
4630 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4633 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4634 struct cftype *cft, u64 val)
4636 if (val)
4637 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4638 else
4639 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4640 return 0;
4643 /* cgroup core interface files for the default hierarchy */
4644 static struct cftype cgroup_dfl_base_files[] = {
4646 .name = "cgroup.procs",
4647 .file_offset = offsetof(struct cgroup, procs_file),
4648 .seq_start = cgroup_pidlist_start,
4649 .seq_next = cgroup_pidlist_next,
4650 .seq_stop = cgroup_pidlist_stop,
4651 .seq_show = cgroup_pidlist_show,
4652 .private = CGROUP_FILE_PROCS,
4653 .write = cgroup_procs_write,
4656 .name = "cgroup.controllers",
4657 .flags = CFTYPE_ONLY_ON_ROOT,
4658 .seq_show = cgroup_root_controllers_show,
4661 .name = "cgroup.controllers",
4662 .flags = CFTYPE_NOT_ON_ROOT,
4663 .seq_show = cgroup_controllers_show,
4666 .name = "cgroup.subtree_control",
4667 .seq_show = cgroup_subtree_control_show,
4668 .write = cgroup_subtree_control_write,
4671 .name = "cgroup.events",
4672 .flags = CFTYPE_NOT_ON_ROOT,
4673 .file_offset = offsetof(struct cgroup, events_file),
4674 .seq_show = cgroup_events_show,
4676 { } /* terminate */
4679 /* cgroup core interface files for the legacy hierarchies */
4680 static struct cftype cgroup_legacy_base_files[] = {
4682 .name = "cgroup.procs",
4683 .seq_start = cgroup_pidlist_start,
4684 .seq_next = cgroup_pidlist_next,
4685 .seq_stop = cgroup_pidlist_stop,
4686 .seq_show = cgroup_pidlist_show,
4687 .private = CGROUP_FILE_PROCS,
4688 .write = cgroup_procs_write,
4691 .name = "cgroup.clone_children",
4692 .read_u64 = cgroup_clone_children_read,
4693 .write_u64 = cgroup_clone_children_write,
4696 .name = "cgroup.sane_behavior",
4697 .flags = CFTYPE_ONLY_ON_ROOT,
4698 .seq_show = cgroup_sane_behavior_show,
4701 .name = "tasks",
4702 .seq_start = cgroup_pidlist_start,
4703 .seq_next = cgroup_pidlist_next,
4704 .seq_stop = cgroup_pidlist_stop,
4705 .seq_show = cgroup_pidlist_show,
4706 .private = CGROUP_FILE_TASKS,
4707 .write = cgroup_tasks_write,
4710 .name = "notify_on_release",
4711 .read_u64 = cgroup_read_notify_on_release,
4712 .write_u64 = cgroup_write_notify_on_release,
4715 .name = "release_agent",
4716 .flags = CFTYPE_ONLY_ON_ROOT,
4717 .seq_show = cgroup_release_agent_show,
4718 .write = cgroup_release_agent_write,
4719 .max_write_len = PATH_MAX - 1,
4721 { } /* terminate */
4725 * css destruction is four-stage process.
4727 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4728 * Implemented in kill_css().
4730 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4731 * and thus css_tryget_online() is guaranteed to fail, the css can be
4732 * offlined by invoking offline_css(). After offlining, the base ref is
4733 * put. Implemented in css_killed_work_fn().
4735 * 3. When the percpu_ref reaches zero, the only possible remaining
4736 * accessors are inside RCU read sections. css_release() schedules the
4737 * RCU callback.
4739 * 4. After the grace period, the css can be freed. Implemented in
4740 * css_free_work_fn().
4742 * It is actually hairier because both step 2 and 4 require process context
4743 * and thus involve punting to css->destroy_work adding two additional
4744 * steps to the already complex sequence.
4746 static void css_free_work_fn(struct work_struct *work)
4748 struct cgroup_subsys_state *css =
4749 container_of(work, struct cgroup_subsys_state, destroy_work);
4750 struct cgroup_subsys *ss = css->ss;
4751 struct cgroup *cgrp = css->cgroup;
4753 percpu_ref_exit(&css->refcnt);
4755 if (ss) {
4756 /* css free path */
4757 struct cgroup_subsys_state *parent = css->parent;
4758 int id = css->id;
4760 ss->css_free(css);
4761 cgroup_idr_remove(&ss->css_idr, id);
4762 cgroup_put(cgrp);
4764 if (parent)
4765 css_put(parent);
4766 } else {
4767 /* cgroup free path */
4768 atomic_dec(&cgrp->root->nr_cgrps);
4769 cgroup_pidlist_destroy_all(cgrp);
4770 cancel_work_sync(&cgrp->release_agent_work);
4772 if (cgroup_parent(cgrp)) {
4774 * We get a ref to the parent, and put the ref when
4775 * this cgroup is being freed, so it's guaranteed
4776 * that the parent won't be destroyed before its
4777 * children.
4779 cgroup_put(cgroup_parent(cgrp));
4780 kernfs_put(cgrp->kn);
4781 kfree(cgrp);
4782 } else {
4784 * This is root cgroup's refcnt reaching zero,
4785 * which indicates that the root should be
4786 * released.
4788 cgroup_destroy_root(cgrp->root);
4793 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4795 struct cgroup_subsys_state *css =
4796 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4798 INIT_WORK(&css->destroy_work, css_free_work_fn);
4799 queue_work(cgroup_destroy_wq, &css->destroy_work);
4802 static void css_release_work_fn(struct work_struct *work)
4804 struct cgroup_subsys_state *css =
4805 container_of(work, struct cgroup_subsys_state, destroy_work);
4806 struct cgroup_subsys *ss = css->ss;
4807 struct cgroup *cgrp = css->cgroup;
4809 mutex_lock(&cgroup_mutex);
4811 css->flags |= CSS_RELEASED;
4812 list_del_rcu(&css->sibling);
4814 if (ss) {
4815 /* css release path */
4816 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4817 if (ss->css_released)
4818 ss->css_released(css);
4819 } else {
4820 /* cgroup release path */
4821 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4822 cgrp->id = -1;
4825 * There are two control paths which try to determine
4826 * cgroup from dentry without going through kernfs -
4827 * cgroupstats_build() and css_tryget_online_from_dir().
4828 * Those are supported by RCU protecting clearing of
4829 * cgrp->kn->priv backpointer.
4831 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4834 mutex_unlock(&cgroup_mutex);
4836 call_rcu(&css->rcu_head, css_free_rcu_fn);
4839 static void css_release(struct percpu_ref *ref)
4841 struct cgroup_subsys_state *css =
4842 container_of(ref, struct cgroup_subsys_state, refcnt);
4844 INIT_WORK(&css->destroy_work, css_release_work_fn);
4845 queue_work(cgroup_destroy_wq, &css->destroy_work);
4848 static void init_and_link_css(struct cgroup_subsys_state *css,
4849 struct cgroup_subsys *ss, struct cgroup *cgrp)
4851 lockdep_assert_held(&cgroup_mutex);
4853 cgroup_get(cgrp);
4855 memset(css, 0, sizeof(*css));
4856 css->cgroup = cgrp;
4857 css->ss = ss;
4858 INIT_LIST_HEAD(&css->sibling);
4859 INIT_LIST_HEAD(&css->children);
4860 css->serial_nr = css_serial_nr_next++;
4861 atomic_set(&css->online_cnt, 0);
4863 if (cgroup_parent(cgrp)) {
4864 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4865 css_get(css->parent);
4868 BUG_ON(cgroup_css(cgrp, ss));
4871 /* invoke ->css_online() on a new CSS and mark it online if successful */
4872 static int online_css(struct cgroup_subsys_state *css)
4874 struct cgroup_subsys *ss = css->ss;
4875 int ret = 0;
4877 lockdep_assert_held(&cgroup_mutex);
4879 if (ss->css_online)
4880 ret = ss->css_online(css);
4881 if (!ret) {
4882 css->flags |= CSS_ONLINE;
4883 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4885 atomic_inc(&css->online_cnt);
4886 if (css->parent)
4887 atomic_inc(&css->parent->online_cnt);
4889 return ret;
4892 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4893 static void offline_css(struct cgroup_subsys_state *css)
4895 struct cgroup_subsys *ss = css->ss;
4897 lockdep_assert_held(&cgroup_mutex);
4899 if (!(css->flags & CSS_ONLINE))
4900 return;
4902 if (ss->css_offline)
4903 ss->css_offline(css);
4905 css->flags &= ~CSS_ONLINE;
4906 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4908 wake_up_all(&css->cgroup->offline_waitq);
4912 * create_css - create a cgroup_subsys_state
4913 * @cgrp: the cgroup new css will be associated with
4914 * @ss: the subsys of new css
4915 * @visible: whether to create control knobs for the new css or not
4917 * Create a new css associated with @cgrp - @ss pair. On success, the new
4918 * css is online and installed in @cgrp with all interface files created if
4919 * @visible. Returns 0 on success, -errno on failure.
4921 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4922 bool visible)
4924 struct cgroup *parent = cgroup_parent(cgrp);
4925 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4926 struct cgroup_subsys_state *css;
4927 int err;
4929 lockdep_assert_held(&cgroup_mutex);
4931 css = ss->css_alloc(parent_css);
4932 if (IS_ERR(css))
4933 return PTR_ERR(css);
4935 init_and_link_css(css, ss, cgrp);
4937 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4938 if (err)
4939 goto err_free_css;
4941 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4942 if (err < 0)
4943 goto err_free_percpu_ref;
4944 css->id = err;
4946 if (visible) {
4947 err = css_populate_dir(css, NULL);
4948 if (err)
4949 goto err_free_id;
4952 /* @css is ready to be brought online now, make it visible */
4953 list_add_tail_rcu(&css->sibling, &parent_css->children);
4954 cgroup_idr_replace(&ss->css_idr, css, css->id);
4956 err = online_css(css);
4957 if (err)
4958 goto err_list_del;
4960 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4961 cgroup_parent(parent)) {
4962 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4963 current->comm, current->pid, ss->name);
4964 if (!strcmp(ss->name, "memory"))
4965 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4966 ss->warned_broken_hierarchy = true;
4969 return 0;
4971 err_list_del:
4972 list_del_rcu(&css->sibling);
4973 css_clear_dir(css, NULL);
4974 err_free_id:
4975 cgroup_idr_remove(&ss->css_idr, css->id);
4976 err_free_percpu_ref:
4977 percpu_ref_exit(&css->refcnt);
4978 err_free_css:
4979 call_rcu(&css->rcu_head, css_free_rcu_fn);
4980 return err;
4983 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4984 umode_t mode)
4986 struct cgroup *parent, *cgrp, *tcgrp;
4987 struct cgroup_root *root;
4988 struct cgroup_subsys *ss;
4989 struct kernfs_node *kn;
4990 int level, ssid, ret;
4992 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4994 if (strchr(name, '\n'))
4995 return -EINVAL;
4997 parent = cgroup_kn_lock_live(parent_kn);
4998 if (!parent)
4999 return -ENODEV;
5000 root = parent->root;
5001 level = parent->level + 1;
5003 /* allocate the cgroup and its ID, 0 is reserved for the root */
5004 cgrp = kzalloc(sizeof(*cgrp) +
5005 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5006 if (!cgrp) {
5007 ret = -ENOMEM;
5008 goto out_unlock;
5011 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5012 if (ret)
5013 goto out_free_cgrp;
5016 * Temporarily set the pointer to NULL, so idr_find() won't return
5017 * a half-baked cgroup.
5019 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5020 if (cgrp->id < 0) {
5021 ret = -ENOMEM;
5022 goto out_cancel_ref;
5025 init_cgroup_housekeeping(cgrp);
5027 cgrp->self.parent = &parent->self;
5028 cgrp->root = root;
5029 cgrp->level = level;
5031 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5032 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5034 if (notify_on_release(parent))
5035 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5037 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5038 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5040 /* create the directory */
5041 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5042 if (IS_ERR(kn)) {
5043 ret = PTR_ERR(kn);
5044 goto out_free_id;
5046 cgrp->kn = kn;
5049 * This extra ref will be put in cgroup_free_fn() and guarantees
5050 * that @cgrp->kn is always accessible.
5052 kernfs_get(kn);
5054 cgrp->self.serial_nr = css_serial_nr_next++;
5056 /* allocation complete, commit to creation */
5057 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5058 atomic_inc(&root->nr_cgrps);
5059 cgroup_get(parent);
5062 * @cgrp is now fully operational. If something fails after this
5063 * point, it'll be released via the normal destruction path.
5065 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5067 ret = cgroup_kn_set_ugid(kn);
5068 if (ret)
5069 goto out_destroy;
5071 ret = css_populate_dir(&cgrp->self, NULL);
5072 if (ret)
5073 goto out_destroy;
5075 /* let's create and online css's */
5076 for_each_subsys(ss, ssid) {
5077 if (parent->child_subsys_mask & (1 << ssid)) {
5078 ret = create_css(cgrp, ss,
5079 parent->subtree_control & (1 << ssid));
5080 if (ret)
5081 goto out_destroy;
5086 * On the default hierarchy, a child doesn't automatically inherit
5087 * subtree_control from the parent. Each is configured manually.
5089 if (!cgroup_on_dfl(cgrp)) {
5090 cgrp->subtree_control = parent->subtree_control;
5091 cgroup_refresh_child_subsys_mask(cgrp);
5094 kernfs_activate(kn);
5096 ret = 0;
5097 goto out_unlock;
5099 out_free_id:
5100 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5101 out_cancel_ref:
5102 percpu_ref_exit(&cgrp->self.refcnt);
5103 out_free_cgrp:
5104 kfree(cgrp);
5105 out_unlock:
5106 cgroup_kn_unlock(parent_kn);
5107 return ret;
5109 out_destroy:
5110 cgroup_destroy_locked(cgrp);
5111 goto out_unlock;
5115 * This is called when the refcnt of a css is confirmed to be killed.
5116 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5117 * initate destruction and put the css ref from kill_css().
5119 static void css_killed_work_fn(struct work_struct *work)
5121 struct cgroup_subsys_state *css =
5122 container_of(work, struct cgroup_subsys_state, destroy_work);
5124 mutex_lock(&cgroup_mutex);
5126 do {
5127 offline_css(css);
5128 css_put(css);
5129 /* @css can't go away while we're holding cgroup_mutex */
5130 css = css->parent;
5131 } while (css && atomic_dec_and_test(&css->online_cnt));
5133 mutex_unlock(&cgroup_mutex);
5136 /* css kill confirmation processing requires process context, bounce */
5137 static void css_killed_ref_fn(struct percpu_ref *ref)
5139 struct cgroup_subsys_state *css =
5140 container_of(ref, struct cgroup_subsys_state, refcnt);
5142 if (atomic_dec_and_test(&css->online_cnt)) {
5143 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5144 queue_work(cgroup_destroy_wq, &css->destroy_work);
5149 * kill_css - destroy a css
5150 * @css: css to destroy
5152 * This function initiates destruction of @css by removing cgroup interface
5153 * files and putting its base reference. ->css_offline() will be invoked
5154 * asynchronously once css_tryget_online() is guaranteed to fail and when
5155 * the reference count reaches zero, @css will be released.
5157 static void kill_css(struct cgroup_subsys_state *css)
5159 lockdep_assert_held(&cgroup_mutex);
5162 * This must happen before css is disassociated with its cgroup.
5163 * See seq_css() for details.
5165 css_clear_dir(css, NULL);
5168 * Killing would put the base ref, but we need to keep it alive
5169 * until after ->css_offline().
5171 css_get(css);
5174 * cgroup core guarantees that, by the time ->css_offline() is
5175 * invoked, no new css reference will be given out via
5176 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5177 * proceed to offlining css's because percpu_ref_kill() doesn't
5178 * guarantee that the ref is seen as killed on all CPUs on return.
5180 * Use percpu_ref_kill_and_confirm() to get notifications as each
5181 * css is confirmed to be seen as killed on all CPUs.
5183 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5187 * cgroup_destroy_locked - the first stage of cgroup destruction
5188 * @cgrp: cgroup to be destroyed
5190 * css's make use of percpu refcnts whose killing latency shouldn't be
5191 * exposed to userland and are RCU protected. Also, cgroup core needs to
5192 * guarantee that css_tryget_online() won't succeed by the time
5193 * ->css_offline() is invoked. To satisfy all the requirements,
5194 * destruction is implemented in the following two steps.
5196 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5197 * userland visible parts and start killing the percpu refcnts of
5198 * css's. Set up so that the next stage will be kicked off once all
5199 * the percpu refcnts are confirmed to be killed.
5201 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5202 * rest of destruction. Once all cgroup references are gone, the
5203 * cgroup is RCU-freed.
5205 * This function implements s1. After this step, @cgrp is gone as far as
5206 * the userland is concerned and a new cgroup with the same name may be
5207 * created. As cgroup doesn't care about the names internally, this
5208 * doesn't cause any problem.
5210 static int cgroup_destroy_locked(struct cgroup *cgrp)
5211 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5213 struct cgroup_subsys_state *css;
5214 int ssid;
5216 lockdep_assert_held(&cgroup_mutex);
5219 * Only migration can raise populated from zero and we're already
5220 * holding cgroup_mutex.
5222 if (cgroup_is_populated(cgrp))
5223 return -EBUSY;
5226 * Make sure there's no live children. We can't test emptiness of
5227 * ->self.children as dead children linger on it while being
5228 * drained; otherwise, "rmdir parent/child parent" may fail.
5230 if (css_has_online_children(&cgrp->self))
5231 return -EBUSY;
5234 * Mark @cgrp dead. This prevents further task migration and child
5235 * creation by disabling cgroup_lock_live_group().
5237 cgrp->self.flags &= ~CSS_ONLINE;
5239 /* initiate massacre of all css's */
5240 for_each_css(css, ssid, cgrp)
5241 kill_css(css);
5244 * Remove @cgrp directory along with the base files. @cgrp has an
5245 * extra ref on its kn.
5247 kernfs_remove(cgrp->kn);
5249 check_for_release(cgroup_parent(cgrp));
5251 /* put the base reference */
5252 percpu_ref_kill(&cgrp->self.refcnt);
5254 return 0;
5257 static int cgroup_rmdir(struct kernfs_node *kn)
5259 struct cgroup *cgrp;
5260 int ret = 0;
5262 cgrp = cgroup_kn_lock_live(kn);
5263 if (!cgrp)
5264 return 0;
5266 ret = cgroup_destroy_locked(cgrp);
5268 cgroup_kn_unlock(kn);
5269 return ret;
5272 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5273 .remount_fs = cgroup_remount,
5274 .show_options = cgroup_show_options,
5275 .mkdir = cgroup_mkdir,
5276 .rmdir = cgroup_rmdir,
5277 .rename = cgroup_rename,
5280 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5282 struct cgroup_subsys_state *css;
5284 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5286 mutex_lock(&cgroup_mutex);
5288 idr_init(&ss->css_idr);
5289 INIT_LIST_HEAD(&ss->cfts);
5291 /* Create the root cgroup state for this subsystem */
5292 ss->root = &cgrp_dfl_root;
5293 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5294 /* We don't handle early failures gracefully */
5295 BUG_ON(IS_ERR(css));
5296 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5299 * Root csses are never destroyed and we can't initialize
5300 * percpu_ref during early init. Disable refcnting.
5302 css->flags |= CSS_NO_REF;
5304 if (early) {
5305 /* allocation can't be done safely during early init */
5306 css->id = 1;
5307 } else {
5308 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5309 BUG_ON(css->id < 0);
5312 /* Update the init_css_set to contain a subsys
5313 * pointer to this state - since the subsystem is
5314 * newly registered, all tasks and hence the
5315 * init_css_set is in the subsystem's root cgroup. */
5316 init_css_set.subsys[ss->id] = css;
5318 have_fork_callback |= (bool)ss->fork << ss->id;
5319 have_exit_callback |= (bool)ss->exit << ss->id;
5320 have_free_callback |= (bool)ss->free << ss->id;
5321 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5323 /* At system boot, before all subsystems have been
5324 * registered, no tasks have been forked, so we don't
5325 * need to invoke fork callbacks here. */
5326 BUG_ON(!list_empty(&init_task.tasks));
5328 BUG_ON(online_css(css));
5330 mutex_unlock(&cgroup_mutex);
5334 * cgroup_init_early - cgroup initialization at system boot
5336 * Initialize cgroups at system boot, and initialize any
5337 * subsystems that request early init.
5339 int __init cgroup_init_early(void)
5341 static struct cgroup_sb_opts __initdata opts;
5342 struct cgroup_subsys *ss;
5343 int i;
5345 init_cgroup_root(&cgrp_dfl_root, &opts);
5346 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5348 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5350 for_each_subsys(ss, i) {
5351 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5352 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5353 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5354 ss->id, ss->name);
5355 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5356 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5358 ss->id = i;
5359 ss->name = cgroup_subsys_name[i];
5360 if (!ss->legacy_name)
5361 ss->legacy_name = cgroup_subsys_name[i];
5363 if (ss->early_init)
5364 cgroup_init_subsys(ss, true);
5366 return 0;
5369 static unsigned long cgroup_disable_mask __initdata;
5372 * cgroup_init - cgroup initialization
5374 * Register cgroup filesystem and /proc file, and initialize
5375 * any subsystems that didn't request early init.
5377 int __init cgroup_init(void)
5379 struct cgroup_subsys *ss;
5380 unsigned long key;
5381 int ssid;
5383 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5384 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5385 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5387 get_user_ns(init_cgroup_ns.user_ns);
5389 mutex_lock(&cgroup_mutex);
5391 /* Add init_css_set to the hash table */
5392 key = css_set_hash(init_css_set.subsys);
5393 hash_add(css_set_table, &init_css_set.hlist, key);
5395 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5397 mutex_unlock(&cgroup_mutex);
5399 for_each_subsys(ss, ssid) {
5400 if (ss->early_init) {
5401 struct cgroup_subsys_state *css =
5402 init_css_set.subsys[ss->id];
5404 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5405 GFP_KERNEL);
5406 BUG_ON(css->id < 0);
5407 } else {
5408 cgroup_init_subsys(ss, false);
5411 list_add_tail(&init_css_set.e_cset_node[ssid],
5412 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5415 * Setting dfl_root subsys_mask needs to consider the
5416 * disabled flag and cftype registration needs kmalloc,
5417 * both of which aren't available during early_init.
5419 if (cgroup_disable_mask & (1 << ssid)) {
5420 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5421 printk(KERN_INFO "Disabling %s control group subsystem\n",
5422 ss->name);
5423 continue;
5426 if (cgroup_ssid_no_v1(ssid))
5427 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5428 ss->name);
5430 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5432 if (!ss->dfl_cftypes)
5433 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5435 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5436 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5437 } else {
5438 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5439 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5442 if (ss->bind)
5443 ss->bind(init_css_set.subsys[ssid]);
5446 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5447 WARN_ON(register_filesystem(&cgroup_fs_type));
5448 WARN_ON(register_filesystem(&cgroup2_fs_type));
5449 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5451 return 0;
5454 static int __init cgroup_wq_init(void)
5457 * There isn't much point in executing destruction path in
5458 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5459 * Use 1 for @max_active.
5461 * We would prefer to do this in cgroup_init() above, but that
5462 * is called before init_workqueues(): so leave this until after.
5464 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5465 BUG_ON(!cgroup_destroy_wq);
5468 * Used to destroy pidlists and separate to serve as flush domain.
5469 * Cap @max_active to 1 too.
5471 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5472 0, 1);
5473 BUG_ON(!cgroup_pidlist_destroy_wq);
5475 return 0;
5477 core_initcall(cgroup_wq_init);
5480 * proc_cgroup_show()
5481 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5482 * - Used for /proc/<pid>/cgroup.
5484 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5485 struct pid *pid, struct task_struct *tsk)
5487 char *buf, *path;
5488 int retval;
5489 struct cgroup_root *root;
5491 retval = -ENOMEM;
5492 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5493 if (!buf)
5494 goto out;
5496 mutex_lock(&cgroup_mutex);
5497 spin_lock_bh(&css_set_lock);
5499 for_each_root(root) {
5500 struct cgroup_subsys *ss;
5501 struct cgroup *cgrp;
5502 int ssid, count = 0;
5504 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5505 continue;
5507 seq_printf(m, "%d:", root->hierarchy_id);
5508 if (root != &cgrp_dfl_root)
5509 for_each_subsys(ss, ssid)
5510 if (root->subsys_mask & (1 << ssid))
5511 seq_printf(m, "%s%s", count++ ? "," : "",
5512 ss->legacy_name);
5513 if (strlen(root->name))
5514 seq_printf(m, "%sname=%s", count ? "," : "",
5515 root->name);
5516 seq_putc(m, ':');
5518 cgrp = task_cgroup_from_root(tsk, root);
5521 * On traditional hierarchies, all zombie tasks show up as
5522 * belonging to the root cgroup. On the default hierarchy,
5523 * while a zombie doesn't show up in "cgroup.procs" and
5524 * thus can't be migrated, its /proc/PID/cgroup keeps
5525 * reporting the cgroup it belonged to before exiting. If
5526 * the cgroup is removed before the zombie is reaped,
5527 * " (deleted)" is appended to the cgroup path.
5529 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5530 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5531 current->nsproxy->cgroup_ns);
5532 if (!path) {
5533 retval = -ENAMETOOLONG;
5534 goto out_unlock;
5536 } else {
5537 path = "/";
5540 seq_puts(m, path);
5542 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5543 seq_puts(m, " (deleted)\n");
5544 else
5545 seq_putc(m, '\n');
5548 retval = 0;
5549 out_unlock:
5550 spin_unlock_bh(&css_set_lock);
5551 mutex_unlock(&cgroup_mutex);
5552 kfree(buf);
5553 out:
5554 return retval;
5557 /* Display information about each subsystem and each hierarchy */
5558 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5560 struct cgroup_subsys *ss;
5561 int i;
5563 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5565 * ideally we don't want subsystems moving around while we do this.
5566 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5567 * subsys/hierarchy state.
5569 mutex_lock(&cgroup_mutex);
5571 for_each_subsys(ss, i)
5572 seq_printf(m, "%s\t%d\t%d\t%d\n",
5573 ss->legacy_name, ss->root->hierarchy_id,
5574 atomic_read(&ss->root->nr_cgrps),
5575 cgroup_ssid_enabled(i));
5577 mutex_unlock(&cgroup_mutex);
5578 return 0;
5581 static int cgroupstats_open(struct inode *inode, struct file *file)
5583 return single_open(file, proc_cgroupstats_show, NULL);
5586 static const struct file_operations proc_cgroupstats_operations = {
5587 .open = cgroupstats_open,
5588 .read = seq_read,
5589 .llseek = seq_lseek,
5590 .release = single_release,
5594 * cgroup_fork - initialize cgroup related fields during copy_process()
5595 * @child: pointer to task_struct of forking parent process.
5597 * A task is associated with the init_css_set until cgroup_post_fork()
5598 * attaches it to the parent's css_set. Empty cg_list indicates that
5599 * @child isn't holding reference to its css_set.
5601 void cgroup_fork(struct task_struct *child)
5603 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5604 INIT_LIST_HEAD(&child->cg_list);
5608 * cgroup_can_fork - called on a new task before the process is exposed
5609 * @child: the task in question.
5611 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5612 * returns an error, the fork aborts with that error code. This allows for
5613 * a cgroup subsystem to conditionally allow or deny new forks.
5615 int cgroup_can_fork(struct task_struct *child)
5617 struct cgroup_subsys *ss;
5618 int i, j, ret;
5620 for_each_subsys_which(ss, i, &have_canfork_callback) {
5621 ret = ss->can_fork(child);
5622 if (ret)
5623 goto out_revert;
5626 return 0;
5628 out_revert:
5629 for_each_subsys(ss, j) {
5630 if (j >= i)
5631 break;
5632 if (ss->cancel_fork)
5633 ss->cancel_fork(child);
5636 return ret;
5640 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5641 * @child: the task in question
5643 * This calls the cancel_fork() callbacks if a fork failed *after*
5644 * cgroup_can_fork() succeded.
5646 void cgroup_cancel_fork(struct task_struct *child)
5648 struct cgroup_subsys *ss;
5649 int i;
5651 for_each_subsys(ss, i)
5652 if (ss->cancel_fork)
5653 ss->cancel_fork(child);
5657 * cgroup_post_fork - called on a new task after adding it to the task list
5658 * @child: the task in question
5660 * Adds the task to the list running through its css_set if necessary and
5661 * call the subsystem fork() callbacks. Has to be after the task is
5662 * visible on the task list in case we race with the first call to
5663 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5664 * list.
5666 void cgroup_post_fork(struct task_struct *child)
5668 struct cgroup_subsys *ss;
5669 int i;
5672 * This may race against cgroup_enable_task_cg_lists(). As that
5673 * function sets use_task_css_set_links before grabbing
5674 * tasklist_lock and we just went through tasklist_lock to add
5675 * @child, it's guaranteed that either we see the set
5676 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5677 * @child during its iteration.
5679 * If we won the race, @child is associated with %current's
5680 * css_set. Grabbing css_set_lock guarantees both that the
5681 * association is stable, and, on completion of the parent's
5682 * migration, @child is visible in the source of migration or
5683 * already in the destination cgroup. This guarantee is necessary
5684 * when implementing operations which need to migrate all tasks of
5685 * a cgroup to another.
5687 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5688 * will remain in init_css_set. This is safe because all tasks are
5689 * in the init_css_set before cg_links is enabled and there's no
5690 * operation which transfers all tasks out of init_css_set.
5692 if (use_task_css_set_links) {
5693 struct css_set *cset;
5695 spin_lock_bh(&css_set_lock);
5696 cset = task_css_set(current);
5697 if (list_empty(&child->cg_list)) {
5698 get_css_set(cset);
5699 css_set_move_task(child, NULL, cset, false);
5701 spin_unlock_bh(&css_set_lock);
5705 * Call ss->fork(). This must happen after @child is linked on
5706 * css_set; otherwise, @child might change state between ->fork()
5707 * and addition to css_set.
5709 for_each_subsys_which(ss, i, &have_fork_callback)
5710 ss->fork(child);
5714 * cgroup_exit - detach cgroup from exiting task
5715 * @tsk: pointer to task_struct of exiting process
5717 * Description: Detach cgroup from @tsk and release it.
5719 * Note that cgroups marked notify_on_release force every task in
5720 * them to take the global cgroup_mutex mutex when exiting.
5721 * This could impact scaling on very large systems. Be reluctant to
5722 * use notify_on_release cgroups where very high task exit scaling
5723 * is required on large systems.
5725 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5726 * call cgroup_exit() while the task is still competent to handle
5727 * notify_on_release(), then leave the task attached to the root cgroup in
5728 * each hierarchy for the remainder of its exit. No need to bother with
5729 * init_css_set refcnting. init_css_set never goes away and we can't race
5730 * with migration path - PF_EXITING is visible to migration path.
5732 void cgroup_exit(struct task_struct *tsk)
5734 struct cgroup_subsys *ss;
5735 struct css_set *cset;
5736 int i;
5739 * Unlink from @tsk from its css_set. As migration path can't race
5740 * with us, we can check css_set and cg_list without synchronization.
5742 cset = task_css_set(tsk);
5744 if (!list_empty(&tsk->cg_list)) {
5745 spin_lock_bh(&css_set_lock);
5746 css_set_move_task(tsk, cset, NULL, false);
5747 spin_unlock_bh(&css_set_lock);
5748 } else {
5749 get_css_set(cset);
5752 /* see cgroup_post_fork() for details */
5753 for_each_subsys_which(ss, i, &have_exit_callback)
5754 ss->exit(tsk);
5757 void cgroup_free(struct task_struct *task)
5759 struct css_set *cset = task_css_set(task);
5760 struct cgroup_subsys *ss;
5761 int ssid;
5763 for_each_subsys_which(ss, ssid, &have_free_callback)
5764 ss->free(task);
5766 put_css_set(cset);
5769 static void check_for_release(struct cgroup *cgrp)
5771 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5772 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5773 schedule_work(&cgrp->release_agent_work);
5777 * Notify userspace when a cgroup is released, by running the
5778 * configured release agent with the name of the cgroup (path
5779 * relative to the root of cgroup file system) as the argument.
5781 * Most likely, this user command will try to rmdir this cgroup.
5783 * This races with the possibility that some other task will be
5784 * attached to this cgroup before it is removed, or that some other
5785 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5786 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5787 * unused, and this cgroup will be reprieved from its death sentence,
5788 * to continue to serve a useful existence. Next time it's released,
5789 * we will get notified again, if it still has 'notify_on_release' set.
5791 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5792 * means only wait until the task is successfully execve()'d. The
5793 * separate release agent task is forked by call_usermodehelper(),
5794 * then control in this thread returns here, without waiting for the
5795 * release agent task. We don't bother to wait because the caller of
5796 * this routine has no use for the exit status of the release agent
5797 * task, so no sense holding our caller up for that.
5799 static void cgroup_release_agent(struct work_struct *work)
5801 struct cgroup *cgrp =
5802 container_of(work, struct cgroup, release_agent_work);
5803 char *pathbuf = NULL, *agentbuf = NULL, *path;
5804 char *argv[3], *envp[3];
5806 mutex_lock(&cgroup_mutex);
5808 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5809 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5810 if (!pathbuf || !agentbuf)
5811 goto out;
5813 spin_lock_bh(&css_set_lock);
5814 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
5815 spin_unlock_bh(&css_set_lock);
5816 if (!path)
5817 goto out;
5819 argv[0] = agentbuf;
5820 argv[1] = path;
5821 argv[2] = NULL;
5823 /* minimal command environment */
5824 envp[0] = "HOME=/";
5825 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5826 envp[2] = NULL;
5828 mutex_unlock(&cgroup_mutex);
5829 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5830 goto out_free;
5831 out:
5832 mutex_unlock(&cgroup_mutex);
5833 out_free:
5834 kfree(agentbuf);
5835 kfree(pathbuf);
5838 static int __init cgroup_disable(char *str)
5840 struct cgroup_subsys *ss;
5841 char *token;
5842 int i;
5844 while ((token = strsep(&str, ",")) != NULL) {
5845 if (!*token)
5846 continue;
5848 for_each_subsys(ss, i) {
5849 if (strcmp(token, ss->name) &&
5850 strcmp(token, ss->legacy_name))
5851 continue;
5852 cgroup_disable_mask |= 1 << i;
5855 return 1;
5857 __setup("cgroup_disable=", cgroup_disable);
5859 static int __init cgroup_no_v1(char *str)
5861 struct cgroup_subsys *ss;
5862 char *token;
5863 int i;
5865 while ((token = strsep(&str, ",")) != NULL) {
5866 if (!*token)
5867 continue;
5869 if (!strcmp(token, "all")) {
5870 cgroup_no_v1_mask = ~0UL;
5871 break;
5874 for_each_subsys(ss, i) {
5875 if (strcmp(token, ss->name) &&
5876 strcmp(token, ss->legacy_name))
5877 continue;
5879 cgroup_no_v1_mask |= 1 << i;
5882 return 1;
5884 __setup("cgroup_no_v1=", cgroup_no_v1);
5887 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5888 * @dentry: directory dentry of interest
5889 * @ss: subsystem of interest
5891 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5892 * to get the corresponding css and return it. If such css doesn't exist
5893 * or can't be pinned, an ERR_PTR value is returned.
5895 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5896 struct cgroup_subsys *ss)
5898 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5899 struct cgroup_subsys_state *css = NULL;
5900 struct cgroup *cgrp;
5902 /* is @dentry a cgroup dir? */
5903 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5904 kernfs_type(kn) != KERNFS_DIR)
5905 return ERR_PTR(-EBADF);
5907 rcu_read_lock();
5910 * This path doesn't originate from kernfs and @kn could already
5911 * have been or be removed at any point. @kn->priv is RCU
5912 * protected for this access. See css_release_work_fn() for details.
5914 cgrp = rcu_dereference(kn->priv);
5915 if (cgrp)
5916 css = cgroup_css(cgrp, ss);
5918 if (!css || !css_tryget_online(css))
5919 css = ERR_PTR(-ENOENT);
5921 rcu_read_unlock();
5922 return css;
5926 * css_from_id - lookup css by id
5927 * @id: the cgroup id
5928 * @ss: cgroup subsys to be looked into
5930 * Returns the css if there's valid one with @id, otherwise returns NULL.
5931 * Should be called under rcu_read_lock().
5933 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5935 WARN_ON_ONCE(!rcu_read_lock_held());
5936 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5940 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5941 * @path: path on the default hierarchy
5943 * Find the cgroup at @path on the default hierarchy, increment its
5944 * reference count and return it. Returns pointer to the found cgroup on
5945 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5946 * if @path points to a non-directory.
5948 struct cgroup *cgroup_get_from_path(const char *path)
5950 struct kernfs_node *kn;
5951 struct cgroup *cgrp;
5953 mutex_lock(&cgroup_mutex);
5955 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5956 if (kn) {
5957 if (kernfs_type(kn) == KERNFS_DIR) {
5958 cgrp = kn->priv;
5959 cgroup_get(cgrp);
5960 } else {
5961 cgrp = ERR_PTR(-ENOTDIR);
5963 kernfs_put(kn);
5964 } else {
5965 cgrp = ERR_PTR(-ENOENT);
5968 mutex_unlock(&cgroup_mutex);
5969 return cgrp;
5971 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5974 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5975 * definition in cgroup-defs.h.
5977 #ifdef CONFIG_SOCK_CGROUP_DATA
5979 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5981 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5982 static bool cgroup_sk_alloc_disabled __read_mostly;
5984 void cgroup_sk_alloc_disable(void)
5986 if (cgroup_sk_alloc_disabled)
5987 return;
5988 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5989 cgroup_sk_alloc_disabled = true;
5992 #else
5994 #define cgroup_sk_alloc_disabled false
5996 #endif
5998 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6000 if (cgroup_sk_alloc_disabled)
6001 return;
6003 rcu_read_lock();
6005 while (true) {
6006 struct css_set *cset;
6008 cset = task_css_set(current);
6009 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6010 skcd->val = (unsigned long)cset->dfl_cgrp;
6011 break;
6013 cpu_relax();
6016 rcu_read_unlock();
6019 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6021 cgroup_put(sock_cgroup_ptr(skcd));
6024 #endif /* CONFIG_SOCK_CGROUP_DATA */
6026 /* cgroup namespaces */
6028 static struct cgroup_namespace *alloc_cgroup_ns(void)
6030 struct cgroup_namespace *new_ns;
6031 int ret;
6033 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6034 if (!new_ns)
6035 return ERR_PTR(-ENOMEM);
6036 ret = ns_alloc_inum(&new_ns->ns);
6037 if (ret) {
6038 kfree(new_ns);
6039 return ERR_PTR(ret);
6041 atomic_set(&new_ns->count, 1);
6042 new_ns->ns.ops = &cgroupns_operations;
6043 return new_ns;
6046 void free_cgroup_ns(struct cgroup_namespace *ns)
6048 put_css_set(ns->root_cset);
6049 put_user_ns(ns->user_ns);
6050 ns_free_inum(&ns->ns);
6051 kfree(ns);
6053 EXPORT_SYMBOL(free_cgroup_ns);
6055 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6056 struct user_namespace *user_ns,
6057 struct cgroup_namespace *old_ns)
6059 struct cgroup_namespace *new_ns = NULL;
6060 struct css_set *cset = NULL;
6061 int err;
6063 BUG_ON(!old_ns);
6065 if (!(flags & CLONE_NEWCGROUP)) {
6066 get_cgroup_ns(old_ns);
6067 return old_ns;
6070 /* Allow only sysadmin to create cgroup namespace. */
6071 err = -EPERM;
6072 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6073 goto err_out;
6075 mutex_lock(&cgroup_mutex);
6076 spin_lock_bh(&css_set_lock);
6078 cset = task_css_set(current);
6079 get_css_set(cset);
6081 spin_unlock_bh(&css_set_lock);
6082 mutex_unlock(&cgroup_mutex);
6084 err = -ENOMEM;
6085 new_ns = alloc_cgroup_ns();
6086 if (!new_ns)
6087 goto err_out;
6089 new_ns->user_ns = get_user_ns(user_ns);
6090 new_ns->root_cset = cset;
6092 return new_ns;
6094 err_out:
6095 if (cset)
6096 put_css_set(cset);
6097 kfree(new_ns);
6098 return ERR_PTR(err);
6101 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6103 return container_of(ns, struct cgroup_namespace, ns);
6106 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6108 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6110 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6111 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6112 return -EPERM;
6114 /* Don't need to do anything if we are attaching to our own cgroupns. */
6115 if (cgroup_ns == nsproxy->cgroup_ns)
6116 return 0;
6118 get_cgroup_ns(cgroup_ns);
6119 put_cgroup_ns(nsproxy->cgroup_ns);
6120 nsproxy->cgroup_ns = cgroup_ns;
6122 return 0;
6125 static struct ns_common *cgroupns_get(struct task_struct *task)
6127 struct cgroup_namespace *ns = NULL;
6128 struct nsproxy *nsproxy;
6130 task_lock(task);
6131 nsproxy = task->nsproxy;
6132 if (nsproxy) {
6133 ns = nsproxy->cgroup_ns;
6134 get_cgroup_ns(ns);
6136 task_unlock(task);
6138 return ns ? &ns->ns : NULL;
6141 static void cgroupns_put(struct ns_common *ns)
6143 put_cgroup_ns(to_cg_ns(ns));
6146 const struct proc_ns_operations cgroupns_operations = {
6147 .name = "cgroup",
6148 .type = CLONE_NEWCGROUP,
6149 .get = cgroupns_get,
6150 .put = cgroupns_put,
6151 .install = cgroupns_install,
6154 static __init int cgroup_namespaces_init(void)
6156 return 0;
6158 subsys_initcall(cgroup_namespaces_init);
6160 #ifdef CONFIG_CGROUP_DEBUG
6161 static struct cgroup_subsys_state *
6162 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6164 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6166 if (!css)
6167 return ERR_PTR(-ENOMEM);
6169 return css;
6172 static void debug_css_free(struct cgroup_subsys_state *css)
6174 kfree(css);
6177 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6178 struct cftype *cft)
6180 return cgroup_task_count(css->cgroup);
6183 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6184 struct cftype *cft)
6186 return (u64)(unsigned long)current->cgroups;
6189 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6190 struct cftype *cft)
6192 u64 count;
6194 rcu_read_lock();
6195 count = atomic_read(&task_css_set(current)->refcount);
6196 rcu_read_unlock();
6197 return count;
6200 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6202 struct cgrp_cset_link *link;
6203 struct css_set *cset;
6204 char *name_buf;
6206 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6207 if (!name_buf)
6208 return -ENOMEM;
6210 spin_lock_bh(&css_set_lock);
6211 rcu_read_lock();
6212 cset = rcu_dereference(current->cgroups);
6213 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6214 struct cgroup *c = link->cgrp;
6216 cgroup_name(c, name_buf, NAME_MAX + 1);
6217 seq_printf(seq, "Root %d group %s\n",
6218 c->root->hierarchy_id, name_buf);
6220 rcu_read_unlock();
6221 spin_unlock_bh(&css_set_lock);
6222 kfree(name_buf);
6223 return 0;
6226 #define MAX_TASKS_SHOWN_PER_CSS 25
6227 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6229 struct cgroup_subsys_state *css = seq_css(seq);
6230 struct cgrp_cset_link *link;
6232 spin_lock_bh(&css_set_lock);
6233 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6234 struct css_set *cset = link->cset;
6235 struct task_struct *task;
6236 int count = 0;
6238 seq_printf(seq, "css_set %p\n", cset);
6240 list_for_each_entry(task, &cset->tasks, cg_list) {
6241 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6242 goto overflow;
6243 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6246 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6247 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6248 goto overflow;
6249 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6251 continue;
6252 overflow:
6253 seq_puts(seq, " ...\n");
6255 spin_unlock_bh(&css_set_lock);
6256 return 0;
6259 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6261 return (!cgroup_is_populated(css->cgroup) &&
6262 !css_has_online_children(&css->cgroup->self));
6265 static struct cftype debug_files[] = {
6267 .name = "taskcount",
6268 .read_u64 = debug_taskcount_read,
6272 .name = "current_css_set",
6273 .read_u64 = current_css_set_read,
6277 .name = "current_css_set_refcount",
6278 .read_u64 = current_css_set_refcount_read,
6282 .name = "current_css_set_cg_links",
6283 .seq_show = current_css_set_cg_links_read,
6287 .name = "cgroup_css_links",
6288 .seq_show = cgroup_css_links_read,
6292 .name = "releasable",
6293 .read_u64 = releasable_read,
6296 { } /* terminate */
6299 struct cgroup_subsys debug_cgrp_subsys = {
6300 .css_alloc = debug_css_alloc,
6301 .css_free = debug_css_free,
6302 .legacy_cftypes = debug_files,
6304 #endif /* CONFIG_CGROUP_DEBUG */