drm/i915: Split shared dpll setup out of __intel_set_mode()
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / intel_display.c
blob3d220a67f8656ed9173b88672cd114893070aec0
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_dp_helper.h>
42 #include <drm/drm_crtc_helper.h>
43 #include <drm/drm_plane_helper.h>
44 #include <drm/drm_rect.h>
45 #include <linux/dma_remapping.h>
47 /* Primary plane formats supported by all gen */
48 #define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
54 /* Primary plane formats for gen <= 3 */
55 static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
61 /* Primary plane formats for gen >= 4 */
62 static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
72 /* Cursor formats */
73 static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
77 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
80 struct intel_crtc_state *pipe_config);
81 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
82 struct intel_crtc_state *pipe_config);
84 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
86 static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
90 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
92 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
95 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
96 static void haswell_set_pipeconf(struct drm_crtc *crtc);
97 static void intel_set_pipe_csc(struct drm_crtc *crtc);
98 static void vlv_prepare_pll(struct intel_crtc *crtc,
99 const struct intel_crtc_state *pipe_config);
100 static void chv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
113 typedef struct {
114 int min, max;
115 } intel_range_t;
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
129 intel_pch_rawclk(struct drm_device *dev)
131 struct drm_i915_private *dev_priv = dev->dev_private;
133 WARN_ON(!HAS_PCH_SPLIT(dev));
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
298 /* Ironlake / Sandybridge
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
369 static const intel_limit_t intel_limits_vlv = {
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 static const intel_limit_t intel_limits_chv = {
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 static void vlv_clock(int refclk, intel_clock_t *clock)
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
412 * Returns whether any output on the specified pipe is of the specified type
414 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
416 struct drm_device *dev = crtc->base.dev;
417 struct intel_encoder *encoder;
419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
420 if (encoder->type == type)
421 return true;
423 return false;
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
432 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
441 return false;
444 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
445 int refclk)
447 struct drm_device *dev = crtc->base.dev;
448 const intel_limit_t *limit;
450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
451 if (intel_is_dual_link_lvds(dev)) {
452 if (refclk == 100000)
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
457 if (refclk == 100000)
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
462 } else
463 limit = &intel_limits_ironlake_dac;
465 return limit;
468 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
470 struct drm_device *dev = crtc->base.dev;
471 const intel_limit_t *limit;
473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
474 if (intel_is_dual_link_lvds(dev))
475 limit = &intel_limits_g4x_dual_channel_lvds;
476 else
477 limit = &intel_limits_g4x_single_channel_lvds;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
480 limit = &intel_limits_g4x_hdmi;
481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
482 limit = &intel_limits_g4x_sdvo;
483 } else /* The option is for other outputs */
484 limit = &intel_limits_i9xx_sdvo;
486 return limit;
489 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
491 struct drm_device *dev = crtc->base.dev;
492 const intel_limit_t *limit;
494 if (HAS_PCH_SPLIT(dev))
495 limit = intel_ironlake_limit(crtc, refclk);
496 else if (IS_G4X(dev)) {
497 limit = intel_g4x_limit(crtc);
498 } else if (IS_PINEVIEW(dev)) {
499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
500 limit = &intel_limits_pineview_lvds;
501 else
502 limit = &intel_limits_pineview_sdvo;
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
505 } else if (IS_VALLEYVIEW(dev)) {
506 limit = &intel_limits_vlv;
507 } else if (!IS_GEN2(dev)) {
508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
512 } else {
513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
514 limit = &intel_limits_i8xx_lvds;
515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
516 limit = &intel_limits_i8xx_dvo;
517 else
518 limit = &intel_limits_i8xx_dac;
520 return limit;
523 /* m1 is reserved as 0 in Pineview, n is a ring counter */
524 static void pineview_clock(int refclk, intel_clock_t *clock)
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
539 static void i9xx_clock(int refclk, intel_clock_t *clock)
541 clock->m = i9xx_dpll_compute_m(clock);
542 clock->p = clock->p1 * clock->p2;
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
549 static void chv_clock(int refclk, intel_clock_t *clock)
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
560 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
566 static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
573 INTELPllInvalid("p1 out of range\n");
574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
575 INTELPllInvalid("m2 out of range\n");
576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
577 INTELPllInvalid("m1 out of range\n");
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591 INTELPllInvalid("vco out of range\n");
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596 INTELPllInvalid("dot out of range\n");
598 return true;
601 static bool
602 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
606 struct drm_device *dev = crtc->base.dev;
607 intel_clock_t clock;
608 int err = target;
610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
616 if (intel_is_dual_link_lvds(dev))
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
627 memset(best_clock, 0, sizeof(*best_clock));
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
633 if (clock.m2 >= clock.m1)
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
639 int this_err;
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
659 return (err != target);
662 static bool
663 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
667 struct drm_device *dev = crtc->base.dev;
668 intel_clock_t clock;
669 int err = target;
671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
677 if (intel_is_dual_link_lvds(dev))
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
688 memset(best_clock, 0, sizeof(*best_clock));
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
700 pineview_clock(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
718 return (err != target);
721 static bool
722 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
726 struct drm_device *dev = crtc->base.dev;
727 intel_clock_t clock;
728 int max_n;
729 bool found;
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
732 found = false;
734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
735 if (intel_is_dual_link_lvds(dev))
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requirement, prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirement, prefere larger m1,m2 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
759 i9xx_clock(refclk, &clock);
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
762 continue;
764 this_err = abs(clock.dot - target);
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
775 return found;
778 static bool
779 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
783 struct drm_device *dev = crtc->base.dev;
784 intel_clock_t clock;
785 unsigned int bestppm = 1000000;
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
788 bool found = false;
790 target *= 5; /* fast clock */
792 memset(best_clock, 0, sizeof(*best_clock));
794 /* based on hardware requirement, prefer smaller n to precision */
795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799 clock.p = clock.p1 * clock.p2;
800 /* based on hardware requirement, prefer bigger m1,m2 values */
801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802 unsigned int ppm, diff;
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
807 vlv_clock(refclk, &clock);
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
811 continue;
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
816 if (ppm < 100 && clock.p > best_clock->p) {
817 bestppm = 0;
818 *best_clock = clock;
819 found = true;
822 if (bestppm >= 10 && ppm < bestppm - 10) {
823 bestppm = ppm;
824 *best_clock = clock;
825 found = true;
832 return found;
835 static bool
836 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
840 struct drm_device *dev = crtc->base.dev;
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
845 memset(best_clock, 0, sizeof(*best_clock));
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
860 clock.p = clock.p1 * clock.p2;
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
865 if (m2 > INT_MAX/clock.m1)
866 continue;
868 clock.m2 = m2;
870 chv_clock(refclk, &clock);
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
875 /* based on hardware requirement, prefer bigger p
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
884 return found;
887 bool intel_crtc_active(struct drm_crtc *crtc)
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
894 * We can ditch the adjusted_mode.crtc_clock check as soon
895 * as Haswell has gained clock readout/fastboot support.
897 * We can ditch the crtc->primary->fb check as soon as we can
898 * properly reconstruct framebuffers.
900 return intel_crtc->active && crtc->primary->fb &&
901 intel_crtc->config->base.adjusted_mode.crtc_clock;
904 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
910 return intel_crtc->config->cpu_transcoder;
913 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
929 return line1 == line2;
933 * intel_wait_for_pipe_off - wait for pipe to turn off
934 * @crtc: crtc whose pipe to wait for
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
948 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
950 struct drm_device *dev = crtc->base.dev;
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
953 enum pipe pipe = crtc->pipe;
955 if (INTEL_INFO(dev)->gen >= 4) {
956 int reg = PIPECONF(cpu_transcoder);
958 /* Wait for the Pipe State to go off */
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
961 WARN(1, "pipe_off wait timed out\n");
962 } else {
963 /* Wait for the display line to settle */
964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
965 WARN(1, "pipe_off wait timed out\n");
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
974 * Returns true if @port is connected, false otherwise.
976 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
979 u32 bit;
981 if (HAS_PCH_IBX(dev_priv->dev)) {
982 switch (port->port) {
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
995 } else {
996 switch (port->port) {
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1011 return I915_READ(SDEISR) & bit;
1014 static const char *state_string(bool enabled)
1016 return enabled ? "on" : "off";
1019 /* Only for pre-ILK configs */
1020 void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
1030 I915_STATE_WARN(cur_state != state,
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1035 /* XXX: the dsi pll is shared between MIPI DSI ports */
1036 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1038 u32 val;
1039 bool cur_state;
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1045 cur_state = val & DSI_PLL_VCO_EN;
1046 I915_STATE_WARN(cur_state != state,
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1050 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1053 struct intel_shared_dpll *
1054 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1058 if (crtc->config->shared_dpll < 0)
1059 return NULL;
1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1064 /* For ILK+ */
1065 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
1069 bool cur_state;
1070 struct intel_dpll_hw_state hw_state;
1072 if (WARN (!pll,
1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
1074 return;
1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1077 I915_STATE_WARN(cur_state != state,
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
1082 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1085 int reg;
1086 u32 val;
1087 bool cur_state;
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1094 val = I915_READ(reg);
1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1101 I915_STATE_WARN(cur_state != state,
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1105 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1108 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
1118 I915_STATE_WARN(cur_state != state,
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1122 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1125 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1128 int reg;
1129 u32 val;
1131 /* ILK FDI PLL is always enabled */
1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1133 return;
1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1136 if (HAS_DDI(dev_priv->dev))
1137 return;
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1144 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1154 I915_STATE_WARN(cur_state != state,
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1159 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
1166 bool locked = true;
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1174 pp_reg = PCH_PP_CONTROL;
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
1185 } else {
1186 pp_reg = PP_CONTROL;
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1194 locked = false;
1196 I915_STATE_WARN(panel_pipe == pipe && locked,
1197 "panel assertion failure, pipe %c regs locked\n",
1198 pipe_name(pipe));
1201 static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1207 if (IS_845G(dev) || IS_I865G(dev))
1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1209 else
1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1212 I915_STATE_WARN(cur_state != state,
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1216 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1219 void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
1222 int reg;
1223 u32 val;
1224 bool cur_state;
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1231 state = true;
1233 if (!intel_display_power_is_enabled(dev_priv,
1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1242 I915_STATE_WARN(cur_state != state,
1243 "pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), state_string(state), state_string(cur_state));
1247 static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
1250 int reg;
1251 u32 val;
1252 bool cur_state;
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1257 I915_STATE_WARN(cur_state != state,
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
1262 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1265 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1268 struct drm_device *dev = dev_priv->dev;
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
1280 return;
1283 /* Need to check both planes against the pipe */
1284 for_each_pipe(dev_priv, i) {
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
1295 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1298 struct drm_device *dev = dev_priv->dev;
1299 int reg, sprite;
1300 u32 val;
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1309 } else if (IS_VALLEYVIEW(dev)) {
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
1312 val = I915_READ(reg);
1313 I915_STATE_WARN(val & SP_ENABLE,
1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1315 sprite_name(pipe, sprite), pipe_name(pipe));
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
1319 val = I915_READ(reg);
1320 I915_STATE_WARN(val & SPRITE_ENABLE,
1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
1325 val = I915_READ(reg);
1326 I915_STATE_WARN(val & DVS_ENABLE,
1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1328 plane_name(pipe), pipe_name(pipe));
1332 static void assert_vblank_disabled(struct drm_crtc *crtc)
1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1335 drm_crtc_vblank_put(crtc);
1338 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1340 u32 val;
1341 bool enabled;
1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1351 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
1354 int reg;
1355 u32 val;
1356 bool enabled;
1358 reg = PCH_TRANSCONF(pipe);
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
1361 I915_STATE_WARN(enabled,
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
1366 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1384 return true;
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1403 return true;
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1419 return true;
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1434 return true;
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, int reg, u32 port_sel)
1440 u32 val = I915_READ(reg);
1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1443 reg, pipe_name(pipe));
1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1446 && (val & DP_PIPEB_SELECT),
1447 "IBX PCH dp port still using transcoder B\n");
1450 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1453 u32 val = I915_READ(reg);
1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1456 reg, pipe_name(pipe));
1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1459 && (val & SDVO_PIPE_B_SELECT),
1460 "IBX PCH hdmi port still using transcoder B\n");
1463 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1466 int reg;
1467 u32 val;
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
1477 pipe_name(pipe));
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1483 pipe_name(pipe));
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1490 static void intel_init_dpio(struct drm_device *dev)
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511 const struct intel_crtc_state *pipe_config)
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
1518 assert_pipe_disabled(dev_priv, crtc->pipe);
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1523 /* PLL is protected by panel, make sure we can write it */
1524 if (IS_MOBILE(dev_priv->dev))
1525 assert_panel_unlocked(dev_priv, crtc->pipe);
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1535 POSTING_READ(DPLL_MD(crtc->pipe));
1537 /* We do this three times for luck */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 I915_WRITE(reg, dpll);
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1549 static void chv_enable_pll(struct intel_crtc *crtc,
1550 const struct intel_crtc_state *pipe_config)
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1556 u32 tmp;
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1562 mutex_lock(&dev_priv->dpio_lock);
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1572 udelay(1);
1574 /* Enable PLL */
1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1577 /* Check PLL is locked */
1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1581 /* not sure when this should be written */
1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1583 POSTING_READ(DPLL_MD(pipe));
1585 mutex_unlock(&dev_priv->dpio_lock);
1588 static int intel_num_dvo_pipes(struct drm_device *dev)
1590 struct intel_crtc *crtc;
1591 int count = 0;
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1597 return count;
1600 static void i9xx_enable_pll(struct intel_crtc *crtc)
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
1607 assert_pipe_disabled(dev_priv, crtc->pipe);
1609 /* No really, not for ILK+ */
1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1612 /* PLL is protected by panel, make sure we can write it */
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
1635 crtc->config->dpll_hw_state.dpll_md);
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1640 * So write it again.
1642 I915_WRITE(reg, dpll);
1645 /* We do this three times for luck */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 I915_WRITE(reg, dpll);
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1658 * i9xx_disable_pll - disable a PLL
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1664 * Note! This is for pre-ILK only.
1666 static void i9xx_disable_pll(struct intel_crtc *crtc)
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1685 return;
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
1694 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1696 u32 val = 0;
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1705 if (pipe == PIPE_B)
1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
1712 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1715 u32 val;
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
1720 /* Set PLL en = 0 */
1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
1727 mutex_lock(&dev_priv->dpio_lock);
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1745 mutex_unlock(&dev_priv->dpio_lock);
1748 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
1751 u32 port_mask;
1752 int dpll_reg;
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
1766 break;
1767 default:
1768 BUG();
1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1773 port_name(dport->port), I915_READ(dpll_reg));
1776 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1782 if (WARN_ON(pll == NULL))
1783 return;
1785 WARN_ON(!pll->config.crtc_mask);
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1791 pll->mode_set(dev_priv, pll);
1796 * intel_enable_shared_dpll - enable PCH PLL
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1803 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1809 if (WARN_ON(pll == NULL))
1810 return;
1812 if (WARN_ON(pll->config.crtc_mask == 0))
1813 return;
1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1816 pll->name, pll->active, pll->on,
1817 crtc->base.base.id);
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
1821 assert_shared_dpll_enabled(dev_priv, pll);
1822 return;
1824 WARN_ON(pll->on);
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1829 pll->enable(dev_priv, pll);
1830 pll->on = true;
1833 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1839 /* PCH only available on ILK+ */
1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
1841 if (WARN_ON(pll == NULL))
1842 return;
1844 if (WARN_ON(pll->config.crtc_mask == 0))
1845 return;
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
1849 crtc->base.base.id);
1851 if (WARN_ON(pll->active == 0)) {
1852 assert_shared_dpll_disabled(dev_priv, pll);
1853 return;
1856 assert_shared_dpll_enabled(dev_priv, pll);
1857 WARN_ON(!pll->on);
1858 if (--pll->active)
1859 return;
1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1862 pll->disable(dev_priv, pll);
1863 pll->on = false;
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1868 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
1871 struct drm_device *dev = dev_priv->dev;
1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1874 uint32_t reg, val, pipeconf_val;
1876 /* PCH only available on ILK+ */
1877 BUG_ON(!HAS_PCH_SPLIT(dev));
1879 /* Make sure PCH DPLL is enabled */
1880 assert_shared_dpll_enabled(dev_priv,
1881 intel_crtc_to_shared_dpll(intel_crtc));
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
1896 reg = PCH_TRANSCONF(pipe);
1897 val = I915_READ(reg);
1898 pipeconf_val = I915_READ(PIPECONF(pipe));
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1911 if (HAS_PCH_IBX(dev_priv->dev) &&
1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
1916 else
1917 val |= TRANS_PROGRESSIVE;
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1924 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1925 enum transcoder cpu_transcoder)
1927 u32 val, pipeconf_val;
1929 /* PCH only available on ILK+ */
1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1932 /* FDI must be feeding us bits for PCH ports */
1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1941 val = TRANS_ENABLE;
1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
1946 val |= TRANS_INTERLACED;
1947 else
1948 val |= TRANS_PROGRESSIVE;
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1952 DRM_ERROR("Failed to enable PCH transcoder\n");
1955 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1968 reg = PCH_TRANSCONF(pipe);
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1985 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1987 u32 val;
1989 val = I915_READ(LPT_TRANSCONF);
1990 val &= ~TRANS_ENABLE;
1991 I915_WRITE(LPT_TRANSCONF, val);
1992 /* wait for PCH transcoder off, transcoder state */
1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1994 DRM_ERROR("Failed to disable PCH transcoder\n");
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1999 I915_WRITE(_TRANSA_CHICKEN2, val);
2003 * intel_enable_pipe - enable a pipe, asserting requirements
2004 * @crtc: crtc responsible for the pipe
2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2009 static void intel_enable_pipe(struct intel_crtc *crtc)
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
2016 enum pipe pch_transcoder;
2017 int reg;
2018 u32 val;
2020 assert_planes_disabled(dev_priv, pipe);
2021 assert_cursor_disabled(dev_priv, pipe);
2022 assert_sprites_disabled(dev_priv, pipe);
2024 if (HAS_PCH_LPT(dev_priv->dev))
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
2039 else {
2040 if (crtc->config->has_pch_encoder) {
2041 /* if driving the PCH, we need FDI enabled */
2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
2046 /* FIXME: assert CPU port conditions for SNB+ */
2049 reg = PIPECONF(cpu_transcoder);
2050 val = I915_READ(reg);
2051 if (val & PIPECONF_ENABLE) {
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2054 return;
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
2058 POSTING_READ(reg);
2062 * intel_disable_pipe - disable a pipe, asserting requirements
2063 * @crtc: crtc whose pipes is to be disabled
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
2069 * Will wait until the pipe has shut down before returning.
2071 static void intel_disable_pipe(struct intel_crtc *crtc)
2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2075 enum pipe pipe = crtc->pipe;
2076 int reg;
2077 u32 val;
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2083 assert_planes_disabled(dev_priv, pipe);
2084 assert_cursor_disabled(dev_priv, pipe);
2085 assert_sprites_disabled(dev_priv, pipe);
2087 reg = PIPECONF(cpu_transcoder);
2088 val = I915_READ(reg);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2096 if (crtc->config->double_wide)
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2099 /* Don't disable pipe or pipe PLLs if needed */
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2102 val &= ~PIPECONF_ENABLE;
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2113 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
2128 * Enable @plane on @crtc, making sure that the pipe is running first.
2130 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2140 if (intel_crtc->primary_enabled)
2141 return;
2143 intel_crtc->primary_enabled = true;
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
2162 * Disable @plane on @crtc, making sure that the pipe is running first.
2164 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
2174 if (!intel_crtc->primary_enabled)
2175 return;
2177 intel_crtc->primary_enabled = false;
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
2183 static bool need_vtd_wa(struct drm_device *dev)
2185 #ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188 #endif
2189 return false;
2193 intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
2195 int tile_height;
2197 tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
2198 return ALIGN(height, tile_height);
2202 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2203 struct drm_framebuffer *fb,
2204 struct intel_engine_cs *pipelined)
2206 struct drm_device *dev = fb->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2209 u32 alignment;
2210 int ret;
2212 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2214 switch (obj->tiling_mode) {
2215 case I915_TILING_NONE:
2216 if (INTEL_INFO(dev)->gen >= 9)
2217 alignment = 256 * 1024;
2218 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2219 alignment = 128 * 1024;
2220 else if (INTEL_INFO(dev)->gen >= 4)
2221 alignment = 4 * 1024;
2222 else
2223 alignment = 64 * 1024;
2224 break;
2225 case I915_TILING_X:
2226 if (INTEL_INFO(dev)->gen >= 9)
2227 alignment = 256 * 1024;
2228 else {
2229 /* pin() will align the object as required by fence */
2230 alignment = 0;
2232 break;
2233 case I915_TILING_Y:
2234 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2235 return -EINVAL;
2236 default:
2237 BUG();
2240 /* Note that the w/a also requires 64 PTE of padding following the
2241 * bo. We currently fill all unused PTE with the shadow page and so
2242 * we should always have valid PTE following the scanout preventing
2243 * the VT-d warning.
2245 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2246 alignment = 256 * 1024;
2249 * Global gtt pte registers are special registers which actually forward
2250 * writes to a chunk of system memory. Which means that there is no risk
2251 * that the register values disappear as soon as we call
2252 * intel_runtime_pm_put(), so it is correct to wrap only the
2253 * pin/unpin/fence and not more.
2255 intel_runtime_pm_get(dev_priv);
2257 dev_priv->mm.interruptible = false;
2258 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2259 if (ret)
2260 goto err_interruptible;
2262 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2263 * fence, whereas 965+ only requires a fence if using
2264 * framebuffer compression. For simplicity, we always install
2265 * a fence as the cost is not that onerous.
2267 ret = i915_gem_object_get_fence(obj);
2268 if (ret)
2269 goto err_unpin;
2271 i915_gem_object_pin_fence(obj);
2273 dev_priv->mm.interruptible = true;
2274 intel_runtime_pm_put(dev_priv);
2275 return 0;
2277 err_unpin:
2278 i915_gem_object_unpin_from_display_plane(obj);
2279 err_interruptible:
2280 dev_priv->mm.interruptible = true;
2281 intel_runtime_pm_put(dev_priv);
2282 return ret;
2285 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2287 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2289 i915_gem_object_unpin_fence(obj);
2290 i915_gem_object_unpin_from_display_plane(obj);
2293 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2294 * is assumed to be a power-of-two. */
2295 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2296 unsigned int tiling_mode,
2297 unsigned int cpp,
2298 unsigned int pitch)
2300 if (tiling_mode != I915_TILING_NONE) {
2301 unsigned int tile_rows, tiles;
2303 tile_rows = *y / 8;
2304 *y %= 8;
2306 tiles = *x / (512/cpp);
2307 *x %= 512/cpp;
2309 return tile_rows * pitch * 8 + tiles * 4096;
2310 } else {
2311 unsigned int offset;
2313 offset = *y * pitch + *x * cpp;
2314 *y = 0;
2315 *x = (offset & 4095) / cpp;
2316 return offset & -4096;
2320 static int i9xx_format_to_fourcc(int format)
2322 switch (format) {
2323 case DISPPLANE_8BPP:
2324 return DRM_FORMAT_C8;
2325 case DISPPLANE_BGRX555:
2326 return DRM_FORMAT_XRGB1555;
2327 case DISPPLANE_BGRX565:
2328 return DRM_FORMAT_RGB565;
2329 default:
2330 case DISPPLANE_BGRX888:
2331 return DRM_FORMAT_XRGB8888;
2332 case DISPPLANE_RGBX888:
2333 return DRM_FORMAT_XBGR8888;
2334 case DISPPLANE_BGRX101010:
2335 return DRM_FORMAT_XRGB2101010;
2336 case DISPPLANE_RGBX101010:
2337 return DRM_FORMAT_XBGR2101010;
2341 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2343 switch (format) {
2344 case PLANE_CTL_FORMAT_RGB_565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case PLANE_CTL_FORMAT_XRGB_8888:
2348 if (rgb_order) {
2349 if (alpha)
2350 return DRM_FORMAT_ABGR8888;
2351 else
2352 return DRM_FORMAT_XBGR8888;
2353 } else {
2354 if (alpha)
2355 return DRM_FORMAT_ARGB8888;
2356 else
2357 return DRM_FORMAT_XRGB8888;
2359 case PLANE_CTL_FORMAT_XRGB_2101010:
2360 if (rgb_order)
2361 return DRM_FORMAT_XBGR2101010;
2362 else
2363 return DRM_FORMAT_XRGB2101010;
2367 static bool
2368 intel_alloc_plane_obj(struct intel_crtc *crtc,
2369 struct intel_initial_plane_config *plane_config)
2371 struct drm_device *dev = crtc->base.dev;
2372 struct drm_i915_gem_object *obj = NULL;
2373 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2374 u32 base = plane_config->base;
2376 if (plane_config->size == 0)
2377 return false;
2379 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2380 plane_config->size);
2381 if (!obj)
2382 return false;
2384 obj->tiling_mode = plane_config->tiling;
2385 if (obj->tiling_mode == I915_TILING_X)
2386 obj->stride = crtc->base.primary->fb->pitches[0];
2388 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2389 mode_cmd.width = crtc->base.primary->fb->width;
2390 mode_cmd.height = crtc->base.primary->fb->height;
2391 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2393 mutex_lock(&dev->struct_mutex);
2395 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2396 &mode_cmd, obj)) {
2397 DRM_DEBUG_KMS("intel fb init failed\n");
2398 goto out_unref_obj;
2401 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2402 mutex_unlock(&dev->struct_mutex);
2404 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2405 return true;
2407 out_unref_obj:
2408 drm_gem_object_unreference(&obj->base);
2409 mutex_unlock(&dev->struct_mutex);
2410 return false;
2413 static void
2414 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2415 struct intel_initial_plane_config *plane_config)
2417 struct drm_device *dev = intel_crtc->base.dev;
2418 struct drm_i915_private *dev_priv = dev->dev_private;
2419 struct drm_crtc *c;
2420 struct intel_crtc *i;
2421 struct drm_i915_gem_object *obj;
2423 if (!intel_crtc->base.primary->fb)
2424 return;
2426 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2427 return;
2429 kfree(intel_crtc->base.primary->fb);
2430 intel_crtc->base.primary->fb = NULL;
2433 * Failed to alloc the obj, check to see if we should share
2434 * an fb with another CRTC instead
2436 for_each_crtc(dev, c) {
2437 i = to_intel_crtc(c);
2439 if (c == &intel_crtc->base)
2440 continue;
2442 if (!i->active)
2443 continue;
2445 obj = intel_fb_obj(c->primary->fb);
2446 if (obj == NULL)
2447 continue;
2449 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2450 if (obj->tiling_mode != I915_TILING_NONE)
2451 dev_priv->preserve_bios_swizzle = true;
2453 drm_framebuffer_reference(c->primary->fb);
2454 intel_crtc->base.primary->fb = c->primary->fb;
2455 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2456 break;
2461 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2462 struct drm_framebuffer *fb,
2463 int x, int y)
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468 struct drm_i915_gem_object *obj;
2469 int plane = intel_crtc->plane;
2470 unsigned long linear_offset;
2471 u32 dspcntr;
2472 u32 reg = DSPCNTR(plane);
2473 int pixel_size;
2475 if (!intel_crtc->primary_enabled) {
2476 I915_WRITE(reg, 0);
2477 if (INTEL_INFO(dev)->gen >= 4)
2478 I915_WRITE(DSPSURF(plane), 0);
2479 else
2480 I915_WRITE(DSPADDR(plane), 0);
2481 POSTING_READ(reg);
2482 return;
2485 obj = intel_fb_obj(fb);
2486 if (WARN_ON(obj == NULL))
2487 return;
2489 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2491 dspcntr = DISPPLANE_GAMMA_ENABLE;
2493 dspcntr |= DISPLAY_PLANE_ENABLE;
2495 if (INTEL_INFO(dev)->gen < 4) {
2496 if (intel_crtc->pipe == PIPE_B)
2497 dspcntr |= DISPPLANE_SEL_PIPE_B;
2499 /* pipesrc and dspsize control the size that is scaled from,
2500 * which should always be the user's requested size.
2502 I915_WRITE(DSPSIZE(plane),
2503 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2504 (intel_crtc->config->pipe_src_w - 1));
2505 I915_WRITE(DSPPOS(plane), 0);
2506 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2507 I915_WRITE(PRIMSIZE(plane),
2508 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2509 (intel_crtc->config->pipe_src_w - 1));
2510 I915_WRITE(PRIMPOS(plane), 0);
2511 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2514 switch (fb->pixel_format) {
2515 case DRM_FORMAT_C8:
2516 dspcntr |= DISPPLANE_8BPP;
2517 break;
2518 case DRM_FORMAT_XRGB1555:
2519 case DRM_FORMAT_ARGB1555:
2520 dspcntr |= DISPPLANE_BGRX555;
2521 break;
2522 case DRM_FORMAT_RGB565:
2523 dspcntr |= DISPPLANE_BGRX565;
2524 break;
2525 case DRM_FORMAT_XRGB8888:
2526 case DRM_FORMAT_ARGB8888:
2527 dspcntr |= DISPPLANE_BGRX888;
2528 break;
2529 case DRM_FORMAT_XBGR8888:
2530 case DRM_FORMAT_ABGR8888:
2531 dspcntr |= DISPPLANE_RGBX888;
2532 break;
2533 case DRM_FORMAT_XRGB2101010:
2534 case DRM_FORMAT_ARGB2101010:
2535 dspcntr |= DISPPLANE_BGRX101010;
2536 break;
2537 case DRM_FORMAT_XBGR2101010:
2538 case DRM_FORMAT_ABGR2101010:
2539 dspcntr |= DISPPLANE_RGBX101010;
2540 break;
2541 default:
2542 BUG();
2545 if (INTEL_INFO(dev)->gen >= 4 &&
2546 obj->tiling_mode != I915_TILING_NONE)
2547 dspcntr |= DISPPLANE_TILED;
2549 if (IS_G4X(dev))
2550 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2552 linear_offset = y * fb->pitches[0] + x * pixel_size;
2554 if (INTEL_INFO(dev)->gen >= 4) {
2555 intel_crtc->dspaddr_offset =
2556 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2557 pixel_size,
2558 fb->pitches[0]);
2559 linear_offset -= intel_crtc->dspaddr_offset;
2560 } else {
2561 intel_crtc->dspaddr_offset = linear_offset;
2564 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2565 dspcntr |= DISPPLANE_ROTATE_180;
2567 x += (intel_crtc->config->pipe_src_w - 1);
2568 y += (intel_crtc->config->pipe_src_h - 1);
2570 /* Finding the last pixel of the last line of the display
2571 data and adding to linear_offset*/
2572 linear_offset +=
2573 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2574 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2577 I915_WRITE(reg, dspcntr);
2579 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2580 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2581 fb->pitches[0]);
2582 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2583 if (INTEL_INFO(dev)->gen >= 4) {
2584 I915_WRITE(DSPSURF(plane),
2585 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2586 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2587 I915_WRITE(DSPLINOFF(plane), linear_offset);
2588 } else
2589 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2590 POSTING_READ(reg);
2593 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2594 struct drm_framebuffer *fb,
2595 int x, int y)
2597 struct drm_device *dev = crtc->dev;
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2600 struct drm_i915_gem_object *obj;
2601 int plane = intel_crtc->plane;
2602 unsigned long linear_offset;
2603 u32 dspcntr;
2604 u32 reg = DSPCNTR(plane);
2605 int pixel_size;
2607 if (!intel_crtc->primary_enabled) {
2608 I915_WRITE(reg, 0);
2609 I915_WRITE(DSPSURF(plane), 0);
2610 POSTING_READ(reg);
2611 return;
2614 obj = intel_fb_obj(fb);
2615 if (WARN_ON(obj == NULL))
2616 return;
2618 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2620 dspcntr = DISPPLANE_GAMMA_ENABLE;
2622 dspcntr |= DISPLAY_PLANE_ENABLE;
2624 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2625 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2627 switch (fb->pixel_format) {
2628 case DRM_FORMAT_C8:
2629 dspcntr |= DISPPLANE_8BPP;
2630 break;
2631 case DRM_FORMAT_RGB565:
2632 dspcntr |= DISPPLANE_BGRX565;
2633 break;
2634 case DRM_FORMAT_XRGB8888:
2635 case DRM_FORMAT_ARGB8888:
2636 dspcntr |= DISPPLANE_BGRX888;
2637 break;
2638 case DRM_FORMAT_XBGR8888:
2639 case DRM_FORMAT_ABGR8888:
2640 dspcntr |= DISPPLANE_RGBX888;
2641 break;
2642 case DRM_FORMAT_XRGB2101010:
2643 case DRM_FORMAT_ARGB2101010:
2644 dspcntr |= DISPPLANE_BGRX101010;
2645 break;
2646 case DRM_FORMAT_XBGR2101010:
2647 case DRM_FORMAT_ABGR2101010:
2648 dspcntr |= DISPPLANE_RGBX101010;
2649 break;
2650 default:
2651 BUG();
2654 if (obj->tiling_mode != I915_TILING_NONE)
2655 dspcntr |= DISPPLANE_TILED;
2657 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2658 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2660 linear_offset = y * fb->pitches[0] + x * pixel_size;
2661 intel_crtc->dspaddr_offset =
2662 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2663 pixel_size,
2664 fb->pitches[0]);
2665 linear_offset -= intel_crtc->dspaddr_offset;
2666 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2667 dspcntr |= DISPPLANE_ROTATE_180;
2669 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2670 x += (intel_crtc->config->pipe_src_w - 1);
2671 y += (intel_crtc->config->pipe_src_h - 1);
2673 /* Finding the last pixel of the last line of the display
2674 data and adding to linear_offset*/
2675 linear_offset +=
2676 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2677 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2681 I915_WRITE(reg, dspcntr);
2683 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2684 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2685 fb->pitches[0]);
2686 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2687 I915_WRITE(DSPSURF(plane),
2688 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2689 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2690 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2691 } else {
2692 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2693 I915_WRITE(DSPLINOFF(plane), linear_offset);
2695 POSTING_READ(reg);
2698 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2699 struct drm_framebuffer *fb,
2700 int x, int y)
2702 struct drm_device *dev = crtc->dev;
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2705 struct intel_framebuffer *intel_fb;
2706 struct drm_i915_gem_object *obj;
2707 int pipe = intel_crtc->pipe;
2708 u32 plane_ctl, stride;
2710 if (!intel_crtc->primary_enabled) {
2711 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2712 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2713 POSTING_READ(PLANE_CTL(pipe, 0));
2714 return;
2717 plane_ctl = PLANE_CTL_ENABLE |
2718 PLANE_CTL_PIPE_GAMMA_ENABLE |
2719 PLANE_CTL_PIPE_CSC_ENABLE;
2721 switch (fb->pixel_format) {
2722 case DRM_FORMAT_RGB565:
2723 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2724 break;
2725 case DRM_FORMAT_XRGB8888:
2726 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2727 break;
2728 case DRM_FORMAT_XBGR8888:
2729 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2730 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2731 break;
2732 case DRM_FORMAT_XRGB2101010:
2733 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2734 break;
2735 case DRM_FORMAT_XBGR2101010:
2736 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2737 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2738 break;
2739 default:
2740 BUG();
2743 intel_fb = to_intel_framebuffer(fb);
2744 obj = intel_fb->obj;
2747 * The stride is either expressed as a multiple of 64 bytes chunks for
2748 * linear buffers or in number of tiles for tiled buffers.
2750 switch (obj->tiling_mode) {
2751 case I915_TILING_NONE:
2752 stride = fb->pitches[0] >> 6;
2753 break;
2754 case I915_TILING_X:
2755 plane_ctl |= PLANE_CTL_TILED_X;
2756 stride = fb->pitches[0] >> 9;
2757 break;
2758 default:
2759 BUG();
2762 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2763 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2764 plane_ctl |= PLANE_CTL_ROTATE_180;
2766 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2768 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2769 i915_gem_obj_ggtt_offset(obj),
2770 x, y, fb->width, fb->height,
2771 fb->pitches[0]);
2773 I915_WRITE(PLANE_POS(pipe, 0), 0);
2774 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2775 I915_WRITE(PLANE_SIZE(pipe, 0),
2776 (intel_crtc->config->pipe_src_h - 1) << 16 |
2777 (intel_crtc->config->pipe_src_w - 1));
2778 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2779 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2781 POSTING_READ(PLANE_SURF(pipe, 0));
2784 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2785 static int
2786 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2787 int x, int y, enum mode_set_atomic state)
2789 struct drm_device *dev = crtc->dev;
2790 struct drm_i915_private *dev_priv = dev->dev_private;
2792 if (dev_priv->display.disable_fbc)
2793 dev_priv->display.disable_fbc(dev);
2795 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2797 return 0;
2800 static void intel_complete_page_flips(struct drm_device *dev)
2802 struct drm_crtc *crtc;
2804 for_each_crtc(dev, crtc) {
2805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2806 enum plane plane = intel_crtc->plane;
2808 intel_prepare_page_flip(dev, plane);
2809 intel_finish_page_flip_plane(dev, plane);
2813 static void intel_update_primary_planes(struct drm_device *dev)
2815 struct drm_i915_private *dev_priv = dev->dev_private;
2816 struct drm_crtc *crtc;
2818 for_each_crtc(dev, crtc) {
2819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2821 drm_modeset_lock(&crtc->mutex, NULL);
2823 * FIXME: Once we have proper support for primary planes (and
2824 * disabling them without disabling the entire crtc) allow again
2825 * a NULL crtc->primary->fb.
2827 if (intel_crtc->active && crtc->primary->fb)
2828 dev_priv->display.update_primary_plane(crtc,
2829 crtc->primary->fb,
2830 crtc->x,
2831 crtc->y);
2832 drm_modeset_unlock(&crtc->mutex);
2836 void intel_prepare_reset(struct drm_device *dev)
2838 struct drm_i915_private *dev_priv = to_i915(dev);
2839 struct intel_crtc *crtc;
2841 /* no reset support for gen2 */
2842 if (IS_GEN2(dev))
2843 return;
2845 /* reset doesn't touch the display */
2846 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2847 return;
2849 drm_modeset_lock_all(dev);
2852 * Disabling the crtcs gracefully seems nicer. Also the
2853 * g33 docs say we should at least disable all the planes.
2855 for_each_intel_crtc(dev, crtc) {
2856 if (crtc->active)
2857 dev_priv->display.crtc_disable(&crtc->base);
2861 void intel_finish_reset(struct drm_device *dev)
2863 struct drm_i915_private *dev_priv = to_i915(dev);
2866 * Flips in the rings will be nuked by the reset,
2867 * so complete all pending flips so that user space
2868 * will get its events and not get stuck.
2870 intel_complete_page_flips(dev);
2872 /* no reset support for gen2 */
2873 if (IS_GEN2(dev))
2874 return;
2876 /* reset doesn't touch the display */
2877 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2879 * Flips in the rings have been nuked by the reset,
2880 * so update the base address of all primary
2881 * planes to the the last fb to make sure we're
2882 * showing the correct fb after a reset.
2884 intel_update_primary_planes(dev);
2885 return;
2889 * The display has been reset as well,
2890 * so need a full re-initialization.
2892 intel_runtime_pm_disable_interrupts(dev_priv);
2893 intel_runtime_pm_enable_interrupts(dev_priv);
2895 intel_modeset_init_hw(dev);
2897 spin_lock_irq(&dev_priv->irq_lock);
2898 if (dev_priv->display.hpd_irq_setup)
2899 dev_priv->display.hpd_irq_setup(dev);
2900 spin_unlock_irq(&dev_priv->irq_lock);
2902 intel_modeset_setup_hw_state(dev, true);
2904 intel_hpd_init(dev_priv);
2906 drm_modeset_unlock_all(dev);
2909 static int
2910 intel_finish_fb(struct drm_framebuffer *old_fb)
2912 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2913 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2914 bool was_interruptible = dev_priv->mm.interruptible;
2915 int ret;
2917 /* Big Hammer, we also need to ensure that any pending
2918 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2919 * current scanout is retired before unpinning the old
2920 * framebuffer.
2922 * This should only fail upon a hung GPU, in which case we
2923 * can safely continue.
2925 dev_priv->mm.interruptible = false;
2926 ret = i915_gem_object_finish_gpu(obj);
2927 dev_priv->mm.interruptible = was_interruptible;
2929 return ret;
2932 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2934 struct drm_device *dev = crtc->dev;
2935 struct drm_i915_private *dev_priv = dev->dev_private;
2936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2937 bool pending;
2939 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2940 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2941 return false;
2943 spin_lock_irq(&dev->event_lock);
2944 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2945 spin_unlock_irq(&dev->event_lock);
2947 return pending;
2950 static void intel_update_pipe_size(struct intel_crtc *crtc)
2952 struct drm_device *dev = crtc->base.dev;
2953 struct drm_i915_private *dev_priv = dev->dev_private;
2954 const struct drm_display_mode *adjusted_mode;
2956 if (!i915.fastboot)
2957 return;
2960 * Update pipe size and adjust fitter if needed: the reason for this is
2961 * that in compute_mode_changes we check the native mode (not the pfit
2962 * mode) to see if we can flip rather than do a full mode set. In the
2963 * fastboot case, we'll flip, but if we don't update the pipesrc and
2964 * pfit state, we'll end up with a big fb scanned out into the wrong
2965 * sized surface.
2967 * To fix this properly, we need to hoist the checks up into
2968 * compute_mode_changes (or above), check the actual pfit state and
2969 * whether the platform allows pfit disable with pipe active, and only
2970 * then update the pipesrc and pfit state, even on the flip path.
2973 adjusted_mode = &crtc->config->base.adjusted_mode;
2975 I915_WRITE(PIPESRC(crtc->pipe),
2976 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2977 (adjusted_mode->crtc_vdisplay - 1));
2978 if (!crtc->config->pch_pfit.enabled &&
2979 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2980 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2981 I915_WRITE(PF_CTL(crtc->pipe), 0);
2982 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2983 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2985 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2986 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
2989 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2991 struct drm_device *dev = crtc->dev;
2992 struct drm_i915_private *dev_priv = dev->dev_private;
2993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2994 int pipe = intel_crtc->pipe;
2995 u32 reg, temp;
2997 /* enable normal train */
2998 reg = FDI_TX_CTL(pipe);
2999 temp = I915_READ(reg);
3000 if (IS_IVYBRIDGE(dev)) {
3001 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3002 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3003 } else {
3004 temp &= ~FDI_LINK_TRAIN_NONE;
3005 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3007 I915_WRITE(reg, temp);
3009 reg = FDI_RX_CTL(pipe);
3010 temp = I915_READ(reg);
3011 if (HAS_PCH_CPT(dev)) {
3012 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3013 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3014 } else {
3015 temp &= ~FDI_LINK_TRAIN_NONE;
3016 temp |= FDI_LINK_TRAIN_NONE;
3018 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3020 /* wait one idle pattern time */
3021 POSTING_READ(reg);
3022 udelay(1000);
3024 /* IVB wants error correction enabled */
3025 if (IS_IVYBRIDGE(dev))
3026 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3027 FDI_FE_ERRC_ENABLE);
3030 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3032 return crtc->base.enabled && crtc->active &&
3033 crtc->config->has_pch_encoder;
3036 static void ivb_modeset_global_resources(struct drm_device *dev)
3038 struct drm_i915_private *dev_priv = dev->dev_private;
3039 struct intel_crtc *pipe_B_crtc =
3040 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3041 struct intel_crtc *pipe_C_crtc =
3042 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3043 uint32_t temp;
3046 * When everything is off disable fdi C so that we could enable fdi B
3047 * with all lanes. Note that we don't care about enabled pipes without
3048 * an enabled pch encoder.
3050 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3051 !pipe_has_enabled_pch(pipe_C_crtc)) {
3052 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3053 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3055 temp = I915_READ(SOUTH_CHICKEN1);
3056 temp &= ~FDI_BC_BIFURCATION_SELECT;
3057 DRM_DEBUG_KMS("disabling fdi C rx\n");
3058 I915_WRITE(SOUTH_CHICKEN1, temp);
3062 /* The FDI link training functions for ILK/Ibexpeak. */
3063 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3065 struct drm_device *dev = crtc->dev;
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068 int pipe = intel_crtc->pipe;
3069 u32 reg, temp, tries;
3071 /* FDI needs bits from pipe first */
3072 assert_pipe_enabled(dev_priv, pipe);
3074 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3075 for train result */
3076 reg = FDI_RX_IMR(pipe);
3077 temp = I915_READ(reg);
3078 temp &= ~FDI_RX_SYMBOL_LOCK;
3079 temp &= ~FDI_RX_BIT_LOCK;
3080 I915_WRITE(reg, temp);
3081 I915_READ(reg);
3082 udelay(150);
3084 /* enable CPU FDI TX and PCH FDI RX */
3085 reg = FDI_TX_CTL(pipe);
3086 temp = I915_READ(reg);
3087 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3088 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3089 temp &= ~FDI_LINK_TRAIN_NONE;
3090 temp |= FDI_LINK_TRAIN_PATTERN_1;
3091 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3093 reg = FDI_RX_CTL(pipe);
3094 temp = I915_READ(reg);
3095 temp &= ~FDI_LINK_TRAIN_NONE;
3096 temp |= FDI_LINK_TRAIN_PATTERN_1;
3097 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3099 POSTING_READ(reg);
3100 udelay(150);
3102 /* Ironlake workaround, enable clock pointer after FDI enable*/
3103 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3104 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3105 FDI_RX_PHASE_SYNC_POINTER_EN);
3107 reg = FDI_RX_IIR(pipe);
3108 for (tries = 0; tries < 5; tries++) {
3109 temp = I915_READ(reg);
3110 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112 if ((temp & FDI_RX_BIT_LOCK)) {
3113 DRM_DEBUG_KMS("FDI train 1 done.\n");
3114 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3115 break;
3118 if (tries == 5)
3119 DRM_ERROR("FDI train 1 fail!\n");
3121 /* Train 2 */
3122 reg = FDI_TX_CTL(pipe);
3123 temp = I915_READ(reg);
3124 temp &= ~FDI_LINK_TRAIN_NONE;
3125 temp |= FDI_LINK_TRAIN_PATTERN_2;
3126 I915_WRITE(reg, temp);
3128 reg = FDI_RX_CTL(pipe);
3129 temp = I915_READ(reg);
3130 temp &= ~FDI_LINK_TRAIN_NONE;
3131 temp |= FDI_LINK_TRAIN_PATTERN_2;
3132 I915_WRITE(reg, temp);
3134 POSTING_READ(reg);
3135 udelay(150);
3137 reg = FDI_RX_IIR(pipe);
3138 for (tries = 0; tries < 5; tries++) {
3139 temp = I915_READ(reg);
3140 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3142 if (temp & FDI_RX_SYMBOL_LOCK) {
3143 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3144 DRM_DEBUG_KMS("FDI train 2 done.\n");
3145 break;
3148 if (tries == 5)
3149 DRM_ERROR("FDI train 2 fail!\n");
3151 DRM_DEBUG_KMS("FDI train done\n");
3155 static const int snb_b_fdi_train_param[] = {
3156 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3157 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3158 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3159 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3162 /* The FDI link training functions for SNB/Cougarpoint. */
3163 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3165 struct drm_device *dev = crtc->dev;
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168 int pipe = intel_crtc->pipe;
3169 u32 reg, temp, i, retry;
3171 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3172 for train result */
3173 reg = FDI_RX_IMR(pipe);
3174 temp = I915_READ(reg);
3175 temp &= ~FDI_RX_SYMBOL_LOCK;
3176 temp &= ~FDI_RX_BIT_LOCK;
3177 I915_WRITE(reg, temp);
3179 POSTING_READ(reg);
3180 udelay(150);
3182 /* enable CPU FDI TX and PCH FDI RX */
3183 reg = FDI_TX_CTL(pipe);
3184 temp = I915_READ(reg);
3185 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3186 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3187 temp &= ~FDI_LINK_TRAIN_NONE;
3188 temp |= FDI_LINK_TRAIN_PATTERN_1;
3189 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3190 /* SNB-B */
3191 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3192 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3194 I915_WRITE(FDI_RX_MISC(pipe),
3195 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3197 reg = FDI_RX_CTL(pipe);
3198 temp = I915_READ(reg);
3199 if (HAS_PCH_CPT(dev)) {
3200 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3201 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3202 } else {
3203 temp &= ~FDI_LINK_TRAIN_NONE;
3204 temp |= FDI_LINK_TRAIN_PATTERN_1;
3206 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3208 POSTING_READ(reg);
3209 udelay(150);
3211 for (i = 0; i < 4; i++) {
3212 reg = FDI_TX_CTL(pipe);
3213 temp = I915_READ(reg);
3214 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215 temp |= snb_b_fdi_train_param[i];
3216 I915_WRITE(reg, temp);
3218 POSTING_READ(reg);
3219 udelay(500);
3221 for (retry = 0; retry < 5; retry++) {
3222 reg = FDI_RX_IIR(pipe);
3223 temp = I915_READ(reg);
3224 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3225 if (temp & FDI_RX_BIT_LOCK) {
3226 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3227 DRM_DEBUG_KMS("FDI train 1 done.\n");
3228 break;
3230 udelay(50);
3232 if (retry < 5)
3233 break;
3235 if (i == 4)
3236 DRM_ERROR("FDI train 1 fail!\n");
3238 /* Train 2 */
3239 reg = FDI_TX_CTL(pipe);
3240 temp = I915_READ(reg);
3241 temp &= ~FDI_LINK_TRAIN_NONE;
3242 temp |= FDI_LINK_TRAIN_PATTERN_2;
3243 if (IS_GEN6(dev)) {
3244 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3245 /* SNB-B */
3246 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3248 I915_WRITE(reg, temp);
3250 reg = FDI_RX_CTL(pipe);
3251 temp = I915_READ(reg);
3252 if (HAS_PCH_CPT(dev)) {
3253 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3254 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3255 } else {
3256 temp &= ~FDI_LINK_TRAIN_NONE;
3257 temp |= FDI_LINK_TRAIN_PATTERN_2;
3259 I915_WRITE(reg, temp);
3261 POSTING_READ(reg);
3262 udelay(150);
3264 for (i = 0; i < 4; i++) {
3265 reg = FDI_TX_CTL(pipe);
3266 temp = I915_READ(reg);
3267 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3268 temp |= snb_b_fdi_train_param[i];
3269 I915_WRITE(reg, temp);
3271 POSTING_READ(reg);
3272 udelay(500);
3274 for (retry = 0; retry < 5; retry++) {
3275 reg = FDI_RX_IIR(pipe);
3276 temp = I915_READ(reg);
3277 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3278 if (temp & FDI_RX_SYMBOL_LOCK) {
3279 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3280 DRM_DEBUG_KMS("FDI train 2 done.\n");
3281 break;
3283 udelay(50);
3285 if (retry < 5)
3286 break;
3288 if (i == 4)
3289 DRM_ERROR("FDI train 2 fail!\n");
3291 DRM_DEBUG_KMS("FDI train done.\n");
3294 /* Manual link training for Ivy Bridge A0 parts */
3295 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3297 struct drm_device *dev = crtc->dev;
3298 struct drm_i915_private *dev_priv = dev->dev_private;
3299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3300 int pipe = intel_crtc->pipe;
3301 u32 reg, temp, i, j;
3303 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3304 for train result */
3305 reg = FDI_RX_IMR(pipe);
3306 temp = I915_READ(reg);
3307 temp &= ~FDI_RX_SYMBOL_LOCK;
3308 temp &= ~FDI_RX_BIT_LOCK;
3309 I915_WRITE(reg, temp);
3311 POSTING_READ(reg);
3312 udelay(150);
3314 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3315 I915_READ(FDI_RX_IIR(pipe)));
3317 /* Try each vswing and preemphasis setting twice before moving on */
3318 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3319 /* disable first in case we need to retry */
3320 reg = FDI_TX_CTL(pipe);
3321 temp = I915_READ(reg);
3322 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3323 temp &= ~FDI_TX_ENABLE;
3324 I915_WRITE(reg, temp);
3326 reg = FDI_RX_CTL(pipe);
3327 temp = I915_READ(reg);
3328 temp &= ~FDI_LINK_TRAIN_AUTO;
3329 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3330 temp &= ~FDI_RX_ENABLE;
3331 I915_WRITE(reg, temp);
3333 /* enable CPU FDI TX and PCH FDI RX */
3334 reg = FDI_TX_CTL(pipe);
3335 temp = I915_READ(reg);
3336 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3337 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3338 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3339 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3340 temp |= snb_b_fdi_train_param[j/2];
3341 temp |= FDI_COMPOSITE_SYNC;
3342 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3344 I915_WRITE(FDI_RX_MISC(pipe),
3345 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3347 reg = FDI_RX_CTL(pipe);
3348 temp = I915_READ(reg);
3349 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3350 temp |= FDI_COMPOSITE_SYNC;
3351 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3353 POSTING_READ(reg);
3354 udelay(1); /* should be 0.5us */
3356 for (i = 0; i < 4; i++) {
3357 reg = FDI_RX_IIR(pipe);
3358 temp = I915_READ(reg);
3359 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3361 if (temp & FDI_RX_BIT_LOCK ||
3362 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3363 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3364 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3366 break;
3368 udelay(1); /* should be 0.5us */
3370 if (i == 4) {
3371 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3372 continue;
3375 /* Train 2 */
3376 reg = FDI_TX_CTL(pipe);
3377 temp = I915_READ(reg);
3378 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3379 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3380 I915_WRITE(reg, temp);
3382 reg = FDI_RX_CTL(pipe);
3383 temp = I915_READ(reg);
3384 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3385 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3386 I915_WRITE(reg, temp);
3388 POSTING_READ(reg);
3389 udelay(2); /* should be 1.5us */
3391 for (i = 0; i < 4; i++) {
3392 reg = FDI_RX_IIR(pipe);
3393 temp = I915_READ(reg);
3394 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3396 if (temp & FDI_RX_SYMBOL_LOCK ||
3397 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3398 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3399 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3401 goto train_done;
3403 udelay(2); /* should be 1.5us */
3405 if (i == 4)
3406 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3409 train_done:
3410 DRM_DEBUG_KMS("FDI train done.\n");
3413 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3415 struct drm_device *dev = intel_crtc->base.dev;
3416 struct drm_i915_private *dev_priv = dev->dev_private;
3417 int pipe = intel_crtc->pipe;
3418 u32 reg, temp;
3421 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3422 reg = FDI_RX_CTL(pipe);
3423 temp = I915_READ(reg);
3424 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3425 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3426 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3427 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3429 POSTING_READ(reg);
3430 udelay(200);
3432 /* Switch from Rawclk to PCDclk */
3433 temp = I915_READ(reg);
3434 I915_WRITE(reg, temp | FDI_PCDCLK);
3436 POSTING_READ(reg);
3437 udelay(200);
3439 /* Enable CPU FDI TX PLL, always on for Ironlake */
3440 reg = FDI_TX_CTL(pipe);
3441 temp = I915_READ(reg);
3442 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3443 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3445 POSTING_READ(reg);
3446 udelay(100);
3450 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3452 struct drm_device *dev = intel_crtc->base.dev;
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 int pipe = intel_crtc->pipe;
3455 u32 reg, temp;
3457 /* Switch from PCDclk to Rawclk */
3458 reg = FDI_RX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3462 /* Disable CPU FDI TX PLL */
3463 reg = FDI_TX_CTL(pipe);
3464 temp = I915_READ(reg);
3465 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3467 POSTING_READ(reg);
3468 udelay(100);
3470 reg = FDI_RX_CTL(pipe);
3471 temp = I915_READ(reg);
3472 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3474 /* Wait for the clocks to turn off. */
3475 POSTING_READ(reg);
3476 udelay(100);
3479 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3481 struct drm_device *dev = crtc->dev;
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3484 int pipe = intel_crtc->pipe;
3485 u32 reg, temp;
3487 /* disable CPU FDI tx and PCH FDI rx */
3488 reg = FDI_TX_CTL(pipe);
3489 temp = I915_READ(reg);
3490 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3491 POSTING_READ(reg);
3493 reg = FDI_RX_CTL(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~(0x7 << 16);
3496 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3497 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3499 POSTING_READ(reg);
3500 udelay(100);
3502 /* Ironlake workaround, disable clock pointer after downing FDI */
3503 if (HAS_PCH_IBX(dev))
3504 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3506 /* still set train pattern 1 */
3507 reg = FDI_TX_CTL(pipe);
3508 temp = I915_READ(reg);
3509 temp &= ~FDI_LINK_TRAIN_NONE;
3510 temp |= FDI_LINK_TRAIN_PATTERN_1;
3511 I915_WRITE(reg, temp);
3513 reg = FDI_RX_CTL(pipe);
3514 temp = I915_READ(reg);
3515 if (HAS_PCH_CPT(dev)) {
3516 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3518 } else {
3519 temp &= ~FDI_LINK_TRAIN_NONE;
3520 temp |= FDI_LINK_TRAIN_PATTERN_1;
3522 /* BPC in FDI rx is consistent with that in PIPECONF */
3523 temp &= ~(0x07 << 16);
3524 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3525 I915_WRITE(reg, temp);
3527 POSTING_READ(reg);
3528 udelay(100);
3531 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3533 struct intel_crtc *crtc;
3535 /* Note that we don't need to be called with mode_config.lock here
3536 * as our list of CRTC objects is static for the lifetime of the
3537 * device and so cannot disappear as we iterate. Similarly, we can
3538 * happily treat the predicates as racy, atomic checks as userspace
3539 * cannot claim and pin a new fb without at least acquring the
3540 * struct_mutex and so serialising with us.
3542 for_each_intel_crtc(dev, crtc) {
3543 if (atomic_read(&crtc->unpin_work_count) == 0)
3544 continue;
3546 if (crtc->unpin_work)
3547 intel_wait_for_vblank(dev, crtc->pipe);
3549 return true;
3552 return false;
3555 static void page_flip_completed(struct intel_crtc *intel_crtc)
3557 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3558 struct intel_unpin_work *work = intel_crtc->unpin_work;
3560 /* ensure that the unpin work is consistent wrt ->pending. */
3561 smp_rmb();
3562 intel_crtc->unpin_work = NULL;
3564 if (work->event)
3565 drm_send_vblank_event(intel_crtc->base.dev,
3566 intel_crtc->pipe,
3567 work->event);
3569 drm_crtc_vblank_put(&intel_crtc->base);
3571 wake_up_all(&dev_priv->pending_flip_queue);
3572 queue_work(dev_priv->wq, &work->work);
3574 trace_i915_flip_complete(intel_crtc->plane,
3575 work->pending_flip_obj);
3578 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3580 struct drm_device *dev = crtc->dev;
3581 struct drm_i915_private *dev_priv = dev->dev_private;
3583 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3584 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3585 !intel_crtc_has_pending_flip(crtc),
3586 60*HZ) == 0)) {
3587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3589 spin_lock_irq(&dev->event_lock);
3590 if (intel_crtc->unpin_work) {
3591 WARN_ONCE(1, "Removing stuck page flip\n");
3592 page_flip_completed(intel_crtc);
3594 spin_unlock_irq(&dev->event_lock);
3597 if (crtc->primary->fb) {
3598 mutex_lock(&dev->struct_mutex);
3599 intel_finish_fb(crtc->primary->fb);
3600 mutex_unlock(&dev->struct_mutex);
3604 /* Program iCLKIP clock to the desired frequency */
3605 static void lpt_program_iclkip(struct drm_crtc *crtc)
3607 struct drm_device *dev = crtc->dev;
3608 struct drm_i915_private *dev_priv = dev->dev_private;
3609 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3610 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3611 u32 temp;
3613 mutex_lock(&dev_priv->dpio_lock);
3615 /* It is necessary to ungate the pixclk gate prior to programming
3616 * the divisors, and gate it back when it is done.
3618 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3620 /* Disable SSCCTL */
3621 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3622 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3623 SBI_SSCCTL_DISABLE,
3624 SBI_ICLK);
3626 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3627 if (clock == 20000) {
3628 auxdiv = 1;
3629 divsel = 0x41;
3630 phaseinc = 0x20;
3631 } else {
3632 /* The iCLK virtual clock root frequency is in MHz,
3633 * but the adjusted_mode->crtc_clock in in KHz. To get the
3634 * divisors, it is necessary to divide one by another, so we
3635 * convert the virtual clock precision to KHz here for higher
3636 * precision.
3638 u32 iclk_virtual_root_freq = 172800 * 1000;
3639 u32 iclk_pi_range = 64;
3640 u32 desired_divisor, msb_divisor_value, pi_value;
3642 desired_divisor = (iclk_virtual_root_freq / clock);
3643 msb_divisor_value = desired_divisor / iclk_pi_range;
3644 pi_value = desired_divisor % iclk_pi_range;
3646 auxdiv = 0;
3647 divsel = msb_divisor_value - 2;
3648 phaseinc = pi_value;
3651 /* This should not happen with any sane values */
3652 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3653 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3654 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3655 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3657 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3658 clock,
3659 auxdiv,
3660 divsel,
3661 phasedir,
3662 phaseinc);
3664 /* Program SSCDIVINTPHASE6 */
3665 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3666 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3667 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3668 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3669 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3670 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3671 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3672 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3674 /* Program SSCAUXDIV */
3675 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3676 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3677 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3678 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3680 /* Enable modulator and associated divider */
3681 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3682 temp &= ~SBI_SSCCTL_DISABLE;
3683 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3685 /* Wait for initialization time */
3686 udelay(24);
3688 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3690 mutex_unlock(&dev_priv->dpio_lock);
3693 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3694 enum pipe pch_transcoder)
3696 struct drm_device *dev = crtc->base.dev;
3697 struct drm_i915_private *dev_priv = dev->dev_private;
3698 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3700 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3701 I915_READ(HTOTAL(cpu_transcoder)));
3702 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3703 I915_READ(HBLANK(cpu_transcoder)));
3704 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3705 I915_READ(HSYNC(cpu_transcoder)));
3707 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3708 I915_READ(VTOTAL(cpu_transcoder)));
3709 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3710 I915_READ(VBLANK(cpu_transcoder)));
3711 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3712 I915_READ(VSYNC(cpu_transcoder)));
3713 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3714 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3717 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 uint32_t temp;
3722 temp = I915_READ(SOUTH_CHICKEN1);
3723 if (temp & FDI_BC_BIFURCATION_SELECT)
3724 return;
3726 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3727 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3729 temp |= FDI_BC_BIFURCATION_SELECT;
3730 DRM_DEBUG_KMS("enabling fdi C rx\n");
3731 I915_WRITE(SOUTH_CHICKEN1, temp);
3732 POSTING_READ(SOUTH_CHICKEN1);
3735 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3737 struct drm_device *dev = intel_crtc->base.dev;
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3740 switch (intel_crtc->pipe) {
3741 case PIPE_A:
3742 break;
3743 case PIPE_B:
3744 if (intel_crtc->config->fdi_lanes > 2)
3745 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3746 else
3747 cpt_enable_fdi_bc_bifurcation(dev);
3749 break;
3750 case PIPE_C:
3751 cpt_enable_fdi_bc_bifurcation(dev);
3753 break;
3754 default:
3755 BUG();
3760 * Enable PCH resources required for PCH ports:
3761 * - PCH PLLs
3762 * - FDI training & RX/TX
3763 * - update transcoder timings
3764 * - DP transcoding bits
3765 * - transcoder
3767 static void ironlake_pch_enable(struct drm_crtc *crtc)
3769 struct drm_device *dev = crtc->dev;
3770 struct drm_i915_private *dev_priv = dev->dev_private;
3771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772 int pipe = intel_crtc->pipe;
3773 u32 reg, temp;
3775 assert_pch_transcoder_disabled(dev_priv, pipe);
3777 if (IS_IVYBRIDGE(dev))
3778 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3780 /* Write the TU size bits before fdi link training, so that error
3781 * detection works. */
3782 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3783 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3785 /* For PCH output, training FDI link */
3786 dev_priv->display.fdi_link_train(crtc);
3788 /* We need to program the right clock selection before writing the pixel
3789 * mutliplier into the DPLL. */
3790 if (HAS_PCH_CPT(dev)) {
3791 u32 sel;
3793 temp = I915_READ(PCH_DPLL_SEL);
3794 temp |= TRANS_DPLL_ENABLE(pipe);
3795 sel = TRANS_DPLLB_SEL(pipe);
3796 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3797 temp |= sel;
3798 else
3799 temp &= ~sel;
3800 I915_WRITE(PCH_DPLL_SEL, temp);
3803 /* XXX: pch pll's can be enabled any time before we enable the PCH
3804 * transcoder, and we actually should do this to not upset any PCH
3805 * transcoder that already use the clock when we share it.
3807 * Note that enable_shared_dpll tries to do the right thing, but
3808 * get_shared_dpll unconditionally resets the pll - we need that to have
3809 * the right LVDS enable sequence. */
3810 intel_enable_shared_dpll(intel_crtc);
3812 /* set transcoder timing, panel must allow it */
3813 assert_panel_unlocked(dev_priv, pipe);
3814 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3816 intel_fdi_normal_train(crtc);
3818 /* For PCH DP, enable TRANS_DP_CTL */
3819 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3820 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3821 reg = TRANS_DP_CTL(pipe);
3822 temp = I915_READ(reg);
3823 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3824 TRANS_DP_SYNC_MASK |
3825 TRANS_DP_BPC_MASK);
3826 temp |= (TRANS_DP_OUTPUT_ENABLE |
3827 TRANS_DP_ENH_FRAMING);
3828 temp |= bpc << 9; /* same format but at 11:9 */
3830 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3831 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3832 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3833 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3835 switch (intel_trans_dp_port_sel(crtc)) {
3836 case PCH_DP_B:
3837 temp |= TRANS_DP_PORT_SEL_B;
3838 break;
3839 case PCH_DP_C:
3840 temp |= TRANS_DP_PORT_SEL_C;
3841 break;
3842 case PCH_DP_D:
3843 temp |= TRANS_DP_PORT_SEL_D;
3844 break;
3845 default:
3846 BUG();
3849 I915_WRITE(reg, temp);
3852 ironlake_enable_pch_transcoder(dev_priv, pipe);
3855 static void lpt_pch_enable(struct drm_crtc *crtc)
3857 struct drm_device *dev = crtc->dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3860 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3862 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3864 lpt_program_iclkip(crtc);
3866 /* Set transcoder timing. */
3867 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3869 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3872 void intel_put_shared_dpll(struct intel_crtc *crtc)
3874 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3876 if (pll == NULL)
3877 return;
3879 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3880 WARN(1, "bad %s crtc mask\n", pll->name);
3881 return;
3884 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3885 if (pll->config.crtc_mask == 0) {
3886 WARN_ON(pll->on);
3887 WARN_ON(pll->active);
3890 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
3893 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3894 struct intel_crtc_state *crtc_state)
3896 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3897 struct intel_shared_dpll *pll;
3898 enum intel_dpll_id i;
3900 if (HAS_PCH_IBX(dev_priv->dev)) {
3901 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3902 i = (enum intel_dpll_id) crtc->pipe;
3903 pll = &dev_priv->shared_dplls[i];
3905 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3906 crtc->base.base.id, pll->name);
3908 WARN_ON(pll->new_config->crtc_mask);
3910 goto found;
3913 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3914 pll = &dev_priv->shared_dplls[i];
3916 /* Only want to check enabled timings first */
3917 if (pll->new_config->crtc_mask == 0)
3918 continue;
3920 if (memcmp(&crtc_state->dpll_hw_state,
3921 &pll->new_config->hw_state,
3922 sizeof(pll->new_config->hw_state)) == 0) {
3923 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3924 crtc->base.base.id, pll->name,
3925 pll->new_config->crtc_mask,
3926 pll->active);
3927 goto found;
3931 /* Ok no matching timings, maybe there's a free one? */
3932 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3933 pll = &dev_priv->shared_dplls[i];
3934 if (pll->new_config->crtc_mask == 0) {
3935 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3936 crtc->base.base.id, pll->name);
3937 goto found;
3941 return NULL;
3943 found:
3944 if (pll->new_config->crtc_mask == 0)
3945 pll->new_config->hw_state = crtc_state->dpll_hw_state;
3947 crtc_state->shared_dpll = i;
3948 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3949 pipe_name(crtc->pipe));
3951 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3953 return pll;
3957 * intel_shared_dpll_start_config - start a new PLL staged config
3958 * @dev_priv: DRM device
3959 * @clear_pipes: mask of pipes that will have their PLLs freed
3961 * Starts a new PLL staged config, copying the current config but
3962 * releasing the references of pipes specified in clear_pipes.
3964 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3965 unsigned clear_pipes)
3967 struct intel_shared_dpll *pll;
3968 enum intel_dpll_id i;
3970 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3971 pll = &dev_priv->shared_dplls[i];
3973 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3974 GFP_KERNEL);
3975 if (!pll->new_config)
3976 goto cleanup;
3978 pll->new_config->crtc_mask &= ~clear_pipes;
3981 return 0;
3983 cleanup:
3984 while (--i >= 0) {
3985 pll = &dev_priv->shared_dplls[i];
3986 kfree(pll->new_config);
3987 pll->new_config = NULL;
3990 return -ENOMEM;
3993 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3995 struct intel_shared_dpll *pll;
3996 enum intel_dpll_id i;
3998 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3999 pll = &dev_priv->shared_dplls[i];
4001 WARN_ON(pll->new_config == &pll->config);
4003 pll->config = *pll->new_config;
4004 kfree(pll->new_config);
4005 pll->new_config = NULL;
4009 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4011 struct intel_shared_dpll *pll;
4012 enum intel_dpll_id i;
4014 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4015 pll = &dev_priv->shared_dplls[i];
4017 WARN_ON(pll->new_config == &pll->config);
4019 kfree(pll->new_config);
4020 pll->new_config = NULL;
4024 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4026 struct drm_i915_private *dev_priv = dev->dev_private;
4027 int dslreg = PIPEDSL(pipe);
4028 u32 temp;
4030 temp = I915_READ(dslreg);
4031 udelay(500);
4032 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4033 if (wait_for(I915_READ(dslreg) != temp, 5))
4034 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4038 static void skylake_pfit_enable(struct intel_crtc *crtc)
4040 struct drm_device *dev = crtc->base.dev;
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 int pipe = crtc->pipe;
4044 if (crtc->config->pch_pfit.enabled) {
4045 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4046 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4047 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4051 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4053 struct drm_device *dev = crtc->base.dev;
4054 struct drm_i915_private *dev_priv = dev->dev_private;
4055 int pipe = crtc->pipe;
4057 if (crtc->config->pch_pfit.enabled) {
4058 /* Force use of hard-coded filter coefficients
4059 * as some pre-programmed values are broken,
4060 * e.g. x201.
4062 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4063 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4064 PF_PIPE_SEL_IVB(pipe));
4065 else
4066 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4067 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4068 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4072 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4074 struct drm_device *dev = crtc->dev;
4075 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4076 struct drm_plane *plane;
4077 struct intel_plane *intel_plane;
4079 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4080 intel_plane = to_intel_plane(plane);
4081 if (intel_plane->pipe == pipe)
4082 intel_plane_restore(&intel_plane->base);
4086 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4088 struct drm_device *dev = crtc->dev;
4089 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4090 struct drm_plane *plane;
4091 struct intel_plane *intel_plane;
4093 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4094 intel_plane = to_intel_plane(plane);
4095 if (intel_plane->pipe == pipe)
4096 plane->funcs->disable_plane(plane);
4100 void hsw_enable_ips(struct intel_crtc *crtc)
4102 struct drm_device *dev = crtc->base.dev;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4105 if (!crtc->config->ips_enabled)
4106 return;
4108 /* We can only enable IPS after we enable a plane and wait for a vblank */
4109 intel_wait_for_vblank(dev, crtc->pipe);
4111 assert_plane_enabled(dev_priv, crtc->plane);
4112 if (IS_BROADWELL(dev)) {
4113 mutex_lock(&dev_priv->rps.hw_lock);
4114 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4115 mutex_unlock(&dev_priv->rps.hw_lock);
4116 /* Quoting Art Runyan: "its not safe to expect any particular
4117 * value in IPS_CTL bit 31 after enabling IPS through the
4118 * mailbox." Moreover, the mailbox may return a bogus state,
4119 * so we need to just enable it and continue on.
4121 } else {
4122 I915_WRITE(IPS_CTL, IPS_ENABLE);
4123 /* The bit only becomes 1 in the next vblank, so this wait here
4124 * is essentially intel_wait_for_vblank. If we don't have this
4125 * and don't wait for vblanks until the end of crtc_enable, then
4126 * the HW state readout code will complain that the expected
4127 * IPS_CTL value is not the one we read. */
4128 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4129 DRM_ERROR("Timed out waiting for IPS enable\n");
4133 void hsw_disable_ips(struct intel_crtc *crtc)
4135 struct drm_device *dev = crtc->base.dev;
4136 struct drm_i915_private *dev_priv = dev->dev_private;
4138 if (!crtc->config->ips_enabled)
4139 return;
4141 assert_plane_enabled(dev_priv, crtc->plane);
4142 if (IS_BROADWELL(dev)) {
4143 mutex_lock(&dev_priv->rps.hw_lock);
4144 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4145 mutex_unlock(&dev_priv->rps.hw_lock);
4146 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4147 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4148 DRM_ERROR("Timed out waiting for IPS disable\n");
4149 } else {
4150 I915_WRITE(IPS_CTL, 0);
4151 POSTING_READ(IPS_CTL);
4154 /* We need to wait for a vblank before we can disable the plane. */
4155 intel_wait_for_vblank(dev, crtc->pipe);
4158 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4159 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4164 enum pipe pipe = intel_crtc->pipe;
4165 int palreg = PALETTE(pipe);
4166 int i;
4167 bool reenable_ips = false;
4169 /* The clocks have to be on to load the palette. */
4170 if (!crtc->enabled || !intel_crtc->active)
4171 return;
4173 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4174 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4175 assert_dsi_pll_enabled(dev_priv);
4176 else
4177 assert_pll_enabled(dev_priv, pipe);
4180 /* use legacy palette for Ironlake */
4181 if (!HAS_GMCH_DISPLAY(dev))
4182 palreg = LGC_PALETTE(pipe);
4184 /* Workaround : Do not read or write the pipe palette/gamma data while
4185 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4187 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4188 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4189 GAMMA_MODE_MODE_SPLIT)) {
4190 hsw_disable_ips(intel_crtc);
4191 reenable_ips = true;
4194 for (i = 0; i < 256; i++) {
4195 I915_WRITE(palreg + 4 * i,
4196 (intel_crtc->lut_r[i] << 16) |
4197 (intel_crtc->lut_g[i] << 8) |
4198 intel_crtc->lut_b[i]);
4201 if (reenable_ips)
4202 hsw_enable_ips(intel_crtc);
4205 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4207 if (!enable && intel_crtc->overlay) {
4208 struct drm_device *dev = intel_crtc->base.dev;
4209 struct drm_i915_private *dev_priv = dev->dev_private;
4211 mutex_lock(&dev->struct_mutex);
4212 dev_priv->mm.interruptible = false;
4213 (void) intel_overlay_switch_off(intel_crtc->overlay);
4214 dev_priv->mm.interruptible = true;
4215 mutex_unlock(&dev->struct_mutex);
4218 /* Let userspace switch the overlay on again. In most cases userspace
4219 * has to recompute where to put it anyway.
4223 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4225 struct drm_device *dev = crtc->dev;
4226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4227 int pipe = intel_crtc->pipe;
4229 intel_enable_primary_hw_plane(crtc->primary, crtc);
4230 intel_enable_sprite_planes(crtc);
4231 intel_crtc_update_cursor(crtc, true);
4232 intel_crtc_dpms_overlay(intel_crtc, true);
4234 hsw_enable_ips(intel_crtc);
4236 mutex_lock(&dev->struct_mutex);
4237 intel_fbc_update(dev);
4238 mutex_unlock(&dev->struct_mutex);
4241 * FIXME: Once we grow proper nuclear flip support out of this we need
4242 * to compute the mask of flip planes precisely. For the time being
4243 * consider this a flip from a NULL plane.
4245 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4248 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4250 struct drm_device *dev = crtc->dev;
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4253 int pipe = intel_crtc->pipe;
4254 int plane = intel_crtc->plane;
4256 intel_crtc_wait_for_pending_flips(crtc);
4258 if (dev_priv->fbc.plane == plane)
4259 intel_fbc_disable(dev);
4261 hsw_disable_ips(intel_crtc);
4263 intel_crtc_dpms_overlay(intel_crtc, false);
4264 intel_crtc_update_cursor(crtc, false);
4265 intel_disable_sprite_planes(crtc);
4266 intel_disable_primary_hw_plane(crtc->primary, crtc);
4269 * FIXME: Once we grow proper nuclear flip support out of this we need
4270 * to compute the mask of flip planes precisely. For the time being
4271 * consider this a flip to a NULL plane.
4273 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4276 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4278 struct drm_device *dev = crtc->dev;
4279 struct drm_i915_private *dev_priv = dev->dev_private;
4280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4281 struct intel_encoder *encoder;
4282 int pipe = intel_crtc->pipe;
4284 WARN_ON(!crtc->enabled);
4286 if (intel_crtc->active)
4287 return;
4289 if (intel_crtc->config->has_pch_encoder)
4290 intel_prepare_shared_dpll(intel_crtc);
4292 if (intel_crtc->config->has_dp_encoder)
4293 intel_dp_set_m_n(intel_crtc);
4295 intel_set_pipe_timings(intel_crtc);
4297 if (intel_crtc->config->has_pch_encoder) {
4298 intel_cpu_transcoder_set_m_n(intel_crtc,
4299 &intel_crtc->config->fdi_m_n, NULL);
4302 ironlake_set_pipeconf(crtc);
4304 intel_crtc->active = true;
4306 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4307 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4309 for_each_encoder_on_crtc(dev, crtc, encoder)
4310 if (encoder->pre_enable)
4311 encoder->pre_enable(encoder);
4313 if (intel_crtc->config->has_pch_encoder) {
4314 /* Note: FDI PLL enabling _must_ be done before we enable the
4315 * cpu pipes, hence this is separate from all the other fdi/pch
4316 * enabling. */
4317 ironlake_fdi_pll_enable(intel_crtc);
4318 } else {
4319 assert_fdi_tx_disabled(dev_priv, pipe);
4320 assert_fdi_rx_disabled(dev_priv, pipe);
4323 ironlake_pfit_enable(intel_crtc);
4326 * On ILK+ LUT must be loaded before the pipe is running but with
4327 * clocks enabled
4329 intel_crtc_load_lut(crtc);
4331 intel_update_watermarks(crtc);
4332 intel_enable_pipe(intel_crtc);
4334 if (intel_crtc->config->has_pch_encoder)
4335 ironlake_pch_enable(crtc);
4337 assert_vblank_disabled(crtc);
4338 drm_crtc_vblank_on(crtc);
4340 for_each_encoder_on_crtc(dev, crtc, encoder)
4341 encoder->enable(encoder);
4343 if (HAS_PCH_CPT(dev))
4344 cpt_verify_modeset(dev, intel_crtc->pipe);
4346 intel_crtc_enable_planes(crtc);
4349 /* IPS only exists on ULT machines and is tied to pipe A. */
4350 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4352 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4356 * This implements the workaround described in the "notes" section of the mode
4357 * set sequence documentation. When going from no pipes or single pipe to
4358 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4359 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4361 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4363 struct drm_device *dev = crtc->base.dev;
4364 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4366 /* We want to get the other_active_crtc only if there's only 1 other
4367 * active crtc. */
4368 for_each_intel_crtc(dev, crtc_it) {
4369 if (!crtc_it->active || crtc_it == crtc)
4370 continue;
4372 if (other_active_crtc)
4373 return;
4375 other_active_crtc = crtc_it;
4377 if (!other_active_crtc)
4378 return;
4380 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4381 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4384 static void haswell_crtc_enable(struct drm_crtc *crtc)
4386 struct drm_device *dev = crtc->dev;
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4389 struct intel_encoder *encoder;
4390 int pipe = intel_crtc->pipe;
4392 WARN_ON(!crtc->enabled);
4394 if (intel_crtc->active)
4395 return;
4397 if (intel_crtc_to_shared_dpll(intel_crtc))
4398 intel_enable_shared_dpll(intel_crtc);
4400 if (intel_crtc->config->has_dp_encoder)
4401 intel_dp_set_m_n(intel_crtc);
4403 intel_set_pipe_timings(intel_crtc);
4405 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4406 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4407 intel_crtc->config->pixel_multiplier - 1);
4410 if (intel_crtc->config->has_pch_encoder) {
4411 intel_cpu_transcoder_set_m_n(intel_crtc,
4412 &intel_crtc->config->fdi_m_n, NULL);
4415 haswell_set_pipeconf(crtc);
4417 intel_set_pipe_csc(crtc);
4419 intel_crtc->active = true;
4421 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4422 for_each_encoder_on_crtc(dev, crtc, encoder)
4423 if (encoder->pre_enable)
4424 encoder->pre_enable(encoder);
4426 if (intel_crtc->config->has_pch_encoder) {
4427 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4428 true);
4429 dev_priv->display.fdi_link_train(crtc);
4432 intel_ddi_enable_pipe_clock(intel_crtc);
4434 if (IS_SKYLAKE(dev))
4435 skylake_pfit_enable(intel_crtc);
4436 else
4437 ironlake_pfit_enable(intel_crtc);
4440 * On ILK+ LUT must be loaded before the pipe is running but with
4441 * clocks enabled
4443 intel_crtc_load_lut(crtc);
4445 intel_ddi_set_pipe_settings(crtc);
4446 intel_ddi_enable_transcoder_func(crtc);
4448 intel_update_watermarks(crtc);
4449 intel_enable_pipe(intel_crtc);
4451 if (intel_crtc->config->has_pch_encoder)
4452 lpt_pch_enable(crtc);
4454 if (intel_crtc->config->dp_encoder_is_mst)
4455 intel_ddi_set_vc_payload_alloc(crtc, true);
4457 assert_vblank_disabled(crtc);
4458 drm_crtc_vblank_on(crtc);
4460 for_each_encoder_on_crtc(dev, crtc, encoder) {
4461 encoder->enable(encoder);
4462 intel_opregion_notify_encoder(encoder, true);
4465 /* If we change the relative order between pipe/planes enabling, we need
4466 * to change the workaround. */
4467 haswell_mode_set_planes_workaround(intel_crtc);
4468 intel_crtc_enable_planes(crtc);
4471 static void skylake_pfit_disable(struct intel_crtc *crtc)
4473 struct drm_device *dev = crtc->base.dev;
4474 struct drm_i915_private *dev_priv = dev->dev_private;
4475 int pipe = crtc->pipe;
4477 /* To avoid upsetting the power well on haswell only disable the pfit if
4478 * it's in use. The hw state code will make sure we get this right. */
4479 if (crtc->config->pch_pfit.enabled) {
4480 I915_WRITE(PS_CTL(pipe), 0);
4481 I915_WRITE(PS_WIN_POS(pipe), 0);
4482 I915_WRITE(PS_WIN_SZ(pipe), 0);
4486 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4488 struct drm_device *dev = crtc->base.dev;
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 int pipe = crtc->pipe;
4492 /* To avoid upsetting the power well on haswell only disable the pfit if
4493 * it's in use. The hw state code will make sure we get this right. */
4494 if (crtc->config->pch_pfit.enabled) {
4495 I915_WRITE(PF_CTL(pipe), 0);
4496 I915_WRITE(PF_WIN_POS(pipe), 0);
4497 I915_WRITE(PF_WIN_SZ(pipe), 0);
4501 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4503 struct drm_device *dev = crtc->dev;
4504 struct drm_i915_private *dev_priv = dev->dev_private;
4505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4506 struct intel_encoder *encoder;
4507 int pipe = intel_crtc->pipe;
4508 u32 reg, temp;
4510 if (!intel_crtc->active)
4511 return;
4513 intel_crtc_disable_planes(crtc);
4515 for_each_encoder_on_crtc(dev, crtc, encoder)
4516 encoder->disable(encoder);
4518 drm_crtc_vblank_off(crtc);
4519 assert_vblank_disabled(crtc);
4521 if (intel_crtc->config->has_pch_encoder)
4522 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4524 intel_disable_pipe(intel_crtc);
4526 ironlake_pfit_disable(intel_crtc);
4528 for_each_encoder_on_crtc(dev, crtc, encoder)
4529 if (encoder->post_disable)
4530 encoder->post_disable(encoder);
4532 if (intel_crtc->config->has_pch_encoder) {
4533 ironlake_fdi_disable(crtc);
4535 ironlake_disable_pch_transcoder(dev_priv, pipe);
4537 if (HAS_PCH_CPT(dev)) {
4538 /* disable TRANS_DP_CTL */
4539 reg = TRANS_DP_CTL(pipe);
4540 temp = I915_READ(reg);
4541 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4542 TRANS_DP_PORT_SEL_MASK);
4543 temp |= TRANS_DP_PORT_SEL_NONE;
4544 I915_WRITE(reg, temp);
4546 /* disable DPLL_SEL */
4547 temp = I915_READ(PCH_DPLL_SEL);
4548 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4549 I915_WRITE(PCH_DPLL_SEL, temp);
4552 /* disable PCH DPLL */
4553 intel_disable_shared_dpll(intel_crtc);
4555 ironlake_fdi_pll_disable(intel_crtc);
4558 intel_crtc->active = false;
4559 intel_update_watermarks(crtc);
4561 mutex_lock(&dev->struct_mutex);
4562 intel_fbc_update(dev);
4563 mutex_unlock(&dev->struct_mutex);
4566 static void haswell_crtc_disable(struct drm_crtc *crtc)
4568 struct drm_device *dev = crtc->dev;
4569 struct drm_i915_private *dev_priv = dev->dev_private;
4570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4571 struct intel_encoder *encoder;
4572 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4574 if (!intel_crtc->active)
4575 return;
4577 intel_crtc_disable_planes(crtc);
4579 for_each_encoder_on_crtc(dev, crtc, encoder) {
4580 intel_opregion_notify_encoder(encoder, false);
4581 encoder->disable(encoder);
4584 drm_crtc_vblank_off(crtc);
4585 assert_vblank_disabled(crtc);
4587 if (intel_crtc->config->has_pch_encoder)
4588 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4589 false);
4590 intel_disable_pipe(intel_crtc);
4592 if (intel_crtc->config->dp_encoder_is_mst)
4593 intel_ddi_set_vc_payload_alloc(crtc, false);
4595 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4597 if (IS_SKYLAKE(dev))
4598 skylake_pfit_disable(intel_crtc);
4599 else
4600 ironlake_pfit_disable(intel_crtc);
4602 intel_ddi_disable_pipe_clock(intel_crtc);
4604 if (intel_crtc->config->has_pch_encoder) {
4605 lpt_disable_pch_transcoder(dev_priv);
4606 intel_ddi_fdi_disable(crtc);
4609 for_each_encoder_on_crtc(dev, crtc, encoder)
4610 if (encoder->post_disable)
4611 encoder->post_disable(encoder);
4613 intel_crtc->active = false;
4614 intel_update_watermarks(crtc);
4616 mutex_lock(&dev->struct_mutex);
4617 intel_fbc_update(dev);
4618 mutex_unlock(&dev->struct_mutex);
4620 if (intel_crtc_to_shared_dpll(intel_crtc))
4621 intel_disable_shared_dpll(intel_crtc);
4624 static void ironlake_crtc_off(struct drm_crtc *crtc)
4626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4627 intel_put_shared_dpll(intel_crtc);
4631 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4633 struct drm_device *dev = crtc->base.dev;
4634 struct drm_i915_private *dev_priv = dev->dev_private;
4635 struct intel_crtc_state *pipe_config = crtc->config;
4637 if (!pipe_config->gmch_pfit.control)
4638 return;
4641 * The panel fitter should only be adjusted whilst the pipe is disabled,
4642 * according to register description and PRM.
4644 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4645 assert_pipe_disabled(dev_priv, crtc->pipe);
4647 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4648 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4650 /* Border color in case we don't scale up to the full screen. Black by
4651 * default, change to something else for debugging. */
4652 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4655 static enum intel_display_power_domain port_to_power_domain(enum port port)
4657 switch (port) {
4658 case PORT_A:
4659 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4660 case PORT_B:
4661 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4662 case PORT_C:
4663 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4664 case PORT_D:
4665 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4666 default:
4667 WARN_ON_ONCE(1);
4668 return POWER_DOMAIN_PORT_OTHER;
4672 #define for_each_power_domain(domain, mask) \
4673 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4674 if ((1 << (domain)) & (mask))
4676 enum intel_display_power_domain
4677 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4679 struct drm_device *dev = intel_encoder->base.dev;
4680 struct intel_digital_port *intel_dig_port;
4682 switch (intel_encoder->type) {
4683 case INTEL_OUTPUT_UNKNOWN:
4684 /* Only DDI platforms should ever use this output type */
4685 WARN_ON_ONCE(!HAS_DDI(dev));
4686 case INTEL_OUTPUT_DISPLAYPORT:
4687 case INTEL_OUTPUT_HDMI:
4688 case INTEL_OUTPUT_EDP:
4689 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4690 return port_to_power_domain(intel_dig_port->port);
4691 case INTEL_OUTPUT_DP_MST:
4692 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4693 return port_to_power_domain(intel_dig_port->port);
4694 case INTEL_OUTPUT_ANALOG:
4695 return POWER_DOMAIN_PORT_CRT;
4696 case INTEL_OUTPUT_DSI:
4697 return POWER_DOMAIN_PORT_DSI;
4698 default:
4699 return POWER_DOMAIN_PORT_OTHER;
4703 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4705 struct drm_device *dev = crtc->dev;
4706 struct intel_encoder *intel_encoder;
4707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4708 enum pipe pipe = intel_crtc->pipe;
4709 unsigned long mask;
4710 enum transcoder transcoder;
4712 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4714 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4715 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4716 if (intel_crtc->config->pch_pfit.enabled ||
4717 intel_crtc->config->pch_pfit.force_thru)
4718 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4720 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4721 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4723 return mask;
4726 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4730 struct intel_crtc *crtc;
4733 * First get all needed power domains, then put all unneeded, to avoid
4734 * any unnecessary toggling of the power wells.
4736 for_each_intel_crtc(dev, crtc) {
4737 enum intel_display_power_domain domain;
4739 if (!crtc->base.enabled)
4740 continue;
4742 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4744 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4745 intel_display_power_get(dev_priv, domain);
4748 if (dev_priv->display.modeset_global_resources)
4749 dev_priv->display.modeset_global_resources(dev);
4751 for_each_intel_crtc(dev, crtc) {
4752 enum intel_display_power_domain domain;
4754 for_each_power_domain(domain, crtc->enabled_power_domains)
4755 intel_display_power_put(dev_priv, domain);
4757 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4760 intel_display_set_init_power(dev_priv, false);
4763 /* returns HPLL frequency in kHz */
4764 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4766 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4768 /* Obtain SKU information */
4769 mutex_lock(&dev_priv->dpio_lock);
4770 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4771 CCK_FUSE_HPLL_FREQ_MASK;
4772 mutex_unlock(&dev_priv->dpio_lock);
4774 return vco_freq[hpll_freq] * 1000;
4777 static void vlv_update_cdclk(struct drm_device *dev)
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4781 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4782 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4783 dev_priv->vlv_cdclk_freq);
4786 * Program the gmbus_freq based on the cdclk frequency.
4787 * BSpec erroneously claims we should aim for 4MHz, but
4788 * in fact 1MHz is the correct frequency.
4790 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4793 /* Adjust CDclk dividers to allow high res or save power if possible */
4794 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4796 struct drm_i915_private *dev_priv = dev->dev_private;
4797 u32 val, cmd;
4799 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4801 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4802 cmd = 2;
4803 else if (cdclk == 266667)
4804 cmd = 1;
4805 else
4806 cmd = 0;
4808 mutex_lock(&dev_priv->rps.hw_lock);
4809 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4810 val &= ~DSPFREQGUAR_MASK;
4811 val |= (cmd << DSPFREQGUAR_SHIFT);
4812 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4813 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4814 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4815 50)) {
4816 DRM_ERROR("timed out waiting for CDclk change\n");
4818 mutex_unlock(&dev_priv->rps.hw_lock);
4820 if (cdclk == 400000) {
4821 u32 divider;
4823 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4825 mutex_lock(&dev_priv->dpio_lock);
4826 /* adjust cdclk divider */
4827 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4828 val &= ~DISPLAY_FREQUENCY_VALUES;
4829 val |= divider;
4830 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4832 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4833 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4834 50))
4835 DRM_ERROR("timed out waiting for CDclk change\n");
4836 mutex_unlock(&dev_priv->dpio_lock);
4839 mutex_lock(&dev_priv->dpio_lock);
4840 /* adjust self-refresh exit latency value */
4841 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4842 val &= ~0x7f;
4845 * For high bandwidth configs, we set a higher latency in the bunit
4846 * so that the core display fetch happens in time to avoid underruns.
4848 if (cdclk == 400000)
4849 val |= 4500 / 250; /* 4.5 usec */
4850 else
4851 val |= 3000 / 250; /* 3.0 usec */
4852 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4853 mutex_unlock(&dev_priv->dpio_lock);
4855 vlv_update_cdclk(dev);
4858 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 u32 val, cmd;
4863 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4865 switch (cdclk) {
4866 case 400000:
4867 cmd = 3;
4868 break;
4869 case 333333:
4870 case 320000:
4871 cmd = 2;
4872 break;
4873 case 266667:
4874 cmd = 1;
4875 break;
4876 case 200000:
4877 cmd = 0;
4878 break;
4879 default:
4880 MISSING_CASE(cdclk);
4881 return;
4884 mutex_lock(&dev_priv->rps.hw_lock);
4885 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4886 val &= ~DSPFREQGUAR_MASK_CHV;
4887 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4888 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4889 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4890 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4891 50)) {
4892 DRM_ERROR("timed out waiting for CDclk change\n");
4894 mutex_unlock(&dev_priv->rps.hw_lock);
4896 vlv_update_cdclk(dev);
4899 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4900 int max_pixclk)
4902 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4904 /* FIXME: Punit isn't quite ready yet */
4905 if (IS_CHERRYVIEW(dev_priv->dev))
4906 return 400000;
4909 * Really only a few cases to deal with, as only 4 CDclks are supported:
4910 * 200MHz
4911 * 267MHz
4912 * 320/333MHz (depends on HPLL freq)
4913 * 400MHz
4914 * So we check to see whether we're above 90% of the lower bin and
4915 * adjust if needed.
4917 * We seem to get an unstable or solid color picture at 200MHz.
4918 * Not sure what's wrong. For now use 200MHz only when all pipes
4919 * are off.
4921 if (max_pixclk > freq_320*9/10)
4922 return 400000;
4923 else if (max_pixclk > 266667*9/10)
4924 return freq_320;
4925 else if (max_pixclk > 0)
4926 return 266667;
4927 else
4928 return 200000;
4931 /* compute the max pixel clock for new configuration */
4932 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4934 struct drm_device *dev = dev_priv->dev;
4935 struct intel_crtc *intel_crtc;
4936 int max_pixclk = 0;
4938 for_each_intel_crtc(dev, intel_crtc) {
4939 if (intel_crtc->new_enabled)
4940 max_pixclk = max(max_pixclk,
4941 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
4944 return max_pixclk;
4947 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4948 unsigned *prepare_pipes)
4950 struct drm_i915_private *dev_priv = dev->dev_private;
4951 struct intel_crtc *intel_crtc;
4952 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4954 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4955 dev_priv->vlv_cdclk_freq)
4956 return;
4958 /* disable/enable all currently active pipes while we change cdclk */
4959 for_each_intel_crtc(dev, intel_crtc)
4960 if (intel_crtc->base.enabled)
4961 *prepare_pipes |= (1 << intel_crtc->pipe);
4964 static void valleyview_modeset_global_resources(struct drm_device *dev)
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4968 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4970 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4972 * FIXME: We can end up here with all power domains off, yet
4973 * with a CDCLK frequency other than the minimum. To account
4974 * for this take the PIPE-A power domain, which covers the HW
4975 * blocks needed for the following programming. This can be
4976 * removed once it's guaranteed that we get here either with
4977 * the minimum CDCLK set, or the required power domains
4978 * enabled.
4980 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4982 if (IS_CHERRYVIEW(dev))
4983 cherryview_set_cdclk(dev, req_cdclk);
4984 else
4985 valleyview_set_cdclk(dev, req_cdclk);
4987 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4991 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4993 struct drm_device *dev = crtc->dev;
4994 struct drm_i915_private *dev_priv = to_i915(dev);
4995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4996 struct intel_encoder *encoder;
4997 int pipe = intel_crtc->pipe;
4998 bool is_dsi;
5000 WARN_ON(!crtc->enabled);
5002 if (intel_crtc->active)
5003 return;
5005 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5007 if (!is_dsi) {
5008 if (IS_CHERRYVIEW(dev))
5009 chv_prepare_pll(intel_crtc, intel_crtc->config);
5010 else
5011 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5014 if (intel_crtc->config->has_dp_encoder)
5015 intel_dp_set_m_n(intel_crtc);
5017 intel_set_pipe_timings(intel_crtc);
5019 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5020 struct drm_i915_private *dev_priv = dev->dev_private;
5022 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5023 I915_WRITE(CHV_CANVAS(pipe), 0);
5026 i9xx_set_pipeconf(intel_crtc);
5028 intel_crtc->active = true;
5030 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5032 for_each_encoder_on_crtc(dev, crtc, encoder)
5033 if (encoder->pre_pll_enable)
5034 encoder->pre_pll_enable(encoder);
5036 if (!is_dsi) {
5037 if (IS_CHERRYVIEW(dev))
5038 chv_enable_pll(intel_crtc, intel_crtc->config);
5039 else
5040 vlv_enable_pll(intel_crtc, intel_crtc->config);
5043 for_each_encoder_on_crtc(dev, crtc, encoder)
5044 if (encoder->pre_enable)
5045 encoder->pre_enable(encoder);
5047 i9xx_pfit_enable(intel_crtc);
5049 intel_crtc_load_lut(crtc);
5051 intel_update_watermarks(crtc);
5052 intel_enable_pipe(intel_crtc);
5054 assert_vblank_disabled(crtc);
5055 drm_crtc_vblank_on(crtc);
5057 for_each_encoder_on_crtc(dev, crtc, encoder)
5058 encoder->enable(encoder);
5060 intel_crtc_enable_planes(crtc);
5062 /* Underruns don't raise interrupts, so check manually. */
5063 i9xx_check_fifo_underruns(dev_priv);
5066 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5068 struct drm_device *dev = crtc->base.dev;
5069 struct drm_i915_private *dev_priv = dev->dev_private;
5071 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5072 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5075 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5077 struct drm_device *dev = crtc->dev;
5078 struct drm_i915_private *dev_priv = to_i915(dev);
5079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5080 struct intel_encoder *encoder;
5081 int pipe = intel_crtc->pipe;
5083 WARN_ON(!crtc->enabled);
5085 if (intel_crtc->active)
5086 return;
5088 i9xx_set_pll_dividers(intel_crtc);
5090 if (intel_crtc->config->has_dp_encoder)
5091 intel_dp_set_m_n(intel_crtc);
5093 intel_set_pipe_timings(intel_crtc);
5095 i9xx_set_pipeconf(intel_crtc);
5097 intel_crtc->active = true;
5099 if (!IS_GEN2(dev))
5100 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5102 for_each_encoder_on_crtc(dev, crtc, encoder)
5103 if (encoder->pre_enable)
5104 encoder->pre_enable(encoder);
5106 i9xx_enable_pll(intel_crtc);
5108 i9xx_pfit_enable(intel_crtc);
5110 intel_crtc_load_lut(crtc);
5112 intel_update_watermarks(crtc);
5113 intel_enable_pipe(intel_crtc);
5115 assert_vblank_disabled(crtc);
5116 drm_crtc_vblank_on(crtc);
5118 for_each_encoder_on_crtc(dev, crtc, encoder)
5119 encoder->enable(encoder);
5121 intel_crtc_enable_planes(crtc);
5124 * Gen2 reports pipe underruns whenever all planes are disabled.
5125 * So don't enable underrun reporting before at least some planes
5126 * are enabled.
5127 * FIXME: Need to fix the logic to work when we turn off all planes
5128 * but leave the pipe running.
5130 if (IS_GEN2(dev))
5131 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5133 /* Underruns don't raise interrupts, so check manually. */
5134 i9xx_check_fifo_underruns(dev_priv);
5137 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5139 struct drm_device *dev = crtc->base.dev;
5140 struct drm_i915_private *dev_priv = dev->dev_private;
5142 if (!crtc->config->gmch_pfit.control)
5143 return;
5145 assert_pipe_disabled(dev_priv, crtc->pipe);
5147 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5148 I915_READ(PFIT_CONTROL));
5149 I915_WRITE(PFIT_CONTROL, 0);
5152 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5154 struct drm_device *dev = crtc->dev;
5155 struct drm_i915_private *dev_priv = dev->dev_private;
5156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5157 struct intel_encoder *encoder;
5158 int pipe = intel_crtc->pipe;
5160 if (!intel_crtc->active)
5161 return;
5164 * Gen2 reports pipe underruns whenever all planes are disabled.
5165 * So diasble underrun reporting before all the planes get disabled.
5166 * FIXME: Need to fix the logic to work when we turn off all planes
5167 * but leave the pipe running.
5169 if (IS_GEN2(dev))
5170 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5173 * Vblank time updates from the shadow to live plane control register
5174 * are blocked if the memory self-refresh mode is active at that
5175 * moment. So to make sure the plane gets truly disabled, disable
5176 * first the self-refresh mode. The self-refresh enable bit in turn
5177 * will be checked/applied by the HW only at the next frame start
5178 * event which is after the vblank start event, so we need to have a
5179 * wait-for-vblank between disabling the plane and the pipe.
5181 intel_set_memory_cxsr(dev_priv, false);
5182 intel_crtc_disable_planes(crtc);
5185 * On gen2 planes are double buffered but the pipe isn't, so we must
5186 * wait for planes to fully turn off before disabling the pipe.
5187 * We also need to wait on all gmch platforms because of the
5188 * self-refresh mode constraint explained above.
5190 intel_wait_for_vblank(dev, pipe);
5192 for_each_encoder_on_crtc(dev, crtc, encoder)
5193 encoder->disable(encoder);
5195 drm_crtc_vblank_off(crtc);
5196 assert_vblank_disabled(crtc);
5198 intel_disable_pipe(intel_crtc);
5200 i9xx_pfit_disable(intel_crtc);
5202 for_each_encoder_on_crtc(dev, crtc, encoder)
5203 if (encoder->post_disable)
5204 encoder->post_disable(encoder);
5206 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5207 if (IS_CHERRYVIEW(dev))
5208 chv_disable_pll(dev_priv, pipe);
5209 else if (IS_VALLEYVIEW(dev))
5210 vlv_disable_pll(dev_priv, pipe);
5211 else
5212 i9xx_disable_pll(intel_crtc);
5215 if (!IS_GEN2(dev))
5216 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5218 intel_crtc->active = false;
5219 intel_update_watermarks(crtc);
5221 mutex_lock(&dev->struct_mutex);
5222 intel_fbc_update(dev);
5223 mutex_unlock(&dev->struct_mutex);
5226 static void i9xx_crtc_off(struct drm_crtc *crtc)
5230 /* Master function to enable/disable CRTC and corresponding power wells */
5231 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5233 struct drm_device *dev = crtc->dev;
5234 struct drm_i915_private *dev_priv = dev->dev_private;
5235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5236 enum intel_display_power_domain domain;
5237 unsigned long domains;
5239 if (enable) {
5240 if (!intel_crtc->active) {
5241 domains = get_crtc_power_domains(crtc);
5242 for_each_power_domain(domain, domains)
5243 intel_display_power_get(dev_priv, domain);
5244 intel_crtc->enabled_power_domains = domains;
5246 dev_priv->display.crtc_enable(crtc);
5248 } else {
5249 if (intel_crtc->active) {
5250 dev_priv->display.crtc_disable(crtc);
5252 domains = intel_crtc->enabled_power_domains;
5253 for_each_power_domain(domain, domains)
5254 intel_display_power_put(dev_priv, domain);
5255 intel_crtc->enabled_power_domains = 0;
5261 * Sets the power management mode of the pipe and plane.
5263 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5265 struct drm_device *dev = crtc->dev;
5266 struct intel_encoder *intel_encoder;
5267 bool enable = false;
5269 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5270 enable |= intel_encoder->connectors_active;
5272 intel_crtc_control(crtc, enable);
5275 static void intel_crtc_disable(struct drm_crtc *crtc)
5277 struct drm_device *dev = crtc->dev;
5278 struct drm_connector *connector;
5279 struct drm_i915_private *dev_priv = dev->dev_private;
5281 /* crtc should still be enabled when we disable it. */
5282 WARN_ON(!crtc->enabled);
5284 dev_priv->display.crtc_disable(crtc);
5285 dev_priv->display.off(crtc);
5287 crtc->primary->funcs->disable_plane(crtc->primary);
5289 /* Update computed state. */
5290 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5291 if (!connector->encoder || !connector->encoder->crtc)
5292 continue;
5294 if (connector->encoder->crtc != crtc)
5295 continue;
5297 connector->dpms = DRM_MODE_DPMS_OFF;
5298 to_intel_encoder(connector->encoder)->connectors_active = false;
5302 void intel_encoder_destroy(struct drm_encoder *encoder)
5304 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5306 drm_encoder_cleanup(encoder);
5307 kfree(intel_encoder);
5310 /* Simple dpms helper for encoders with just one connector, no cloning and only
5311 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5312 * state of the entire output pipe. */
5313 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5315 if (mode == DRM_MODE_DPMS_ON) {
5316 encoder->connectors_active = true;
5318 intel_crtc_update_dpms(encoder->base.crtc);
5319 } else {
5320 encoder->connectors_active = false;
5322 intel_crtc_update_dpms(encoder->base.crtc);
5326 /* Cross check the actual hw state with our own modeset state tracking (and it's
5327 * internal consistency). */
5328 static void intel_connector_check_state(struct intel_connector *connector)
5330 if (connector->get_hw_state(connector)) {
5331 struct intel_encoder *encoder = connector->encoder;
5332 struct drm_crtc *crtc;
5333 bool encoder_enabled;
5334 enum pipe pipe;
5336 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5337 connector->base.base.id,
5338 connector->base.name);
5340 /* there is no real hw state for MST connectors */
5341 if (connector->mst_port)
5342 return;
5344 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5345 "wrong connector dpms state\n");
5346 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5347 "active connector not linked to encoder\n");
5349 if (encoder) {
5350 I915_STATE_WARN(!encoder->connectors_active,
5351 "encoder->connectors_active not set\n");
5353 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5354 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5355 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5356 return;
5358 crtc = encoder->base.crtc;
5360 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5361 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5362 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5363 "encoder active on the wrong pipe\n");
5368 /* Even simpler default implementation, if there's really no special case to
5369 * consider. */
5370 void intel_connector_dpms(struct drm_connector *connector, int mode)
5372 /* All the simple cases only support two dpms states. */
5373 if (mode != DRM_MODE_DPMS_ON)
5374 mode = DRM_MODE_DPMS_OFF;
5376 if (mode == connector->dpms)
5377 return;
5379 connector->dpms = mode;
5381 /* Only need to change hw state when actually enabled */
5382 if (connector->encoder)
5383 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5385 intel_modeset_check_state(connector->dev);
5388 /* Simple connector->get_hw_state implementation for encoders that support only
5389 * one connector and no cloning and hence the encoder state determines the state
5390 * of the connector. */
5391 bool intel_connector_get_hw_state(struct intel_connector *connector)
5393 enum pipe pipe = 0;
5394 struct intel_encoder *encoder = connector->encoder;
5396 return encoder->get_hw_state(encoder, &pipe);
5399 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5400 struct intel_crtc_state *pipe_config)
5402 struct drm_i915_private *dev_priv = dev->dev_private;
5403 struct intel_crtc *pipe_B_crtc =
5404 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5406 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5407 pipe_name(pipe), pipe_config->fdi_lanes);
5408 if (pipe_config->fdi_lanes > 4) {
5409 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5410 pipe_name(pipe), pipe_config->fdi_lanes);
5411 return false;
5414 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5415 if (pipe_config->fdi_lanes > 2) {
5416 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5417 pipe_config->fdi_lanes);
5418 return false;
5419 } else {
5420 return true;
5424 if (INTEL_INFO(dev)->num_pipes == 2)
5425 return true;
5427 /* Ivybridge 3 pipe is really complicated */
5428 switch (pipe) {
5429 case PIPE_A:
5430 return true;
5431 case PIPE_B:
5432 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5433 pipe_config->fdi_lanes > 2) {
5434 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5435 pipe_name(pipe), pipe_config->fdi_lanes);
5436 return false;
5438 return true;
5439 case PIPE_C:
5440 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5441 pipe_B_crtc->config->fdi_lanes <= 2) {
5442 if (pipe_config->fdi_lanes > 2) {
5443 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5444 pipe_name(pipe), pipe_config->fdi_lanes);
5445 return false;
5447 } else {
5448 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5449 return false;
5451 return true;
5452 default:
5453 BUG();
5457 #define RETRY 1
5458 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5459 struct intel_crtc_state *pipe_config)
5461 struct drm_device *dev = intel_crtc->base.dev;
5462 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5463 int lane, link_bw, fdi_dotclock;
5464 bool setup_ok, needs_recompute = false;
5466 retry:
5467 /* FDI is a binary signal running at ~2.7GHz, encoding
5468 * each output octet as 10 bits. The actual frequency
5469 * is stored as a divider into a 100MHz clock, and the
5470 * mode pixel clock is stored in units of 1KHz.
5471 * Hence the bw of each lane in terms of the mode signal
5472 * is:
5474 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5476 fdi_dotclock = adjusted_mode->crtc_clock;
5478 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5479 pipe_config->pipe_bpp);
5481 pipe_config->fdi_lanes = lane;
5483 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5484 link_bw, &pipe_config->fdi_m_n);
5486 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5487 intel_crtc->pipe, pipe_config);
5488 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5489 pipe_config->pipe_bpp -= 2*3;
5490 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5491 pipe_config->pipe_bpp);
5492 needs_recompute = true;
5493 pipe_config->bw_constrained = true;
5495 goto retry;
5498 if (needs_recompute)
5499 return RETRY;
5501 return setup_ok ? 0 : -EINVAL;
5504 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5505 struct intel_crtc_state *pipe_config)
5507 pipe_config->ips_enabled = i915.enable_ips &&
5508 hsw_crtc_supports_ips(crtc) &&
5509 pipe_config->pipe_bpp <= 24;
5512 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5513 struct intel_crtc_state *pipe_config)
5515 struct drm_device *dev = crtc->base.dev;
5516 struct drm_i915_private *dev_priv = dev->dev_private;
5517 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5519 /* FIXME should check pixel clock limits on all platforms */
5520 if (INTEL_INFO(dev)->gen < 4) {
5521 int clock_limit =
5522 dev_priv->display.get_display_clock_speed(dev);
5525 * Enable pixel doubling when the dot clock
5526 * is > 90% of the (display) core speed.
5528 * GDG double wide on either pipe,
5529 * otherwise pipe A only.
5531 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5532 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5533 clock_limit *= 2;
5534 pipe_config->double_wide = true;
5537 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5538 return -EINVAL;
5542 * Pipe horizontal size must be even in:
5543 * - DVO ganged mode
5544 * - LVDS dual channel mode
5545 * - Double wide pipe
5547 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5548 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5549 pipe_config->pipe_src_w &= ~1;
5551 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5552 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5554 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5555 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5556 return -EINVAL;
5558 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5559 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5560 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5561 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5562 * for lvds. */
5563 pipe_config->pipe_bpp = 8*3;
5566 if (HAS_IPS(dev))
5567 hsw_compute_ips_config(crtc, pipe_config);
5569 if (pipe_config->has_pch_encoder)
5570 return ironlake_fdi_compute_config(crtc, pipe_config);
5572 return 0;
5575 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5577 struct drm_i915_private *dev_priv = dev->dev_private;
5578 u32 val;
5579 int divider;
5581 /* FIXME: Punit isn't quite ready yet */
5582 if (IS_CHERRYVIEW(dev))
5583 return 400000;
5585 if (dev_priv->hpll_freq == 0)
5586 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5588 mutex_lock(&dev_priv->dpio_lock);
5589 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5590 mutex_unlock(&dev_priv->dpio_lock);
5592 divider = val & DISPLAY_FREQUENCY_VALUES;
5594 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5595 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5596 "cdclk change in progress\n");
5598 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5601 static int i945_get_display_clock_speed(struct drm_device *dev)
5603 return 400000;
5606 static int i915_get_display_clock_speed(struct drm_device *dev)
5608 return 333000;
5611 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5613 return 200000;
5616 static int pnv_get_display_clock_speed(struct drm_device *dev)
5618 u16 gcfgc = 0;
5620 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5622 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5624 return 267000;
5625 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5626 return 333000;
5627 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5628 return 444000;
5629 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5630 return 200000;
5631 default:
5632 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5633 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5634 return 133000;
5635 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5636 return 167000;
5640 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5642 u16 gcfgc = 0;
5644 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5646 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5647 return 133000;
5648 else {
5649 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5650 case GC_DISPLAY_CLOCK_333_MHZ:
5651 return 333000;
5652 default:
5653 case GC_DISPLAY_CLOCK_190_200_MHZ:
5654 return 190000;
5659 static int i865_get_display_clock_speed(struct drm_device *dev)
5661 return 266000;
5664 static int i855_get_display_clock_speed(struct drm_device *dev)
5666 u16 hpllcc = 0;
5667 /* Assume that the hardware is in the high speed state. This
5668 * should be the default.
5670 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5671 case GC_CLOCK_133_200:
5672 case GC_CLOCK_100_200:
5673 return 200000;
5674 case GC_CLOCK_166_250:
5675 return 250000;
5676 case GC_CLOCK_100_133:
5677 return 133000;
5680 /* Shouldn't happen */
5681 return 0;
5684 static int i830_get_display_clock_speed(struct drm_device *dev)
5686 return 133000;
5689 static void
5690 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5692 while (*num > DATA_LINK_M_N_MASK ||
5693 *den > DATA_LINK_M_N_MASK) {
5694 *num >>= 1;
5695 *den >>= 1;
5699 static void compute_m_n(unsigned int m, unsigned int n,
5700 uint32_t *ret_m, uint32_t *ret_n)
5702 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5703 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5704 intel_reduce_m_n_ratio(ret_m, ret_n);
5707 void
5708 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5709 int pixel_clock, int link_clock,
5710 struct intel_link_m_n *m_n)
5712 m_n->tu = 64;
5714 compute_m_n(bits_per_pixel * pixel_clock,
5715 link_clock * nlanes * 8,
5716 &m_n->gmch_m, &m_n->gmch_n);
5718 compute_m_n(pixel_clock, link_clock,
5719 &m_n->link_m, &m_n->link_n);
5722 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5724 if (i915.panel_use_ssc >= 0)
5725 return i915.panel_use_ssc != 0;
5726 return dev_priv->vbt.lvds_use_ssc
5727 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5730 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5732 struct drm_device *dev = crtc->base.dev;
5733 struct drm_i915_private *dev_priv = dev->dev_private;
5734 int refclk;
5736 if (IS_VALLEYVIEW(dev)) {
5737 refclk = 100000;
5738 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5739 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5740 refclk = dev_priv->vbt.lvds_ssc_freq;
5741 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5742 } else if (!IS_GEN2(dev)) {
5743 refclk = 96000;
5744 } else {
5745 refclk = 48000;
5748 return refclk;
5751 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5753 return (1 << dpll->n) << 16 | dpll->m2;
5756 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5758 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5761 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5762 struct intel_crtc_state *crtc_state,
5763 intel_clock_t *reduced_clock)
5765 struct drm_device *dev = crtc->base.dev;
5766 u32 fp, fp2 = 0;
5768 if (IS_PINEVIEW(dev)) {
5769 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5770 if (reduced_clock)
5771 fp2 = pnv_dpll_compute_fp(reduced_clock);
5772 } else {
5773 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5774 if (reduced_clock)
5775 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5778 crtc_state->dpll_hw_state.fp0 = fp;
5780 crtc->lowfreq_avail = false;
5781 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5782 reduced_clock && i915.powersave) {
5783 crtc_state->dpll_hw_state.fp1 = fp2;
5784 crtc->lowfreq_avail = true;
5785 } else {
5786 crtc_state->dpll_hw_state.fp1 = fp;
5790 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5791 pipe)
5793 u32 reg_val;
5796 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5797 * and set it to a reasonable value instead.
5799 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5800 reg_val &= 0xffffff00;
5801 reg_val |= 0x00000030;
5802 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5804 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5805 reg_val &= 0x8cffffff;
5806 reg_val = 0x8c000000;
5807 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5809 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5810 reg_val &= 0xffffff00;
5811 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5813 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5814 reg_val &= 0x00ffffff;
5815 reg_val |= 0xb0000000;
5816 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5819 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5820 struct intel_link_m_n *m_n)
5822 struct drm_device *dev = crtc->base.dev;
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 int pipe = crtc->pipe;
5826 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5827 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5828 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5829 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5832 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5833 struct intel_link_m_n *m_n,
5834 struct intel_link_m_n *m2_n2)
5836 struct drm_device *dev = crtc->base.dev;
5837 struct drm_i915_private *dev_priv = dev->dev_private;
5838 int pipe = crtc->pipe;
5839 enum transcoder transcoder = crtc->config->cpu_transcoder;
5841 if (INTEL_INFO(dev)->gen >= 5) {
5842 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5843 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5844 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5845 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5846 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5847 * for gen < 8) and if DRRS is supported (to make sure the
5848 * registers are not unnecessarily accessed).
5850 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5851 crtc->config->has_drrs) {
5852 I915_WRITE(PIPE_DATA_M2(transcoder),
5853 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5854 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5855 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5856 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5858 } else {
5859 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5860 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5861 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5862 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5866 void intel_dp_set_m_n(struct intel_crtc *crtc)
5868 if (crtc->config->has_pch_encoder)
5869 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
5870 else
5871 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5872 &crtc->config->dp_m2_n2);
5875 static void vlv_update_pll(struct intel_crtc *crtc,
5876 struct intel_crtc_state *pipe_config)
5878 u32 dpll, dpll_md;
5881 * Enable DPIO clock input. We should never disable the reference
5882 * clock for pipe B, since VGA hotplug / manual detection depends
5883 * on it.
5885 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5886 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5887 /* We should never disable this, set it here for state tracking */
5888 if (crtc->pipe == PIPE_B)
5889 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5890 dpll |= DPLL_VCO_ENABLE;
5891 pipe_config->dpll_hw_state.dpll = dpll;
5893 dpll_md = (pipe_config->pixel_multiplier - 1)
5894 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5895 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5898 static void vlv_prepare_pll(struct intel_crtc *crtc,
5899 const struct intel_crtc_state *pipe_config)
5901 struct drm_device *dev = crtc->base.dev;
5902 struct drm_i915_private *dev_priv = dev->dev_private;
5903 int pipe = crtc->pipe;
5904 u32 mdiv;
5905 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5906 u32 coreclk, reg_val;
5908 mutex_lock(&dev_priv->dpio_lock);
5910 bestn = pipe_config->dpll.n;
5911 bestm1 = pipe_config->dpll.m1;
5912 bestm2 = pipe_config->dpll.m2;
5913 bestp1 = pipe_config->dpll.p1;
5914 bestp2 = pipe_config->dpll.p2;
5916 /* See eDP HDMI DPIO driver vbios notes doc */
5918 /* PLL B needs special handling */
5919 if (pipe == PIPE_B)
5920 vlv_pllb_recal_opamp(dev_priv, pipe);
5922 /* Set up Tx target for periodic Rcomp update */
5923 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5925 /* Disable target IRef on PLL */
5926 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5927 reg_val &= 0x00ffffff;
5928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5930 /* Disable fast lock */
5931 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5933 /* Set idtafcrecal before PLL is enabled */
5934 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5935 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5936 mdiv |= ((bestn << DPIO_N_SHIFT));
5937 mdiv |= (1 << DPIO_K_SHIFT);
5940 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5941 * but we don't support that).
5942 * Note: don't use the DAC post divider as it seems unstable.
5944 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5945 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5947 mdiv |= DPIO_ENABLE_CALIBRATION;
5948 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5950 /* Set HBR and RBR LPF coefficients */
5951 if (pipe_config->port_clock == 162000 ||
5952 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5953 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5955 0x009f0003);
5956 else
5957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5958 0x00d0000f);
5960 if (pipe_config->has_dp_encoder) {
5961 /* Use SSC source */
5962 if (pipe == PIPE_A)
5963 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5964 0x0df40000);
5965 else
5966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5967 0x0df70000);
5968 } else { /* HDMI or VGA */
5969 /* Use bend source */
5970 if (pipe == PIPE_A)
5971 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5972 0x0df70000);
5973 else
5974 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5975 0x0df40000);
5978 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5979 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5980 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5981 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5982 coreclk |= 0x01000000;
5983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5985 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5986 mutex_unlock(&dev_priv->dpio_lock);
5989 static void chv_update_pll(struct intel_crtc *crtc,
5990 struct intel_crtc_state *pipe_config)
5992 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5993 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5994 DPLL_VCO_ENABLE;
5995 if (crtc->pipe != PIPE_A)
5996 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5998 pipe_config->dpll_hw_state.dpll_md =
5999 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6002 static void chv_prepare_pll(struct intel_crtc *crtc,
6003 const struct intel_crtc_state *pipe_config)
6005 struct drm_device *dev = crtc->base.dev;
6006 struct drm_i915_private *dev_priv = dev->dev_private;
6007 int pipe = crtc->pipe;
6008 int dpll_reg = DPLL(crtc->pipe);
6009 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6010 u32 loopfilter, intcoeff;
6011 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6012 int refclk;
6014 bestn = pipe_config->dpll.n;
6015 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6016 bestm1 = pipe_config->dpll.m1;
6017 bestm2 = pipe_config->dpll.m2 >> 22;
6018 bestp1 = pipe_config->dpll.p1;
6019 bestp2 = pipe_config->dpll.p2;
6022 * Enable Refclk and SSC
6024 I915_WRITE(dpll_reg,
6025 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6027 mutex_lock(&dev_priv->dpio_lock);
6029 /* p1 and p2 divider */
6030 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6031 5 << DPIO_CHV_S1_DIV_SHIFT |
6032 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6033 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6034 1 << DPIO_CHV_K_DIV_SHIFT);
6036 /* Feedback post-divider - m2 */
6037 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6039 /* Feedback refclk divider - n and m1 */
6040 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6041 DPIO_CHV_M1_DIV_BY_2 |
6042 1 << DPIO_CHV_N_DIV_SHIFT);
6044 /* M2 fraction division */
6045 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6047 /* M2 fraction division enable */
6048 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6049 DPIO_CHV_FRAC_DIV_EN |
6050 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6052 /* Loop filter */
6053 refclk = i9xx_get_refclk(crtc, 0);
6054 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6055 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6056 if (refclk == 100000)
6057 intcoeff = 11;
6058 else if (refclk == 38400)
6059 intcoeff = 10;
6060 else
6061 intcoeff = 9;
6062 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6063 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6065 /* AFC Recal */
6066 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6067 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6068 DPIO_AFC_RECAL);
6070 mutex_unlock(&dev_priv->dpio_lock);
6074 * vlv_force_pll_on - forcibly enable just the PLL
6075 * @dev_priv: i915 private structure
6076 * @pipe: pipe PLL to enable
6077 * @dpll: PLL configuration
6079 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6080 * in cases where we need the PLL enabled even when @pipe is not going to
6081 * be enabled.
6083 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6084 const struct dpll *dpll)
6086 struct intel_crtc *crtc =
6087 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6088 struct intel_crtc_state pipe_config = {
6089 .pixel_multiplier = 1,
6090 .dpll = *dpll,
6093 if (IS_CHERRYVIEW(dev)) {
6094 chv_update_pll(crtc, &pipe_config);
6095 chv_prepare_pll(crtc, &pipe_config);
6096 chv_enable_pll(crtc, &pipe_config);
6097 } else {
6098 vlv_update_pll(crtc, &pipe_config);
6099 vlv_prepare_pll(crtc, &pipe_config);
6100 vlv_enable_pll(crtc, &pipe_config);
6105 * vlv_force_pll_off - forcibly disable just the PLL
6106 * @dev_priv: i915 private structure
6107 * @pipe: pipe PLL to disable
6109 * Disable the PLL for @pipe. To be used in cases where we need
6110 * the PLL enabled even when @pipe is not going to be enabled.
6112 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6114 if (IS_CHERRYVIEW(dev))
6115 chv_disable_pll(to_i915(dev), pipe);
6116 else
6117 vlv_disable_pll(to_i915(dev), pipe);
6120 static void i9xx_update_pll(struct intel_crtc *crtc,
6121 struct intel_crtc_state *crtc_state,
6122 intel_clock_t *reduced_clock,
6123 int num_connectors)
6125 struct drm_device *dev = crtc->base.dev;
6126 struct drm_i915_private *dev_priv = dev->dev_private;
6127 u32 dpll;
6128 bool is_sdvo;
6129 struct dpll *clock = &crtc_state->dpll;
6131 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6133 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6134 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6136 dpll = DPLL_VGA_MODE_DIS;
6138 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6139 dpll |= DPLLB_MODE_LVDS;
6140 else
6141 dpll |= DPLLB_MODE_DAC_SERIAL;
6143 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6144 dpll |= (crtc_state->pixel_multiplier - 1)
6145 << SDVO_MULTIPLIER_SHIFT_HIRES;
6148 if (is_sdvo)
6149 dpll |= DPLL_SDVO_HIGH_SPEED;
6151 if (crtc_state->has_dp_encoder)
6152 dpll |= DPLL_SDVO_HIGH_SPEED;
6154 /* compute bitmask from p1 value */
6155 if (IS_PINEVIEW(dev))
6156 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6157 else {
6158 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6159 if (IS_G4X(dev) && reduced_clock)
6160 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6162 switch (clock->p2) {
6163 case 5:
6164 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6165 break;
6166 case 7:
6167 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6168 break;
6169 case 10:
6170 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6171 break;
6172 case 14:
6173 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6174 break;
6176 if (INTEL_INFO(dev)->gen >= 4)
6177 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6179 if (crtc_state->sdvo_tv_clock)
6180 dpll |= PLL_REF_INPUT_TVCLKINBC;
6181 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6182 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6183 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6184 else
6185 dpll |= PLL_REF_INPUT_DREFCLK;
6187 dpll |= DPLL_VCO_ENABLE;
6188 crtc_state->dpll_hw_state.dpll = dpll;
6190 if (INTEL_INFO(dev)->gen >= 4) {
6191 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6192 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6193 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6197 static void i8xx_update_pll(struct intel_crtc *crtc,
6198 struct intel_crtc_state *crtc_state,
6199 intel_clock_t *reduced_clock,
6200 int num_connectors)
6202 struct drm_device *dev = crtc->base.dev;
6203 struct drm_i915_private *dev_priv = dev->dev_private;
6204 u32 dpll;
6205 struct dpll *clock = &crtc_state->dpll;
6207 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6209 dpll = DPLL_VGA_MODE_DIS;
6211 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6212 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6213 } else {
6214 if (clock->p1 == 2)
6215 dpll |= PLL_P1_DIVIDE_BY_TWO;
6216 else
6217 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6218 if (clock->p2 == 4)
6219 dpll |= PLL_P2_DIVIDE_BY_4;
6222 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6223 dpll |= DPLL_DVO_2X_MODE;
6225 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6226 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6227 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6228 else
6229 dpll |= PLL_REF_INPUT_DREFCLK;
6231 dpll |= DPLL_VCO_ENABLE;
6232 crtc_state->dpll_hw_state.dpll = dpll;
6235 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6237 struct drm_device *dev = intel_crtc->base.dev;
6238 struct drm_i915_private *dev_priv = dev->dev_private;
6239 enum pipe pipe = intel_crtc->pipe;
6240 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6241 struct drm_display_mode *adjusted_mode =
6242 &intel_crtc->config->base.adjusted_mode;
6243 uint32_t crtc_vtotal, crtc_vblank_end;
6244 int vsyncshift = 0;
6246 /* We need to be careful not to changed the adjusted mode, for otherwise
6247 * the hw state checker will get angry at the mismatch. */
6248 crtc_vtotal = adjusted_mode->crtc_vtotal;
6249 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6251 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6252 /* the chip adds 2 halflines automatically */
6253 crtc_vtotal -= 1;
6254 crtc_vblank_end -= 1;
6256 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6257 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6258 else
6259 vsyncshift = adjusted_mode->crtc_hsync_start -
6260 adjusted_mode->crtc_htotal / 2;
6261 if (vsyncshift < 0)
6262 vsyncshift += adjusted_mode->crtc_htotal;
6265 if (INTEL_INFO(dev)->gen > 3)
6266 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6268 I915_WRITE(HTOTAL(cpu_transcoder),
6269 (adjusted_mode->crtc_hdisplay - 1) |
6270 ((adjusted_mode->crtc_htotal - 1) << 16));
6271 I915_WRITE(HBLANK(cpu_transcoder),
6272 (adjusted_mode->crtc_hblank_start - 1) |
6273 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6274 I915_WRITE(HSYNC(cpu_transcoder),
6275 (adjusted_mode->crtc_hsync_start - 1) |
6276 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6278 I915_WRITE(VTOTAL(cpu_transcoder),
6279 (adjusted_mode->crtc_vdisplay - 1) |
6280 ((crtc_vtotal - 1) << 16));
6281 I915_WRITE(VBLANK(cpu_transcoder),
6282 (adjusted_mode->crtc_vblank_start - 1) |
6283 ((crtc_vblank_end - 1) << 16));
6284 I915_WRITE(VSYNC(cpu_transcoder),
6285 (adjusted_mode->crtc_vsync_start - 1) |
6286 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6288 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6289 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6290 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6291 * bits. */
6292 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6293 (pipe == PIPE_B || pipe == PIPE_C))
6294 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6296 /* pipesrc controls the size that is scaled from, which should
6297 * always be the user's requested size.
6299 I915_WRITE(PIPESRC(pipe),
6300 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6301 (intel_crtc->config->pipe_src_h - 1));
6304 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6305 struct intel_crtc_state *pipe_config)
6307 struct drm_device *dev = crtc->base.dev;
6308 struct drm_i915_private *dev_priv = dev->dev_private;
6309 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6310 uint32_t tmp;
6312 tmp = I915_READ(HTOTAL(cpu_transcoder));
6313 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6314 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6315 tmp = I915_READ(HBLANK(cpu_transcoder));
6316 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6317 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6318 tmp = I915_READ(HSYNC(cpu_transcoder));
6319 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6320 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6322 tmp = I915_READ(VTOTAL(cpu_transcoder));
6323 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6324 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6325 tmp = I915_READ(VBLANK(cpu_transcoder));
6326 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6327 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6328 tmp = I915_READ(VSYNC(cpu_transcoder));
6329 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6330 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6332 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6333 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6334 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6335 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6338 tmp = I915_READ(PIPESRC(crtc->pipe));
6339 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6340 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6342 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6343 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6346 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6347 struct intel_crtc_state *pipe_config)
6349 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6350 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6351 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6352 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6354 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6355 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6356 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6357 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6359 mode->flags = pipe_config->base.adjusted_mode.flags;
6361 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6362 mode->flags |= pipe_config->base.adjusted_mode.flags;
6365 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6367 struct drm_device *dev = intel_crtc->base.dev;
6368 struct drm_i915_private *dev_priv = dev->dev_private;
6369 uint32_t pipeconf;
6371 pipeconf = 0;
6373 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6374 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6375 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6377 if (intel_crtc->config->double_wide)
6378 pipeconf |= PIPECONF_DOUBLE_WIDE;
6380 /* only g4x and later have fancy bpc/dither controls */
6381 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6382 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6383 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6384 pipeconf |= PIPECONF_DITHER_EN |
6385 PIPECONF_DITHER_TYPE_SP;
6387 switch (intel_crtc->config->pipe_bpp) {
6388 case 18:
6389 pipeconf |= PIPECONF_6BPC;
6390 break;
6391 case 24:
6392 pipeconf |= PIPECONF_8BPC;
6393 break;
6394 case 30:
6395 pipeconf |= PIPECONF_10BPC;
6396 break;
6397 default:
6398 /* Case prevented by intel_choose_pipe_bpp_dither. */
6399 BUG();
6403 if (HAS_PIPE_CXSR(dev)) {
6404 if (intel_crtc->lowfreq_avail) {
6405 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6406 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6407 } else {
6408 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6412 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6413 if (INTEL_INFO(dev)->gen < 4 ||
6414 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6415 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6416 else
6417 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6418 } else
6419 pipeconf |= PIPECONF_PROGRESSIVE;
6421 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6422 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6424 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6425 POSTING_READ(PIPECONF(intel_crtc->pipe));
6428 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6429 struct intel_crtc_state *crtc_state)
6431 struct drm_device *dev = crtc->base.dev;
6432 struct drm_i915_private *dev_priv = dev->dev_private;
6433 int refclk, num_connectors = 0;
6434 intel_clock_t clock, reduced_clock;
6435 bool ok, has_reduced_clock = false;
6436 bool is_lvds = false, is_dsi = false;
6437 struct intel_encoder *encoder;
6438 const intel_limit_t *limit;
6440 for_each_intel_encoder(dev, encoder) {
6441 if (encoder->new_crtc != crtc)
6442 continue;
6444 switch (encoder->type) {
6445 case INTEL_OUTPUT_LVDS:
6446 is_lvds = true;
6447 break;
6448 case INTEL_OUTPUT_DSI:
6449 is_dsi = true;
6450 break;
6451 default:
6452 break;
6455 num_connectors++;
6458 if (is_dsi)
6459 return 0;
6461 if (!crtc_state->clock_set) {
6462 refclk = i9xx_get_refclk(crtc, num_connectors);
6465 * Returns a set of divisors for the desired target clock with
6466 * the given refclk, or FALSE. The returned values represent
6467 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6468 * 2) / p1 / p2.
6470 limit = intel_limit(crtc, refclk);
6471 ok = dev_priv->display.find_dpll(limit, crtc,
6472 crtc_state->port_clock,
6473 refclk, NULL, &clock);
6474 if (!ok) {
6475 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6476 return -EINVAL;
6479 if (is_lvds && dev_priv->lvds_downclock_avail) {
6481 * Ensure we match the reduced clock's P to the target
6482 * clock. If the clocks don't match, we can't switch
6483 * the display clock by using the FP0/FP1. In such case
6484 * we will disable the LVDS downclock feature.
6486 has_reduced_clock =
6487 dev_priv->display.find_dpll(limit, crtc,
6488 dev_priv->lvds_downclock,
6489 refclk, &clock,
6490 &reduced_clock);
6492 /* Compat-code for transition, will disappear. */
6493 crtc_state->dpll.n = clock.n;
6494 crtc_state->dpll.m1 = clock.m1;
6495 crtc_state->dpll.m2 = clock.m2;
6496 crtc_state->dpll.p1 = clock.p1;
6497 crtc_state->dpll.p2 = clock.p2;
6500 if (IS_GEN2(dev)) {
6501 i8xx_update_pll(crtc, crtc_state,
6502 has_reduced_clock ? &reduced_clock : NULL,
6503 num_connectors);
6504 } else if (IS_CHERRYVIEW(dev)) {
6505 chv_update_pll(crtc, crtc_state);
6506 } else if (IS_VALLEYVIEW(dev)) {
6507 vlv_update_pll(crtc, crtc_state);
6508 } else {
6509 i9xx_update_pll(crtc, crtc_state,
6510 has_reduced_clock ? &reduced_clock : NULL,
6511 num_connectors);
6514 return 0;
6517 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6518 struct intel_crtc_state *pipe_config)
6520 struct drm_device *dev = crtc->base.dev;
6521 struct drm_i915_private *dev_priv = dev->dev_private;
6522 uint32_t tmp;
6524 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6525 return;
6527 tmp = I915_READ(PFIT_CONTROL);
6528 if (!(tmp & PFIT_ENABLE))
6529 return;
6531 /* Check whether the pfit is attached to our pipe. */
6532 if (INTEL_INFO(dev)->gen < 4) {
6533 if (crtc->pipe != PIPE_B)
6534 return;
6535 } else {
6536 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6537 return;
6540 pipe_config->gmch_pfit.control = tmp;
6541 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6542 if (INTEL_INFO(dev)->gen < 5)
6543 pipe_config->gmch_pfit.lvds_border_bits =
6544 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6547 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6548 struct intel_crtc_state *pipe_config)
6550 struct drm_device *dev = crtc->base.dev;
6551 struct drm_i915_private *dev_priv = dev->dev_private;
6552 int pipe = pipe_config->cpu_transcoder;
6553 intel_clock_t clock;
6554 u32 mdiv;
6555 int refclk = 100000;
6557 /* In case of MIPI DPLL will not even be used */
6558 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6559 return;
6561 mutex_lock(&dev_priv->dpio_lock);
6562 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6563 mutex_unlock(&dev_priv->dpio_lock);
6565 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6566 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6567 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6568 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6569 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6571 vlv_clock(refclk, &clock);
6573 /* clock.dot is the fast clock */
6574 pipe_config->port_clock = clock.dot / 5;
6577 static void
6578 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6579 struct intel_initial_plane_config *plane_config)
6581 struct drm_device *dev = crtc->base.dev;
6582 struct drm_i915_private *dev_priv = dev->dev_private;
6583 u32 val, base, offset;
6584 int pipe = crtc->pipe, plane = crtc->plane;
6585 int fourcc, pixel_format;
6586 int aligned_height;
6587 struct drm_framebuffer *fb;
6588 struct intel_framebuffer *intel_fb;
6590 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6591 if (!intel_fb) {
6592 DRM_DEBUG_KMS("failed to alloc fb\n");
6593 return;
6596 fb = &intel_fb->base;
6598 val = I915_READ(DSPCNTR(plane));
6600 if (INTEL_INFO(dev)->gen >= 4)
6601 if (val & DISPPLANE_TILED)
6602 plane_config->tiling = I915_TILING_X;
6604 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6605 fourcc = i9xx_format_to_fourcc(pixel_format);
6606 fb->pixel_format = fourcc;
6607 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6609 if (INTEL_INFO(dev)->gen >= 4) {
6610 if (plane_config->tiling)
6611 offset = I915_READ(DSPTILEOFF(plane));
6612 else
6613 offset = I915_READ(DSPLINOFF(plane));
6614 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6615 } else {
6616 base = I915_READ(DSPADDR(plane));
6618 plane_config->base = base;
6620 val = I915_READ(PIPESRC(pipe));
6621 fb->width = ((val >> 16) & 0xfff) + 1;
6622 fb->height = ((val >> 0) & 0xfff) + 1;
6624 val = I915_READ(DSPSTRIDE(pipe));
6625 fb->pitches[0] = val & 0xffffffc0;
6627 aligned_height = intel_fb_align_height(dev, fb->height,
6628 plane_config->tiling);
6630 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
6632 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6633 pipe_name(pipe), plane, fb->width, fb->height,
6634 fb->bits_per_pixel, base, fb->pitches[0],
6635 plane_config->size);
6637 crtc->base.primary->fb = fb;
6640 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6641 struct intel_crtc_state *pipe_config)
6643 struct drm_device *dev = crtc->base.dev;
6644 struct drm_i915_private *dev_priv = dev->dev_private;
6645 int pipe = pipe_config->cpu_transcoder;
6646 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6647 intel_clock_t clock;
6648 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6649 int refclk = 100000;
6651 mutex_lock(&dev_priv->dpio_lock);
6652 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6653 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6654 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6655 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6656 mutex_unlock(&dev_priv->dpio_lock);
6658 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6659 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6660 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6661 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6662 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6664 chv_clock(refclk, &clock);
6666 /* clock.dot is the fast clock */
6667 pipe_config->port_clock = clock.dot / 5;
6670 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6671 struct intel_crtc_state *pipe_config)
6673 struct drm_device *dev = crtc->base.dev;
6674 struct drm_i915_private *dev_priv = dev->dev_private;
6675 uint32_t tmp;
6677 if (!intel_display_power_is_enabled(dev_priv,
6678 POWER_DOMAIN_PIPE(crtc->pipe)))
6679 return false;
6681 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6682 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6684 tmp = I915_READ(PIPECONF(crtc->pipe));
6685 if (!(tmp & PIPECONF_ENABLE))
6686 return false;
6688 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6689 switch (tmp & PIPECONF_BPC_MASK) {
6690 case PIPECONF_6BPC:
6691 pipe_config->pipe_bpp = 18;
6692 break;
6693 case PIPECONF_8BPC:
6694 pipe_config->pipe_bpp = 24;
6695 break;
6696 case PIPECONF_10BPC:
6697 pipe_config->pipe_bpp = 30;
6698 break;
6699 default:
6700 break;
6704 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6705 pipe_config->limited_color_range = true;
6707 if (INTEL_INFO(dev)->gen < 4)
6708 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6710 intel_get_pipe_timings(crtc, pipe_config);
6712 i9xx_get_pfit_config(crtc, pipe_config);
6714 if (INTEL_INFO(dev)->gen >= 4) {
6715 tmp = I915_READ(DPLL_MD(crtc->pipe));
6716 pipe_config->pixel_multiplier =
6717 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6718 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6719 pipe_config->dpll_hw_state.dpll_md = tmp;
6720 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6721 tmp = I915_READ(DPLL(crtc->pipe));
6722 pipe_config->pixel_multiplier =
6723 ((tmp & SDVO_MULTIPLIER_MASK)
6724 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6725 } else {
6726 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6727 * port and will be fixed up in the encoder->get_config
6728 * function. */
6729 pipe_config->pixel_multiplier = 1;
6731 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6732 if (!IS_VALLEYVIEW(dev)) {
6734 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6735 * on 830. Filter it out here so that we don't
6736 * report errors due to that.
6738 if (IS_I830(dev))
6739 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6741 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6742 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6743 } else {
6744 /* Mask out read-only status bits. */
6745 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6746 DPLL_PORTC_READY_MASK |
6747 DPLL_PORTB_READY_MASK);
6750 if (IS_CHERRYVIEW(dev))
6751 chv_crtc_clock_get(crtc, pipe_config);
6752 else if (IS_VALLEYVIEW(dev))
6753 vlv_crtc_clock_get(crtc, pipe_config);
6754 else
6755 i9xx_crtc_clock_get(crtc, pipe_config);
6757 return true;
6760 static void ironlake_init_pch_refclk(struct drm_device *dev)
6762 struct drm_i915_private *dev_priv = dev->dev_private;
6763 struct intel_encoder *encoder;
6764 u32 val, final;
6765 bool has_lvds = false;
6766 bool has_cpu_edp = false;
6767 bool has_panel = false;
6768 bool has_ck505 = false;
6769 bool can_ssc = false;
6771 /* We need to take the global config into account */
6772 for_each_intel_encoder(dev, encoder) {
6773 switch (encoder->type) {
6774 case INTEL_OUTPUT_LVDS:
6775 has_panel = true;
6776 has_lvds = true;
6777 break;
6778 case INTEL_OUTPUT_EDP:
6779 has_panel = true;
6780 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6781 has_cpu_edp = true;
6782 break;
6783 default:
6784 break;
6788 if (HAS_PCH_IBX(dev)) {
6789 has_ck505 = dev_priv->vbt.display_clock_mode;
6790 can_ssc = has_ck505;
6791 } else {
6792 has_ck505 = false;
6793 can_ssc = true;
6796 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6797 has_panel, has_lvds, has_ck505);
6799 /* Ironlake: try to setup display ref clock before DPLL
6800 * enabling. This is only under driver's control after
6801 * PCH B stepping, previous chipset stepping should be
6802 * ignoring this setting.
6804 val = I915_READ(PCH_DREF_CONTROL);
6806 /* As we must carefully and slowly disable/enable each source in turn,
6807 * compute the final state we want first and check if we need to
6808 * make any changes at all.
6810 final = val;
6811 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6812 if (has_ck505)
6813 final |= DREF_NONSPREAD_CK505_ENABLE;
6814 else
6815 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6817 final &= ~DREF_SSC_SOURCE_MASK;
6818 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6819 final &= ~DREF_SSC1_ENABLE;
6821 if (has_panel) {
6822 final |= DREF_SSC_SOURCE_ENABLE;
6824 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6825 final |= DREF_SSC1_ENABLE;
6827 if (has_cpu_edp) {
6828 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6829 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6830 else
6831 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6832 } else
6833 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6834 } else {
6835 final |= DREF_SSC_SOURCE_DISABLE;
6836 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6839 if (final == val)
6840 return;
6842 /* Always enable nonspread source */
6843 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6845 if (has_ck505)
6846 val |= DREF_NONSPREAD_CK505_ENABLE;
6847 else
6848 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6850 if (has_panel) {
6851 val &= ~DREF_SSC_SOURCE_MASK;
6852 val |= DREF_SSC_SOURCE_ENABLE;
6854 /* SSC must be turned on before enabling the CPU output */
6855 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6856 DRM_DEBUG_KMS("Using SSC on panel\n");
6857 val |= DREF_SSC1_ENABLE;
6858 } else
6859 val &= ~DREF_SSC1_ENABLE;
6861 /* Get SSC going before enabling the outputs */
6862 I915_WRITE(PCH_DREF_CONTROL, val);
6863 POSTING_READ(PCH_DREF_CONTROL);
6864 udelay(200);
6866 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6868 /* Enable CPU source on CPU attached eDP */
6869 if (has_cpu_edp) {
6870 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6871 DRM_DEBUG_KMS("Using SSC on eDP\n");
6872 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6873 } else
6874 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6875 } else
6876 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6878 I915_WRITE(PCH_DREF_CONTROL, val);
6879 POSTING_READ(PCH_DREF_CONTROL);
6880 udelay(200);
6881 } else {
6882 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6884 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6886 /* Turn off CPU output */
6887 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6889 I915_WRITE(PCH_DREF_CONTROL, val);
6890 POSTING_READ(PCH_DREF_CONTROL);
6891 udelay(200);
6893 /* Turn off the SSC source */
6894 val &= ~DREF_SSC_SOURCE_MASK;
6895 val |= DREF_SSC_SOURCE_DISABLE;
6897 /* Turn off SSC1 */
6898 val &= ~DREF_SSC1_ENABLE;
6900 I915_WRITE(PCH_DREF_CONTROL, val);
6901 POSTING_READ(PCH_DREF_CONTROL);
6902 udelay(200);
6905 BUG_ON(val != final);
6908 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6910 uint32_t tmp;
6912 tmp = I915_READ(SOUTH_CHICKEN2);
6913 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6914 I915_WRITE(SOUTH_CHICKEN2, tmp);
6916 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6917 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6918 DRM_ERROR("FDI mPHY reset assert timeout\n");
6920 tmp = I915_READ(SOUTH_CHICKEN2);
6921 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6922 I915_WRITE(SOUTH_CHICKEN2, tmp);
6924 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6925 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6926 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6929 /* WaMPhyProgramming:hsw */
6930 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6932 uint32_t tmp;
6934 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6935 tmp &= ~(0xFF << 24);
6936 tmp |= (0x12 << 24);
6937 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6939 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6940 tmp |= (1 << 11);
6941 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6943 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6944 tmp |= (1 << 11);
6945 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6947 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6948 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6949 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6951 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6952 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6953 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6955 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6956 tmp &= ~(7 << 13);
6957 tmp |= (5 << 13);
6958 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6960 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6961 tmp &= ~(7 << 13);
6962 tmp |= (5 << 13);
6963 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6965 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6966 tmp &= ~0xFF;
6967 tmp |= 0x1C;
6968 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6970 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6971 tmp &= ~0xFF;
6972 tmp |= 0x1C;
6973 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6975 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6976 tmp &= ~(0xFF << 16);
6977 tmp |= (0x1C << 16);
6978 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6980 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6981 tmp &= ~(0xFF << 16);
6982 tmp |= (0x1C << 16);
6983 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6985 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6986 tmp |= (1 << 27);
6987 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6989 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6990 tmp |= (1 << 27);
6991 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6993 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6994 tmp &= ~(0xF << 28);
6995 tmp |= (4 << 28);
6996 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6998 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6999 tmp &= ~(0xF << 28);
7000 tmp |= (4 << 28);
7001 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7004 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7005 * Programming" based on the parameters passed:
7006 * - Sequence to enable CLKOUT_DP
7007 * - Sequence to enable CLKOUT_DP without spread
7008 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7010 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7011 bool with_fdi)
7013 struct drm_i915_private *dev_priv = dev->dev_private;
7014 uint32_t reg, tmp;
7016 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7017 with_spread = true;
7018 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7019 with_fdi, "LP PCH doesn't have FDI\n"))
7020 with_fdi = false;
7022 mutex_lock(&dev_priv->dpio_lock);
7024 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7025 tmp &= ~SBI_SSCCTL_DISABLE;
7026 tmp |= SBI_SSCCTL_PATHALT;
7027 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7029 udelay(24);
7031 if (with_spread) {
7032 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7033 tmp &= ~SBI_SSCCTL_PATHALT;
7034 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7036 if (with_fdi) {
7037 lpt_reset_fdi_mphy(dev_priv);
7038 lpt_program_fdi_mphy(dev_priv);
7042 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7043 SBI_GEN0 : SBI_DBUFF0;
7044 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7045 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7046 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7048 mutex_unlock(&dev_priv->dpio_lock);
7051 /* Sequence to disable CLKOUT_DP */
7052 static void lpt_disable_clkout_dp(struct drm_device *dev)
7054 struct drm_i915_private *dev_priv = dev->dev_private;
7055 uint32_t reg, tmp;
7057 mutex_lock(&dev_priv->dpio_lock);
7059 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7060 SBI_GEN0 : SBI_DBUFF0;
7061 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7062 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7063 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7065 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7066 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7067 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7068 tmp |= SBI_SSCCTL_PATHALT;
7069 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070 udelay(32);
7072 tmp |= SBI_SSCCTL_DISABLE;
7073 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7076 mutex_unlock(&dev_priv->dpio_lock);
7079 static void lpt_init_pch_refclk(struct drm_device *dev)
7081 struct intel_encoder *encoder;
7082 bool has_vga = false;
7084 for_each_intel_encoder(dev, encoder) {
7085 switch (encoder->type) {
7086 case INTEL_OUTPUT_ANALOG:
7087 has_vga = true;
7088 break;
7089 default:
7090 break;
7094 if (has_vga)
7095 lpt_enable_clkout_dp(dev, true, true);
7096 else
7097 lpt_disable_clkout_dp(dev);
7101 * Initialize reference clocks when the driver loads
7103 void intel_init_pch_refclk(struct drm_device *dev)
7105 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7106 ironlake_init_pch_refclk(dev);
7107 else if (HAS_PCH_LPT(dev))
7108 lpt_init_pch_refclk(dev);
7111 static int ironlake_get_refclk(struct drm_crtc *crtc)
7113 struct drm_device *dev = crtc->dev;
7114 struct drm_i915_private *dev_priv = dev->dev_private;
7115 struct intel_encoder *encoder;
7116 int num_connectors = 0;
7117 bool is_lvds = false;
7119 for_each_intel_encoder(dev, encoder) {
7120 if (encoder->new_crtc != to_intel_crtc(crtc))
7121 continue;
7123 switch (encoder->type) {
7124 case INTEL_OUTPUT_LVDS:
7125 is_lvds = true;
7126 break;
7127 default:
7128 break;
7130 num_connectors++;
7133 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7134 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7135 dev_priv->vbt.lvds_ssc_freq);
7136 return dev_priv->vbt.lvds_ssc_freq;
7139 return 120000;
7142 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7144 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7146 int pipe = intel_crtc->pipe;
7147 uint32_t val;
7149 val = 0;
7151 switch (intel_crtc->config->pipe_bpp) {
7152 case 18:
7153 val |= PIPECONF_6BPC;
7154 break;
7155 case 24:
7156 val |= PIPECONF_8BPC;
7157 break;
7158 case 30:
7159 val |= PIPECONF_10BPC;
7160 break;
7161 case 36:
7162 val |= PIPECONF_12BPC;
7163 break;
7164 default:
7165 /* Case prevented by intel_choose_pipe_bpp_dither. */
7166 BUG();
7169 if (intel_crtc->config->dither)
7170 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7172 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7173 val |= PIPECONF_INTERLACED_ILK;
7174 else
7175 val |= PIPECONF_PROGRESSIVE;
7177 if (intel_crtc->config->limited_color_range)
7178 val |= PIPECONF_COLOR_RANGE_SELECT;
7180 I915_WRITE(PIPECONF(pipe), val);
7181 POSTING_READ(PIPECONF(pipe));
7185 * Set up the pipe CSC unit.
7187 * Currently only full range RGB to limited range RGB conversion
7188 * is supported, but eventually this should handle various
7189 * RGB<->YCbCr scenarios as well.
7191 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7193 struct drm_device *dev = crtc->dev;
7194 struct drm_i915_private *dev_priv = dev->dev_private;
7195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7196 int pipe = intel_crtc->pipe;
7197 uint16_t coeff = 0x7800; /* 1.0 */
7200 * TODO: Check what kind of values actually come out of the pipe
7201 * with these coeff/postoff values and adjust to get the best
7202 * accuracy. Perhaps we even need to take the bpc value into
7203 * consideration.
7206 if (intel_crtc->config->limited_color_range)
7207 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7210 * GY/GU and RY/RU should be the other way around according
7211 * to BSpec, but reality doesn't agree. Just set them up in
7212 * a way that results in the correct picture.
7214 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7215 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7217 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7218 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7220 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7221 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7223 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7224 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7225 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7227 if (INTEL_INFO(dev)->gen > 6) {
7228 uint16_t postoff = 0;
7230 if (intel_crtc->config->limited_color_range)
7231 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7233 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7234 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7235 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7237 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7238 } else {
7239 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7241 if (intel_crtc->config->limited_color_range)
7242 mode |= CSC_BLACK_SCREEN_OFFSET;
7244 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7248 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7250 struct drm_device *dev = crtc->dev;
7251 struct drm_i915_private *dev_priv = dev->dev_private;
7252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7253 enum pipe pipe = intel_crtc->pipe;
7254 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7255 uint32_t val;
7257 val = 0;
7259 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7260 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7262 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7263 val |= PIPECONF_INTERLACED_ILK;
7264 else
7265 val |= PIPECONF_PROGRESSIVE;
7267 I915_WRITE(PIPECONF(cpu_transcoder), val);
7268 POSTING_READ(PIPECONF(cpu_transcoder));
7270 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7271 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7273 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7274 val = 0;
7276 switch (intel_crtc->config->pipe_bpp) {
7277 case 18:
7278 val |= PIPEMISC_DITHER_6_BPC;
7279 break;
7280 case 24:
7281 val |= PIPEMISC_DITHER_8_BPC;
7282 break;
7283 case 30:
7284 val |= PIPEMISC_DITHER_10_BPC;
7285 break;
7286 case 36:
7287 val |= PIPEMISC_DITHER_12_BPC;
7288 break;
7289 default:
7290 /* Case prevented by pipe_config_set_bpp. */
7291 BUG();
7294 if (intel_crtc->config->dither)
7295 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7297 I915_WRITE(PIPEMISC(pipe), val);
7301 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7302 struct intel_crtc_state *crtc_state,
7303 intel_clock_t *clock,
7304 bool *has_reduced_clock,
7305 intel_clock_t *reduced_clock)
7307 struct drm_device *dev = crtc->dev;
7308 struct drm_i915_private *dev_priv = dev->dev_private;
7309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7310 int refclk;
7311 const intel_limit_t *limit;
7312 bool ret, is_lvds = false;
7314 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7316 refclk = ironlake_get_refclk(crtc);
7319 * Returns a set of divisors for the desired target clock with the given
7320 * refclk, or FALSE. The returned values represent the clock equation:
7321 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7323 limit = intel_limit(intel_crtc, refclk);
7324 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7325 crtc_state->port_clock,
7326 refclk, NULL, clock);
7327 if (!ret)
7328 return false;
7330 if (is_lvds && dev_priv->lvds_downclock_avail) {
7332 * Ensure we match the reduced clock's P to the target clock.
7333 * If the clocks don't match, we can't switch the display clock
7334 * by using the FP0/FP1. In such case we will disable the LVDS
7335 * downclock feature.
7337 *has_reduced_clock =
7338 dev_priv->display.find_dpll(limit, intel_crtc,
7339 dev_priv->lvds_downclock,
7340 refclk, clock,
7341 reduced_clock);
7344 return true;
7347 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7350 * Account for spread spectrum to avoid
7351 * oversubscribing the link. Max center spread
7352 * is 2.5%; use 5% for safety's sake.
7354 u32 bps = target_clock * bpp * 21 / 20;
7355 return DIV_ROUND_UP(bps, link_bw * 8);
7358 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7360 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7363 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7364 struct intel_crtc_state *crtc_state,
7365 u32 *fp,
7366 intel_clock_t *reduced_clock, u32 *fp2)
7368 struct drm_crtc *crtc = &intel_crtc->base;
7369 struct drm_device *dev = crtc->dev;
7370 struct drm_i915_private *dev_priv = dev->dev_private;
7371 struct intel_encoder *intel_encoder;
7372 uint32_t dpll;
7373 int factor, num_connectors = 0;
7374 bool is_lvds = false, is_sdvo = false;
7376 for_each_intel_encoder(dev, intel_encoder) {
7377 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7378 continue;
7380 switch (intel_encoder->type) {
7381 case INTEL_OUTPUT_LVDS:
7382 is_lvds = true;
7383 break;
7384 case INTEL_OUTPUT_SDVO:
7385 case INTEL_OUTPUT_HDMI:
7386 is_sdvo = true;
7387 break;
7388 default:
7389 break;
7392 num_connectors++;
7395 /* Enable autotuning of the PLL clock (if permissible) */
7396 factor = 21;
7397 if (is_lvds) {
7398 if ((intel_panel_use_ssc(dev_priv) &&
7399 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7400 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7401 factor = 25;
7402 } else if (crtc_state->sdvo_tv_clock)
7403 factor = 20;
7405 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7406 *fp |= FP_CB_TUNE;
7408 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7409 *fp2 |= FP_CB_TUNE;
7411 dpll = 0;
7413 if (is_lvds)
7414 dpll |= DPLLB_MODE_LVDS;
7415 else
7416 dpll |= DPLLB_MODE_DAC_SERIAL;
7418 dpll |= (crtc_state->pixel_multiplier - 1)
7419 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7421 if (is_sdvo)
7422 dpll |= DPLL_SDVO_HIGH_SPEED;
7423 if (crtc_state->has_dp_encoder)
7424 dpll |= DPLL_SDVO_HIGH_SPEED;
7426 /* compute bitmask from p1 value */
7427 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7428 /* also FPA1 */
7429 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7431 switch (crtc_state->dpll.p2) {
7432 case 5:
7433 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7434 break;
7435 case 7:
7436 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7437 break;
7438 case 10:
7439 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7440 break;
7441 case 14:
7442 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7443 break;
7446 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7447 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7448 else
7449 dpll |= PLL_REF_INPUT_DREFCLK;
7451 return dpll | DPLL_VCO_ENABLE;
7454 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7455 struct intel_crtc_state *crtc_state)
7457 struct drm_device *dev = crtc->base.dev;
7458 intel_clock_t clock, reduced_clock;
7459 u32 dpll = 0, fp = 0, fp2 = 0;
7460 bool ok, has_reduced_clock = false;
7461 bool is_lvds = false;
7462 struct intel_shared_dpll *pll;
7464 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7466 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7467 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7469 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7470 &has_reduced_clock, &reduced_clock);
7471 if (!ok && !crtc_state->clock_set) {
7472 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7473 return -EINVAL;
7475 /* Compat-code for transition, will disappear. */
7476 if (!crtc_state->clock_set) {
7477 crtc_state->dpll.n = clock.n;
7478 crtc_state->dpll.m1 = clock.m1;
7479 crtc_state->dpll.m2 = clock.m2;
7480 crtc_state->dpll.p1 = clock.p1;
7481 crtc_state->dpll.p2 = clock.p2;
7484 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7485 if (crtc_state->has_pch_encoder) {
7486 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7487 if (has_reduced_clock)
7488 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7490 dpll = ironlake_compute_dpll(crtc, crtc_state,
7491 &fp, &reduced_clock,
7492 has_reduced_clock ? &fp2 : NULL);
7494 crtc_state->dpll_hw_state.dpll = dpll;
7495 crtc_state->dpll_hw_state.fp0 = fp;
7496 if (has_reduced_clock)
7497 crtc_state->dpll_hw_state.fp1 = fp2;
7498 else
7499 crtc_state->dpll_hw_state.fp1 = fp;
7501 pll = intel_get_shared_dpll(crtc, crtc_state);
7502 if (pll == NULL) {
7503 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7504 pipe_name(crtc->pipe));
7505 return -EINVAL;
7509 if (is_lvds && has_reduced_clock && i915.powersave)
7510 crtc->lowfreq_avail = true;
7511 else
7512 crtc->lowfreq_avail = false;
7514 return 0;
7517 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7518 struct intel_link_m_n *m_n)
7520 struct drm_device *dev = crtc->base.dev;
7521 struct drm_i915_private *dev_priv = dev->dev_private;
7522 enum pipe pipe = crtc->pipe;
7524 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7525 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7526 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7527 & ~TU_SIZE_MASK;
7528 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7529 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7530 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7533 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7534 enum transcoder transcoder,
7535 struct intel_link_m_n *m_n,
7536 struct intel_link_m_n *m2_n2)
7538 struct drm_device *dev = crtc->base.dev;
7539 struct drm_i915_private *dev_priv = dev->dev_private;
7540 enum pipe pipe = crtc->pipe;
7542 if (INTEL_INFO(dev)->gen >= 5) {
7543 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7544 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7545 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7546 & ~TU_SIZE_MASK;
7547 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7548 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7549 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7550 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7551 * gen < 8) and if DRRS is supported (to make sure the
7552 * registers are not unnecessarily read).
7554 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7555 crtc->config->has_drrs) {
7556 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7557 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7558 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7559 & ~TU_SIZE_MASK;
7560 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7561 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7562 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7564 } else {
7565 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7566 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7567 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7568 & ~TU_SIZE_MASK;
7569 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7570 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7571 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7575 void intel_dp_get_m_n(struct intel_crtc *crtc,
7576 struct intel_crtc_state *pipe_config)
7578 if (pipe_config->has_pch_encoder)
7579 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7580 else
7581 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7582 &pipe_config->dp_m_n,
7583 &pipe_config->dp_m2_n2);
7586 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7587 struct intel_crtc_state *pipe_config)
7589 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7590 &pipe_config->fdi_m_n, NULL);
7593 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7594 struct intel_crtc_state *pipe_config)
7596 struct drm_device *dev = crtc->base.dev;
7597 struct drm_i915_private *dev_priv = dev->dev_private;
7598 uint32_t tmp;
7600 tmp = I915_READ(PS_CTL(crtc->pipe));
7602 if (tmp & PS_ENABLE) {
7603 pipe_config->pch_pfit.enabled = true;
7604 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7605 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7609 static void
7610 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7611 struct intel_initial_plane_config *plane_config)
7613 struct drm_device *dev = crtc->base.dev;
7614 struct drm_i915_private *dev_priv = dev->dev_private;
7615 u32 val, base, offset, stride_mult;
7616 int pipe = crtc->pipe;
7617 int fourcc, pixel_format;
7618 int aligned_height;
7619 struct drm_framebuffer *fb;
7620 struct intel_framebuffer *intel_fb;
7622 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7623 if (!intel_fb) {
7624 DRM_DEBUG_KMS("failed to alloc fb\n");
7625 return;
7628 fb = &intel_fb->base;
7630 val = I915_READ(PLANE_CTL(pipe, 0));
7631 if (val & PLANE_CTL_TILED_MASK)
7632 plane_config->tiling = I915_TILING_X;
7634 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7635 fourcc = skl_format_to_fourcc(pixel_format,
7636 val & PLANE_CTL_ORDER_RGBX,
7637 val & PLANE_CTL_ALPHA_MASK);
7638 fb->pixel_format = fourcc;
7639 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7641 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7642 plane_config->base = base;
7644 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7646 val = I915_READ(PLANE_SIZE(pipe, 0));
7647 fb->height = ((val >> 16) & 0xfff) + 1;
7648 fb->width = ((val >> 0) & 0x1fff) + 1;
7650 val = I915_READ(PLANE_STRIDE(pipe, 0));
7651 switch (plane_config->tiling) {
7652 case I915_TILING_NONE:
7653 stride_mult = 64;
7654 break;
7655 case I915_TILING_X:
7656 stride_mult = 512;
7657 break;
7658 default:
7659 MISSING_CASE(plane_config->tiling);
7660 goto error;
7662 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7664 aligned_height = intel_fb_align_height(dev, fb->height,
7665 plane_config->tiling);
7667 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7669 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7670 pipe_name(pipe), fb->width, fb->height,
7671 fb->bits_per_pixel, base, fb->pitches[0],
7672 plane_config->size);
7674 crtc->base.primary->fb = fb;
7675 return;
7677 error:
7678 kfree(fb);
7681 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7682 struct intel_crtc_state *pipe_config)
7684 struct drm_device *dev = crtc->base.dev;
7685 struct drm_i915_private *dev_priv = dev->dev_private;
7686 uint32_t tmp;
7688 tmp = I915_READ(PF_CTL(crtc->pipe));
7690 if (tmp & PF_ENABLE) {
7691 pipe_config->pch_pfit.enabled = true;
7692 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7693 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7695 /* We currently do not free assignements of panel fitters on
7696 * ivb/hsw (since we don't use the higher upscaling modes which
7697 * differentiates them) so just WARN about this case for now. */
7698 if (IS_GEN7(dev)) {
7699 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7700 PF_PIPE_SEL_IVB(crtc->pipe));
7705 static void
7706 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7707 struct intel_initial_plane_config *plane_config)
7709 struct drm_device *dev = crtc->base.dev;
7710 struct drm_i915_private *dev_priv = dev->dev_private;
7711 u32 val, base, offset;
7712 int pipe = crtc->pipe;
7713 int fourcc, pixel_format;
7714 int aligned_height;
7715 struct drm_framebuffer *fb;
7716 struct intel_framebuffer *intel_fb;
7718 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7719 if (!intel_fb) {
7720 DRM_DEBUG_KMS("failed to alloc fb\n");
7721 return;
7724 fb = &intel_fb->base;
7726 val = I915_READ(DSPCNTR(pipe));
7728 if (INTEL_INFO(dev)->gen >= 4)
7729 if (val & DISPPLANE_TILED)
7730 plane_config->tiling = I915_TILING_X;
7732 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7733 fourcc = i9xx_format_to_fourcc(pixel_format);
7734 fb->pixel_format = fourcc;
7735 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7737 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7738 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7739 offset = I915_READ(DSPOFFSET(pipe));
7740 } else {
7741 if (plane_config->tiling)
7742 offset = I915_READ(DSPTILEOFF(pipe));
7743 else
7744 offset = I915_READ(DSPLINOFF(pipe));
7746 plane_config->base = base;
7748 val = I915_READ(PIPESRC(pipe));
7749 fb->width = ((val >> 16) & 0xfff) + 1;
7750 fb->height = ((val >> 0) & 0xfff) + 1;
7752 val = I915_READ(DSPSTRIDE(pipe));
7753 fb->pitches[0] = val & 0xffffffc0;
7755 aligned_height = intel_fb_align_height(dev, fb->height,
7756 plane_config->tiling);
7758 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
7760 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7761 pipe_name(pipe), fb->width, fb->height,
7762 fb->bits_per_pixel, base, fb->pitches[0],
7763 plane_config->size);
7765 crtc->base.primary->fb = fb;
7768 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7769 struct intel_crtc_state *pipe_config)
7771 struct drm_device *dev = crtc->base.dev;
7772 struct drm_i915_private *dev_priv = dev->dev_private;
7773 uint32_t tmp;
7775 if (!intel_display_power_is_enabled(dev_priv,
7776 POWER_DOMAIN_PIPE(crtc->pipe)))
7777 return false;
7779 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7780 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7782 tmp = I915_READ(PIPECONF(crtc->pipe));
7783 if (!(tmp & PIPECONF_ENABLE))
7784 return false;
7786 switch (tmp & PIPECONF_BPC_MASK) {
7787 case PIPECONF_6BPC:
7788 pipe_config->pipe_bpp = 18;
7789 break;
7790 case PIPECONF_8BPC:
7791 pipe_config->pipe_bpp = 24;
7792 break;
7793 case PIPECONF_10BPC:
7794 pipe_config->pipe_bpp = 30;
7795 break;
7796 case PIPECONF_12BPC:
7797 pipe_config->pipe_bpp = 36;
7798 break;
7799 default:
7800 break;
7803 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7804 pipe_config->limited_color_range = true;
7806 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7807 struct intel_shared_dpll *pll;
7809 pipe_config->has_pch_encoder = true;
7811 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7812 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7813 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7815 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7817 if (HAS_PCH_IBX(dev_priv->dev)) {
7818 pipe_config->shared_dpll =
7819 (enum intel_dpll_id) crtc->pipe;
7820 } else {
7821 tmp = I915_READ(PCH_DPLL_SEL);
7822 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7823 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7824 else
7825 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7828 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7830 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7831 &pipe_config->dpll_hw_state));
7833 tmp = pipe_config->dpll_hw_state.dpll;
7834 pipe_config->pixel_multiplier =
7835 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7836 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7838 ironlake_pch_clock_get(crtc, pipe_config);
7839 } else {
7840 pipe_config->pixel_multiplier = 1;
7843 intel_get_pipe_timings(crtc, pipe_config);
7845 ironlake_get_pfit_config(crtc, pipe_config);
7847 return true;
7850 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7852 struct drm_device *dev = dev_priv->dev;
7853 struct intel_crtc *crtc;
7855 for_each_intel_crtc(dev, crtc)
7856 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7857 pipe_name(crtc->pipe));
7859 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7860 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7861 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7862 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7863 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7864 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7865 "CPU PWM1 enabled\n");
7866 if (IS_HASWELL(dev))
7867 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7868 "CPU PWM2 enabled\n");
7869 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7870 "PCH PWM1 enabled\n");
7871 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7872 "Utility pin enabled\n");
7873 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7876 * In theory we can still leave IRQs enabled, as long as only the HPD
7877 * interrupts remain enabled. We used to check for that, but since it's
7878 * gen-specific and since we only disable LCPLL after we fully disable
7879 * the interrupts, the check below should be enough.
7881 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7884 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7886 struct drm_device *dev = dev_priv->dev;
7888 if (IS_HASWELL(dev))
7889 return I915_READ(D_COMP_HSW);
7890 else
7891 return I915_READ(D_COMP_BDW);
7894 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7896 struct drm_device *dev = dev_priv->dev;
7898 if (IS_HASWELL(dev)) {
7899 mutex_lock(&dev_priv->rps.hw_lock);
7900 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7901 val))
7902 DRM_ERROR("Failed to write to D_COMP\n");
7903 mutex_unlock(&dev_priv->rps.hw_lock);
7904 } else {
7905 I915_WRITE(D_COMP_BDW, val);
7906 POSTING_READ(D_COMP_BDW);
7911 * This function implements pieces of two sequences from BSpec:
7912 * - Sequence for display software to disable LCPLL
7913 * - Sequence for display software to allow package C8+
7914 * The steps implemented here are just the steps that actually touch the LCPLL
7915 * register. Callers should take care of disabling all the display engine
7916 * functions, doing the mode unset, fixing interrupts, etc.
7918 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7919 bool switch_to_fclk, bool allow_power_down)
7921 uint32_t val;
7923 assert_can_disable_lcpll(dev_priv);
7925 val = I915_READ(LCPLL_CTL);
7927 if (switch_to_fclk) {
7928 val |= LCPLL_CD_SOURCE_FCLK;
7929 I915_WRITE(LCPLL_CTL, val);
7931 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7932 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7933 DRM_ERROR("Switching to FCLK failed\n");
7935 val = I915_READ(LCPLL_CTL);
7938 val |= LCPLL_PLL_DISABLE;
7939 I915_WRITE(LCPLL_CTL, val);
7940 POSTING_READ(LCPLL_CTL);
7942 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7943 DRM_ERROR("LCPLL still locked\n");
7945 val = hsw_read_dcomp(dev_priv);
7946 val |= D_COMP_COMP_DISABLE;
7947 hsw_write_dcomp(dev_priv, val);
7948 ndelay(100);
7950 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7952 DRM_ERROR("D_COMP RCOMP still in progress\n");
7954 if (allow_power_down) {
7955 val = I915_READ(LCPLL_CTL);
7956 val |= LCPLL_POWER_DOWN_ALLOW;
7957 I915_WRITE(LCPLL_CTL, val);
7958 POSTING_READ(LCPLL_CTL);
7963 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7964 * source.
7966 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7968 uint32_t val;
7970 val = I915_READ(LCPLL_CTL);
7972 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7973 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7974 return;
7977 * Make sure we're not on PC8 state before disabling PC8, otherwise
7978 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7980 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7982 if (val & LCPLL_POWER_DOWN_ALLOW) {
7983 val &= ~LCPLL_POWER_DOWN_ALLOW;
7984 I915_WRITE(LCPLL_CTL, val);
7985 POSTING_READ(LCPLL_CTL);
7988 val = hsw_read_dcomp(dev_priv);
7989 val |= D_COMP_COMP_FORCE;
7990 val &= ~D_COMP_COMP_DISABLE;
7991 hsw_write_dcomp(dev_priv, val);
7993 val = I915_READ(LCPLL_CTL);
7994 val &= ~LCPLL_PLL_DISABLE;
7995 I915_WRITE(LCPLL_CTL, val);
7997 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7998 DRM_ERROR("LCPLL not locked yet\n");
8000 if (val & LCPLL_CD_SOURCE_FCLK) {
8001 val = I915_READ(LCPLL_CTL);
8002 val &= ~LCPLL_CD_SOURCE_FCLK;
8003 I915_WRITE(LCPLL_CTL, val);
8005 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8006 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8007 DRM_ERROR("Switching back to LCPLL failed\n");
8010 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8014 * Package states C8 and deeper are really deep PC states that can only be
8015 * reached when all the devices on the system allow it, so even if the graphics
8016 * device allows PC8+, it doesn't mean the system will actually get to these
8017 * states. Our driver only allows PC8+ when going into runtime PM.
8019 * The requirements for PC8+ are that all the outputs are disabled, the power
8020 * well is disabled and most interrupts are disabled, and these are also
8021 * requirements for runtime PM. When these conditions are met, we manually do
8022 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8023 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8024 * hang the machine.
8026 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8027 * the state of some registers, so when we come back from PC8+ we need to
8028 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8029 * need to take care of the registers kept by RC6. Notice that this happens even
8030 * if we don't put the device in PCI D3 state (which is what currently happens
8031 * because of the runtime PM support).
8033 * For more, read "Display Sequences for Package C8" on the hardware
8034 * documentation.
8036 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8038 struct drm_device *dev = dev_priv->dev;
8039 uint32_t val;
8041 DRM_DEBUG_KMS("Enabling package C8+\n");
8043 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8044 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8045 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8046 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8049 lpt_disable_clkout_dp(dev);
8050 hsw_disable_lcpll(dev_priv, true, true);
8053 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8055 struct drm_device *dev = dev_priv->dev;
8056 uint32_t val;
8058 DRM_DEBUG_KMS("Disabling package C8+\n");
8060 hsw_restore_lcpll(dev_priv);
8061 lpt_init_pch_refclk(dev);
8063 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8064 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8065 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8066 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8069 intel_prepare_ddi(dev);
8072 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8073 struct intel_crtc_state *crtc_state)
8075 if (!intel_ddi_pll_select(crtc, crtc_state))
8076 return -EINVAL;
8078 crtc->lowfreq_avail = false;
8080 return 0;
8083 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8084 enum port port,
8085 struct intel_crtc_state *pipe_config)
8087 u32 temp, dpll_ctl1;
8089 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8090 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8092 switch (pipe_config->ddi_pll_sel) {
8093 case SKL_DPLL0:
8095 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8096 * of the shared DPLL framework and thus needs to be read out
8097 * separately
8099 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8100 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8101 break;
8102 case SKL_DPLL1:
8103 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8104 break;
8105 case SKL_DPLL2:
8106 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8107 break;
8108 case SKL_DPLL3:
8109 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8110 break;
8114 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8115 enum port port,
8116 struct intel_crtc_state *pipe_config)
8118 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8120 switch (pipe_config->ddi_pll_sel) {
8121 case PORT_CLK_SEL_WRPLL1:
8122 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8123 break;
8124 case PORT_CLK_SEL_WRPLL2:
8125 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8126 break;
8130 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8131 struct intel_crtc_state *pipe_config)
8133 struct drm_device *dev = crtc->base.dev;
8134 struct drm_i915_private *dev_priv = dev->dev_private;
8135 struct intel_shared_dpll *pll;
8136 enum port port;
8137 uint32_t tmp;
8139 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8141 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8143 if (IS_SKYLAKE(dev))
8144 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8145 else
8146 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8148 if (pipe_config->shared_dpll >= 0) {
8149 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8151 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8152 &pipe_config->dpll_hw_state));
8156 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8157 * DDI E. So just check whether this pipe is wired to DDI E and whether
8158 * the PCH transcoder is on.
8160 if (INTEL_INFO(dev)->gen < 9 &&
8161 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8162 pipe_config->has_pch_encoder = true;
8164 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8165 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8166 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8168 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8172 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8173 struct intel_crtc_state *pipe_config)
8175 struct drm_device *dev = crtc->base.dev;
8176 struct drm_i915_private *dev_priv = dev->dev_private;
8177 enum intel_display_power_domain pfit_domain;
8178 uint32_t tmp;
8180 if (!intel_display_power_is_enabled(dev_priv,
8181 POWER_DOMAIN_PIPE(crtc->pipe)))
8182 return false;
8184 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8185 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8187 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8188 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8189 enum pipe trans_edp_pipe;
8190 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8191 default:
8192 WARN(1, "unknown pipe linked to edp transcoder\n");
8193 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8194 case TRANS_DDI_EDP_INPUT_A_ON:
8195 trans_edp_pipe = PIPE_A;
8196 break;
8197 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8198 trans_edp_pipe = PIPE_B;
8199 break;
8200 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8201 trans_edp_pipe = PIPE_C;
8202 break;
8205 if (trans_edp_pipe == crtc->pipe)
8206 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8209 if (!intel_display_power_is_enabled(dev_priv,
8210 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8211 return false;
8213 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8214 if (!(tmp & PIPECONF_ENABLE))
8215 return false;
8217 haswell_get_ddi_port_state(crtc, pipe_config);
8219 intel_get_pipe_timings(crtc, pipe_config);
8221 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8222 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8223 if (IS_SKYLAKE(dev))
8224 skylake_get_pfit_config(crtc, pipe_config);
8225 else
8226 ironlake_get_pfit_config(crtc, pipe_config);
8229 if (IS_HASWELL(dev))
8230 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8231 (I915_READ(IPS_CTL) & IPS_ENABLE);
8233 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8234 pipe_config->pixel_multiplier =
8235 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8236 } else {
8237 pipe_config->pixel_multiplier = 1;
8240 return true;
8243 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8245 struct drm_device *dev = crtc->dev;
8246 struct drm_i915_private *dev_priv = dev->dev_private;
8247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8248 uint32_t cntl = 0, size = 0;
8250 if (base) {
8251 unsigned int width = intel_crtc->cursor_width;
8252 unsigned int height = intel_crtc->cursor_height;
8253 unsigned int stride = roundup_pow_of_two(width) * 4;
8255 switch (stride) {
8256 default:
8257 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8258 width, stride);
8259 stride = 256;
8260 /* fallthrough */
8261 case 256:
8262 case 512:
8263 case 1024:
8264 case 2048:
8265 break;
8268 cntl |= CURSOR_ENABLE |
8269 CURSOR_GAMMA_ENABLE |
8270 CURSOR_FORMAT_ARGB |
8271 CURSOR_STRIDE(stride);
8273 size = (height << 12) | width;
8276 if (intel_crtc->cursor_cntl != 0 &&
8277 (intel_crtc->cursor_base != base ||
8278 intel_crtc->cursor_size != size ||
8279 intel_crtc->cursor_cntl != cntl)) {
8280 /* On these chipsets we can only modify the base/size/stride
8281 * whilst the cursor is disabled.
8283 I915_WRITE(_CURACNTR, 0);
8284 POSTING_READ(_CURACNTR);
8285 intel_crtc->cursor_cntl = 0;
8288 if (intel_crtc->cursor_base != base) {
8289 I915_WRITE(_CURABASE, base);
8290 intel_crtc->cursor_base = base;
8293 if (intel_crtc->cursor_size != size) {
8294 I915_WRITE(CURSIZE, size);
8295 intel_crtc->cursor_size = size;
8298 if (intel_crtc->cursor_cntl != cntl) {
8299 I915_WRITE(_CURACNTR, cntl);
8300 POSTING_READ(_CURACNTR);
8301 intel_crtc->cursor_cntl = cntl;
8305 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8307 struct drm_device *dev = crtc->dev;
8308 struct drm_i915_private *dev_priv = dev->dev_private;
8309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8310 int pipe = intel_crtc->pipe;
8311 uint32_t cntl;
8313 cntl = 0;
8314 if (base) {
8315 cntl = MCURSOR_GAMMA_ENABLE;
8316 switch (intel_crtc->cursor_width) {
8317 case 64:
8318 cntl |= CURSOR_MODE_64_ARGB_AX;
8319 break;
8320 case 128:
8321 cntl |= CURSOR_MODE_128_ARGB_AX;
8322 break;
8323 case 256:
8324 cntl |= CURSOR_MODE_256_ARGB_AX;
8325 break;
8326 default:
8327 MISSING_CASE(intel_crtc->cursor_width);
8328 return;
8330 cntl |= pipe << 28; /* Connect to correct pipe */
8332 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8333 cntl |= CURSOR_PIPE_CSC_ENABLE;
8336 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8337 cntl |= CURSOR_ROTATE_180;
8339 if (intel_crtc->cursor_cntl != cntl) {
8340 I915_WRITE(CURCNTR(pipe), cntl);
8341 POSTING_READ(CURCNTR(pipe));
8342 intel_crtc->cursor_cntl = cntl;
8345 /* and commit changes on next vblank */
8346 I915_WRITE(CURBASE(pipe), base);
8347 POSTING_READ(CURBASE(pipe));
8349 intel_crtc->cursor_base = base;
8352 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8353 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8354 bool on)
8356 struct drm_device *dev = crtc->dev;
8357 struct drm_i915_private *dev_priv = dev->dev_private;
8358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8359 int pipe = intel_crtc->pipe;
8360 int x = crtc->cursor_x;
8361 int y = crtc->cursor_y;
8362 u32 base = 0, pos = 0;
8364 if (on)
8365 base = intel_crtc->cursor_addr;
8367 if (x >= intel_crtc->config->pipe_src_w)
8368 base = 0;
8370 if (y >= intel_crtc->config->pipe_src_h)
8371 base = 0;
8373 if (x < 0) {
8374 if (x + intel_crtc->cursor_width <= 0)
8375 base = 0;
8377 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8378 x = -x;
8380 pos |= x << CURSOR_X_SHIFT;
8382 if (y < 0) {
8383 if (y + intel_crtc->cursor_height <= 0)
8384 base = 0;
8386 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8387 y = -y;
8389 pos |= y << CURSOR_Y_SHIFT;
8391 if (base == 0 && intel_crtc->cursor_base == 0)
8392 return;
8394 I915_WRITE(CURPOS(pipe), pos);
8396 /* ILK+ do this automagically */
8397 if (HAS_GMCH_DISPLAY(dev) &&
8398 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8399 base += (intel_crtc->cursor_height *
8400 intel_crtc->cursor_width - 1) * 4;
8403 if (IS_845G(dev) || IS_I865G(dev))
8404 i845_update_cursor(crtc, base);
8405 else
8406 i9xx_update_cursor(crtc, base);
8409 static bool cursor_size_ok(struct drm_device *dev,
8410 uint32_t width, uint32_t height)
8412 if (width == 0 || height == 0)
8413 return false;
8416 * 845g/865g are special in that they are only limited by
8417 * the width of their cursors, the height is arbitrary up to
8418 * the precision of the register. Everything else requires
8419 * square cursors, limited to a few power-of-two sizes.
8421 if (IS_845G(dev) || IS_I865G(dev)) {
8422 if ((width & 63) != 0)
8423 return false;
8425 if (width > (IS_845G(dev) ? 64 : 512))
8426 return false;
8428 if (height > 1023)
8429 return false;
8430 } else {
8431 switch (width | height) {
8432 case 256:
8433 case 128:
8434 if (IS_GEN2(dev))
8435 return false;
8436 case 64:
8437 break;
8438 default:
8439 return false;
8443 return true;
8446 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8447 u16 *blue, uint32_t start, uint32_t size)
8449 int end = (start + size > 256) ? 256 : start + size, i;
8450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8452 for (i = start; i < end; i++) {
8453 intel_crtc->lut_r[i] = red[i] >> 8;
8454 intel_crtc->lut_g[i] = green[i] >> 8;
8455 intel_crtc->lut_b[i] = blue[i] >> 8;
8458 intel_crtc_load_lut(crtc);
8461 /* VESA 640x480x72Hz mode to set on the pipe */
8462 static struct drm_display_mode load_detect_mode = {
8463 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8464 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8467 struct drm_framebuffer *
8468 __intel_framebuffer_create(struct drm_device *dev,
8469 struct drm_mode_fb_cmd2 *mode_cmd,
8470 struct drm_i915_gem_object *obj)
8472 struct intel_framebuffer *intel_fb;
8473 int ret;
8475 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8476 if (!intel_fb) {
8477 drm_gem_object_unreference(&obj->base);
8478 return ERR_PTR(-ENOMEM);
8481 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8482 if (ret)
8483 goto err;
8485 return &intel_fb->base;
8486 err:
8487 drm_gem_object_unreference(&obj->base);
8488 kfree(intel_fb);
8490 return ERR_PTR(ret);
8493 static struct drm_framebuffer *
8494 intel_framebuffer_create(struct drm_device *dev,
8495 struct drm_mode_fb_cmd2 *mode_cmd,
8496 struct drm_i915_gem_object *obj)
8498 struct drm_framebuffer *fb;
8499 int ret;
8501 ret = i915_mutex_lock_interruptible(dev);
8502 if (ret)
8503 return ERR_PTR(ret);
8504 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8505 mutex_unlock(&dev->struct_mutex);
8507 return fb;
8510 static u32
8511 intel_framebuffer_pitch_for_width(int width, int bpp)
8513 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8514 return ALIGN(pitch, 64);
8517 static u32
8518 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8520 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8521 return PAGE_ALIGN(pitch * mode->vdisplay);
8524 static struct drm_framebuffer *
8525 intel_framebuffer_create_for_mode(struct drm_device *dev,
8526 struct drm_display_mode *mode,
8527 int depth, int bpp)
8529 struct drm_i915_gem_object *obj;
8530 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8532 obj = i915_gem_alloc_object(dev,
8533 intel_framebuffer_size_for_mode(mode, bpp));
8534 if (obj == NULL)
8535 return ERR_PTR(-ENOMEM);
8537 mode_cmd.width = mode->hdisplay;
8538 mode_cmd.height = mode->vdisplay;
8539 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8540 bpp);
8541 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8543 return intel_framebuffer_create(dev, &mode_cmd, obj);
8546 static struct drm_framebuffer *
8547 mode_fits_in_fbdev(struct drm_device *dev,
8548 struct drm_display_mode *mode)
8550 #ifdef CONFIG_DRM_I915_FBDEV
8551 struct drm_i915_private *dev_priv = dev->dev_private;
8552 struct drm_i915_gem_object *obj;
8553 struct drm_framebuffer *fb;
8555 if (!dev_priv->fbdev)
8556 return NULL;
8558 if (!dev_priv->fbdev->fb)
8559 return NULL;
8561 obj = dev_priv->fbdev->fb->obj;
8562 BUG_ON(!obj);
8564 fb = &dev_priv->fbdev->fb->base;
8565 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8566 fb->bits_per_pixel))
8567 return NULL;
8569 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8570 return NULL;
8572 return fb;
8573 #else
8574 return NULL;
8575 #endif
8578 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8579 struct drm_display_mode *mode,
8580 struct intel_load_detect_pipe *old,
8581 struct drm_modeset_acquire_ctx *ctx)
8583 struct intel_crtc *intel_crtc;
8584 struct intel_encoder *intel_encoder =
8585 intel_attached_encoder(connector);
8586 struct drm_crtc *possible_crtc;
8587 struct drm_encoder *encoder = &intel_encoder->base;
8588 struct drm_crtc *crtc = NULL;
8589 struct drm_device *dev = encoder->dev;
8590 struct drm_framebuffer *fb;
8591 struct drm_mode_config *config = &dev->mode_config;
8592 int ret, i = -1;
8594 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8595 connector->base.id, connector->name,
8596 encoder->base.id, encoder->name);
8598 retry:
8599 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8600 if (ret)
8601 goto fail_unlock;
8604 * Algorithm gets a little messy:
8606 * - if the connector already has an assigned crtc, use it (but make
8607 * sure it's on first)
8609 * - try to find the first unused crtc that can drive this connector,
8610 * and use that if we find one
8613 /* See if we already have a CRTC for this connector */
8614 if (encoder->crtc) {
8615 crtc = encoder->crtc;
8617 ret = drm_modeset_lock(&crtc->mutex, ctx);
8618 if (ret)
8619 goto fail_unlock;
8620 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8621 if (ret)
8622 goto fail_unlock;
8624 old->dpms_mode = connector->dpms;
8625 old->load_detect_temp = false;
8627 /* Make sure the crtc and connector are running */
8628 if (connector->dpms != DRM_MODE_DPMS_ON)
8629 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8631 return true;
8634 /* Find an unused one (if possible) */
8635 for_each_crtc(dev, possible_crtc) {
8636 i++;
8637 if (!(encoder->possible_crtcs & (1 << i)))
8638 continue;
8639 if (possible_crtc->enabled)
8640 continue;
8641 /* This can occur when applying the pipe A quirk on resume. */
8642 if (to_intel_crtc(possible_crtc)->new_enabled)
8643 continue;
8645 crtc = possible_crtc;
8646 break;
8650 * If we didn't find an unused CRTC, don't use any.
8652 if (!crtc) {
8653 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8654 goto fail_unlock;
8657 ret = drm_modeset_lock(&crtc->mutex, ctx);
8658 if (ret)
8659 goto fail_unlock;
8660 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8661 if (ret)
8662 goto fail_unlock;
8663 intel_encoder->new_crtc = to_intel_crtc(crtc);
8664 to_intel_connector(connector)->new_encoder = intel_encoder;
8666 intel_crtc = to_intel_crtc(crtc);
8667 intel_crtc->new_enabled = true;
8668 intel_crtc->new_config = intel_crtc->config;
8669 old->dpms_mode = connector->dpms;
8670 old->load_detect_temp = true;
8671 old->release_fb = NULL;
8673 if (!mode)
8674 mode = &load_detect_mode;
8676 /* We need a framebuffer large enough to accommodate all accesses
8677 * that the plane may generate whilst we perform load detection.
8678 * We can not rely on the fbcon either being present (we get called
8679 * during its initialisation to detect all boot displays, or it may
8680 * not even exist) or that it is large enough to satisfy the
8681 * requested mode.
8683 fb = mode_fits_in_fbdev(dev, mode);
8684 if (fb == NULL) {
8685 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8686 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8687 old->release_fb = fb;
8688 } else
8689 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8690 if (IS_ERR(fb)) {
8691 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8692 goto fail;
8695 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8696 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8697 if (old->release_fb)
8698 old->release_fb->funcs->destroy(old->release_fb);
8699 goto fail;
8702 /* let the connector get through one full cycle before testing */
8703 intel_wait_for_vblank(dev, intel_crtc->pipe);
8704 return true;
8706 fail:
8707 intel_crtc->new_enabled = crtc->enabled;
8708 if (intel_crtc->new_enabled)
8709 intel_crtc->new_config = intel_crtc->config;
8710 else
8711 intel_crtc->new_config = NULL;
8712 fail_unlock:
8713 if (ret == -EDEADLK) {
8714 drm_modeset_backoff(ctx);
8715 goto retry;
8718 return false;
8721 void intel_release_load_detect_pipe(struct drm_connector *connector,
8722 struct intel_load_detect_pipe *old)
8724 struct intel_encoder *intel_encoder =
8725 intel_attached_encoder(connector);
8726 struct drm_encoder *encoder = &intel_encoder->base;
8727 struct drm_crtc *crtc = encoder->crtc;
8728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8730 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8731 connector->base.id, connector->name,
8732 encoder->base.id, encoder->name);
8734 if (old->load_detect_temp) {
8735 to_intel_connector(connector)->new_encoder = NULL;
8736 intel_encoder->new_crtc = NULL;
8737 intel_crtc->new_enabled = false;
8738 intel_crtc->new_config = NULL;
8739 intel_set_mode(crtc, NULL, 0, 0, NULL);
8741 if (old->release_fb) {
8742 drm_framebuffer_unregister_private(old->release_fb);
8743 drm_framebuffer_unreference(old->release_fb);
8746 return;
8749 /* Switch crtc and encoder back off if necessary */
8750 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8751 connector->funcs->dpms(connector, old->dpms_mode);
8754 static int i9xx_pll_refclk(struct drm_device *dev,
8755 const struct intel_crtc_state *pipe_config)
8757 struct drm_i915_private *dev_priv = dev->dev_private;
8758 u32 dpll = pipe_config->dpll_hw_state.dpll;
8760 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8761 return dev_priv->vbt.lvds_ssc_freq;
8762 else if (HAS_PCH_SPLIT(dev))
8763 return 120000;
8764 else if (!IS_GEN2(dev))
8765 return 96000;
8766 else
8767 return 48000;
8770 /* Returns the clock of the currently programmed mode of the given pipe. */
8771 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8772 struct intel_crtc_state *pipe_config)
8774 struct drm_device *dev = crtc->base.dev;
8775 struct drm_i915_private *dev_priv = dev->dev_private;
8776 int pipe = pipe_config->cpu_transcoder;
8777 u32 dpll = pipe_config->dpll_hw_state.dpll;
8778 u32 fp;
8779 intel_clock_t clock;
8780 int refclk = i9xx_pll_refclk(dev, pipe_config);
8782 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8783 fp = pipe_config->dpll_hw_state.fp0;
8784 else
8785 fp = pipe_config->dpll_hw_state.fp1;
8787 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8788 if (IS_PINEVIEW(dev)) {
8789 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8790 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8791 } else {
8792 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8793 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8796 if (!IS_GEN2(dev)) {
8797 if (IS_PINEVIEW(dev))
8798 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8799 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8800 else
8801 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8802 DPLL_FPA01_P1_POST_DIV_SHIFT);
8804 switch (dpll & DPLL_MODE_MASK) {
8805 case DPLLB_MODE_DAC_SERIAL:
8806 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8807 5 : 10;
8808 break;
8809 case DPLLB_MODE_LVDS:
8810 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8811 7 : 14;
8812 break;
8813 default:
8814 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8815 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8816 return;
8819 if (IS_PINEVIEW(dev))
8820 pineview_clock(refclk, &clock);
8821 else
8822 i9xx_clock(refclk, &clock);
8823 } else {
8824 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8825 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8827 if (is_lvds) {
8828 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8829 DPLL_FPA01_P1_POST_DIV_SHIFT);
8831 if (lvds & LVDS_CLKB_POWER_UP)
8832 clock.p2 = 7;
8833 else
8834 clock.p2 = 14;
8835 } else {
8836 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8837 clock.p1 = 2;
8838 else {
8839 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8840 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8842 if (dpll & PLL_P2_DIVIDE_BY_4)
8843 clock.p2 = 4;
8844 else
8845 clock.p2 = 2;
8848 i9xx_clock(refclk, &clock);
8852 * This value includes pixel_multiplier. We will use
8853 * port_clock to compute adjusted_mode.crtc_clock in the
8854 * encoder's get_config() function.
8856 pipe_config->port_clock = clock.dot;
8859 int intel_dotclock_calculate(int link_freq,
8860 const struct intel_link_m_n *m_n)
8863 * The calculation for the data clock is:
8864 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8865 * But we want to avoid losing precison if possible, so:
8866 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8868 * and the link clock is simpler:
8869 * link_clock = (m * link_clock) / n
8872 if (!m_n->link_n)
8873 return 0;
8875 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8878 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8879 struct intel_crtc_state *pipe_config)
8881 struct drm_device *dev = crtc->base.dev;
8883 /* read out port_clock from the DPLL */
8884 i9xx_crtc_clock_get(crtc, pipe_config);
8887 * This value does not include pixel_multiplier.
8888 * We will check that port_clock and adjusted_mode.crtc_clock
8889 * agree once we know their relationship in the encoder's
8890 * get_config() function.
8892 pipe_config->base.adjusted_mode.crtc_clock =
8893 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8894 &pipe_config->fdi_m_n);
8897 /** Returns the currently programmed mode of the given pipe. */
8898 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8899 struct drm_crtc *crtc)
8901 struct drm_i915_private *dev_priv = dev->dev_private;
8902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8903 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8904 struct drm_display_mode *mode;
8905 struct intel_crtc_state pipe_config;
8906 int htot = I915_READ(HTOTAL(cpu_transcoder));
8907 int hsync = I915_READ(HSYNC(cpu_transcoder));
8908 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8909 int vsync = I915_READ(VSYNC(cpu_transcoder));
8910 enum pipe pipe = intel_crtc->pipe;
8912 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8913 if (!mode)
8914 return NULL;
8917 * Construct a pipe_config sufficient for getting the clock info
8918 * back out of crtc_clock_get.
8920 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8921 * to use a real value here instead.
8923 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8924 pipe_config.pixel_multiplier = 1;
8925 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8926 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8927 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8928 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8930 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8931 mode->hdisplay = (htot & 0xffff) + 1;
8932 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8933 mode->hsync_start = (hsync & 0xffff) + 1;
8934 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8935 mode->vdisplay = (vtot & 0xffff) + 1;
8936 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8937 mode->vsync_start = (vsync & 0xffff) + 1;
8938 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8940 drm_mode_set_name(mode);
8942 return mode;
8945 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8947 struct drm_device *dev = crtc->dev;
8948 struct drm_i915_private *dev_priv = dev->dev_private;
8949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8951 if (!HAS_GMCH_DISPLAY(dev))
8952 return;
8954 if (!dev_priv->lvds_downclock_avail)
8955 return;
8958 * Since this is called by a timer, we should never get here in
8959 * the manual case.
8961 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8962 int pipe = intel_crtc->pipe;
8963 int dpll_reg = DPLL(pipe);
8964 int dpll;
8966 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8968 assert_panel_unlocked(dev_priv, pipe);
8970 dpll = I915_READ(dpll_reg);
8971 dpll |= DISPLAY_RATE_SELECT_FPA1;
8972 I915_WRITE(dpll_reg, dpll);
8973 intel_wait_for_vblank(dev, pipe);
8974 dpll = I915_READ(dpll_reg);
8975 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8976 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8981 void intel_mark_busy(struct drm_device *dev)
8983 struct drm_i915_private *dev_priv = dev->dev_private;
8985 if (dev_priv->mm.busy)
8986 return;
8988 intel_runtime_pm_get(dev_priv);
8989 i915_update_gfx_val(dev_priv);
8990 dev_priv->mm.busy = true;
8993 void intel_mark_idle(struct drm_device *dev)
8995 struct drm_i915_private *dev_priv = dev->dev_private;
8996 struct drm_crtc *crtc;
8998 if (!dev_priv->mm.busy)
8999 return;
9001 dev_priv->mm.busy = false;
9003 if (!i915.powersave)
9004 goto out;
9006 for_each_crtc(dev, crtc) {
9007 if (!crtc->primary->fb)
9008 continue;
9010 intel_decrease_pllclock(crtc);
9013 if (INTEL_INFO(dev)->gen >= 6)
9014 gen6_rps_idle(dev->dev_private);
9016 out:
9017 intel_runtime_pm_put(dev_priv);
9020 static void intel_crtc_set_state(struct intel_crtc *crtc,
9021 struct intel_crtc_state *crtc_state)
9023 kfree(crtc->config);
9024 crtc->config = crtc_state;
9025 crtc->base.state = &crtc_state->base;
9028 static void intel_crtc_destroy(struct drm_crtc *crtc)
9030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9031 struct drm_device *dev = crtc->dev;
9032 struct intel_unpin_work *work;
9034 spin_lock_irq(&dev->event_lock);
9035 work = intel_crtc->unpin_work;
9036 intel_crtc->unpin_work = NULL;
9037 spin_unlock_irq(&dev->event_lock);
9039 if (work) {
9040 cancel_work_sync(&work->work);
9041 kfree(work);
9044 intel_crtc_set_state(intel_crtc, NULL);
9045 drm_crtc_cleanup(crtc);
9047 kfree(intel_crtc);
9050 static void intel_unpin_work_fn(struct work_struct *__work)
9052 struct intel_unpin_work *work =
9053 container_of(__work, struct intel_unpin_work, work);
9054 struct drm_device *dev = work->crtc->dev;
9055 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9057 mutex_lock(&dev->struct_mutex);
9058 intel_unpin_fb_obj(work->old_fb_obj);
9059 drm_gem_object_unreference(&work->pending_flip_obj->base);
9060 drm_gem_object_unreference(&work->old_fb_obj->base);
9062 intel_fbc_update(dev);
9064 if (work->flip_queued_req)
9065 i915_gem_request_assign(&work->flip_queued_req, NULL);
9066 mutex_unlock(&dev->struct_mutex);
9068 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9070 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9071 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9073 kfree(work);
9076 static void do_intel_finish_page_flip(struct drm_device *dev,
9077 struct drm_crtc *crtc)
9079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9080 struct intel_unpin_work *work;
9081 unsigned long flags;
9083 /* Ignore early vblank irqs */
9084 if (intel_crtc == NULL)
9085 return;
9088 * This is called both by irq handlers and the reset code (to complete
9089 * lost pageflips) so needs the full irqsave spinlocks.
9091 spin_lock_irqsave(&dev->event_lock, flags);
9092 work = intel_crtc->unpin_work;
9094 /* Ensure we don't miss a work->pending update ... */
9095 smp_rmb();
9097 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9098 spin_unlock_irqrestore(&dev->event_lock, flags);
9099 return;
9102 page_flip_completed(intel_crtc);
9104 spin_unlock_irqrestore(&dev->event_lock, flags);
9107 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9109 struct drm_i915_private *dev_priv = dev->dev_private;
9110 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9112 do_intel_finish_page_flip(dev, crtc);
9115 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9117 struct drm_i915_private *dev_priv = dev->dev_private;
9118 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9120 do_intel_finish_page_flip(dev, crtc);
9123 /* Is 'a' after or equal to 'b'? */
9124 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9126 return !((a - b) & 0x80000000);
9129 static bool page_flip_finished(struct intel_crtc *crtc)
9131 struct drm_device *dev = crtc->base.dev;
9132 struct drm_i915_private *dev_priv = dev->dev_private;
9134 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9135 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9136 return true;
9139 * The relevant registers doen't exist on pre-ctg.
9140 * As the flip done interrupt doesn't trigger for mmio
9141 * flips on gmch platforms, a flip count check isn't
9142 * really needed there. But since ctg has the registers,
9143 * include it in the check anyway.
9145 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9146 return true;
9149 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9150 * used the same base address. In that case the mmio flip might
9151 * have completed, but the CS hasn't even executed the flip yet.
9153 * A flip count check isn't enough as the CS might have updated
9154 * the base address just after start of vblank, but before we
9155 * managed to process the interrupt. This means we'd complete the
9156 * CS flip too soon.
9158 * Combining both checks should get us a good enough result. It may
9159 * still happen that the CS flip has been executed, but has not
9160 * yet actually completed. But in case the base address is the same
9161 * anyway, we don't really care.
9163 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9164 crtc->unpin_work->gtt_offset &&
9165 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9166 crtc->unpin_work->flip_count);
9169 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9171 struct drm_i915_private *dev_priv = dev->dev_private;
9172 struct intel_crtc *intel_crtc =
9173 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9174 unsigned long flags;
9178 * This is called both by irq handlers and the reset code (to complete
9179 * lost pageflips) so needs the full irqsave spinlocks.
9181 * NB: An MMIO update of the plane base pointer will also
9182 * generate a page-flip completion irq, i.e. every modeset
9183 * is also accompanied by a spurious intel_prepare_page_flip().
9185 spin_lock_irqsave(&dev->event_lock, flags);
9186 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9187 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9188 spin_unlock_irqrestore(&dev->event_lock, flags);
9191 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9193 /* Ensure that the work item is consistent when activating it ... */
9194 smp_wmb();
9195 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9196 /* and that it is marked active as soon as the irq could fire. */
9197 smp_wmb();
9200 static int intel_gen2_queue_flip(struct drm_device *dev,
9201 struct drm_crtc *crtc,
9202 struct drm_framebuffer *fb,
9203 struct drm_i915_gem_object *obj,
9204 struct intel_engine_cs *ring,
9205 uint32_t flags)
9207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9208 u32 flip_mask;
9209 int ret;
9211 ret = intel_ring_begin(ring, 6);
9212 if (ret)
9213 return ret;
9215 /* Can't queue multiple flips, so wait for the previous
9216 * one to finish before executing the next.
9218 if (intel_crtc->plane)
9219 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9220 else
9221 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9222 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9223 intel_ring_emit(ring, MI_NOOP);
9224 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9225 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9226 intel_ring_emit(ring, fb->pitches[0]);
9227 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9228 intel_ring_emit(ring, 0); /* aux display base address, unused */
9230 intel_mark_page_flip_active(intel_crtc);
9231 __intel_ring_advance(ring);
9232 return 0;
9235 static int intel_gen3_queue_flip(struct drm_device *dev,
9236 struct drm_crtc *crtc,
9237 struct drm_framebuffer *fb,
9238 struct drm_i915_gem_object *obj,
9239 struct intel_engine_cs *ring,
9240 uint32_t flags)
9242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9243 u32 flip_mask;
9244 int ret;
9246 ret = intel_ring_begin(ring, 6);
9247 if (ret)
9248 return ret;
9250 if (intel_crtc->plane)
9251 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9252 else
9253 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9254 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9255 intel_ring_emit(ring, MI_NOOP);
9256 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9257 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9258 intel_ring_emit(ring, fb->pitches[0]);
9259 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9260 intel_ring_emit(ring, MI_NOOP);
9262 intel_mark_page_flip_active(intel_crtc);
9263 __intel_ring_advance(ring);
9264 return 0;
9267 static int intel_gen4_queue_flip(struct drm_device *dev,
9268 struct drm_crtc *crtc,
9269 struct drm_framebuffer *fb,
9270 struct drm_i915_gem_object *obj,
9271 struct intel_engine_cs *ring,
9272 uint32_t flags)
9274 struct drm_i915_private *dev_priv = dev->dev_private;
9275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9276 uint32_t pf, pipesrc;
9277 int ret;
9279 ret = intel_ring_begin(ring, 4);
9280 if (ret)
9281 return ret;
9283 /* i965+ uses the linear or tiled offsets from the
9284 * Display Registers (which do not change across a page-flip)
9285 * so we need only reprogram the base address.
9287 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9288 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9289 intel_ring_emit(ring, fb->pitches[0]);
9290 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9291 obj->tiling_mode);
9293 /* XXX Enabling the panel-fitter across page-flip is so far
9294 * untested on non-native modes, so ignore it for now.
9295 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9297 pf = 0;
9298 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9299 intel_ring_emit(ring, pf | pipesrc);
9301 intel_mark_page_flip_active(intel_crtc);
9302 __intel_ring_advance(ring);
9303 return 0;
9306 static int intel_gen6_queue_flip(struct drm_device *dev,
9307 struct drm_crtc *crtc,
9308 struct drm_framebuffer *fb,
9309 struct drm_i915_gem_object *obj,
9310 struct intel_engine_cs *ring,
9311 uint32_t flags)
9313 struct drm_i915_private *dev_priv = dev->dev_private;
9314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9315 uint32_t pf, pipesrc;
9316 int ret;
9318 ret = intel_ring_begin(ring, 4);
9319 if (ret)
9320 return ret;
9322 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9323 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9324 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9325 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9327 /* Contrary to the suggestions in the documentation,
9328 * "Enable Panel Fitter" does not seem to be required when page
9329 * flipping with a non-native mode, and worse causes a normal
9330 * modeset to fail.
9331 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9333 pf = 0;
9334 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9335 intel_ring_emit(ring, pf | pipesrc);
9337 intel_mark_page_flip_active(intel_crtc);
9338 __intel_ring_advance(ring);
9339 return 0;
9342 static int intel_gen7_queue_flip(struct drm_device *dev,
9343 struct drm_crtc *crtc,
9344 struct drm_framebuffer *fb,
9345 struct drm_i915_gem_object *obj,
9346 struct intel_engine_cs *ring,
9347 uint32_t flags)
9349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9350 uint32_t plane_bit = 0;
9351 int len, ret;
9353 switch (intel_crtc->plane) {
9354 case PLANE_A:
9355 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9356 break;
9357 case PLANE_B:
9358 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9359 break;
9360 case PLANE_C:
9361 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9362 break;
9363 default:
9364 WARN_ONCE(1, "unknown plane in flip command\n");
9365 return -ENODEV;
9368 len = 4;
9369 if (ring->id == RCS) {
9370 len += 6;
9372 * On Gen 8, SRM is now taking an extra dword to accommodate
9373 * 48bits addresses, and we need a NOOP for the batch size to
9374 * stay even.
9376 if (IS_GEN8(dev))
9377 len += 2;
9381 * BSpec MI_DISPLAY_FLIP for IVB:
9382 * "The full packet must be contained within the same cache line."
9384 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9385 * cacheline, if we ever start emitting more commands before
9386 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9387 * then do the cacheline alignment, and finally emit the
9388 * MI_DISPLAY_FLIP.
9390 ret = intel_ring_cacheline_align(ring);
9391 if (ret)
9392 return ret;
9394 ret = intel_ring_begin(ring, len);
9395 if (ret)
9396 return ret;
9398 /* Unmask the flip-done completion message. Note that the bspec says that
9399 * we should do this for both the BCS and RCS, and that we must not unmask
9400 * more than one flip event at any time (or ensure that one flip message
9401 * can be sent by waiting for flip-done prior to queueing new flips).
9402 * Experimentation says that BCS works despite DERRMR masking all
9403 * flip-done completion events and that unmasking all planes at once
9404 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9405 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9407 if (ring->id == RCS) {
9408 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9409 intel_ring_emit(ring, DERRMR);
9410 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9411 DERRMR_PIPEB_PRI_FLIP_DONE |
9412 DERRMR_PIPEC_PRI_FLIP_DONE));
9413 if (IS_GEN8(dev))
9414 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9415 MI_SRM_LRM_GLOBAL_GTT);
9416 else
9417 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9418 MI_SRM_LRM_GLOBAL_GTT);
9419 intel_ring_emit(ring, DERRMR);
9420 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9421 if (IS_GEN8(dev)) {
9422 intel_ring_emit(ring, 0);
9423 intel_ring_emit(ring, MI_NOOP);
9427 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9428 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9429 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9430 intel_ring_emit(ring, (MI_NOOP));
9432 intel_mark_page_flip_active(intel_crtc);
9433 __intel_ring_advance(ring);
9434 return 0;
9437 static bool use_mmio_flip(struct intel_engine_cs *ring,
9438 struct drm_i915_gem_object *obj)
9441 * This is not being used for older platforms, because
9442 * non-availability of flip done interrupt forces us to use
9443 * CS flips. Older platforms derive flip done using some clever
9444 * tricks involving the flip_pending status bits and vblank irqs.
9445 * So using MMIO flips there would disrupt this mechanism.
9448 if (ring == NULL)
9449 return true;
9451 if (INTEL_INFO(ring->dev)->gen < 5)
9452 return false;
9454 if (i915.use_mmio_flip < 0)
9455 return false;
9456 else if (i915.use_mmio_flip > 0)
9457 return true;
9458 else if (i915.enable_execlists)
9459 return true;
9460 else
9461 return ring != i915_gem_request_get_ring(obj->last_read_req);
9464 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9466 struct drm_device *dev = intel_crtc->base.dev;
9467 struct drm_i915_private *dev_priv = dev->dev_private;
9468 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9469 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9470 struct drm_i915_gem_object *obj = intel_fb->obj;
9471 const enum pipe pipe = intel_crtc->pipe;
9472 u32 ctl, stride;
9474 ctl = I915_READ(PLANE_CTL(pipe, 0));
9475 ctl &= ~PLANE_CTL_TILED_MASK;
9476 if (obj->tiling_mode == I915_TILING_X)
9477 ctl |= PLANE_CTL_TILED_X;
9480 * The stride is either expressed as a multiple of 64 bytes chunks for
9481 * linear buffers or in number of tiles for tiled buffers.
9483 stride = fb->pitches[0] >> 6;
9484 if (obj->tiling_mode == I915_TILING_X)
9485 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9488 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9489 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9491 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9492 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9494 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9495 POSTING_READ(PLANE_SURF(pipe, 0));
9498 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9500 struct drm_device *dev = intel_crtc->base.dev;
9501 struct drm_i915_private *dev_priv = dev->dev_private;
9502 struct intel_framebuffer *intel_fb =
9503 to_intel_framebuffer(intel_crtc->base.primary->fb);
9504 struct drm_i915_gem_object *obj = intel_fb->obj;
9505 u32 dspcntr;
9506 u32 reg;
9508 reg = DSPCNTR(intel_crtc->plane);
9509 dspcntr = I915_READ(reg);
9511 if (obj->tiling_mode != I915_TILING_NONE)
9512 dspcntr |= DISPPLANE_TILED;
9513 else
9514 dspcntr &= ~DISPPLANE_TILED;
9516 I915_WRITE(reg, dspcntr);
9518 I915_WRITE(DSPSURF(intel_crtc->plane),
9519 intel_crtc->unpin_work->gtt_offset);
9520 POSTING_READ(DSPSURF(intel_crtc->plane));
9525 * XXX: This is the temporary way to update the plane registers until we get
9526 * around to using the usual plane update functions for MMIO flips
9528 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9530 struct drm_device *dev = intel_crtc->base.dev;
9531 bool atomic_update;
9532 u32 start_vbl_count;
9534 intel_mark_page_flip_active(intel_crtc);
9536 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9538 if (INTEL_INFO(dev)->gen >= 9)
9539 skl_do_mmio_flip(intel_crtc);
9540 else
9541 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9542 ilk_do_mmio_flip(intel_crtc);
9544 if (atomic_update)
9545 intel_pipe_update_end(intel_crtc, start_vbl_count);
9548 static void intel_mmio_flip_work_func(struct work_struct *work)
9550 struct intel_crtc *crtc =
9551 container_of(work, struct intel_crtc, mmio_flip.work);
9552 struct intel_mmio_flip *mmio_flip;
9554 mmio_flip = &crtc->mmio_flip;
9555 if (mmio_flip->req)
9556 WARN_ON(__i915_wait_request(mmio_flip->req,
9557 crtc->reset_counter,
9558 false, NULL, NULL) != 0);
9560 intel_do_mmio_flip(crtc);
9561 if (mmio_flip->req) {
9562 mutex_lock(&crtc->base.dev->struct_mutex);
9563 i915_gem_request_assign(&mmio_flip->req, NULL);
9564 mutex_unlock(&crtc->base.dev->struct_mutex);
9568 static int intel_queue_mmio_flip(struct drm_device *dev,
9569 struct drm_crtc *crtc,
9570 struct drm_framebuffer *fb,
9571 struct drm_i915_gem_object *obj,
9572 struct intel_engine_cs *ring,
9573 uint32_t flags)
9575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9577 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9578 obj->last_write_req);
9580 schedule_work(&intel_crtc->mmio_flip.work);
9582 return 0;
9585 static int intel_gen9_queue_flip(struct drm_device *dev,
9586 struct drm_crtc *crtc,
9587 struct drm_framebuffer *fb,
9588 struct drm_i915_gem_object *obj,
9589 struct intel_engine_cs *ring,
9590 uint32_t flags)
9592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9593 uint32_t plane = 0, stride;
9594 int ret;
9596 switch(intel_crtc->pipe) {
9597 case PIPE_A:
9598 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9599 break;
9600 case PIPE_B:
9601 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9602 break;
9603 case PIPE_C:
9604 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9605 break;
9606 default:
9607 WARN_ONCE(1, "unknown plane in flip command\n");
9608 return -ENODEV;
9611 switch (obj->tiling_mode) {
9612 case I915_TILING_NONE:
9613 stride = fb->pitches[0] >> 6;
9614 break;
9615 case I915_TILING_X:
9616 stride = fb->pitches[0] >> 9;
9617 break;
9618 default:
9619 WARN_ONCE(1, "unknown tiling in flip command\n");
9620 return -ENODEV;
9623 ret = intel_ring_begin(ring, 10);
9624 if (ret)
9625 return ret;
9627 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9628 intel_ring_emit(ring, DERRMR);
9629 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9630 DERRMR_PIPEB_PRI_FLIP_DONE |
9631 DERRMR_PIPEC_PRI_FLIP_DONE));
9632 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9633 MI_SRM_LRM_GLOBAL_GTT);
9634 intel_ring_emit(ring, DERRMR);
9635 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9636 intel_ring_emit(ring, 0);
9638 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9639 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9640 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9642 intel_mark_page_flip_active(intel_crtc);
9643 __intel_ring_advance(ring);
9645 return 0;
9648 static int intel_default_queue_flip(struct drm_device *dev,
9649 struct drm_crtc *crtc,
9650 struct drm_framebuffer *fb,
9651 struct drm_i915_gem_object *obj,
9652 struct intel_engine_cs *ring,
9653 uint32_t flags)
9655 return -ENODEV;
9658 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9659 struct drm_crtc *crtc)
9661 struct drm_i915_private *dev_priv = dev->dev_private;
9662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9663 struct intel_unpin_work *work = intel_crtc->unpin_work;
9664 u32 addr;
9666 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9667 return true;
9669 if (!work->enable_stall_check)
9670 return false;
9672 if (work->flip_ready_vblank == 0) {
9673 if (work->flip_queued_req &&
9674 !i915_gem_request_completed(work->flip_queued_req, true))
9675 return false;
9677 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9680 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9681 return false;
9683 /* Potential stall - if we see that the flip has happened,
9684 * assume a missed interrupt. */
9685 if (INTEL_INFO(dev)->gen >= 4)
9686 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9687 else
9688 addr = I915_READ(DSPADDR(intel_crtc->plane));
9690 /* There is a potential issue here with a false positive after a flip
9691 * to the same address. We could address this by checking for a
9692 * non-incrementing frame counter.
9694 return addr == work->gtt_offset;
9697 void intel_check_page_flip(struct drm_device *dev, int pipe)
9699 struct drm_i915_private *dev_priv = dev->dev_private;
9700 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9703 WARN_ON(!in_irq());
9705 if (crtc == NULL)
9706 return;
9708 spin_lock(&dev->event_lock);
9709 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9710 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9711 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9712 page_flip_completed(intel_crtc);
9714 spin_unlock(&dev->event_lock);
9717 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9718 struct drm_framebuffer *fb,
9719 struct drm_pending_vblank_event *event,
9720 uint32_t page_flip_flags)
9722 struct drm_device *dev = crtc->dev;
9723 struct drm_i915_private *dev_priv = dev->dev_private;
9724 struct drm_framebuffer *old_fb = crtc->primary->fb;
9725 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9727 struct drm_plane *primary = crtc->primary;
9728 enum pipe pipe = intel_crtc->pipe;
9729 struct intel_unpin_work *work;
9730 struct intel_engine_cs *ring;
9731 int ret;
9734 * drm_mode_page_flip_ioctl() should already catch this, but double
9735 * check to be safe. In the future we may enable pageflipping from
9736 * a disabled primary plane.
9738 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9739 return -EBUSY;
9741 /* Can't change pixel format via MI display flips. */
9742 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9743 return -EINVAL;
9746 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9747 * Note that pitch changes could also affect these register.
9749 if (INTEL_INFO(dev)->gen > 3 &&
9750 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9751 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9752 return -EINVAL;
9754 if (i915_terminally_wedged(&dev_priv->gpu_error))
9755 goto out_hang;
9757 work = kzalloc(sizeof(*work), GFP_KERNEL);
9758 if (work == NULL)
9759 return -ENOMEM;
9761 work->event = event;
9762 work->crtc = crtc;
9763 work->old_fb_obj = intel_fb_obj(old_fb);
9764 INIT_WORK(&work->work, intel_unpin_work_fn);
9766 ret = drm_crtc_vblank_get(crtc);
9767 if (ret)
9768 goto free_work;
9770 /* We borrow the event spin lock for protecting unpin_work */
9771 spin_lock_irq(&dev->event_lock);
9772 if (intel_crtc->unpin_work) {
9773 /* Before declaring the flip queue wedged, check if
9774 * the hardware completed the operation behind our backs.
9776 if (__intel_pageflip_stall_check(dev, crtc)) {
9777 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9778 page_flip_completed(intel_crtc);
9779 } else {
9780 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9781 spin_unlock_irq(&dev->event_lock);
9783 drm_crtc_vblank_put(crtc);
9784 kfree(work);
9785 return -EBUSY;
9788 intel_crtc->unpin_work = work;
9789 spin_unlock_irq(&dev->event_lock);
9791 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9792 flush_workqueue(dev_priv->wq);
9794 ret = i915_mutex_lock_interruptible(dev);
9795 if (ret)
9796 goto cleanup;
9798 /* Reference the objects for the scheduled work. */
9799 drm_gem_object_reference(&work->old_fb_obj->base);
9800 drm_gem_object_reference(&obj->base);
9802 crtc->primary->fb = fb;
9804 work->pending_flip_obj = obj;
9806 atomic_inc(&intel_crtc->unpin_work_count);
9807 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9809 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9810 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9812 if (IS_VALLEYVIEW(dev)) {
9813 ring = &dev_priv->ring[BCS];
9814 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9815 /* vlv: DISPLAY_FLIP fails to change tiling */
9816 ring = NULL;
9817 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9818 ring = &dev_priv->ring[BCS];
9819 } else if (INTEL_INFO(dev)->gen >= 7) {
9820 ring = i915_gem_request_get_ring(obj->last_read_req);
9821 if (ring == NULL || ring->id != RCS)
9822 ring = &dev_priv->ring[BCS];
9823 } else {
9824 ring = &dev_priv->ring[RCS];
9827 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9828 if (ret)
9829 goto cleanup_pending;
9831 work->gtt_offset =
9832 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9834 if (use_mmio_flip(ring, obj)) {
9835 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9836 page_flip_flags);
9837 if (ret)
9838 goto cleanup_unpin;
9840 i915_gem_request_assign(&work->flip_queued_req,
9841 obj->last_write_req);
9842 } else {
9843 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9844 page_flip_flags);
9845 if (ret)
9846 goto cleanup_unpin;
9848 i915_gem_request_assign(&work->flip_queued_req,
9849 intel_ring_get_request(ring));
9852 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9853 work->enable_stall_check = true;
9855 i915_gem_track_fb(work->old_fb_obj, obj,
9856 INTEL_FRONTBUFFER_PRIMARY(pipe));
9858 intel_fbc_disable(dev);
9859 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9860 mutex_unlock(&dev->struct_mutex);
9862 trace_i915_flip_request(intel_crtc->plane, obj);
9864 return 0;
9866 cleanup_unpin:
9867 intel_unpin_fb_obj(obj);
9868 cleanup_pending:
9869 atomic_dec(&intel_crtc->unpin_work_count);
9870 crtc->primary->fb = old_fb;
9871 drm_gem_object_unreference(&work->old_fb_obj->base);
9872 drm_gem_object_unreference(&obj->base);
9873 mutex_unlock(&dev->struct_mutex);
9875 cleanup:
9876 spin_lock_irq(&dev->event_lock);
9877 intel_crtc->unpin_work = NULL;
9878 spin_unlock_irq(&dev->event_lock);
9880 drm_crtc_vblank_put(crtc);
9881 free_work:
9882 kfree(work);
9884 if (ret == -EIO) {
9885 out_hang:
9886 ret = intel_plane_restore(primary);
9887 if (ret == 0 && event) {
9888 spin_lock_irq(&dev->event_lock);
9889 drm_send_vblank_event(dev, pipe, event);
9890 spin_unlock_irq(&dev->event_lock);
9893 return ret;
9896 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9897 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9898 .load_lut = intel_crtc_load_lut,
9899 .atomic_begin = intel_begin_crtc_commit,
9900 .atomic_flush = intel_finish_crtc_commit,
9904 * intel_modeset_update_staged_output_state
9906 * Updates the staged output configuration state, e.g. after we've read out the
9907 * current hw state.
9909 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9911 struct intel_crtc *crtc;
9912 struct intel_encoder *encoder;
9913 struct intel_connector *connector;
9915 list_for_each_entry(connector, &dev->mode_config.connector_list,
9916 base.head) {
9917 connector->new_encoder =
9918 to_intel_encoder(connector->base.encoder);
9921 for_each_intel_encoder(dev, encoder) {
9922 encoder->new_crtc =
9923 to_intel_crtc(encoder->base.crtc);
9926 for_each_intel_crtc(dev, crtc) {
9927 crtc->new_enabled = crtc->base.enabled;
9929 if (crtc->new_enabled)
9930 crtc->new_config = crtc->config;
9931 else
9932 crtc->new_config = NULL;
9937 * intel_modeset_commit_output_state
9939 * This function copies the stage display pipe configuration to the real one.
9941 static void intel_modeset_commit_output_state(struct drm_device *dev)
9943 struct intel_crtc *crtc;
9944 struct intel_encoder *encoder;
9945 struct intel_connector *connector;
9947 list_for_each_entry(connector, &dev->mode_config.connector_list,
9948 base.head) {
9949 connector->base.encoder = &connector->new_encoder->base;
9952 for_each_intel_encoder(dev, encoder) {
9953 encoder->base.crtc = &encoder->new_crtc->base;
9956 for_each_intel_crtc(dev, crtc) {
9957 crtc->base.enabled = crtc->new_enabled;
9961 static void
9962 connected_sink_compute_bpp(struct intel_connector *connector,
9963 struct intel_crtc_state *pipe_config)
9965 int bpp = pipe_config->pipe_bpp;
9967 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9968 connector->base.base.id,
9969 connector->base.name);
9971 /* Don't use an invalid EDID bpc value */
9972 if (connector->base.display_info.bpc &&
9973 connector->base.display_info.bpc * 3 < bpp) {
9974 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9975 bpp, connector->base.display_info.bpc*3);
9976 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9979 /* Clamp bpp to 8 on screens without EDID 1.4 */
9980 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9981 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9982 bpp);
9983 pipe_config->pipe_bpp = 24;
9987 static int
9988 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9989 struct drm_framebuffer *fb,
9990 struct intel_crtc_state *pipe_config)
9992 struct drm_device *dev = crtc->base.dev;
9993 struct intel_connector *connector;
9994 int bpp;
9996 switch (fb->pixel_format) {
9997 case DRM_FORMAT_C8:
9998 bpp = 8*3; /* since we go through a colormap */
9999 break;
10000 case DRM_FORMAT_XRGB1555:
10001 case DRM_FORMAT_ARGB1555:
10002 /* checked in intel_framebuffer_init already */
10003 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10004 return -EINVAL;
10005 case DRM_FORMAT_RGB565:
10006 bpp = 6*3; /* min is 18bpp */
10007 break;
10008 case DRM_FORMAT_XBGR8888:
10009 case DRM_FORMAT_ABGR8888:
10010 /* checked in intel_framebuffer_init already */
10011 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10012 return -EINVAL;
10013 case DRM_FORMAT_XRGB8888:
10014 case DRM_FORMAT_ARGB8888:
10015 bpp = 8*3;
10016 break;
10017 case DRM_FORMAT_XRGB2101010:
10018 case DRM_FORMAT_ARGB2101010:
10019 case DRM_FORMAT_XBGR2101010:
10020 case DRM_FORMAT_ABGR2101010:
10021 /* checked in intel_framebuffer_init already */
10022 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10023 return -EINVAL;
10024 bpp = 10*3;
10025 break;
10026 /* TODO: gen4+ supports 16 bpc floating point, too. */
10027 default:
10028 DRM_DEBUG_KMS("unsupported depth\n");
10029 return -EINVAL;
10032 pipe_config->pipe_bpp = bpp;
10034 /* Clamp display bpp to EDID value */
10035 list_for_each_entry(connector, &dev->mode_config.connector_list,
10036 base.head) {
10037 if (!connector->new_encoder ||
10038 connector->new_encoder->new_crtc != crtc)
10039 continue;
10041 connected_sink_compute_bpp(connector, pipe_config);
10044 return bpp;
10047 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10049 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10050 "type: 0x%x flags: 0x%x\n",
10051 mode->crtc_clock,
10052 mode->crtc_hdisplay, mode->crtc_hsync_start,
10053 mode->crtc_hsync_end, mode->crtc_htotal,
10054 mode->crtc_vdisplay, mode->crtc_vsync_start,
10055 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10058 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10059 struct intel_crtc_state *pipe_config,
10060 const char *context)
10062 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10063 context, pipe_name(crtc->pipe));
10065 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10066 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10067 pipe_config->pipe_bpp, pipe_config->dither);
10068 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10069 pipe_config->has_pch_encoder,
10070 pipe_config->fdi_lanes,
10071 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10072 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10073 pipe_config->fdi_m_n.tu);
10074 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10075 pipe_config->has_dp_encoder,
10076 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10077 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10078 pipe_config->dp_m_n.tu);
10080 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10081 pipe_config->has_dp_encoder,
10082 pipe_config->dp_m2_n2.gmch_m,
10083 pipe_config->dp_m2_n2.gmch_n,
10084 pipe_config->dp_m2_n2.link_m,
10085 pipe_config->dp_m2_n2.link_n,
10086 pipe_config->dp_m2_n2.tu);
10088 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10089 pipe_config->has_audio,
10090 pipe_config->has_infoframe);
10092 DRM_DEBUG_KMS("requested mode:\n");
10093 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10094 DRM_DEBUG_KMS("adjusted mode:\n");
10095 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10096 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10097 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10098 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10099 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10100 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10101 pipe_config->gmch_pfit.control,
10102 pipe_config->gmch_pfit.pgm_ratios,
10103 pipe_config->gmch_pfit.lvds_border_bits);
10104 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10105 pipe_config->pch_pfit.pos,
10106 pipe_config->pch_pfit.size,
10107 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10108 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10109 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10112 static bool encoders_cloneable(const struct intel_encoder *a,
10113 const struct intel_encoder *b)
10115 /* masks could be asymmetric, so check both ways */
10116 return a == b || (a->cloneable & (1 << b->type) &&
10117 b->cloneable & (1 << a->type));
10120 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10121 struct intel_encoder *encoder)
10123 struct drm_device *dev = crtc->base.dev;
10124 struct intel_encoder *source_encoder;
10126 for_each_intel_encoder(dev, source_encoder) {
10127 if (source_encoder->new_crtc != crtc)
10128 continue;
10130 if (!encoders_cloneable(encoder, source_encoder))
10131 return false;
10134 return true;
10137 static bool check_encoder_cloning(struct intel_crtc *crtc)
10139 struct drm_device *dev = crtc->base.dev;
10140 struct intel_encoder *encoder;
10142 for_each_intel_encoder(dev, encoder) {
10143 if (encoder->new_crtc != crtc)
10144 continue;
10146 if (!check_single_encoder_cloning(crtc, encoder))
10147 return false;
10150 return true;
10153 static bool check_digital_port_conflicts(struct drm_device *dev)
10155 struct intel_connector *connector;
10156 unsigned int used_ports = 0;
10159 * Walk the connector list instead of the encoder
10160 * list to detect the problem on ddi platforms
10161 * where there's just one encoder per digital port.
10163 list_for_each_entry(connector,
10164 &dev->mode_config.connector_list, base.head) {
10165 struct intel_encoder *encoder = connector->new_encoder;
10167 if (!encoder)
10168 continue;
10170 WARN_ON(!encoder->new_crtc);
10172 switch (encoder->type) {
10173 unsigned int port_mask;
10174 case INTEL_OUTPUT_UNKNOWN:
10175 if (WARN_ON(!HAS_DDI(dev)))
10176 break;
10177 case INTEL_OUTPUT_DISPLAYPORT:
10178 case INTEL_OUTPUT_HDMI:
10179 case INTEL_OUTPUT_EDP:
10180 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10182 /* the same port mustn't appear more than once */
10183 if (used_ports & port_mask)
10184 return false;
10186 used_ports |= port_mask;
10187 default:
10188 break;
10192 return true;
10195 static struct intel_crtc_state *
10196 intel_modeset_pipe_config(struct drm_crtc *crtc,
10197 struct drm_framebuffer *fb,
10198 struct drm_display_mode *mode)
10200 struct drm_device *dev = crtc->dev;
10201 struct intel_encoder *encoder;
10202 struct intel_crtc_state *pipe_config;
10203 int plane_bpp, ret = -EINVAL;
10204 bool retry = true;
10206 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10207 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10208 return ERR_PTR(-EINVAL);
10211 if (!check_digital_port_conflicts(dev)) {
10212 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10213 return ERR_PTR(-EINVAL);
10216 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10217 if (!pipe_config)
10218 return ERR_PTR(-ENOMEM);
10220 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10221 drm_mode_copy(&pipe_config->base.mode, mode);
10223 pipe_config->cpu_transcoder =
10224 (enum transcoder) to_intel_crtc(crtc)->pipe;
10225 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10228 * Sanitize sync polarity flags based on requested ones. If neither
10229 * positive or negative polarity is requested, treat this as meaning
10230 * negative polarity.
10232 if (!(pipe_config->base.adjusted_mode.flags &
10233 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10234 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10236 if (!(pipe_config->base.adjusted_mode.flags &
10237 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10238 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10240 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10241 * plane pixel format and any sink constraints into account. Returns the
10242 * source plane bpp so that dithering can be selected on mismatches
10243 * after encoders and crtc also have had their say. */
10244 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10245 fb, pipe_config);
10246 if (plane_bpp < 0)
10247 goto fail;
10250 * Determine the real pipe dimensions. Note that stereo modes can
10251 * increase the actual pipe size due to the frame doubling and
10252 * insertion of additional space for blanks between the frame. This
10253 * is stored in the crtc timings. We use the requested mode to do this
10254 * computation to clearly distinguish it from the adjusted mode, which
10255 * can be changed by the connectors in the below retry loop.
10257 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10258 &pipe_config->pipe_src_w,
10259 &pipe_config->pipe_src_h);
10261 encoder_retry:
10262 /* Ensure the port clock defaults are reset when retrying. */
10263 pipe_config->port_clock = 0;
10264 pipe_config->pixel_multiplier = 1;
10266 /* Fill in default crtc timings, allow encoders to overwrite them. */
10267 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10268 CRTC_STEREO_DOUBLE);
10270 /* Pass our mode to the connectors and the CRTC to give them a chance to
10271 * adjust it according to limitations or connector properties, and also
10272 * a chance to reject the mode entirely.
10274 for_each_intel_encoder(dev, encoder) {
10276 if (&encoder->new_crtc->base != crtc)
10277 continue;
10279 if (!(encoder->compute_config(encoder, pipe_config))) {
10280 DRM_DEBUG_KMS("Encoder config failure\n");
10281 goto fail;
10285 /* Set default port clock if not overwritten by the encoder. Needs to be
10286 * done afterwards in case the encoder adjusts the mode. */
10287 if (!pipe_config->port_clock)
10288 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10289 * pipe_config->pixel_multiplier;
10291 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10292 if (ret < 0) {
10293 DRM_DEBUG_KMS("CRTC fixup failed\n");
10294 goto fail;
10297 if (ret == RETRY) {
10298 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10299 ret = -EINVAL;
10300 goto fail;
10303 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10304 retry = false;
10305 goto encoder_retry;
10308 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10309 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10310 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10312 return pipe_config;
10313 fail:
10314 kfree(pipe_config);
10315 return ERR_PTR(ret);
10318 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10319 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10320 static void
10321 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10322 unsigned *prepare_pipes, unsigned *disable_pipes)
10324 struct intel_crtc *intel_crtc;
10325 struct drm_device *dev = crtc->dev;
10326 struct intel_encoder *encoder;
10327 struct intel_connector *connector;
10328 struct drm_crtc *tmp_crtc;
10330 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10332 /* Check which crtcs have changed outputs connected to them, these need
10333 * to be part of the prepare_pipes mask. We don't (yet) support global
10334 * modeset across multiple crtcs, so modeset_pipes will only have one
10335 * bit set at most. */
10336 list_for_each_entry(connector, &dev->mode_config.connector_list,
10337 base.head) {
10338 if (connector->base.encoder == &connector->new_encoder->base)
10339 continue;
10341 if (connector->base.encoder) {
10342 tmp_crtc = connector->base.encoder->crtc;
10344 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10347 if (connector->new_encoder)
10348 *prepare_pipes |=
10349 1 << connector->new_encoder->new_crtc->pipe;
10352 for_each_intel_encoder(dev, encoder) {
10353 if (encoder->base.crtc == &encoder->new_crtc->base)
10354 continue;
10356 if (encoder->base.crtc) {
10357 tmp_crtc = encoder->base.crtc;
10359 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10362 if (encoder->new_crtc)
10363 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10366 /* Check for pipes that will be enabled/disabled ... */
10367 for_each_intel_crtc(dev, intel_crtc) {
10368 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10369 continue;
10371 if (!intel_crtc->new_enabled)
10372 *disable_pipes |= 1 << intel_crtc->pipe;
10373 else
10374 *prepare_pipes |= 1 << intel_crtc->pipe;
10378 /* set_mode is also used to update properties on life display pipes. */
10379 intel_crtc = to_intel_crtc(crtc);
10380 if (intel_crtc->new_enabled)
10381 *prepare_pipes |= 1 << intel_crtc->pipe;
10384 * For simplicity do a full modeset on any pipe where the output routing
10385 * changed. We could be more clever, but that would require us to be
10386 * more careful with calling the relevant encoder->mode_set functions.
10388 if (*prepare_pipes)
10389 *modeset_pipes = *prepare_pipes;
10391 /* ... and mask these out. */
10392 *modeset_pipes &= ~(*disable_pipes);
10393 *prepare_pipes &= ~(*disable_pipes);
10396 * HACK: We don't (yet) fully support global modesets. intel_set_config
10397 * obies this rule, but the modeset restore mode of
10398 * intel_modeset_setup_hw_state does not.
10400 *modeset_pipes &= 1 << intel_crtc->pipe;
10401 *prepare_pipes &= 1 << intel_crtc->pipe;
10403 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10404 *modeset_pipes, *prepare_pipes, *disable_pipes);
10407 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10409 struct drm_encoder *encoder;
10410 struct drm_device *dev = crtc->dev;
10412 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10413 if (encoder->crtc == crtc)
10414 return true;
10416 return false;
10419 static void
10420 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10422 struct drm_i915_private *dev_priv = dev->dev_private;
10423 struct intel_encoder *intel_encoder;
10424 struct intel_crtc *intel_crtc;
10425 struct drm_connector *connector;
10427 intel_shared_dpll_commit(dev_priv);
10429 for_each_intel_encoder(dev, intel_encoder) {
10430 if (!intel_encoder->base.crtc)
10431 continue;
10433 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10435 if (prepare_pipes & (1 << intel_crtc->pipe))
10436 intel_encoder->connectors_active = false;
10439 intel_modeset_commit_output_state(dev);
10441 /* Double check state. */
10442 for_each_intel_crtc(dev, intel_crtc) {
10443 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10444 WARN_ON(intel_crtc->new_config &&
10445 intel_crtc->new_config != intel_crtc->config);
10446 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10449 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10450 if (!connector->encoder || !connector->encoder->crtc)
10451 continue;
10453 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10455 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10456 struct drm_property *dpms_property =
10457 dev->mode_config.dpms_property;
10459 connector->dpms = DRM_MODE_DPMS_ON;
10460 drm_object_property_set_value(&connector->base,
10461 dpms_property,
10462 DRM_MODE_DPMS_ON);
10464 intel_encoder = to_intel_encoder(connector->encoder);
10465 intel_encoder->connectors_active = true;
10471 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10473 int diff;
10475 if (clock1 == clock2)
10476 return true;
10478 if (!clock1 || !clock2)
10479 return false;
10481 diff = abs(clock1 - clock2);
10483 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10484 return true;
10486 return false;
10489 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10490 list_for_each_entry((intel_crtc), \
10491 &(dev)->mode_config.crtc_list, \
10492 base.head) \
10493 if (mask & (1 <<(intel_crtc)->pipe))
10495 static bool
10496 intel_pipe_config_compare(struct drm_device *dev,
10497 struct intel_crtc_state *current_config,
10498 struct intel_crtc_state *pipe_config)
10500 #define PIPE_CONF_CHECK_X(name) \
10501 if (current_config->name != pipe_config->name) { \
10502 DRM_ERROR("mismatch in " #name " " \
10503 "(expected 0x%08x, found 0x%08x)\n", \
10504 current_config->name, \
10505 pipe_config->name); \
10506 return false; \
10509 #define PIPE_CONF_CHECK_I(name) \
10510 if (current_config->name != pipe_config->name) { \
10511 DRM_ERROR("mismatch in " #name " " \
10512 "(expected %i, found %i)\n", \
10513 current_config->name, \
10514 pipe_config->name); \
10515 return false; \
10518 /* This is required for BDW+ where there is only one set of registers for
10519 * switching between high and low RR.
10520 * This macro can be used whenever a comparison has to be made between one
10521 * hw state and multiple sw state variables.
10523 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10524 if ((current_config->name != pipe_config->name) && \
10525 (current_config->alt_name != pipe_config->name)) { \
10526 DRM_ERROR("mismatch in " #name " " \
10527 "(expected %i or %i, found %i)\n", \
10528 current_config->name, \
10529 current_config->alt_name, \
10530 pipe_config->name); \
10531 return false; \
10534 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10535 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10536 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10537 "(expected %i, found %i)\n", \
10538 current_config->name & (mask), \
10539 pipe_config->name & (mask)); \
10540 return false; \
10543 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10544 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10545 DRM_ERROR("mismatch in " #name " " \
10546 "(expected %i, found %i)\n", \
10547 current_config->name, \
10548 pipe_config->name); \
10549 return false; \
10552 #define PIPE_CONF_QUIRK(quirk) \
10553 ((current_config->quirks | pipe_config->quirks) & (quirk))
10555 PIPE_CONF_CHECK_I(cpu_transcoder);
10557 PIPE_CONF_CHECK_I(has_pch_encoder);
10558 PIPE_CONF_CHECK_I(fdi_lanes);
10559 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10560 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10561 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10562 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10563 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10565 PIPE_CONF_CHECK_I(has_dp_encoder);
10567 if (INTEL_INFO(dev)->gen < 8) {
10568 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10569 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10570 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10571 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10572 PIPE_CONF_CHECK_I(dp_m_n.tu);
10574 if (current_config->has_drrs) {
10575 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10576 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10577 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10578 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10579 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10581 } else {
10582 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10583 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10584 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10585 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10586 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10589 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10590 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10591 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10592 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10593 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10594 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10596 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10597 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10598 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10599 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10600 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10601 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10603 PIPE_CONF_CHECK_I(pixel_multiplier);
10604 PIPE_CONF_CHECK_I(has_hdmi_sink);
10605 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10606 IS_VALLEYVIEW(dev))
10607 PIPE_CONF_CHECK_I(limited_color_range);
10608 PIPE_CONF_CHECK_I(has_infoframe);
10610 PIPE_CONF_CHECK_I(has_audio);
10612 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10613 DRM_MODE_FLAG_INTERLACE);
10615 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10616 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10617 DRM_MODE_FLAG_PHSYNC);
10618 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10619 DRM_MODE_FLAG_NHSYNC);
10620 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10621 DRM_MODE_FLAG_PVSYNC);
10622 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10623 DRM_MODE_FLAG_NVSYNC);
10626 PIPE_CONF_CHECK_I(pipe_src_w);
10627 PIPE_CONF_CHECK_I(pipe_src_h);
10630 * FIXME: BIOS likes to set up a cloned config with lvds+external
10631 * screen. Since we don't yet re-compute the pipe config when moving
10632 * just the lvds port away to another pipe the sw tracking won't match.
10634 * Proper atomic modesets with recomputed global state will fix this.
10635 * Until then just don't check gmch state for inherited modes.
10637 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10638 PIPE_CONF_CHECK_I(gmch_pfit.control);
10639 /* pfit ratios are autocomputed by the hw on gen4+ */
10640 if (INTEL_INFO(dev)->gen < 4)
10641 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10642 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10645 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10646 if (current_config->pch_pfit.enabled) {
10647 PIPE_CONF_CHECK_I(pch_pfit.pos);
10648 PIPE_CONF_CHECK_I(pch_pfit.size);
10651 /* BDW+ don't expose a synchronous way to read the state */
10652 if (IS_HASWELL(dev))
10653 PIPE_CONF_CHECK_I(ips_enabled);
10655 PIPE_CONF_CHECK_I(double_wide);
10657 PIPE_CONF_CHECK_X(ddi_pll_sel);
10659 PIPE_CONF_CHECK_I(shared_dpll);
10660 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10661 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10662 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10663 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10664 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10665 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10666 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10667 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10669 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10670 PIPE_CONF_CHECK_I(pipe_bpp);
10672 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10673 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10675 #undef PIPE_CONF_CHECK_X
10676 #undef PIPE_CONF_CHECK_I
10677 #undef PIPE_CONF_CHECK_I_ALT
10678 #undef PIPE_CONF_CHECK_FLAGS
10679 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10680 #undef PIPE_CONF_QUIRK
10682 return true;
10685 static void check_wm_state(struct drm_device *dev)
10687 struct drm_i915_private *dev_priv = dev->dev_private;
10688 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10689 struct intel_crtc *intel_crtc;
10690 int plane;
10692 if (INTEL_INFO(dev)->gen < 9)
10693 return;
10695 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10696 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10698 for_each_intel_crtc(dev, intel_crtc) {
10699 struct skl_ddb_entry *hw_entry, *sw_entry;
10700 const enum pipe pipe = intel_crtc->pipe;
10702 if (!intel_crtc->active)
10703 continue;
10705 /* planes */
10706 for_each_plane(pipe, plane) {
10707 hw_entry = &hw_ddb.plane[pipe][plane];
10708 sw_entry = &sw_ddb->plane[pipe][plane];
10710 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10711 continue;
10713 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10714 "(expected (%u,%u), found (%u,%u))\n",
10715 pipe_name(pipe), plane + 1,
10716 sw_entry->start, sw_entry->end,
10717 hw_entry->start, hw_entry->end);
10720 /* cursor */
10721 hw_entry = &hw_ddb.cursor[pipe];
10722 sw_entry = &sw_ddb->cursor[pipe];
10724 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10725 continue;
10727 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10728 "(expected (%u,%u), found (%u,%u))\n",
10729 pipe_name(pipe),
10730 sw_entry->start, sw_entry->end,
10731 hw_entry->start, hw_entry->end);
10735 static void
10736 check_connector_state(struct drm_device *dev)
10738 struct intel_connector *connector;
10740 list_for_each_entry(connector, &dev->mode_config.connector_list,
10741 base.head) {
10742 /* This also checks the encoder/connector hw state with the
10743 * ->get_hw_state callbacks. */
10744 intel_connector_check_state(connector);
10746 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10747 "connector's staged encoder doesn't match current encoder\n");
10751 static void
10752 check_encoder_state(struct drm_device *dev)
10754 struct intel_encoder *encoder;
10755 struct intel_connector *connector;
10757 for_each_intel_encoder(dev, encoder) {
10758 bool enabled = false;
10759 bool active = false;
10760 enum pipe pipe, tracked_pipe;
10762 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10763 encoder->base.base.id,
10764 encoder->base.name);
10766 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10767 "encoder's stage crtc doesn't match current crtc\n");
10768 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10769 "encoder's active_connectors set, but no crtc\n");
10771 list_for_each_entry(connector, &dev->mode_config.connector_list,
10772 base.head) {
10773 if (connector->base.encoder != &encoder->base)
10774 continue;
10775 enabled = true;
10776 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10777 active = true;
10780 * for MST connectors if we unplug the connector is gone
10781 * away but the encoder is still connected to a crtc
10782 * until a modeset happens in response to the hotplug.
10784 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10785 continue;
10787 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10788 "encoder's enabled state mismatch "
10789 "(expected %i, found %i)\n",
10790 !!encoder->base.crtc, enabled);
10791 I915_STATE_WARN(active && !encoder->base.crtc,
10792 "active encoder with no crtc\n");
10794 I915_STATE_WARN(encoder->connectors_active != active,
10795 "encoder's computed active state doesn't match tracked active state "
10796 "(expected %i, found %i)\n", active, encoder->connectors_active);
10798 active = encoder->get_hw_state(encoder, &pipe);
10799 I915_STATE_WARN(active != encoder->connectors_active,
10800 "encoder's hw state doesn't match sw tracking "
10801 "(expected %i, found %i)\n",
10802 encoder->connectors_active, active);
10804 if (!encoder->base.crtc)
10805 continue;
10807 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10808 I915_STATE_WARN(active && pipe != tracked_pipe,
10809 "active encoder's pipe doesn't match"
10810 "(expected %i, found %i)\n",
10811 tracked_pipe, pipe);
10816 static void
10817 check_crtc_state(struct drm_device *dev)
10819 struct drm_i915_private *dev_priv = dev->dev_private;
10820 struct intel_crtc *crtc;
10821 struct intel_encoder *encoder;
10822 struct intel_crtc_state pipe_config;
10824 for_each_intel_crtc(dev, crtc) {
10825 bool enabled = false;
10826 bool active = false;
10828 memset(&pipe_config, 0, sizeof(pipe_config));
10830 DRM_DEBUG_KMS("[CRTC:%d]\n",
10831 crtc->base.base.id);
10833 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10834 "active crtc, but not enabled in sw tracking\n");
10836 for_each_intel_encoder(dev, encoder) {
10837 if (encoder->base.crtc != &crtc->base)
10838 continue;
10839 enabled = true;
10840 if (encoder->connectors_active)
10841 active = true;
10844 I915_STATE_WARN(active != crtc->active,
10845 "crtc's computed active state doesn't match tracked active state "
10846 "(expected %i, found %i)\n", active, crtc->active);
10847 I915_STATE_WARN(enabled != crtc->base.enabled,
10848 "crtc's computed enabled state doesn't match tracked enabled state "
10849 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10851 active = dev_priv->display.get_pipe_config(crtc,
10852 &pipe_config);
10854 /* hw state is inconsistent with the pipe quirk */
10855 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10856 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10857 active = crtc->active;
10859 for_each_intel_encoder(dev, encoder) {
10860 enum pipe pipe;
10861 if (encoder->base.crtc != &crtc->base)
10862 continue;
10863 if (encoder->get_hw_state(encoder, &pipe))
10864 encoder->get_config(encoder, &pipe_config);
10867 I915_STATE_WARN(crtc->active != active,
10868 "crtc active state doesn't match with hw state "
10869 "(expected %i, found %i)\n", crtc->active, active);
10871 if (active &&
10872 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
10873 I915_STATE_WARN(1, "pipe state doesn't match!\n");
10874 intel_dump_pipe_config(crtc, &pipe_config,
10875 "[hw state]");
10876 intel_dump_pipe_config(crtc, crtc->config,
10877 "[sw state]");
10882 static void
10883 check_shared_dpll_state(struct drm_device *dev)
10885 struct drm_i915_private *dev_priv = dev->dev_private;
10886 struct intel_crtc *crtc;
10887 struct intel_dpll_hw_state dpll_hw_state;
10888 int i;
10890 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10891 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10892 int enabled_crtcs = 0, active_crtcs = 0;
10893 bool active;
10895 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10897 DRM_DEBUG_KMS("%s\n", pll->name);
10899 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10901 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10902 "more active pll users than references: %i vs %i\n",
10903 pll->active, hweight32(pll->config.crtc_mask));
10904 I915_STATE_WARN(pll->active && !pll->on,
10905 "pll in active use but not on in sw tracking\n");
10906 I915_STATE_WARN(pll->on && !pll->active,
10907 "pll in on but not on in use in sw tracking\n");
10908 I915_STATE_WARN(pll->on != active,
10909 "pll on state mismatch (expected %i, found %i)\n",
10910 pll->on, active);
10912 for_each_intel_crtc(dev, crtc) {
10913 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10914 enabled_crtcs++;
10915 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10916 active_crtcs++;
10918 I915_STATE_WARN(pll->active != active_crtcs,
10919 "pll active crtcs mismatch (expected %i, found %i)\n",
10920 pll->active, active_crtcs);
10921 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10922 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10923 hweight32(pll->config.crtc_mask), enabled_crtcs);
10925 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10926 sizeof(dpll_hw_state)),
10927 "pll hw state mismatch\n");
10931 void
10932 intel_modeset_check_state(struct drm_device *dev)
10934 check_wm_state(dev);
10935 check_connector_state(dev);
10936 check_encoder_state(dev);
10937 check_crtc_state(dev);
10938 check_shared_dpll_state(dev);
10941 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
10942 int dotclock)
10945 * FDI already provided one idea for the dotclock.
10946 * Yell if the encoder disagrees.
10948 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
10949 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10950 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
10953 static void update_scanline_offset(struct intel_crtc *crtc)
10955 struct drm_device *dev = crtc->base.dev;
10958 * The scanline counter increments at the leading edge of hsync.
10960 * On most platforms it starts counting from vtotal-1 on the
10961 * first active line. That means the scanline counter value is
10962 * always one less than what we would expect. Ie. just after
10963 * start of vblank, which also occurs at start of hsync (on the
10964 * last active line), the scanline counter will read vblank_start-1.
10966 * On gen2 the scanline counter starts counting from 1 instead
10967 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10968 * to keep the value positive), instead of adding one.
10970 * On HSW+ the behaviour of the scanline counter depends on the output
10971 * type. For DP ports it behaves like most other platforms, but on HDMI
10972 * there's an extra 1 line difference. So we need to add two instead of
10973 * one to the value.
10975 if (IS_GEN2(dev)) {
10976 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
10977 int vtotal;
10979 vtotal = mode->crtc_vtotal;
10980 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10981 vtotal /= 2;
10983 crtc->scanline_offset = vtotal - 1;
10984 } else if (HAS_DDI(dev) &&
10985 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10986 crtc->scanline_offset = 2;
10987 } else
10988 crtc->scanline_offset = 1;
10991 static struct intel_crtc_state *
10992 intel_modeset_compute_config(struct drm_crtc *crtc,
10993 struct drm_display_mode *mode,
10994 struct drm_framebuffer *fb,
10995 unsigned *modeset_pipes,
10996 unsigned *prepare_pipes,
10997 unsigned *disable_pipes)
10999 struct intel_crtc_state *pipe_config = NULL;
11001 intel_modeset_affected_pipes(crtc, modeset_pipes,
11002 prepare_pipes, disable_pipes);
11004 if ((*modeset_pipes) == 0)
11005 goto out;
11008 * Note this needs changes when we start tracking multiple modes
11009 * and crtcs. At that point we'll need to compute the whole config
11010 * (i.e. one pipe_config for each crtc) rather than just the one
11011 * for this crtc.
11013 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11014 if (IS_ERR(pipe_config)) {
11015 goto out;
11017 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11018 "[modeset]");
11020 out:
11021 return pipe_config;
11024 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11025 unsigned modeset_pipes,
11026 unsigned disable_pipes)
11028 struct drm_i915_private *dev_priv = to_i915(dev);
11029 unsigned clear_pipes = modeset_pipes | disable_pipes;
11030 struct intel_crtc *intel_crtc;
11031 int ret = 0;
11033 if (!dev_priv->display.crtc_compute_clock)
11034 return 0;
11036 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11037 if (ret)
11038 goto done;
11040 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11041 struct intel_crtc_state *state = intel_crtc->new_config;
11042 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11043 state);
11044 if (ret) {
11045 intel_shared_dpll_abort_config(dev_priv);
11046 goto done;
11050 done:
11051 return ret;
11054 static int __intel_set_mode(struct drm_crtc *crtc,
11055 struct drm_display_mode *mode,
11056 int x, int y, struct drm_framebuffer *fb,
11057 struct intel_crtc_state *pipe_config,
11058 unsigned modeset_pipes,
11059 unsigned prepare_pipes,
11060 unsigned disable_pipes)
11062 struct drm_device *dev = crtc->dev;
11063 struct drm_i915_private *dev_priv = dev->dev_private;
11064 struct drm_display_mode *saved_mode;
11065 struct intel_crtc *intel_crtc;
11066 int ret = 0;
11068 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11069 if (!saved_mode)
11070 return -ENOMEM;
11072 *saved_mode = crtc->mode;
11074 if (modeset_pipes)
11075 to_intel_crtc(crtc)->new_config = pipe_config;
11078 * See if the config requires any additional preparation, e.g.
11079 * to adjust global state with pipes off. We need to do this
11080 * here so we can get the modeset_pipe updated config for the new
11081 * mode set on this crtc. For other crtcs we need to use the
11082 * adjusted_mode bits in the crtc directly.
11084 if (IS_VALLEYVIEW(dev)) {
11085 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11087 /* may have added more to prepare_pipes than we should */
11088 prepare_pipes &= ~disable_pipes;
11091 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11092 if (ret)
11093 goto done;
11095 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11096 intel_crtc_disable(&intel_crtc->base);
11098 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11099 if (intel_crtc->base.enabled)
11100 dev_priv->display.crtc_disable(&intel_crtc->base);
11103 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11104 * to set it here already despite that we pass it down the callchain.
11106 * Note we'll need to fix this up when we start tracking multiple
11107 * pipes; here we assume a single modeset_pipe and only track the
11108 * single crtc and mode.
11110 if (modeset_pipes) {
11111 crtc->mode = *mode;
11112 /* mode_set/enable/disable functions rely on a correct pipe
11113 * config. */
11114 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11117 * Calculate and store various constants which
11118 * are later needed by vblank and swap-completion
11119 * timestamping. They are derived from true hwmode.
11121 drm_calc_timestamping_constants(crtc,
11122 &pipe_config->base.adjusted_mode);
11125 /* Only after disabling all output pipelines that will be changed can we
11126 * update the the output configuration. */
11127 intel_modeset_update_state(dev, prepare_pipes);
11129 modeset_update_crtc_power_domains(dev);
11131 /* Set up the DPLL and any encoders state that needs to adjust or depend
11132 * on the DPLL.
11134 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11135 struct drm_plane *primary = intel_crtc->base.primary;
11136 int vdisplay, hdisplay;
11138 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11139 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11140 fb, 0, 0,
11141 hdisplay, vdisplay,
11142 x << 16, y << 16,
11143 hdisplay << 16, vdisplay << 16);
11146 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11147 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11148 update_scanline_offset(intel_crtc);
11150 dev_priv->display.crtc_enable(&intel_crtc->base);
11153 /* FIXME: add subpixel order */
11154 done:
11155 if (ret && crtc->enabled)
11156 crtc->mode = *saved_mode;
11158 kfree(saved_mode);
11159 return ret;
11162 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11163 struct drm_display_mode *mode,
11164 int x, int y, struct drm_framebuffer *fb,
11165 struct intel_crtc_state *pipe_config,
11166 unsigned modeset_pipes,
11167 unsigned prepare_pipes,
11168 unsigned disable_pipes)
11170 int ret;
11172 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11173 prepare_pipes, disable_pipes);
11175 if (ret == 0)
11176 intel_modeset_check_state(crtc->dev);
11178 return ret;
11181 static int intel_set_mode(struct drm_crtc *crtc,
11182 struct drm_display_mode *mode,
11183 int x, int y, struct drm_framebuffer *fb)
11185 struct intel_crtc_state *pipe_config;
11186 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11188 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11189 &modeset_pipes,
11190 &prepare_pipes,
11191 &disable_pipes);
11193 if (IS_ERR(pipe_config))
11194 return PTR_ERR(pipe_config);
11196 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11197 modeset_pipes, prepare_pipes,
11198 disable_pipes);
11201 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11203 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11206 #undef for_each_intel_crtc_masked
11208 static void intel_set_config_free(struct intel_set_config *config)
11210 if (!config)
11211 return;
11213 kfree(config->save_connector_encoders);
11214 kfree(config->save_encoder_crtcs);
11215 kfree(config->save_crtc_enabled);
11216 kfree(config);
11219 static int intel_set_config_save_state(struct drm_device *dev,
11220 struct intel_set_config *config)
11222 struct drm_crtc *crtc;
11223 struct drm_encoder *encoder;
11224 struct drm_connector *connector;
11225 int count;
11227 config->save_crtc_enabled =
11228 kcalloc(dev->mode_config.num_crtc,
11229 sizeof(bool), GFP_KERNEL);
11230 if (!config->save_crtc_enabled)
11231 return -ENOMEM;
11233 config->save_encoder_crtcs =
11234 kcalloc(dev->mode_config.num_encoder,
11235 sizeof(struct drm_crtc *), GFP_KERNEL);
11236 if (!config->save_encoder_crtcs)
11237 return -ENOMEM;
11239 config->save_connector_encoders =
11240 kcalloc(dev->mode_config.num_connector,
11241 sizeof(struct drm_encoder *), GFP_KERNEL);
11242 if (!config->save_connector_encoders)
11243 return -ENOMEM;
11245 /* Copy data. Note that driver private data is not affected.
11246 * Should anything bad happen only the expected state is
11247 * restored, not the drivers personal bookkeeping.
11249 count = 0;
11250 for_each_crtc(dev, crtc) {
11251 config->save_crtc_enabled[count++] = crtc->enabled;
11254 count = 0;
11255 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11256 config->save_encoder_crtcs[count++] = encoder->crtc;
11259 count = 0;
11260 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11261 config->save_connector_encoders[count++] = connector->encoder;
11264 return 0;
11267 static void intel_set_config_restore_state(struct drm_device *dev,
11268 struct intel_set_config *config)
11270 struct intel_crtc *crtc;
11271 struct intel_encoder *encoder;
11272 struct intel_connector *connector;
11273 int count;
11275 count = 0;
11276 for_each_intel_crtc(dev, crtc) {
11277 crtc->new_enabled = config->save_crtc_enabled[count++];
11279 if (crtc->new_enabled)
11280 crtc->new_config = crtc->config;
11281 else
11282 crtc->new_config = NULL;
11285 count = 0;
11286 for_each_intel_encoder(dev, encoder) {
11287 encoder->new_crtc =
11288 to_intel_crtc(config->save_encoder_crtcs[count++]);
11291 count = 0;
11292 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11293 connector->new_encoder =
11294 to_intel_encoder(config->save_connector_encoders[count++]);
11298 static bool
11299 is_crtc_connector_off(struct drm_mode_set *set)
11301 int i;
11303 if (set->num_connectors == 0)
11304 return false;
11306 if (WARN_ON(set->connectors == NULL))
11307 return false;
11309 for (i = 0; i < set->num_connectors; i++)
11310 if (set->connectors[i]->encoder &&
11311 set->connectors[i]->encoder->crtc == set->crtc &&
11312 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11313 return true;
11315 return false;
11318 static void
11319 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11320 struct intel_set_config *config)
11323 /* We should be able to check here if the fb has the same properties
11324 * and then just flip_or_move it */
11325 if (is_crtc_connector_off(set)) {
11326 config->mode_changed = true;
11327 } else if (set->crtc->primary->fb != set->fb) {
11329 * If we have no fb, we can only flip as long as the crtc is
11330 * active, otherwise we need a full mode set. The crtc may
11331 * be active if we've only disabled the primary plane, or
11332 * in fastboot situations.
11334 if (set->crtc->primary->fb == NULL) {
11335 struct intel_crtc *intel_crtc =
11336 to_intel_crtc(set->crtc);
11338 if (intel_crtc->active) {
11339 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11340 config->fb_changed = true;
11341 } else {
11342 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11343 config->mode_changed = true;
11345 } else if (set->fb == NULL) {
11346 config->mode_changed = true;
11347 } else if (set->fb->pixel_format !=
11348 set->crtc->primary->fb->pixel_format) {
11349 config->mode_changed = true;
11350 } else {
11351 config->fb_changed = true;
11355 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11356 config->fb_changed = true;
11358 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11359 DRM_DEBUG_KMS("modes are different, full mode set\n");
11360 drm_mode_debug_printmodeline(&set->crtc->mode);
11361 drm_mode_debug_printmodeline(set->mode);
11362 config->mode_changed = true;
11365 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11366 set->crtc->base.id, config->mode_changed, config->fb_changed);
11369 static int
11370 intel_modeset_stage_output_state(struct drm_device *dev,
11371 struct drm_mode_set *set,
11372 struct intel_set_config *config)
11374 struct intel_connector *connector;
11375 struct intel_encoder *encoder;
11376 struct intel_crtc *crtc;
11377 int ro;
11379 /* The upper layers ensure that we either disable a crtc or have a list
11380 * of connectors. For paranoia, double-check this. */
11381 WARN_ON(!set->fb && (set->num_connectors != 0));
11382 WARN_ON(set->fb && (set->num_connectors == 0));
11384 list_for_each_entry(connector, &dev->mode_config.connector_list,
11385 base.head) {
11386 /* Otherwise traverse passed in connector list and get encoders
11387 * for them. */
11388 for (ro = 0; ro < set->num_connectors; ro++) {
11389 if (set->connectors[ro] == &connector->base) {
11390 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11391 break;
11395 /* If we disable the crtc, disable all its connectors. Also, if
11396 * the connector is on the changing crtc but not on the new
11397 * connector list, disable it. */
11398 if ((!set->fb || ro == set->num_connectors) &&
11399 connector->base.encoder &&
11400 connector->base.encoder->crtc == set->crtc) {
11401 connector->new_encoder = NULL;
11403 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11404 connector->base.base.id,
11405 connector->base.name);
11409 if (&connector->new_encoder->base != connector->base.encoder) {
11410 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11411 config->mode_changed = true;
11414 /* connector->new_encoder is now updated for all connectors. */
11416 /* Update crtc of enabled connectors. */
11417 list_for_each_entry(connector, &dev->mode_config.connector_list,
11418 base.head) {
11419 struct drm_crtc *new_crtc;
11421 if (!connector->new_encoder)
11422 continue;
11424 new_crtc = connector->new_encoder->base.crtc;
11426 for (ro = 0; ro < set->num_connectors; ro++) {
11427 if (set->connectors[ro] == &connector->base)
11428 new_crtc = set->crtc;
11431 /* Make sure the new CRTC will work with the encoder */
11432 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11433 new_crtc)) {
11434 return -EINVAL;
11436 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11438 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11439 connector->base.base.id,
11440 connector->base.name,
11441 new_crtc->base.id);
11444 /* Check for any encoders that needs to be disabled. */
11445 for_each_intel_encoder(dev, encoder) {
11446 int num_connectors = 0;
11447 list_for_each_entry(connector,
11448 &dev->mode_config.connector_list,
11449 base.head) {
11450 if (connector->new_encoder == encoder) {
11451 WARN_ON(!connector->new_encoder->new_crtc);
11452 num_connectors++;
11456 if (num_connectors == 0)
11457 encoder->new_crtc = NULL;
11458 else if (num_connectors > 1)
11459 return -EINVAL;
11461 /* Only now check for crtc changes so we don't miss encoders
11462 * that will be disabled. */
11463 if (&encoder->new_crtc->base != encoder->base.crtc) {
11464 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11465 config->mode_changed = true;
11468 /* Now we've also updated encoder->new_crtc for all encoders. */
11469 list_for_each_entry(connector, &dev->mode_config.connector_list,
11470 base.head) {
11471 if (connector->new_encoder)
11472 if (connector->new_encoder != connector->encoder)
11473 connector->encoder = connector->new_encoder;
11475 for_each_intel_crtc(dev, crtc) {
11476 crtc->new_enabled = false;
11478 for_each_intel_encoder(dev, encoder) {
11479 if (encoder->new_crtc == crtc) {
11480 crtc->new_enabled = true;
11481 break;
11485 if (crtc->new_enabled != crtc->base.enabled) {
11486 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11487 crtc->new_enabled ? "en" : "dis");
11488 config->mode_changed = true;
11491 if (crtc->new_enabled)
11492 crtc->new_config = crtc->config;
11493 else
11494 crtc->new_config = NULL;
11497 return 0;
11500 static void disable_crtc_nofb(struct intel_crtc *crtc)
11502 struct drm_device *dev = crtc->base.dev;
11503 struct intel_encoder *encoder;
11504 struct intel_connector *connector;
11506 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11507 pipe_name(crtc->pipe));
11509 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11510 if (connector->new_encoder &&
11511 connector->new_encoder->new_crtc == crtc)
11512 connector->new_encoder = NULL;
11515 for_each_intel_encoder(dev, encoder) {
11516 if (encoder->new_crtc == crtc)
11517 encoder->new_crtc = NULL;
11520 crtc->new_enabled = false;
11521 crtc->new_config = NULL;
11524 static int intel_crtc_set_config(struct drm_mode_set *set)
11526 struct drm_device *dev;
11527 struct drm_mode_set save_set;
11528 struct intel_set_config *config;
11529 struct intel_crtc_state *pipe_config;
11530 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11531 int ret;
11533 BUG_ON(!set);
11534 BUG_ON(!set->crtc);
11535 BUG_ON(!set->crtc->helper_private);
11537 /* Enforce sane interface api - has been abused by the fb helper. */
11538 BUG_ON(!set->mode && set->fb);
11539 BUG_ON(set->fb && set->num_connectors == 0);
11541 if (set->fb) {
11542 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11543 set->crtc->base.id, set->fb->base.id,
11544 (int)set->num_connectors, set->x, set->y);
11545 } else {
11546 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11549 dev = set->crtc->dev;
11551 ret = -ENOMEM;
11552 config = kzalloc(sizeof(*config), GFP_KERNEL);
11553 if (!config)
11554 goto out_config;
11556 ret = intel_set_config_save_state(dev, config);
11557 if (ret)
11558 goto out_config;
11560 save_set.crtc = set->crtc;
11561 save_set.mode = &set->crtc->mode;
11562 save_set.x = set->crtc->x;
11563 save_set.y = set->crtc->y;
11564 save_set.fb = set->crtc->primary->fb;
11566 /* Compute whether we need a full modeset, only an fb base update or no
11567 * change at all. In the future we might also check whether only the
11568 * mode changed, e.g. for LVDS where we only change the panel fitter in
11569 * such cases. */
11570 intel_set_config_compute_mode_changes(set, config);
11572 ret = intel_modeset_stage_output_state(dev, set, config);
11573 if (ret)
11574 goto fail;
11576 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11577 set->fb,
11578 &modeset_pipes,
11579 &prepare_pipes,
11580 &disable_pipes);
11581 if (IS_ERR(pipe_config)) {
11582 ret = PTR_ERR(pipe_config);
11583 goto fail;
11584 } else if (pipe_config) {
11585 if (pipe_config->has_audio !=
11586 to_intel_crtc(set->crtc)->config->has_audio)
11587 config->mode_changed = true;
11590 * Note we have an issue here with infoframes: current code
11591 * only updates them on the full mode set path per hw
11592 * requirements. So here we should be checking for any
11593 * required changes and forcing a mode set.
11597 /* set_mode will free it in the mode_changed case */
11598 if (!config->mode_changed)
11599 kfree(pipe_config);
11601 intel_update_pipe_size(to_intel_crtc(set->crtc));
11603 if (config->mode_changed) {
11604 ret = intel_set_mode_pipes(set->crtc, set->mode,
11605 set->x, set->y, set->fb, pipe_config,
11606 modeset_pipes, prepare_pipes,
11607 disable_pipes);
11608 } else if (config->fb_changed) {
11609 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11610 struct drm_plane *primary = set->crtc->primary;
11611 int vdisplay, hdisplay;
11613 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11614 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11615 0, 0, hdisplay, vdisplay,
11616 set->x << 16, set->y << 16,
11617 hdisplay << 16, vdisplay << 16);
11620 * We need to make sure the primary plane is re-enabled if it
11621 * has previously been turned off.
11623 if (!intel_crtc->primary_enabled && ret == 0) {
11624 WARN_ON(!intel_crtc->active);
11625 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11629 * In the fastboot case this may be our only check of the
11630 * state after boot. It would be better to only do it on
11631 * the first update, but we don't have a nice way of doing that
11632 * (and really, set_config isn't used much for high freq page
11633 * flipping, so increasing its cost here shouldn't be a big
11634 * deal).
11636 if (i915.fastboot && ret == 0)
11637 intel_modeset_check_state(set->crtc->dev);
11640 if (ret) {
11641 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11642 set->crtc->base.id, ret);
11643 fail:
11644 intel_set_config_restore_state(dev, config);
11647 * HACK: if the pipe was on, but we didn't have a framebuffer,
11648 * force the pipe off to avoid oopsing in the modeset code
11649 * due to fb==NULL. This should only happen during boot since
11650 * we don't yet reconstruct the FB from the hardware state.
11652 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11653 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11655 /* Try to restore the config */
11656 if (config->mode_changed &&
11657 intel_set_mode(save_set.crtc, save_set.mode,
11658 save_set.x, save_set.y, save_set.fb))
11659 DRM_ERROR("failed to restore config after modeset failure\n");
11662 out_config:
11663 intel_set_config_free(config);
11664 return ret;
11667 static const struct drm_crtc_funcs intel_crtc_funcs = {
11668 .gamma_set = intel_crtc_gamma_set,
11669 .set_config = intel_crtc_set_config,
11670 .destroy = intel_crtc_destroy,
11671 .page_flip = intel_crtc_page_flip,
11672 .atomic_duplicate_state = intel_crtc_duplicate_state,
11673 .atomic_destroy_state = intel_crtc_destroy_state,
11676 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11677 struct intel_shared_dpll *pll,
11678 struct intel_dpll_hw_state *hw_state)
11680 uint32_t val;
11682 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11683 return false;
11685 val = I915_READ(PCH_DPLL(pll->id));
11686 hw_state->dpll = val;
11687 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11688 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11690 return val & DPLL_VCO_ENABLE;
11693 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11694 struct intel_shared_dpll *pll)
11696 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11697 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11700 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11701 struct intel_shared_dpll *pll)
11703 /* PCH refclock must be enabled first */
11704 ibx_assert_pch_refclk_enabled(dev_priv);
11706 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11708 /* Wait for the clocks to stabilize. */
11709 POSTING_READ(PCH_DPLL(pll->id));
11710 udelay(150);
11712 /* The pixel multiplier can only be updated once the
11713 * DPLL is enabled and the clocks are stable.
11715 * So write it again.
11717 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11718 POSTING_READ(PCH_DPLL(pll->id));
11719 udelay(200);
11722 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11723 struct intel_shared_dpll *pll)
11725 struct drm_device *dev = dev_priv->dev;
11726 struct intel_crtc *crtc;
11728 /* Make sure no transcoder isn't still depending on us. */
11729 for_each_intel_crtc(dev, crtc) {
11730 if (intel_crtc_to_shared_dpll(crtc) == pll)
11731 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11734 I915_WRITE(PCH_DPLL(pll->id), 0);
11735 POSTING_READ(PCH_DPLL(pll->id));
11736 udelay(200);
11739 static char *ibx_pch_dpll_names[] = {
11740 "PCH DPLL A",
11741 "PCH DPLL B",
11744 static void ibx_pch_dpll_init(struct drm_device *dev)
11746 struct drm_i915_private *dev_priv = dev->dev_private;
11747 int i;
11749 dev_priv->num_shared_dpll = 2;
11751 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11752 dev_priv->shared_dplls[i].id = i;
11753 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11754 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11755 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11756 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11757 dev_priv->shared_dplls[i].get_hw_state =
11758 ibx_pch_dpll_get_hw_state;
11762 static void intel_shared_dpll_init(struct drm_device *dev)
11764 struct drm_i915_private *dev_priv = dev->dev_private;
11766 if (HAS_DDI(dev))
11767 intel_ddi_pll_init(dev);
11768 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11769 ibx_pch_dpll_init(dev);
11770 else
11771 dev_priv->num_shared_dpll = 0;
11773 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11777 * intel_prepare_plane_fb - Prepare fb for usage on plane
11778 * @plane: drm plane to prepare for
11779 * @fb: framebuffer to prepare for presentation
11781 * Prepares a framebuffer for usage on a display plane. Generally this
11782 * involves pinning the underlying object and updating the frontbuffer tracking
11783 * bits. Some older platforms need special physical address handling for
11784 * cursor planes.
11786 * Returns 0 on success, negative error code on failure.
11789 intel_prepare_plane_fb(struct drm_plane *plane,
11790 struct drm_framebuffer *fb)
11792 struct drm_device *dev = plane->dev;
11793 struct intel_plane *intel_plane = to_intel_plane(plane);
11794 enum pipe pipe = intel_plane->pipe;
11795 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11796 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11797 unsigned frontbuffer_bits = 0;
11798 int ret = 0;
11800 if (!obj)
11801 return 0;
11803 switch (plane->type) {
11804 case DRM_PLANE_TYPE_PRIMARY:
11805 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11806 break;
11807 case DRM_PLANE_TYPE_CURSOR:
11808 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11809 break;
11810 case DRM_PLANE_TYPE_OVERLAY:
11811 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11812 break;
11815 mutex_lock(&dev->struct_mutex);
11817 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11818 INTEL_INFO(dev)->cursor_needs_physical) {
11819 int align = IS_I830(dev) ? 16 * 1024 : 256;
11820 ret = i915_gem_object_attach_phys(obj, align);
11821 if (ret)
11822 DRM_DEBUG_KMS("failed to attach phys object\n");
11823 } else {
11824 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11827 if (ret == 0)
11828 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11830 mutex_unlock(&dev->struct_mutex);
11832 return ret;
11836 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11837 * @plane: drm plane to clean up for
11838 * @fb: old framebuffer that was on plane
11840 * Cleans up a framebuffer that has just been removed from a plane.
11842 void
11843 intel_cleanup_plane_fb(struct drm_plane *plane,
11844 struct drm_framebuffer *fb)
11846 struct drm_device *dev = plane->dev;
11847 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11849 if (WARN_ON(!obj))
11850 return;
11852 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11853 !INTEL_INFO(dev)->cursor_needs_physical) {
11854 mutex_lock(&dev->struct_mutex);
11855 intel_unpin_fb_obj(obj);
11856 mutex_unlock(&dev->struct_mutex);
11860 static int
11861 intel_check_primary_plane(struct drm_plane *plane,
11862 struct intel_plane_state *state)
11864 struct drm_device *dev = plane->dev;
11865 struct drm_i915_private *dev_priv = dev->dev_private;
11866 struct drm_crtc *crtc = state->base.crtc;
11867 struct intel_crtc *intel_crtc;
11868 struct drm_framebuffer *fb = state->base.fb;
11869 struct drm_rect *dest = &state->dst;
11870 struct drm_rect *src = &state->src;
11871 const struct drm_rect *clip = &state->clip;
11872 int ret;
11874 crtc = crtc ? crtc : plane->crtc;
11875 intel_crtc = to_intel_crtc(crtc);
11877 ret = drm_plane_helper_check_update(plane, crtc, fb,
11878 src, dest, clip,
11879 DRM_PLANE_HELPER_NO_SCALING,
11880 DRM_PLANE_HELPER_NO_SCALING,
11881 false, true, &state->visible);
11882 if (ret)
11883 return ret;
11885 if (intel_crtc->active) {
11886 intel_crtc->atomic.wait_for_flips = true;
11889 * FBC does not work on some platforms for rotated
11890 * planes, so disable it when rotation is not 0 and
11891 * update it when rotation is set back to 0.
11893 * FIXME: This is redundant with the fbc update done in
11894 * the primary plane enable function except that that
11895 * one is done too late. We eventually need to unify
11896 * this.
11898 if (intel_crtc->primary_enabled &&
11899 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11900 dev_priv->fbc.plane == intel_crtc->plane &&
11901 state->base.rotation != BIT(DRM_ROTATE_0)) {
11902 intel_crtc->atomic.disable_fbc = true;
11905 if (state->visible) {
11907 * BDW signals flip done immediately if the plane
11908 * is disabled, even if the plane enable is already
11909 * armed to occur at the next vblank :(
11911 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11912 intel_crtc->atomic.wait_vblank = true;
11915 intel_crtc->atomic.fb_bits |=
11916 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11918 intel_crtc->atomic.update_fbc = true;
11921 return 0;
11924 static void
11925 intel_commit_primary_plane(struct drm_plane *plane,
11926 struct intel_plane_state *state)
11928 struct drm_crtc *crtc = state->base.crtc;
11929 struct drm_framebuffer *fb = state->base.fb;
11930 struct drm_device *dev = plane->dev;
11931 struct drm_i915_private *dev_priv = dev->dev_private;
11932 struct intel_crtc *intel_crtc;
11933 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11934 struct intel_plane *intel_plane = to_intel_plane(plane);
11935 struct drm_rect *src = &state->src;
11937 crtc = crtc ? crtc : plane->crtc;
11938 intel_crtc = to_intel_crtc(crtc);
11940 plane->fb = fb;
11941 crtc->x = src->x1 >> 16;
11942 crtc->y = src->y1 >> 16;
11944 intel_plane->obj = obj;
11946 if (intel_crtc->active) {
11947 if (state->visible) {
11948 /* FIXME: kill this fastboot hack */
11949 intel_update_pipe_size(intel_crtc);
11951 intel_crtc->primary_enabled = true;
11953 dev_priv->display.update_primary_plane(crtc, plane->fb,
11954 crtc->x, crtc->y);
11955 } else {
11957 * If clipping results in a non-visible primary plane,
11958 * we'll disable the primary plane. Note that this is
11959 * a bit different than what happens if userspace
11960 * explicitly disables the plane by passing fb=0
11961 * because plane->fb still gets set and pinned.
11963 intel_disable_primary_hw_plane(plane, crtc);
11968 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
11970 struct drm_device *dev = crtc->dev;
11971 struct drm_i915_private *dev_priv = dev->dev_private;
11972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11973 struct intel_plane *intel_plane;
11974 struct drm_plane *p;
11975 unsigned fb_bits = 0;
11977 /* Track fb's for any planes being disabled */
11978 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11979 intel_plane = to_intel_plane(p);
11981 if (intel_crtc->atomic.disabled_planes &
11982 (1 << drm_plane_index(p))) {
11983 switch (p->type) {
11984 case DRM_PLANE_TYPE_PRIMARY:
11985 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11986 break;
11987 case DRM_PLANE_TYPE_CURSOR:
11988 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11989 break;
11990 case DRM_PLANE_TYPE_OVERLAY:
11991 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11992 break;
11995 mutex_lock(&dev->struct_mutex);
11996 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11997 mutex_unlock(&dev->struct_mutex);
12001 if (intel_crtc->atomic.wait_for_flips)
12002 intel_crtc_wait_for_pending_flips(crtc);
12004 if (intel_crtc->atomic.disable_fbc)
12005 intel_fbc_disable(dev);
12007 if (intel_crtc->atomic.pre_disable_primary)
12008 intel_pre_disable_primary(crtc);
12010 if (intel_crtc->atomic.update_wm)
12011 intel_update_watermarks(crtc);
12013 intel_runtime_pm_get(dev_priv);
12015 /* Perform vblank evasion around commit operation */
12016 if (intel_crtc->active)
12017 intel_crtc->atomic.evade =
12018 intel_pipe_update_start(intel_crtc,
12019 &intel_crtc->atomic.start_vbl_count);
12022 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12024 struct drm_device *dev = crtc->dev;
12025 struct drm_i915_private *dev_priv = dev->dev_private;
12026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12027 struct drm_plane *p;
12029 if (intel_crtc->atomic.evade)
12030 intel_pipe_update_end(intel_crtc,
12031 intel_crtc->atomic.start_vbl_count);
12033 intel_runtime_pm_put(dev_priv);
12035 if (intel_crtc->atomic.wait_vblank)
12036 intel_wait_for_vblank(dev, intel_crtc->pipe);
12038 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12040 if (intel_crtc->atomic.update_fbc) {
12041 mutex_lock(&dev->struct_mutex);
12042 intel_fbc_update(dev);
12043 mutex_unlock(&dev->struct_mutex);
12046 if (intel_crtc->atomic.post_enable_primary)
12047 intel_post_enable_primary(crtc);
12049 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12050 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12051 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12052 false, false);
12054 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12058 * intel_plane_destroy - destroy a plane
12059 * @plane: plane to destroy
12061 * Common destruction function for all types of planes (primary, cursor,
12062 * sprite).
12064 void intel_plane_destroy(struct drm_plane *plane)
12066 struct intel_plane *intel_plane = to_intel_plane(plane);
12067 drm_plane_cleanup(plane);
12068 kfree(intel_plane);
12071 const struct drm_plane_funcs intel_plane_funcs = {
12072 .update_plane = drm_plane_helper_update,
12073 .disable_plane = drm_plane_helper_disable,
12074 .destroy = intel_plane_destroy,
12075 .set_property = drm_atomic_helper_plane_set_property,
12076 .atomic_get_property = intel_plane_atomic_get_property,
12077 .atomic_set_property = intel_plane_atomic_set_property,
12078 .atomic_duplicate_state = intel_plane_duplicate_state,
12079 .atomic_destroy_state = intel_plane_destroy_state,
12083 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12084 int pipe)
12086 struct intel_plane *primary;
12087 struct intel_plane_state *state;
12088 const uint32_t *intel_primary_formats;
12089 int num_formats;
12091 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12092 if (primary == NULL)
12093 return NULL;
12095 state = intel_create_plane_state(&primary->base);
12096 if (!state) {
12097 kfree(primary);
12098 return NULL;
12100 primary->base.state = &state->base;
12102 primary->can_scale = false;
12103 primary->max_downscale = 1;
12104 primary->pipe = pipe;
12105 primary->plane = pipe;
12106 primary->check_plane = intel_check_primary_plane;
12107 primary->commit_plane = intel_commit_primary_plane;
12108 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12109 primary->plane = !pipe;
12111 if (INTEL_INFO(dev)->gen <= 3) {
12112 intel_primary_formats = intel_primary_formats_gen2;
12113 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12114 } else {
12115 intel_primary_formats = intel_primary_formats_gen4;
12116 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12119 drm_universal_plane_init(dev, &primary->base, 0,
12120 &intel_plane_funcs,
12121 intel_primary_formats, num_formats,
12122 DRM_PLANE_TYPE_PRIMARY);
12124 if (INTEL_INFO(dev)->gen >= 4) {
12125 if (!dev->mode_config.rotation_property)
12126 dev->mode_config.rotation_property =
12127 drm_mode_create_rotation_property(dev,
12128 BIT(DRM_ROTATE_0) |
12129 BIT(DRM_ROTATE_180));
12130 if (dev->mode_config.rotation_property)
12131 drm_object_attach_property(&primary->base.base,
12132 dev->mode_config.rotation_property,
12133 state->base.rotation);
12136 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12138 return &primary->base;
12141 static int
12142 intel_check_cursor_plane(struct drm_plane *plane,
12143 struct intel_plane_state *state)
12145 struct drm_crtc *crtc = state->base.crtc;
12146 struct drm_device *dev = plane->dev;
12147 struct drm_framebuffer *fb = state->base.fb;
12148 struct drm_rect *dest = &state->dst;
12149 struct drm_rect *src = &state->src;
12150 const struct drm_rect *clip = &state->clip;
12151 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12152 struct intel_crtc *intel_crtc;
12153 unsigned stride;
12154 int ret;
12156 crtc = crtc ? crtc : plane->crtc;
12157 intel_crtc = to_intel_crtc(crtc);
12159 ret = drm_plane_helper_check_update(plane, crtc, fb,
12160 src, dest, clip,
12161 DRM_PLANE_HELPER_NO_SCALING,
12162 DRM_PLANE_HELPER_NO_SCALING,
12163 true, true, &state->visible);
12164 if (ret)
12165 return ret;
12168 /* if we want to turn off the cursor ignore width and height */
12169 if (!obj)
12170 goto finish;
12172 /* Check for which cursor types we support */
12173 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12174 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12175 state->base.crtc_w, state->base.crtc_h);
12176 return -EINVAL;
12179 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12180 if (obj->base.size < stride * state->base.crtc_h) {
12181 DRM_DEBUG_KMS("buffer is too small\n");
12182 return -ENOMEM;
12185 if (fb == crtc->cursor->fb)
12186 return 0;
12188 /* we only need to pin inside GTT if cursor is non-phy */
12189 mutex_lock(&dev->struct_mutex);
12190 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12191 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12192 ret = -EINVAL;
12194 mutex_unlock(&dev->struct_mutex);
12196 finish:
12197 if (intel_crtc->active) {
12198 if (intel_crtc->cursor_width != state->base.crtc_w)
12199 intel_crtc->atomic.update_wm = true;
12201 intel_crtc->atomic.fb_bits |=
12202 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12205 return ret;
12208 static void
12209 intel_commit_cursor_plane(struct drm_plane *plane,
12210 struct intel_plane_state *state)
12212 struct drm_crtc *crtc = state->base.crtc;
12213 struct drm_device *dev = plane->dev;
12214 struct intel_crtc *intel_crtc;
12215 struct intel_plane *intel_plane = to_intel_plane(plane);
12216 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12217 uint32_t addr;
12219 crtc = crtc ? crtc : plane->crtc;
12220 intel_crtc = to_intel_crtc(crtc);
12222 plane->fb = state->base.fb;
12223 crtc->cursor_x = state->base.crtc_x;
12224 crtc->cursor_y = state->base.crtc_y;
12226 intel_plane->obj = obj;
12228 if (intel_crtc->cursor_bo == obj)
12229 goto update;
12231 if (!obj)
12232 addr = 0;
12233 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12234 addr = i915_gem_obj_ggtt_offset(obj);
12235 else
12236 addr = obj->phys_handle->busaddr;
12238 intel_crtc->cursor_addr = addr;
12239 intel_crtc->cursor_bo = obj;
12240 update:
12241 intel_crtc->cursor_width = state->base.crtc_w;
12242 intel_crtc->cursor_height = state->base.crtc_h;
12244 if (intel_crtc->active)
12245 intel_crtc_update_cursor(crtc, state->visible);
12248 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12249 int pipe)
12251 struct intel_plane *cursor;
12252 struct intel_plane_state *state;
12254 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12255 if (cursor == NULL)
12256 return NULL;
12258 state = intel_create_plane_state(&cursor->base);
12259 if (!state) {
12260 kfree(cursor);
12261 return NULL;
12263 cursor->base.state = &state->base;
12265 cursor->can_scale = false;
12266 cursor->max_downscale = 1;
12267 cursor->pipe = pipe;
12268 cursor->plane = pipe;
12269 cursor->check_plane = intel_check_cursor_plane;
12270 cursor->commit_plane = intel_commit_cursor_plane;
12272 drm_universal_plane_init(dev, &cursor->base, 0,
12273 &intel_plane_funcs,
12274 intel_cursor_formats,
12275 ARRAY_SIZE(intel_cursor_formats),
12276 DRM_PLANE_TYPE_CURSOR);
12278 if (INTEL_INFO(dev)->gen >= 4) {
12279 if (!dev->mode_config.rotation_property)
12280 dev->mode_config.rotation_property =
12281 drm_mode_create_rotation_property(dev,
12282 BIT(DRM_ROTATE_0) |
12283 BIT(DRM_ROTATE_180));
12284 if (dev->mode_config.rotation_property)
12285 drm_object_attach_property(&cursor->base.base,
12286 dev->mode_config.rotation_property,
12287 state->base.rotation);
12290 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12292 return &cursor->base;
12295 static void intel_crtc_init(struct drm_device *dev, int pipe)
12297 struct drm_i915_private *dev_priv = dev->dev_private;
12298 struct intel_crtc *intel_crtc;
12299 struct intel_crtc_state *crtc_state = NULL;
12300 struct drm_plane *primary = NULL;
12301 struct drm_plane *cursor = NULL;
12302 int i, ret;
12304 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12305 if (intel_crtc == NULL)
12306 return;
12308 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12309 if (!crtc_state)
12310 goto fail;
12311 intel_crtc_set_state(intel_crtc, crtc_state);
12313 primary = intel_primary_plane_create(dev, pipe);
12314 if (!primary)
12315 goto fail;
12317 cursor = intel_cursor_plane_create(dev, pipe);
12318 if (!cursor)
12319 goto fail;
12321 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12322 cursor, &intel_crtc_funcs);
12323 if (ret)
12324 goto fail;
12326 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12327 for (i = 0; i < 256; i++) {
12328 intel_crtc->lut_r[i] = i;
12329 intel_crtc->lut_g[i] = i;
12330 intel_crtc->lut_b[i] = i;
12334 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12335 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12337 intel_crtc->pipe = pipe;
12338 intel_crtc->plane = pipe;
12339 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12340 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12341 intel_crtc->plane = !pipe;
12344 intel_crtc->cursor_base = ~0;
12345 intel_crtc->cursor_cntl = ~0;
12346 intel_crtc->cursor_size = ~0;
12348 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12349 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12350 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12351 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12353 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12355 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12357 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12358 return;
12360 fail:
12361 if (primary)
12362 drm_plane_cleanup(primary);
12363 if (cursor)
12364 drm_plane_cleanup(cursor);
12365 kfree(crtc_state);
12366 kfree(intel_crtc);
12369 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12371 struct drm_encoder *encoder = connector->base.encoder;
12372 struct drm_device *dev = connector->base.dev;
12374 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12376 if (!encoder || WARN_ON(!encoder->crtc))
12377 return INVALID_PIPE;
12379 return to_intel_crtc(encoder->crtc)->pipe;
12382 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12383 struct drm_file *file)
12385 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12386 struct drm_crtc *drmmode_crtc;
12387 struct intel_crtc *crtc;
12389 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12390 return -ENODEV;
12392 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12394 if (!drmmode_crtc) {
12395 DRM_ERROR("no such CRTC id\n");
12396 return -ENOENT;
12399 crtc = to_intel_crtc(drmmode_crtc);
12400 pipe_from_crtc_id->pipe = crtc->pipe;
12402 return 0;
12405 static int intel_encoder_clones(struct intel_encoder *encoder)
12407 struct drm_device *dev = encoder->base.dev;
12408 struct intel_encoder *source_encoder;
12409 int index_mask = 0;
12410 int entry = 0;
12412 for_each_intel_encoder(dev, source_encoder) {
12413 if (encoders_cloneable(encoder, source_encoder))
12414 index_mask |= (1 << entry);
12416 entry++;
12419 return index_mask;
12422 static bool has_edp_a(struct drm_device *dev)
12424 struct drm_i915_private *dev_priv = dev->dev_private;
12426 if (!IS_MOBILE(dev))
12427 return false;
12429 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12430 return false;
12432 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12433 return false;
12435 return true;
12438 static bool intel_crt_present(struct drm_device *dev)
12440 struct drm_i915_private *dev_priv = dev->dev_private;
12442 if (INTEL_INFO(dev)->gen >= 9)
12443 return false;
12445 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12446 return false;
12448 if (IS_CHERRYVIEW(dev))
12449 return false;
12451 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12452 return false;
12454 return true;
12457 static void intel_setup_outputs(struct drm_device *dev)
12459 struct drm_i915_private *dev_priv = dev->dev_private;
12460 struct intel_encoder *encoder;
12461 struct drm_connector *connector;
12462 bool dpd_is_edp = false;
12464 intel_lvds_init(dev);
12466 if (intel_crt_present(dev))
12467 intel_crt_init(dev);
12469 if (HAS_DDI(dev)) {
12470 int found;
12472 /* Haswell uses DDI functions to detect digital outputs */
12473 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12474 /* DDI A only supports eDP */
12475 if (found)
12476 intel_ddi_init(dev, PORT_A);
12478 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12479 * register */
12480 found = I915_READ(SFUSE_STRAP);
12482 if (found & SFUSE_STRAP_DDIB_DETECTED)
12483 intel_ddi_init(dev, PORT_B);
12484 if (found & SFUSE_STRAP_DDIC_DETECTED)
12485 intel_ddi_init(dev, PORT_C);
12486 if (found & SFUSE_STRAP_DDID_DETECTED)
12487 intel_ddi_init(dev, PORT_D);
12488 } else if (HAS_PCH_SPLIT(dev)) {
12489 int found;
12490 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12492 if (has_edp_a(dev))
12493 intel_dp_init(dev, DP_A, PORT_A);
12495 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12496 /* PCH SDVOB multiplex with HDMIB */
12497 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12498 if (!found)
12499 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12500 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12501 intel_dp_init(dev, PCH_DP_B, PORT_B);
12504 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12505 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12507 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12508 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12510 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12511 intel_dp_init(dev, PCH_DP_C, PORT_C);
12513 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12514 intel_dp_init(dev, PCH_DP_D, PORT_D);
12515 } else if (IS_VALLEYVIEW(dev)) {
12517 * The DP_DETECTED bit is the latched state of the DDC
12518 * SDA pin at boot. However since eDP doesn't require DDC
12519 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12520 * eDP ports may have been muxed to an alternate function.
12521 * Thus we can't rely on the DP_DETECTED bit alone to detect
12522 * eDP ports. Consult the VBT as well as DP_DETECTED to
12523 * detect eDP ports.
12525 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12526 !intel_dp_is_edp(dev, PORT_B))
12527 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12528 PORT_B);
12529 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12530 intel_dp_is_edp(dev, PORT_B))
12531 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12533 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12534 !intel_dp_is_edp(dev, PORT_C))
12535 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12536 PORT_C);
12537 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12538 intel_dp_is_edp(dev, PORT_C))
12539 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12541 if (IS_CHERRYVIEW(dev)) {
12542 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12543 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12544 PORT_D);
12545 /* eDP not supported on port D, so don't check VBT */
12546 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12547 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12550 intel_dsi_init(dev);
12551 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12552 bool found = false;
12554 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12555 DRM_DEBUG_KMS("probing SDVOB\n");
12556 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12557 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12558 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12559 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12562 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12563 intel_dp_init(dev, DP_B, PORT_B);
12566 /* Before G4X SDVOC doesn't have its own detect register */
12568 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12569 DRM_DEBUG_KMS("probing SDVOC\n");
12570 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12573 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12575 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12576 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12577 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12579 if (SUPPORTS_INTEGRATED_DP(dev))
12580 intel_dp_init(dev, DP_C, PORT_C);
12583 if (SUPPORTS_INTEGRATED_DP(dev) &&
12584 (I915_READ(DP_D) & DP_DETECTED))
12585 intel_dp_init(dev, DP_D, PORT_D);
12586 } else if (IS_GEN2(dev))
12587 intel_dvo_init(dev);
12589 if (SUPPORTS_TV(dev))
12590 intel_tv_init(dev);
12593 * FIXME: We don't have full atomic support yet, but we want to be
12594 * able to enable/test plane updates via the atomic interface in the
12595 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12596 * will take some atomic codepaths to lookup properties during
12597 * drmModeGetConnector() that unconditionally dereference
12598 * connector->state.
12600 * We create a dummy connector state here for each connector to ensure
12601 * the DRM core doesn't try to dereference a NULL connector->state.
12602 * The actual connector properties will never be updated or contain
12603 * useful information, but since we're doing this specifically for
12604 * testing/debug of the plane operations (and only when a specific
12605 * kernel module option is given), that shouldn't really matter.
12607 * Once atomic support for crtc's + connectors lands, this loop should
12608 * be removed since we'll be setting up real connector state, which
12609 * will contain Intel-specific properties.
12611 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12612 list_for_each_entry(connector,
12613 &dev->mode_config.connector_list,
12614 head) {
12615 if (!WARN_ON(connector->state)) {
12616 connector->state =
12617 kzalloc(sizeof(*connector->state),
12618 GFP_KERNEL);
12623 intel_psr_init(dev);
12625 for_each_intel_encoder(dev, encoder) {
12626 encoder->base.possible_crtcs = encoder->crtc_mask;
12627 encoder->base.possible_clones =
12628 intel_encoder_clones(encoder);
12631 intel_init_pch_refclk(dev);
12633 drm_helper_move_panel_connectors_to_head(dev);
12636 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12638 struct drm_device *dev = fb->dev;
12639 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12641 drm_framebuffer_cleanup(fb);
12642 mutex_lock(&dev->struct_mutex);
12643 WARN_ON(!intel_fb->obj->framebuffer_references--);
12644 drm_gem_object_unreference(&intel_fb->obj->base);
12645 mutex_unlock(&dev->struct_mutex);
12646 kfree(intel_fb);
12649 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12650 struct drm_file *file,
12651 unsigned int *handle)
12653 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12654 struct drm_i915_gem_object *obj = intel_fb->obj;
12656 return drm_gem_handle_create(file, &obj->base, handle);
12659 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12660 .destroy = intel_user_framebuffer_destroy,
12661 .create_handle = intel_user_framebuffer_create_handle,
12664 static int intel_framebuffer_init(struct drm_device *dev,
12665 struct intel_framebuffer *intel_fb,
12666 struct drm_mode_fb_cmd2 *mode_cmd,
12667 struct drm_i915_gem_object *obj)
12669 int aligned_height;
12670 int pitch_limit;
12671 int ret;
12673 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12675 if (obj->tiling_mode == I915_TILING_Y) {
12676 DRM_DEBUG("hardware does not support tiling Y\n");
12677 return -EINVAL;
12680 if (mode_cmd->pitches[0] & 63) {
12681 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12682 mode_cmd->pitches[0]);
12683 return -EINVAL;
12686 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12687 pitch_limit = 32*1024;
12688 } else if (INTEL_INFO(dev)->gen >= 4) {
12689 if (obj->tiling_mode)
12690 pitch_limit = 16*1024;
12691 else
12692 pitch_limit = 32*1024;
12693 } else if (INTEL_INFO(dev)->gen >= 3) {
12694 if (obj->tiling_mode)
12695 pitch_limit = 8*1024;
12696 else
12697 pitch_limit = 16*1024;
12698 } else
12699 /* XXX DSPC is limited to 4k tiled */
12700 pitch_limit = 8*1024;
12702 if (mode_cmd->pitches[0] > pitch_limit) {
12703 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12704 obj->tiling_mode ? "tiled" : "linear",
12705 mode_cmd->pitches[0], pitch_limit);
12706 return -EINVAL;
12709 if (obj->tiling_mode != I915_TILING_NONE &&
12710 mode_cmd->pitches[0] != obj->stride) {
12711 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12712 mode_cmd->pitches[0], obj->stride);
12713 return -EINVAL;
12716 /* Reject formats not supported by any plane early. */
12717 switch (mode_cmd->pixel_format) {
12718 case DRM_FORMAT_C8:
12719 case DRM_FORMAT_RGB565:
12720 case DRM_FORMAT_XRGB8888:
12721 case DRM_FORMAT_ARGB8888:
12722 break;
12723 case DRM_FORMAT_XRGB1555:
12724 case DRM_FORMAT_ARGB1555:
12725 if (INTEL_INFO(dev)->gen > 3) {
12726 DRM_DEBUG("unsupported pixel format: %s\n",
12727 drm_get_format_name(mode_cmd->pixel_format));
12728 return -EINVAL;
12730 break;
12731 case DRM_FORMAT_XBGR8888:
12732 case DRM_FORMAT_ABGR8888:
12733 case DRM_FORMAT_XRGB2101010:
12734 case DRM_FORMAT_ARGB2101010:
12735 case DRM_FORMAT_XBGR2101010:
12736 case DRM_FORMAT_ABGR2101010:
12737 if (INTEL_INFO(dev)->gen < 4) {
12738 DRM_DEBUG("unsupported pixel format: %s\n",
12739 drm_get_format_name(mode_cmd->pixel_format));
12740 return -EINVAL;
12742 break;
12743 case DRM_FORMAT_YUYV:
12744 case DRM_FORMAT_UYVY:
12745 case DRM_FORMAT_YVYU:
12746 case DRM_FORMAT_VYUY:
12747 if (INTEL_INFO(dev)->gen < 5) {
12748 DRM_DEBUG("unsupported pixel format: %s\n",
12749 drm_get_format_name(mode_cmd->pixel_format));
12750 return -EINVAL;
12752 break;
12753 default:
12754 DRM_DEBUG("unsupported pixel format: %s\n",
12755 drm_get_format_name(mode_cmd->pixel_format));
12756 return -EINVAL;
12759 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12760 if (mode_cmd->offsets[0] != 0)
12761 return -EINVAL;
12763 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12764 obj->tiling_mode);
12765 /* FIXME drm helper for size checks (especially planar formats)? */
12766 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12767 return -EINVAL;
12769 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12770 intel_fb->obj = obj;
12771 intel_fb->obj->framebuffer_references++;
12773 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12774 if (ret) {
12775 DRM_ERROR("framebuffer init failed %d\n", ret);
12776 return ret;
12779 return 0;
12782 static struct drm_framebuffer *
12783 intel_user_framebuffer_create(struct drm_device *dev,
12784 struct drm_file *filp,
12785 struct drm_mode_fb_cmd2 *mode_cmd)
12787 struct drm_i915_gem_object *obj;
12789 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12790 mode_cmd->handles[0]));
12791 if (&obj->base == NULL)
12792 return ERR_PTR(-ENOENT);
12794 return intel_framebuffer_create(dev, mode_cmd, obj);
12797 #ifndef CONFIG_DRM_I915_FBDEV
12798 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12801 #endif
12803 static const struct drm_mode_config_funcs intel_mode_funcs = {
12804 .fb_create = intel_user_framebuffer_create,
12805 .output_poll_changed = intel_fbdev_output_poll_changed,
12806 .atomic_check = intel_atomic_check,
12807 .atomic_commit = intel_atomic_commit,
12810 /* Set up chip specific display functions */
12811 static void intel_init_display(struct drm_device *dev)
12813 struct drm_i915_private *dev_priv = dev->dev_private;
12815 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12816 dev_priv->display.find_dpll = g4x_find_best_dpll;
12817 else if (IS_CHERRYVIEW(dev))
12818 dev_priv->display.find_dpll = chv_find_best_dpll;
12819 else if (IS_VALLEYVIEW(dev))
12820 dev_priv->display.find_dpll = vlv_find_best_dpll;
12821 else if (IS_PINEVIEW(dev))
12822 dev_priv->display.find_dpll = pnv_find_best_dpll;
12823 else
12824 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12826 if (INTEL_INFO(dev)->gen >= 9) {
12827 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12828 dev_priv->display.get_initial_plane_config =
12829 skylake_get_initial_plane_config;
12830 dev_priv->display.crtc_compute_clock =
12831 haswell_crtc_compute_clock;
12832 dev_priv->display.crtc_enable = haswell_crtc_enable;
12833 dev_priv->display.crtc_disable = haswell_crtc_disable;
12834 dev_priv->display.off = ironlake_crtc_off;
12835 dev_priv->display.update_primary_plane =
12836 skylake_update_primary_plane;
12837 } else if (HAS_DDI(dev)) {
12838 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12839 dev_priv->display.get_initial_plane_config =
12840 ironlake_get_initial_plane_config;
12841 dev_priv->display.crtc_compute_clock =
12842 haswell_crtc_compute_clock;
12843 dev_priv->display.crtc_enable = haswell_crtc_enable;
12844 dev_priv->display.crtc_disable = haswell_crtc_disable;
12845 dev_priv->display.off = ironlake_crtc_off;
12846 dev_priv->display.update_primary_plane =
12847 ironlake_update_primary_plane;
12848 } else if (HAS_PCH_SPLIT(dev)) {
12849 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12850 dev_priv->display.get_initial_plane_config =
12851 ironlake_get_initial_plane_config;
12852 dev_priv->display.crtc_compute_clock =
12853 ironlake_crtc_compute_clock;
12854 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12855 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12856 dev_priv->display.off = ironlake_crtc_off;
12857 dev_priv->display.update_primary_plane =
12858 ironlake_update_primary_plane;
12859 } else if (IS_VALLEYVIEW(dev)) {
12860 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12861 dev_priv->display.get_initial_plane_config =
12862 i9xx_get_initial_plane_config;
12863 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12864 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12865 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12866 dev_priv->display.off = i9xx_crtc_off;
12867 dev_priv->display.update_primary_plane =
12868 i9xx_update_primary_plane;
12869 } else {
12870 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12871 dev_priv->display.get_initial_plane_config =
12872 i9xx_get_initial_plane_config;
12873 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12874 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12875 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12876 dev_priv->display.off = i9xx_crtc_off;
12877 dev_priv->display.update_primary_plane =
12878 i9xx_update_primary_plane;
12881 /* Returns the core display clock speed */
12882 if (IS_VALLEYVIEW(dev))
12883 dev_priv->display.get_display_clock_speed =
12884 valleyview_get_display_clock_speed;
12885 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12886 dev_priv->display.get_display_clock_speed =
12887 i945_get_display_clock_speed;
12888 else if (IS_I915G(dev))
12889 dev_priv->display.get_display_clock_speed =
12890 i915_get_display_clock_speed;
12891 else if (IS_I945GM(dev) || IS_845G(dev))
12892 dev_priv->display.get_display_clock_speed =
12893 i9xx_misc_get_display_clock_speed;
12894 else if (IS_PINEVIEW(dev))
12895 dev_priv->display.get_display_clock_speed =
12896 pnv_get_display_clock_speed;
12897 else if (IS_I915GM(dev))
12898 dev_priv->display.get_display_clock_speed =
12899 i915gm_get_display_clock_speed;
12900 else if (IS_I865G(dev))
12901 dev_priv->display.get_display_clock_speed =
12902 i865_get_display_clock_speed;
12903 else if (IS_I85X(dev))
12904 dev_priv->display.get_display_clock_speed =
12905 i855_get_display_clock_speed;
12906 else /* 852, 830 */
12907 dev_priv->display.get_display_clock_speed =
12908 i830_get_display_clock_speed;
12910 if (IS_GEN5(dev)) {
12911 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12912 } else if (IS_GEN6(dev)) {
12913 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12914 } else if (IS_IVYBRIDGE(dev)) {
12915 /* FIXME: detect B0+ stepping and use auto training */
12916 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12917 dev_priv->display.modeset_global_resources =
12918 ivb_modeset_global_resources;
12919 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12920 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12921 } else if (IS_VALLEYVIEW(dev)) {
12922 dev_priv->display.modeset_global_resources =
12923 valleyview_modeset_global_resources;
12926 /* Default just returns -ENODEV to indicate unsupported */
12927 dev_priv->display.queue_flip = intel_default_queue_flip;
12929 switch (INTEL_INFO(dev)->gen) {
12930 case 2:
12931 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12932 break;
12934 case 3:
12935 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12936 break;
12938 case 4:
12939 case 5:
12940 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12941 break;
12943 case 6:
12944 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12945 break;
12946 case 7:
12947 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12948 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12949 break;
12950 case 9:
12951 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12952 break;
12955 intel_panel_init_backlight_funcs(dev);
12957 mutex_init(&dev_priv->pps_mutex);
12961 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12962 * resume, or other times. This quirk makes sure that's the case for
12963 * affected systems.
12965 static void quirk_pipea_force(struct drm_device *dev)
12967 struct drm_i915_private *dev_priv = dev->dev_private;
12969 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12970 DRM_INFO("applying pipe a force quirk\n");
12973 static void quirk_pipeb_force(struct drm_device *dev)
12975 struct drm_i915_private *dev_priv = dev->dev_private;
12977 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12978 DRM_INFO("applying pipe b force quirk\n");
12982 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12984 static void quirk_ssc_force_disable(struct drm_device *dev)
12986 struct drm_i915_private *dev_priv = dev->dev_private;
12987 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12988 DRM_INFO("applying lvds SSC disable quirk\n");
12992 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12993 * brightness value
12995 static void quirk_invert_brightness(struct drm_device *dev)
12997 struct drm_i915_private *dev_priv = dev->dev_private;
12998 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12999 DRM_INFO("applying inverted panel brightness quirk\n");
13002 /* Some VBT's incorrectly indicate no backlight is present */
13003 static void quirk_backlight_present(struct drm_device *dev)
13005 struct drm_i915_private *dev_priv = dev->dev_private;
13006 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13007 DRM_INFO("applying backlight present quirk\n");
13010 struct intel_quirk {
13011 int device;
13012 int subsystem_vendor;
13013 int subsystem_device;
13014 void (*hook)(struct drm_device *dev);
13017 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13018 struct intel_dmi_quirk {
13019 void (*hook)(struct drm_device *dev);
13020 const struct dmi_system_id (*dmi_id_list)[];
13023 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13025 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13026 return 1;
13029 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13031 .dmi_id_list = &(const struct dmi_system_id[]) {
13033 .callback = intel_dmi_reverse_brightness,
13034 .ident = "NCR Corporation",
13035 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13036 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13039 { } /* terminating entry */
13041 .hook = quirk_invert_brightness,
13045 static struct intel_quirk intel_quirks[] = {
13046 /* HP Mini needs pipe A force quirk (LP: #322104) */
13047 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13049 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13050 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13052 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13053 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13055 /* 830 needs to leave pipe A & dpll A up */
13056 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13058 /* 830 needs to leave pipe B & dpll B up */
13059 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13061 /* Lenovo U160 cannot use SSC on LVDS */
13062 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13064 /* Sony Vaio Y cannot use SSC on LVDS */
13065 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13067 /* Acer Aspire 5734Z must invert backlight brightness */
13068 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13070 /* Acer/eMachines G725 */
13071 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13073 /* Acer/eMachines e725 */
13074 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13076 /* Acer/Packard Bell NCL20 */
13077 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13079 /* Acer Aspire 4736Z */
13080 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13082 /* Acer Aspire 5336 */
13083 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13085 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13086 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13088 /* Acer C720 Chromebook (Core i3 4005U) */
13089 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13091 /* Apple Macbook 2,1 (Core 2 T7400) */
13092 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13094 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13095 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13097 /* HP Chromebook 14 (Celeron 2955U) */
13098 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13101 static void intel_init_quirks(struct drm_device *dev)
13103 struct pci_dev *d = dev->pdev;
13104 int i;
13106 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13107 struct intel_quirk *q = &intel_quirks[i];
13109 if (d->device == q->device &&
13110 (d->subsystem_vendor == q->subsystem_vendor ||
13111 q->subsystem_vendor == PCI_ANY_ID) &&
13112 (d->subsystem_device == q->subsystem_device ||
13113 q->subsystem_device == PCI_ANY_ID))
13114 q->hook(dev);
13116 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13117 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13118 intel_dmi_quirks[i].hook(dev);
13122 /* Disable the VGA plane that we never use */
13123 static void i915_disable_vga(struct drm_device *dev)
13125 struct drm_i915_private *dev_priv = dev->dev_private;
13126 u8 sr1;
13127 u32 vga_reg = i915_vgacntrl_reg(dev);
13129 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13130 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13131 outb(SR01, VGA_SR_INDEX);
13132 sr1 = inb(VGA_SR_DATA);
13133 outb(sr1 | 1<<5, VGA_SR_DATA);
13134 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13135 udelay(300);
13137 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13138 POSTING_READ(vga_reg);
13141 void intel_modeset_init_hw(struct drm_device *dev)
13143 intel_prepare_ddi(dev);
13145 if (IS_VALLEYVIEW(dev))
13146 vlv_update_cdclk(dev);
13148 intel_init_clock_gating(dev);
13150 intel_enable_gt_powersave(dev);
13153 void intel_modeset_init(struct drm_device *dev)
13155 struct drm_i915_private *dev_priv = dev->dev_private;
13156 int sprite, ret;
13157 enum pipe pipe;
13158 struct intel_crtc *crtc;
13160 drm_mode_config_init(dev);
13162 dev->mode_config.min_width = 0;
13163 dev->mode_config.min_height = 0;
13165 dev->mode_config.preferred_depth = 24;
13166 dev->mode_config.prefer_shadow = 1;
13168 dev->mode_config.funcs = &intel_mode_funcs;
13170 intel_init_quirks(dev);
13172 intel_init_pm(dev);
13174 if (INTEL_INFO(dev)->num_pipes == 0)
13175 return;
13177 intel_init_display(dev);
13178 intel_init_audio(dev);
13180 if (IS_GEN2(dev)) {
13181 dev->mode_config.max_width = 2048;
13182 dev->mode_config.max_height = 2048;
13183 } else if (IS_GEN3(dev)) {
13184 dev->mode_config.max_width = 4096;
13185 dev->mode_config.max_height = 4096;
13186 } else {
13187 dev->mode_config.max_width = 8192;
13188 dev->mode_config.max_height = 8192;
13191 if (IS_845G(dev) || IS_I865G(dev)) {
13192 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13193 dev->mode_config.cursor_height = 1023;
13194 } else if (IS_GEN2(dev)) {
13195 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13196 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13197 } else {
13198 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13199 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13202 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13204 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13205 INTEL_INFO(dev)->num_pipes,
13206 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13208 for_each_pipe(dev_priv, pipe) {
13209 intel_crtc_init(dev, pipe);
13210 for_each_sprite(pipe, sprite) {
13211 ret = intel_plane_init(dev, pipe, sprite);
13212 if (ret)
13213 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13214 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13218 intel_init_dpio(dev);
13220 intel_shared_dpll_init(dev);
13222 /* Just disable it once at startup */
13223 i915_disable_vga(dev);
13224 intel_setup_outputs(dev);
13226 /* Just in case the BIOS is doing something questionable. */
13227 intel_fbc_disable(dev);
13229 drm_modeset_lock_all(dev);
13230 intel_modeset_setup_hw_state(dev, false);
13231 drm_modeset_unlock_all(dev);
13233 for_each_intel_crtc(dev, crtc) {
13234 if (!crtc->active)
13235 continue;
13238 * Note that reserving the BIOS fb up front prevents us
13239 * from stuffing other stolen allocations like the ring
13240 * on top. This prevents some ugliness at boot time, and
13241 * can even allow for smooth boot transitions if the BIOS
13242 * fb is large enough for the active pipe configuration.
13244 if (dev_priv->display.get_initial_plane_config) {
13245 dev_priv->display.get_initial_plane_config(crtc,
13246 &crtc->plane_config);
13248 * If the fb is shared between multiple heads, we'll
13249 * just get the first one.
13251 intel_find_plane_obj(crtc, &crtc->plane_config);
13256 static void intel_enable_pipe_a(struct drm_device *dev)
13258 struct intel_connector *connector;
13259 struct drm_connector *crt = NULL;
13260 struct intel_load_detect_pipe load_detect_temp;
13261 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13263 /* We can't just switch on the pipe A, we need to set things up with a
13264 * proper mode and output configuration. As a gross hack, enable pipe A
13265 * by enabling the load detect pipe once. */
13266 list_for_each_entry(connector,
13267 &dev->mode_config.connector_list,
13268 base.head) {
13269 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13270 crt = &connector->base;
13271 break;
13275 if (!crt)
13276 return;
13278 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13279 intel_release_load_detect_pipe(crt, &load_detect_temp);
13282 static bool
13283 intel_check_plane_mapping(struct intel_crtc *crtc)
13285 struct drm_device *dev = crtc->base.dev;
13286 struct drm_i915_private *dev_priv = dev->dev_private;
13287 u32 reg, val;
13289 if (INTEL_INFO(dev)->num_pipes == 1)
13290 return true;
13292 reg = DSPCNTR(!crtc->plane);
13293 val = I915_READ(reg);
13295 if ((val & DISPLAY_PLANE_ENABLE) &&
13296 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13297 return false;
13299 return true;
13302 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13304 struct drm_device *dev = crtc->base.dev;
13305 struct drm_i915_private *dev_priv = dev->dev_private;
13306 u32 reg;
13308 /* Clear any frame start delays used for debugging left by the BIOS */
13309 reg = PIPECONF(crtc->config->cpu_transcoder);
13310 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13312 /* restore vblank interrupts to correct state */
13313 if (crtc->active) {
13314 update_scanline_offset(crtc);
13315 drm_vblank_on(dev, crtc->pipe);
13316 } else
13317 drm_vblank_off(dev, crtc->pipe);
13319 /* We need to sanitize the plane -> pipe mapping first because this will
13320 * disable the crtc (and hence change the state) if it is wrong. Note
13321 * that gen4+ has a fixed plane -> pipe mapping. */
13322 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13323 struct intel_connector *connector;
13324 bool plane;
13326 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13327 crtc->base.base.id);
13329 /* Pipe has the wrong plane attached and the plane is active.
13330 * Temporarily change the plane mapping and disable everything
13331 * ... */
13332 plane = crtc->plane;
13333 crtc->plane = !plane;
13334 crtc->primary_enabled = true;
13335 dev_priv->display.crtc_disable(&crtc->base);
13336 crtc->plane = plane;
13338 /* ... and break all links. */
13339 list_for_each_entry(connector, &dev->mode_config.connector_list,
13340 base.head) {
13341 if (connector->encoder->base.crtc != &crtc->base)
13342 continue;
13344 connector->base.dpms = DRM_MODE_DPMS_OFF;
13345 connector->base.encoder = NULL;
13347 /* multiple connectors may have the same encoder:
13348 * handle them and break crtc link separately */
13349 list_for_each_entry(connector, &dev->mode_config.connector_list,
13350 base.head)
13351 if (connector->encoder->base.crtc == &crtc->base) {
13352 connector->encoder->base.crtc = NULL;
13353 connector->encoder->connectors_active = false;
13356 WARN_ON(crtc->active);
13357 crtc->base.enabled = false;
13360 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13361 crtc->pipe == PIPE_A && !crtc->active) {
13362 /* BIOS forgot to enable pipe A, this mostly happens after
13363 * resume. Force-enable the pipe to fix this, the update_dpms
13364 * call below we restore the pipe to the right state, but leave
13365 * the required bits on. */
13366 intel_enable_pipe_a(dev);
13369 /* Adjust the state of the output pipe according to whether we
13370 * have active connectors/encoders. */
13371 intel_crtc_update_dpms(&crtc->base);
13373 if (crtc->active != crtc->base.enabled) {
13374 struct intel_encoder *encoder;
13376 /* This can happen either due to bugs in the get_hw_state
13377 * functions or because the pipe is force-enabled due to the
13378 * pipe A quirk. */
13379 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13380 crtc->base.base.id,
13381 crtc->base.enabled ? "enabled" : "disabled",
13382 crtc->active ? "enabled" : "disabled");
13384 crtc->base.enabled = crtc->active;
13386 /* Because we only establish the connector -> encoder ->
13387 * crtc links if something is active, this means the
13388 * crtc is now deactivated. Break the links. connector
13389 * -> encoder links are only establish when things are
13390 * actually up, hence no need to break them. */
13391 WARN_ON(crtc->active);
13393 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13394 WARN_ON(encoder->connectors_active);
13395 encoder->base.crtc = NULL;
13399 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13401 * We start out with underrun reporting disabled to avoid races.
13402 * For correct bookkeeping mark this on active crtcs.
13404 * Also on gmch platforms we dont have any hardware bits to
13405 * disable the underrun reporting. Which means we need to start
13406 * out with underrun reporting disabled also on inactive pipes,
13407 * since otherwise we'll complain about the garbage we read when
13408 * e.g. coming up after runtime pm.
13410 * No protection against concurrent access is required - at
13411 * worst a fifo underrun happens which also sets this to false.
13413 crtc->cpu_fifo_underrun_disabled = true;
13414 crtc->pch_fifo_underrun_disabled = true;
13418 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13420 struct intel_connector *connector;
13421 struct drm_device *dev = encoder->base.dev;
13423 /* We need to check both for a crtc link (meaning that the
13424 * encoder is active and trying to read from a pipe) and the
13425 * pipe itself being active. */
13426 bool has_active_crtc = encoder->base.crtc &&
13427 to_intel_crtc(encoder->base.crtc)->active;
13429 if (encoder->connectors_active && !has_active_crtc) {
13430 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13431 encoder->base.base.id,
13432 encoder->base.name);
13434 /* Connector is active, but has no active pipe. This is
13435 * fallout from our resume register restoring. Disable
13436 * the encoder manually again. */
13437 if (encoder->base.crtc) {
13438 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13439 encoder->base.base.id,
13440 encoder->base.name);
13441 encoder->disable(encoder);
13442 if (encoder->post_disable)
13443 encoder->post_disable(encoder);
13445 encoder->base.crtc = NULL;
13446 encoder->connectors_active = false;
13448 /* Inconsistent output/port/pipe state happens presumably due to
13449 * a bug in one of the get_hw_state functions. Or someplace else
13450 * in our code, like the register restore mess on resume. Clamp
13451 * things to off as a safer default. */
13452 list_for_each_entry(connector,
13453 &dev->mode_config.connector_list,
13454 base.head) {
13455 if (connector->encoder != encoder)
13456 continue;
13457 connector->base.dpms = DRM_MODE_DPMS_OFF;
13458 connector->base.encoder = NULL;
13461 /* Enabled encoders without active connectors will be fixed in
13462 * the crtc fixup. */
13465 void i915_redisable_vga_power_on(struct drm_device *dev)
13467 struct drm_i915_private *dev_priv = dev->dev_private;
13468 u32 vga_reg = i915_vgacntrl_reg(dev);
13470 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13471 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13472 i915_disable_vga(dev);
13476 void i915_redisable_vga(struct drm_device *dev)
13478 struct drm_i915_private *dev_priv = dev->dev_private;
13480 /* This function can be called both from intel_modeset_setup_hw_state or
13481 * at a very early point in our resume sequence, where the power well
13482 * structures are not yet restored. Since this function is at a very
13483 * paranoid "someone might have enabled VGA while we were not looking"
13484 * level, just check if the power well is enabled instead of trying to
13485 * follow the "don't touch the power well if we don't need it" policy
13486 * the rest of the driver uses. */
13487 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13488 return;
13490 i915_redisable_vga_power_on(dev);
13493 static bool primary_get_hw_state(struct intel_crtc *crtc)
13495 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13497 if (!crtc->active)
13498 return false;
13500 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13503 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13505 struct drm_i915_private *dev_priv = dev->dev_private;
13506 enum pipe pipe;
13507 struct intel_crtc *crtc;
13508 struct intel_encoder *encoder;
13509 struct intel_connector *connector;
13510 int i;
13512 for_each_intel_crtc(dev, crtc) {
13513 memset(crtc->config, 0, sizeof(*crtc->config));
13515 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13517 crtc->active = dev_priv->display.get_pipe_config(crtc,
13518 crtc->config);
13520 crtc->base.enabled = crtc->active;
13521 crtc->primary_enabled = primary_get_hw_state(crtc);
13523 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13524 crtc->base.base.id,
13525 crtc->active ? "enabled" : "disabled");
13528 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13529 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13531 pll->on = pll->get_hw_state(dev_priv, pll,
13532 &pll->config.hw_state);
13533 pll->active = 0;
13534 pll->config.crtc_mask = 0;
13535 for_each_intel_crtc(dev, crtc) {
13536 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13537 pll->active++;
13538 pll->config.crtc_mask |= 1 << crtc->pipe;
13542 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13543 pll->name, pll->config.crtc_mask, pll->on);
13545 if (pll->config.crtc_mask)
13546 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13549 for_each_intel_encoder(dev, encoder) {
13550 pipe = 0;
13552 if (encoder->get_hw_state(encoder, &pipe)) {
13553 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13554 encoder->base.crtc = &crtc->base;
13555 encoder->get_config(encoder, crtc->config);
13556 } else {
13557 encoder->base.crtc = NULL;
13560 encoder->connectors_active = false;
13561 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13562 encoder->base.base.id,
13563 encoder->base.name,
13564 encoder->base.crtc ? "enabled" : "disabled",
13565 pipe_name(pipe));
13568 list_for_each_entry(connector, &dev->mode_config.connector_list,
13569 base.head) {
13570 if (connector->get_hw_state(connector)) {
13571 connector->base.dpms = DRM_MODE_DPMS_ON;
13572 connector->encoder->connectors_active = true;
13573 connector->base.encoder = &connector->encoder->base;
13574 } else {
13575 connector->base.dpms = DRM_MODE_DPMS_OFF;
13576 connector->base.encoder = NULL;
13578 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13579 connector->base.base.id,
13580 connector->base.name,
13581 connector->base.encoder ? "enabled" : "disabled");
13585 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13586 * and i915 state tracking structures. */
13587 void intel_modeset_setup_hw_state(struct drm_device *dev,
13588 bool force_restore)
13590 struct drm_i915_private *dev_priv = dev->dev_private;
13591 enum pipe pipe;
13592 struct intel_crtc *crtc;
13593 struct intel_encoder *encoder;
13594 int i;
13596 intel_modeset_readout_hw_state(dev);
13599 * Now that we have the config, copy it to each CRTC struct
13600 * Note that this could go away if we move to using crtc_config
13601 * checking everywhere.
13603 for_each_intel_crtc(dev, crtc) {
13604 if (crtc->active && i915.fastboot) {
13605 intel_mode_from_pipe_config(&crtc->base.mode,
13606 crtc->config);
13607 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13608 crtc->base.base.id);
13609 drm_mode_debug_printmodeline(&crtc->base.mode);
13613 /* HW state is read out, now we need to sanitize this mess. */
13614 for_each_intel_encoder(dev, encoder) {
13615 intel_sanitize_encoder(encoder);
13618 for_each_pipe(dev_priv, pipe) {
13619 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13620 intel_sanitize_crtc(crtc);
13621 intel_dump_pipe_config(crtc, crtc->config,
13622 "[setup_hw_state]");
13625 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13626 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13628 if (!pll->on || pll->active)
13629 continue;
13631 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13633 pll->disable(dev_priv, pll);
13634 pll->on = false;
13637 if (IS_GEN9(dev))
13638 skl_wm_get_hw_state(dev);
13639 else if (HAS_PCH_SPLIT(dev))
13640 ilk_wm_get_hw_state(dev);
13642 if (force_restore) {
13643 i915_redisable_vga(dev);
13646 * We need to use raw interfaces for restoring state to avoid
13647 * checking (bogus) intermediate states.
13649 for_each_pipe(dev_priv, pipe) {
13650 struct drm_crtc *crtc =
13651 dev_priv->pipe_to_crtc_mapping[pipe];
13653 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13654 crtc->primary->fb);
13656 } else {
13657 intel_modeset_update_staged_output_state(dev);
13660 intel_modeset_check_state(dev);
13663 void intel_modeset_gem_init(struct drm_device *dev)
13665 struct drm_i915_private *dev_priv = dev->dev_private;
13666 struct drm_crtc *c;
13667 struct drm_i915_gem_object *obj;
13669 mutex_lock(&dev->struct_mutex);
13670 intel_init_gt_powersave(dev);
13671 mutex_unlock(&dev->struct_mutex);
13674 * There may be no VBT; and if the BIOS enabled SSC we can
13675 * just keep using it to avoid unnecessary flicker. Whereas if the
13676 * BIOS isn't using it, don't assume it will work even if the VBT
13677 * indicates as much.
13679 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13680 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13681 DREF_SSC1_ENABLE);
13683 intel_modeset_init_hw(dev);
13685 intel_setup_overlay(dev);
13688 * Make sure any fbs we allocated at startup are properly
13689 * pinned & fenced. When we do the allocation it's too early
13690 * for this.
13692 mutex_lock(&dev->struct_mutex);
13693 for_each_crtc(dev, c) {
13694 obj = intel_fb_obj(c->primary->fb);
13695 if (obj == NULL)
13696 continue;
13698 if (intel_pin_and_fence_fb_obj(c->primary,
13699 c->primary->fb,
13700 NULL)) {
13701 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13702 to_intel_crtc(c)->pipe);
13703 drm_framebuffer_unreference(c->primary->fb);
13704 c->primary->fb = NULL;
13707 mutex_unlock(&dev->struct_mutex);
13709 intel_backlight_register(dev);
13712 void intel_connector_unregister(struct intel_connector *intel_connector)
13714 struct drm_connector *connector = &intel_connector->base;
13716 intel_panel_destroy_backlight(connector);
13717 drm_connector_unregister(connector);
13720 void intel_modeset_cleanup(struct drm_device *dev)
13722 struct drm_i915_private *dev_priv = dev->dev_private;
13723 struct drm_connector *connector;
13725 intel_disable_gt_powersave(dev);
13727 intel_backlight_unregister(dev);
13730 * Interrupts and polling as the first thing to avoid creating havoc.
13731 * Too much stuff here (turning of connectors, ...) would
13732 * experience fancy races otherwise.
13734 intel_irq_uninstall(dev_priv);
13737 * Due to the hpd irq storm handling the hotplug work can re-arm the
13738 * poll handlers. Hence disable polling after hpd handling is shut down.
13740 drm_kms_helper_poll_fini(dev);
13742 mutex_lock(&dev->struct_mutex);
13744 intel_unregister_dsm_handler();
13746 intel_fbc_disable(dev);
13748 ironlake_teardown_rc6(dev);
13750 mutex_unlock(&dev->struct_mutex);
13752 /* flush any delayed tasks or pending work */
13753 flush_scheduled_work();
13755 /* destroy the backlight and sysfs files before encoders/connectors */
13756 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13757 struct intel_connector *intel_connector;
13759 intel_connector = to_intel_connector(connector);
13760 intel_connector->unregister(intel_connector);
13763 drm_mode_config_cleanup(dev);
13765 intel_cleanup_overlay(dev);
13767 mutex_lock(&dev->struct_mutex);
13768 intel_cleanup_gt_powersave(dev);
13769 mutex_unlock(&dev->struct_mutex);
13773 * Return which encoder is currently attached for connector.
13775 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13777 return &intel_attached_encoder(connector)->base;
13780 void intel_connector_attach_encoder(struct intel_connector *connector,
13781 struct intel_encoder *encoder)
13783 connector->encoder = encoder;
13784 drm_mode_connector_attach_encoder(&connector->base,
13785 &encoder->base);
13789 * set vga decode state - true == enable VGA decode
13791 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13793 struct drm_i915_private *dev_priv = dev->dev_private;
13794 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13795 u16 gmch_ctrl;
13797 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13798 DRM_ERROR("failed to read control word\n");
13799 return -EIO;
13802 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13803 return 0;
13805 if (state)
13806 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13807 else
13808 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13810 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13811 DRM_ERROR("failed to write control word\n");
13812 return -EIO;
13815 return 0;
13818 struct intel_display_error_state {
13820 u32 power_well_driver;
13822 int num_transcoders;
13824 struct intel_cursor_error_state {
13825 u32 control;
13826 u32 position;
13827 u32 base;
13828 u32 size;
13829 } cursor[I915_MAX_PIPES];
13831 struct intel_pipe_error_state {
13832 bool power_domain_on;
13833 u32 source;
13834 u32 stat;
13835 } pipe[I915_MAX_PIPES];
13837 struct intel_plane_error_state {
13838 u32 control;
13839 u32 stride;
13840 u32 size;
13841 u32 pos;
13842 u32 addr;
13843 u32 surface;
13844 u32 tile_offset;
13845 } plane[I915_MAX_PIPES];
13847 struct intel_transcoder_error_state {
13848 bool power_domain_on;
13849 enum transcoder cpu_transcoder;
13851 u32 conf;
13853 u32 htotal;
13854 u32 hblank;
13855 u32 hsync;
13856 u32 vtotal;
13857 u32 vblank;
13858 u32 vsync;
13859 } transcoder[4];
13862 struct intel_display_error_state *
13863 intel_display_capture_error_state(struct drm_device *dev)
13865 struct drm_i915_private *dev_priv = dev->dev_private;
13866 struct intel_display_error_state *error;
13867 int transcoders[] = {
13868 TRANSCODER_A,
13869 TRANSCODER_B,
13870 TRANSCODER_C,
13871 TRANSCODER_EDP,
13873 int i;
13875 if (INTEL_INFO(dev)->num_pipes == 0)
13876 return NULL;
13878 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13879 if (error == NULL)
13880 return NULL;
13882 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13883 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13885 for_each_pipe(dev_priv, i) {
13886 error->pipe[i].power_domain_on =
13887 __intel_display_power_is_enabled(dev_priv,
13888 POWER_DOMAIN_PIPE(i));
13889 if (!error->pipe[i].power_domain_on)
13890 continue;
13892 error->cursor[i].control = I915_READ(CURCNTR(i));
13893 error->cursor[i].position = I915_READ(CURPOS(i));
13894 error->cursor[i].base = I915_READ(CURBASE(i));
13896 error->plane[i].control = I915_READ(DSPCNTR(i));
13897 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13898 if (INTEL_INFO(dev)->gen <= 3) {
13899 error->plane[i].size = I915_READ(DSPSIZE(i));
13900 error->plane[i].pos = I915_READ(DSPPOS(i));
13902 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13903 error->plane[i].addr = I915_READ(DSPADDR(i));
13904 if (INTEL_INFO(dev)->gen >= 4) {
13905 error->plane[i].surface = I915_READ(DSPSURF(i));
13906 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13909 error->pipe[i].source = I915_READ(PIPESRC(i));
13911 if (HAS_GMCH_DISPLAY(dev))
13912 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13915 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13916 if (HAS_DDI(dev_priv->dev))
13917 error->num_transcoders++; /* Account for eDP. */
13919 for (i = 0; i < error->num_transcoders; i++) {
13920 enum transcoder cpu_transcoder = transcoders[i];
13922 error->transcoder[i].power_domain_on =
13923 __intel_display_power_is_enabled(dev_priv,
13924 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13925 if (!error->transcoder[i].power_domain_on)
13926 continue;
13928 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13930 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13931 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13932 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13933 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13934 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13935 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13936 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13939 return error;
13942 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13944 void
13945 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13946 struct drm_device *dev,
13947 struct intel_display_error_state *error)
13949 struct drm_i915_private *dev_priv = dev->dev_private;
13950 int i;
13952 if (!error)
13953 return;
13955 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13956 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13957 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13958 error->power_well_driver);
13959 for_each_pipe(dev_priv, i) {
13960 err_printf(m, "Pipe [%d]:\n", i);
13961 err_printf(m, " Power: %s\n",
13962 error->pipe[i].power_domain_on ? "on" : "off");
13963 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13964 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13966 err_printf(m, "Plane [%d]:\n", i);
13967 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13968 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13969 if (INTEL_INFO(dev)->gen <= 3) {
13970 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13971 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13973 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13974 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13975 if (INTEL_INFO(dev)->gen >= 4) {
13976 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13977 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13980 err_printf(m, "Cursor [%d]:\n", i);
13981 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13982 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13983 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13986 for (i = 0; i < error->num_transcoders; i++) {
13987 err_printf(m, "CPU transcoder: %c\n",
13988 transcoder_name(error->transcoder[i].cpu_transcoder));
13989 err_printf(m, " Power: %s\n",
13990 error->transcoder[i].power_domain_on ? "on" : "off");
13991 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13992 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13993 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13994 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13995 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13996 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13997 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14001 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14003 struct intel_crtc *crtc;
14005 for_each_intel_crtc(dev, crtc) {
14006 struct intel_unpin_work *work;
14008 spin_lock_irq(&dev->event_lock);
14010 work = crtc->unpin_work;
14012 if (work && work->event &&
14013 work->event->base.file_priv == file) {
14014 kfree(work->event);
14015 work->event = NULL;
14018 spin_unlock_irq(&dev->event_lock);