net: at91_ether: use module_platform_driver_probe()
[linux-2.6/btrfs-unstable.git] / drivers / edac / amd64_edac.c
blob910b0116c12872aaebb5e72707ddc920d0722ce1
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances = ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
32 *FIXME: Produce a better mapping/linearisation.
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
66 int err = 0;
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
73 return err;
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
79 int err = 0;
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
86 return err;
91 * Depending on the family, F2 DCT reads need special handling:
93 * K8: has a single DCT only
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
105 if (addr >= 0x100)
106 return -EINVAL;
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
118 * Select DCT to which PCI cfg accesses are routed
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122 u32 reg = 0;
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
133 u8 dct = 0;
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
140 f15h_select_dct(pvt, dct);
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
165 u32 scrubval;
166 int i;
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
182 if (scrubrates[i].scrubval < min_rate)
183 continue;
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
189 scrubval = scrubrates[i].scrubval;
191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
193 if (scrubval)
194 return scrubrates[i].bandwidth;
196 return 0;
199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
201 struct amd64_pvt *pvt = mci->pvt_info;
202 u32 min_scrubrate = 0x5;
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
218 int i, retval = -EINVAL;
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
226 scrubval = scrubval & 0x001F;
228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229 if (scrubrates[i].scrubval == scrubval) {
230 retval = scrubrates[i].bandwidth;
231 break;
234 return retval;
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 u8 nid)
244 u64 addr;
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
252 addr = sys_addr & 0x000000ffffffffffull;
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
262 * On failure, return NULL.
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
267 struct amd64_pvt *pvt;
268 u8 node_id;
269 u32 intlv_en, bits;
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 pvt = mci->pvt_info;
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
282 intlv_en = dram_intlv_en(pvt, 0);
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
289 goto err_no_match;
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 return NULL;
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
301 for (node_id = 0; ; ) {
302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 break; /* intlv_sel field matches */
305 if (++node_id >= DRAM_RANGES)
306 goto err_no_match;
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
314 return NULL;
317 found:
318 return edac_mc_find((int)node_id);
320 err_no_match:
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
324 return NULL;
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
354 *base = (csbase & base_bits) << addr_shift;
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
363 #define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
366 #define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
382 pvt = mci->pvt_info;
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
386 continue;
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
390 mask = ~mask;
392 if ((input_addr & mask) == (base & mask)) {
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
397 return csrow;
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
403 return -1;
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
425 struct amd64_pvt *pvt = mci->pvt_info;
427 /* only revE and later have the DRAM Hole Address Register */
428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
431 return 1;
434 /* valid for Fam10h and above */
435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
437 return 1;
440 if (!dhar_valid(pvt)) {
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
443 return 1;
446 /* This node has Memory Hoisting */
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
467 if (boot_cpu_data.x86 > 0xf)
468 *hole_offset = f10_dhar_offset(pvt);
469 else
470 *hole_offset = k8_dhar_offset(pvt);
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
476 return 0;
478 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
509 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
511 struct amd64_pvt *pvt = mci->pvt_info;
512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
513 int ret;
515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
529 return dram_addr;
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
546 return dram_addr;
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
554 static int num_node_interleave_bits(unsigned intlv_en)
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
564 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
565 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
571 pvt = mci->pvt_info;
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
585 return input_addr;
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
592 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
594 u64 input_addr;
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
602 return input_addr;
605 /* Map the Error address to a PAGE and PAGE OFFSET. */
606 static inline void error_address_to_page_and_offset(u64 error_address,
607 struct err_info *err)
609 err->page = (u32) (error_address >> PAGE_SHIFT);
610 err->offset = ((u32) error_address) & ~PAGE_MASK;
614 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
615 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
616 * of a node that detected an ECC memory error. mci represents the node that
617 * the error address maps to (possibly different from the node that detected
618 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
619 * error.
621 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
623 int csrow;
625 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
627 if (csrow == -1)
628 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
629 "address 0x%lx\n", (unsigned long)sys_addr);
630 return csrow;
633 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
636 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
637 * are ECC capable.
639 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
641 u8 bit;
642 unsigned long edac_cap = EDAC_FLAG_NONE;
644 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
645 ? 19
646 : 17;
648 if (pvt->dclr0 & BIT(bit))
649 edac_cap = EDAC_FLAG_SECDED;
651 return edac_cap;
654 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
656 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
658 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
660 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
661 (dclr & BIT(16)) ? "un" : "",
662 (dclr & BIT(19)) ? "yes" : "no");
664 edac_dbg(1, " PAR/ERR parity: %s\n",
665 (dclr & BIT(8)) ? "enabled" : "disabled");
667 if (boot_cpu_data.x86 == 0x10)
668 edac_dbg(1, " DCT 128bit mode width: %s\n",
669 (dclr & BIT(11)) ? "128b" : "64b");
671 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
672 (dclr & BIT(12)) ? "yes" : "no",
673 (dclr & BIT(13)) ? "yes" : "no",
674 (dclr & BIT(14)) ? "yes" : "no",
675 (dclr & BIT(15)) ? "yes" : "no");
678 /* Display and decode various NB registers for debug purposes. */
679 static void dump_misc_regs(struct amd64_pvt *pvt)
681 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
683 edac_dbg(1, " NB two channel DRAM capable: %s\n",
684 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
686 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
687 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
688 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
690 amd64_dump_dramcfg_low(pvt->dclr0, 0);
692 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
694 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
695 pvt->dhar, dhar_base(pvt),
696 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
697 : f10_dhar_offset(pvt));
699 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
701 amd64_debug_display_dimm_sizes(pvt, 0);
703 /* everything below this point is Fam10h and above */
704 if (boot_cpu_data.x86 == 0xf)
705 return;
707 amd64_debug_display_dimm_sizes(pvt, 1);
709 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
711 /* Only if NOT ganged does dclr1 have valid info */
712 if (!dct_ganging_enabled(pvt))
713 amd64_dump_dramcfg_low(pvt->dclr1, 1);
717 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
719 static void prep_chip_selects(struct amd64_pvt *pvt)
721 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
722 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
723 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
724 } else {
725 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
726 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
731 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
733 static void read_dct_base_mask(struct amd64_pvt *pvt)
735 int cs;
737 prep_chip_selects(pvt);
739 for_each_chip_select(cs, 0, pvt) {
740 int reg0 = DCSB0 + (cs * 4);
741 int reg1 = DCSB1 + (cs * 4);
742 u32 *base0 = &pvt->csels[0].csbases[cs];
743 u32 *base1 = &pvt->csels[1].csbases[cs];
745 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
746 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
747 cs, *base0, reg0);
749 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
750 continue;
752 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
753 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
754 cs, *base1, reg1);
757 for_each_chip_select_mask(cs, 0, pvt) {
758 int reg0 = DCSM0 + (cs * 4);
759 int reg1 = DCSM1 + (cs * 4);
760 u32 *mask0 = &pvt->csels[0].csmasks[cs];
761 u32 *mask1 = &pvt->csels[1].csmasks[cs];
763 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
764 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
765 cs, *mask0, reg0);
767 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
768 continue;
770 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
771 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
772 cs, *mask1, reg1);
776 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
778 enum mem_type type;
780 /* F15h supports only DDR3 */
781 if (boot_cpu_data.x86 >= 0x15)
782 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
783 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
784 if (pvt->dchr0 & DDR3_MODE)
785 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
786 else
787 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
788 } else {
789 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
792 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
794 return type;
797 /* Get the number of DCT channels the memory controller is using. */
798 static int k8_early_channel_count(struct amd64_pvt *pvt)
800 int flag;
802 if (pvt->ext_model >= K8_REV_F)
803 /* RevF (NPT) and later */
804 flag = pvt->dclr0 & WIDTH_128;
805 else
806 /* RevE and earlier */
807 flag = pvt->dclr0 & REVE_WIDTH_128;
809 /* not used */
810 pvt->dclr1 = 0;
812 return (flag) ? 2 : 1;
815 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
816 static u64 get_error_address(struct mce *m)
818 struct cpuinfo_x86 *c = &boot_cpu_data;
819 u64 addr;
820 u8 start_bit = 1;
821 u8 end_bit = 47;
823 if (c->x86 == 0xf) {
824 start_bit = 3;
825 end_bit = 39;
828 addr = m->addr & GENMASK(start_bit, end_bit);
831 * Erratum 637 workaround
833 if (c->x86 == 0x15) {
834 struct amd64_pvt *pvt;
835 u64 cc6_base, tmp_addr;
836 u32 tmp;
837 u16 mce_nid;
838 u8 intlv_en;
840 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
841 return addr;
843 mce_nid = amd_get_nb_id(m->extcpu);
844 pvt = mcis[mce_nid]->pvt_info;
846 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
847 intlv_en = tmp >> 21 & 0x7;
849 /* add [47:27] + 3 trailing bits */
850 cc6_base = (tmp & GENMASK(0, 20)) << 3;
852 /* reverse and add DramIntlvEn */
853 cc6_base |= intlv_en ^ 0x7;
855 /* pin at [47:24] */
856 cc6_base <<= 24;
858 if (!intlv_en)
859 return cc6_base | (addr & GENMASK(0, 23));
861 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
863 /* faster log2 */
864 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
866 /* OR DramIntlvSel into bits [14:12] */
867 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
869 /* add remaining [11:0] bits from original MC4_ADDR */
870 tmp_addr |= addr & GENMASK(0, 11);
872 return cc6_base | tmp_addr;
875 return addr;
878 static struct pci_dev *pci_get_related_function(unsigned int vendor,
879 unsigned int device,
880 struct pci_dev *related)
882 struct pci_dev *dev = NULL;
884 while ((dev = pci_get_device(vendor, device, dev))) {
885 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
886 (dev->bus->number == related->bus->number) &&
887 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
888 break;
891 return dev;
894 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
896 struct amd_northbridge *nb;
897 struct pci_dev *misc, *f1 = NULL;
898 struct cpuinfo_x86 *c = &boot_cpu_data;
899 int off = range << 3;
900 u32 llim;
902 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
903 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
905 if (c->x86 == 0xf)
906 return;
908 if (!dram_rw(pvt, range))
909 return;
911 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
912 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
914 /* F15h: factor in CC6 save area by reading dst node's limit reg */
915 if (c->x86 != 0x15)
916 return;
918 nb = node_to_amd_nb(dram_dst_node(pvt, range));
919 if (WARN_ON(!nb))
920 return;
922 misc = nb->misc;
923 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
924 if (WARN_ON(!f1))
925 return;
927 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
929 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
931 /* {[39:27],111b} */
932 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
934 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
936 /* [47:40] */
937 pvt->ranges[range].lim.hi |= llim >> 13;
939 pci_dev_put(f1);
942 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
943 struct err_info *err)
945 struct amd64_pvt *pvt = mci->pvt_info;
947 error_address_to_page_and_offset(sys_addr, err);
950 * Find out which node the error address belongs to. This may be
951 * different from the node that detected the error.
953 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
954 if (!err->src_mci) {
955 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
956 (unsigned long)sys_addr);
957 err->err_code = ERR_NODE;
958 return;
961 /* Now map the sys_addr to a CSROW */
962 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
963 if (err->csrow < 0) {
964 err->err_code = ERR_CSROW;
965 return;
968 /* CHIPKILL enabled */
969 if (pvt->nbcfg & NBCFG_CHIPKILL) {
970 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
971 if (err->channel < 0) {
973 * Syndrome didn't map, so we don't know which of the
974 * 2 DIMMs is in error. So we need to ID 'both' of them
975 * as suspect.
977 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
978 "possible error reporting race\n",
979 err->syndrome);
980 err->err_code = ERR_CHANNEL;
981 return;
983 } else {
985 * non-chipkill ecc mode
987 * The k8 documentation is unclear about how to determine the
988 * channel number when using non-chipkill memory. This method
989 * was obtained from email communication with someone at AMD.
990 * (Wish the email was placed in this comment - norsk)
992 err->channel = ((sys_addr & BIT(3)) != 0);
996 static int ddr2_cs_size(unsigned i, bool dct_width)
998 unsigned shift = 0;
1000 if (i <= 2)
1001 shift = i;
1002 else if (!(i & 0x1))
1003 shift = i >> 1;
1004 else
1005 shift = (i + 1) >> 1;
1007 return 128 << (shift + !!dct_width);
1010 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1011 unsigned cs_mode)
1013 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1015 if (pvt->ext_model >= K8_REV_F) {
1016 WARN_ON(cs_mode > 11);
1017 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1019 else if (pvt->ext_model >= K8_REV_D) {
1020 unsigned diff;
1021 WARN_ON(cs_mode > 10);
1024 * the below calculation, besides trying to win an obfuscated C
1025 * contest, maps cs_mode values to DIMM chip select sizes. The
1026 * mappings are:
1028 * cs_mode CS size (mb)
1029 * ======= ============
1030 * 0 32
1031 * 1 64
1032 * 2 128
1033 * 3 128
1034 * 4 256
1035 * 5 512
1036 * 6 256
1037 * 7 512
1038 * 8 1024
1039 * 9 1024
1040 * 10 2048
1042 * Basically, it calculates a value with which to shift the
1043 * smallest CS size of 32MB.
1045 * ddr[23]_cs_size have a similar purpose.
1047 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1049 return 32 << (cs_mode - diff);
1051 else {
1052 WARN_ON(cs_mode > 6);
1053 return 32 << cs_mode;
1058 * Get the number of DCT channels in use.
1060 * Return:
1061 * number of Memory Channels in operation
1062 * Pass back:
1063 * contents of the DCL0_LOW register
1065 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1067 int i, j, channels = 0;
1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1071 return 2;
1074 * Need to check if in unganged mode: In such, there are 2 channels,
1075 * but they are not in 128 bit mode and thus the above 'dclr0' status
1076 * bit will be OFF.
1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1079 * their CSEnable bit on. If so, then SINGLE DIMM case.
1081 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1085 * is more than just one DIMM present in unganged mode. Need to check
1086 * both controllers since DIMMs can be placed in either one.
1088 for (i = 0; i < 2; i++) {
1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1091 for (j = 0; j < 4; j++) {
1092 if (DBAM_DIMM(j, dbam) > 0) {
1093 channels++;
1094 break;
1099 if (channels > 2)
1100 channels = 2;
1102 amd64_info("MCT channel count: %d\n", channels);
1104 return channels;
1107 static int ddr3_cs_size(unsigned i, bool dct_width)
1109 unsigned shift = 0;
1110 int cs_size = 0;
1112 if (i == 0 || i == 3 || i == 4)
1113 cs_size = -1;
1114 else if (i <= 2)
1115 shift = i;
1116 else if (i == 12)
1117 shift = 7;
1118 else if (!(i & 0x1))
1119 shift = i >> 1;
1120 else
1121 shift = (i + 1) >> 1;
1123 if (cs_size != -1)
1124 cs_size = (128 * (1 << !!dct_width)) << shift;
1126 return cs_size;
1129 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1130 unsigned cs_mode)
1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1134 WARN_ON(cs_mode > 11);
1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1138 else
1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1143 * F15h supports only 64bit DCT interfaces
1145 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1146 unsigned cs_mode)
1148 WARN_ON(cs_mode > 12);
1150 return ddr3_cs_size(cs_mode, false);
1153 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1156 if (boot_cpu_data.x86 == 0xf)
1157 return;
1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1160 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1163 edac_dbg(0, " DCTs operate in %s mode\n",
1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1166 if (!dct_ganging_enabled(pvt))
1167 edac_dbg(0, " Address range split per DCT: %s\n",
1168 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1170 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1171 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1172 (dct_memory_cleared(pvt) ? "yes" : "no"));
1174 edac_dbg(0, " channel interleave: %s, "
1175 "interleave bits selector: 0x%x\n",
1176 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1177 dct_sel_interleave_addr(pvt));
1180 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1184 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1185 * Interleaving Modes.
1187 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1188 bool hi_range_sel, u8 intlv_en)
1190 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1192 if (dct_ganging_enabled(pvt))
1193 return 0;
1195 if (hi_range_sel)
1196 return dct_sel_high;
1199 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1201 if (dct_interleave_enabled(pvt)) {
1202 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1204 /* return DCT select function: 0=DCT0, 1=DCT1 */
1205 if (!intlv_addr)
1206 return sys_addr >> 6 & 1;
1208 if (intlv_addr & 0x2) {
1209 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1210 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1212 return ((sys_addr >> shift) & 1) ^ temp;
1215 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1218 if (dct_high_range_enabled(pvt))
1219 return ~dct_sel_high & 1;
1221 return 0;
1224 /* Convert the sys_addr to the normalized DCT address */
1225 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1226 u64 sys_addr, bool hi_rng,
1227 u32 dct_sel_base_addr)
1229 u64 chan_off;
1230 u64 dram_base = get_dram_base(pvt, range);
1231 u64 hole_off = f10_dhar_offset(pvt);
1232 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1234 if (hi_rng) {
1236 * if
1237 * base address of high range is below 4Gb
1238 * (bits [47:27] at [31:11])
1239 * DRAM address space on this DCT is hoisted above 4Gb &&
1240 * sys_addr > 4Gb
1242 * remove hole offset from sys_addr
1243 * else
1244 * remove high range offset from sys_addr
1246 if ((!(dct_sel_base_addr >> 16) ||
1247 dct_sel_base_addr < dhar_base(pvt)) &&
1248 dhar_valid(pvt) &&
1249 (sys_addr >= BIT_64(32)))
1250 chan_off = hole_off;
1251 else
1252 chan_off = dct_sel_base_off;
1253 } else {
1255 * if
1256 * we have a valid hole &&
1257 * sys_addr > 4Gb
1259 * remove hole
1260 * else
1261 * remove dram base to normalize to DCT address
1263 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1264 chan_off = hole_off;
1265 else
1266 chan_off = dram_base;
1269 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1273 * checks if the csrow passed in is marked as SPARED, if so returns the new
1274 * spare row
1276 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1278 int tmp_cs;
1280 if (online_spare_swap_done(pvt, dct) &&
1281 csrow == online_spare_bad_dramcs(pvt, dct)) {
1283 for_each_chip_select(tmp_cs, dct, pvt) {
1284 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1285 csrow = tmp_cs;
1286 break;
1290 return csrow;
1294 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1295 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1297 * Return:
1298 * -EINVAL: NOT FOUND
1299 * 0..csrow = Chip-Select Row
1301 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1303 struct mem_ctl_info *mci;
1304 struct amd64_pvt *pvt;
1305 u64 cs_base, cs_mask;
1306 int cs_found = -EINVAL;
1307 int csrow;
1309 mci = mcis[nid];
1310 if (!mci)
1311 return cs_found;
1313 pvt = mci->pvt_info;
1315 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1317 for_each_chip_select(csrow, dct, pvt) {
1318 if (!csrow_enabled(csrow, dct, pvt))
1319 continue;
1321 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1323 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1324 csrow, cs_base, cs_mask);
1326 cs_mask = ~cs_mask;
1328 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1329 (in_addr & cs_mask), (cs_base & cs_mask));
1331 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1332 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1334 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1335 break;
1338 return cs_found;
1342 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1343 * swapped with a region located at the bottom of memory so that the GPU can use
1344 * the interleaved region and thus two channels.
1346 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1348 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1350 if (boot_cpu_data.x86 == 0x10) {
1351 /* only revC3 and revE have that feature */
1352 if (boot_cpu_data.x86_model < 4 ||
1353 (boot_cpu_data.x86_model < 0xa &&
1354 boot_cpu_data.x86_mask < 3))
1355 return sys_addr;
1358 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1360 if (!(swap_reg & 0x1))
1361 return sys_addr;
1363 swap_base = (swap_reg >> 3) & 0x7f;
1364 swap_limit = (swap_reg >> 11) & 0x7f;
1365 rgn_size = (swap_reg >> 20) & 0x7f;
1366 tmp_addr = sys_addr >> 27;
1368 if (!(sys_addr >> 34) &&
1369 (((tmp_addr >= swap_base) &&
1370 (tmp_addr <= swap_limit)) ||
1371 (tmp_addr < rgn_size)))
1372 return sys_addr ^ (u64)swap_base << 27;
1374 return sys_addr;
1377 /* For a given @dram_range, check if @sys_addr falls within it. */
1378 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1379 u64 sys_addr, int *chan_sel)
1381 int cs_found = -EINVAL;
1382 u64 chan_addr;
1383 u32 dct_sel_base;
1384 u8 channel;
1385 bool high_range = false;
1387 u8 node_id = dram_dst_node(pvt, range);
1388 u8 intlv_en = dram_intlv_en(pvt, range);
1389 u32 intlv_sel = dram_intlv_sel(pvt, range);
1391 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1392 range, sys_addr, get_dram_limit(pvt, range));
1394 if (dhar_valid(pvt) &&
1395 dhar_base(pvt) <= sys_addr &&
1396 sys_addr < BIT_64(32)) {
1397 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1398 sys_addr);
1399 return -EINVAL;
1402 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1403 return -EINVAL;
1405 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1407 dct_sel_base = dct_sel_baseaddr(pvt);
1410 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1411 * select between DCT0 and DCT1.
1413 if (dct_high_range_enabled(pvt) &&
1414 !dct_ganging_enabled(pvt) &&
1415 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1416 high_range = true;
1418 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1420 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1421 high_range, dct_sel_base);
1423 /* Remove node interleaving, see F1x120 */
1424 if (intlv_en)
1425 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1426 (chan_addr & 0xfff);
1428 /* remove channel interleave */
1429 if (dct_interleave_enabled(pvt) &&
1430 !dct_high_range_enabled(pvt) &&
1431 !dct_ganging_enabled(pvt)) {
1433 if (dct_sel_interleave_addr(pvt) != 1) {
1434 if (dct_sel_interleave_addr(pvt) == 0x3)
1435 /* hash 9 */
1436 chan_addr = ((chan_addr >> 10) << 9) |
1437 (chan_addr & 0x1ff);
1438 else
1439 /* A[6] or hash 6 */
1440 chan_addr = ((chan_addr >> 7) << 6) |
1441 (chan_addr & 0x3f);
1442 } else
1443 /* A[12] */
1444 chan_addr = ((chan_addr >> 13) << 12) |
1445 (chan_addr & 0xfff);
1448 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1450 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1452 if (cs_found >= 0)
1453 *chan_sel = channel;
1455 return cs_found;
1458 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1459 int *chan_sel)
1461 int cs_found = -EINVAL;
1462 unsigned range;
1464 for (range = 0; range < DRAM_RANGES; range++) {
1466 if (!dram_rw(pvt, range))
1467 continue;
1469 if ((get_dram_base(pvt, range) <= sys_addr) &&
1470 (get_dram_limit(pvt, range) >= sys_addr)) {
1472 cs_found = f1x_match_to_this_node(pvt, range,
1473 sys_addr, chan_sel);
1474 if (cs_found >= 0)
1475 break;
1478 return cs_found;
1482 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1483 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1485 * The @sys_addr is usually an error address received from the hardware
1486 * (MCX_ADDR).
1488 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1489 struct err_info *err)
1491 struct amd64_pvt *pvt = mci->pvt_info;
1493 error_address_to_page_and_offset(sys_addr, err);
1495 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1496 if (err->csrow < 0) {
1497 err->err_code = ERR_CSROW;
1498 return;
1502 * We need the syndromes for channel detection only when we're
1503 * ganged. Otherwise @chan should already contain the channel at
1504 * this point.
1506 if (dct_ganging_enabled(pvt))
1507 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1511 * debug routine to display the memory sizes of all logical DIMMs and its
1512 * CSROWs
1514 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1516 int dimm, size0, size1;
1517 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1518 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1520 if (boot_cpu_data.x86 == 0xf) {
1521 /* K8 families < revF not supported yet */
1522 if (pvt->ext_model < K8_REV_F)
1523 return;
1524 else
1525 WARN_ON(ctrl != 0);
1528 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1529 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1530 : pvt->csels[0].csbases;
1532 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1533 ctrl, dbam);
1535 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1537 /* Dump memory sizes for DIMM and its CSROWs */
1538 for (dimm = 0; dimm < 4; dimm++) {
1540 size0 = 0;
1541 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1542 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1543 DBAM_DIMM(dimm, dbam));
1545 size1 = 0;
1546 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1547 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1548 DBAM_DIMM(dimm, dbam));
1550 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1551 dimm * 2, size0,
1552 dimm * 2 + 1, size1);
1556 static struct amd64_family_type amd64_family_types[] = {
1557 [K8_CPUS] = {
1558 .ctl_name = "K8",
1559 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1560 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1561 .ops = {
1562 .early_channel_count = k8_early_channel_count,
1563 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1564 .dbam_to_cs = k8_dbam_to_chip_select,
1565 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1568 [F10_CPUS] = {
1569 .ctl_name = "F10h",
1570 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1571 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1572 .ops = {
1573 .early_channel_count = f1x_early_channel_count,
1574 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1575 .dbam_to_cs = f10_dbam_to_chip_select,
1576 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1579 [F15_CPUS] = {
1580 .ctl_name = "F15h",
1581 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1582 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1583 .ops = {
1584 .early_channel_count = f1x_early_channel_count,
1585 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1586 .dbam_to_cs = f15_dbam_to_chip_select,
1587 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1593 * These are tables of eigenvectors (one per line) which can be used for the
1594 * construction of the syndrome tables. The modified syndrome search algorithm
1595 * uses those to find the symbol in error and thus the DIMM.
1597 * Algorithm courtesy of Ross LaFetra from AMD.
1599 static const u16 x4_vectors[] = {
1600 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1601 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1602 0x0001, 0x0002, 0x0004, 0x0008,
1603 0x1013, 0x3032, 0x4044, 0x8088,
1604 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1605 0x4857, 0xc4fe, 0x13cc, 0x3288,
1606 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1607 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1608 0x15c1, 0x2a42, 0x89ac, 0x4758,
1609 0x2b03, 0x1602, 0x4f0c, 0xca08,
1610 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1611 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1612 0x2b87, 0x164e, 0x642c, 0xdc18,
1613 0x40b9, 0x80de, 0x1094, 0x20e8,
1614 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1615 0x11c1, 0x2242, 0x84ac, 0x4c58,
1616 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1617 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1618 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1619 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1620 0x16b3, 0x3d62, 0x4f34, 0x8518,
1621 0x1e2f, 0x391a, 0x5cac, 0xf858,
1622 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1623 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1624 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1625 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1626 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1627 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1628 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1629 0x185d, 0x2ca6, 0x7914, 0x9e28,
1630 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1631 0x4199, 0x82ee, 0x19f4, 0x2e58,
1632 0x4807, 0xc40e, 0x130c, 0x3208,
1633 0x1905, 0x2e0a, 0x5804, 0xac08,
1634 0x213f, 0x132a, 0xadfc, 0x5ba8,
1635 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1638 static const u16 x8_vectors[] = {
1639 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1640 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1641 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1642 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1643 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1644 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1645 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1646 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1647 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1648 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1649 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1650 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1651 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1652 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1653 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1654 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1655 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1656 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1657 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1660 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1661 unsigned v_dim)
1663 unsigned int i, err_sym;
1665 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1666 u16 s = syndrome;
1667 unsigned v_idx = err_sym * v_dim;
1668 unsigned v_end = (err_sym + 1) * v_dim;
1670 /* walk over all 16 bits of the syndrome */
1671 for (i = 1; i < (1U << 16); i <<= 1) {
1673 /* if bit is set in that eigenvector... */
1674 if (v_idx < v_end && vectors[v_idx] & i) {
1675 u16 ev_comp = vectors[v_idx++];
1677 /* ... and bit set in the modified syndrome, */
1678 if (s & i) {
1679 /* remove it. */
1680 s ^= ev_comp;
1682 if (!s)
1683 return err_sym;
1686 } else if (s & i)
1687 /* can't get to zero, move to next symbol */
1688 break;
1692 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1693 return -1;
1696 static int map_err_sym_to_channel(int err_sym, int sym_size)
1698 if (sym_size == 4)
1699 switch (err_sym) {
1700 case 0x20:
1701 case 0x21:
1702 return 0;
1703 break;
1704 case 0x22:
1705 case 0x23:
1706 return 1;
1707 break;
1708 default:
1709 return err_sym >> 4;
1710 break;
1712 /* x8 symbols */
1713 else
1714 switch (err_sym) {
1715 /* imaginary bits not in a DIMM */
1716 case 0x10:
1717 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1718 err_sym);
1719 return -1;
1720 break;
1722 case 0x11:
1723 return 0;
1724 break;
1725 case 0x12:
1726 return 1;
1727 break;
1728 default:
1729 return err_sym >> 3;
1730 break;
1732 return -1;
1735 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1737 struct amd64_pvt *pvt = mci->pvt_info;
1738 int err_sym = -1;
1740 if (pvt->ecc_sym_sz == 8)
1741 err_sym = decode_syndrome(syndrome, x8_vectors,
1742 ARRAY_SIZE(x8_vectors),
1743 pvt->ecc_sym_sz);
1744 else if (pvt->ecc_sym_sz == 4)
1745 err_sym = decode_syndrome(syndrome, x4_vectors,
1746 ARRAY_SIZE(x4_vectors),
1747 pvt->ecc_sym_sz);
1748 else {
1749 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1750 return err_sym;
1753 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1756 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1757 u8 ecc_type)
1759 enum hw_event_mc_err_type err_type;
1760 const char *string;
1762 if (ecc_type == 2)
1763 err_type = HW_EVENT_ERR_CORRECTED;
1764 else if (ecc_type == 1)
1765 err_type = HW_EVENT_ERR_UNCORRECTED;
1766 else {
1767 WARN(1, "Something is rotten in the state of Denmark.\n");
1768 return;
1771 switch (err->err_code) {
1772 case DECODE_OK:
1773 string = "";
1774 break;
1775 case ERR_NODE:
1776 string = "Failed to map error addr to a node";
1777 break;
1778 case ERR_CSROW:
1779 string = "Failed to map error addr to a csrow";
1780 break;
1781 case ERR_CHANNEL:
1782 string = "unknown syndrome - possible error reporting race";
1783 break;
1784 default:
1785 string = "WTF error";
1786 break;
1789 edac_mc_handle_error(err_type, mci, 1,
1790 err->page, err->offset, err->syndrome,
1791 err->csrow, err->channel, -1,
1792 string, "");
1795 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1796 struct mce *m)
1798 struct amd64_pvt *pvt = mci->pvt_info;
1799 u8 ecc_type = (m->status >> 45) & 0x3;
1800 u8 xec = XEC(m->status, 0x1f);
1801 u16 ec = EC(m->status);
1802 u64 sys_addr;
1803 struct err_info err;
1805 /* Bail out early if this was an 'observed' error */
1806 if (PP(ec) == NBSL_PP_OBS)
1807 return;
1809 /* Do only ECC errors */
1810 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1811 return;
1813 memset(&err, 0, sizeof(err));
1815 sys_addr = get_error_address(m);
1817 if (ecc_type == 2)
1818 err.syndrome = extract_syndrome(m->status);
1820 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1822 __log_bus_error(mci, &err, ecc_type);
1825 void amd64_decode_bus_error(int node_id, struct mce *m)
1827 __amd64_decode_bus_error(mcis[node_id], m);
1831 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1832 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1834 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1836 /* Reserve the ADDRESS MAP Device */
1837 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1838 if (!pvt->F1) {
1839 amd64_err("error address map device not found: "
1840 "vendor %x device 0x%x (broken BIOS?)\n",
1841 PCI_VENDOR_ID_AMD, f1_id);
1842 return -ENODEV;
1845 /* Reserve the MISC Device */
1846 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1847 if (!pvt->F3) {
1848 pci_dev_put(pvt->F1);
1849 pvt->F1 = NULL;
1851 amd64_err("error F3 device not found: "
1852 "vendor %x device 0x%x (broken BIOS?)\n",
1853 PCI_VENDOR_ID_AMD, f3_id);
1855 return -ENODEV;
1857 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1858 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1859 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
1861 return 0;
1864 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1866 pci_dev_put(pvt->F1);
1867 pci_dev_put(pvt->F3);
1871 * Retrieve the hardware registers of the memory controller (this includes the
1872 * 'Address Map' and 'Misc' device regs)
1874 static void read_mc_regs(struct amd64_pvt *pvt)
1876 struct cpuinfo_x86 *c = &boot_cpu_data;
1877 u64 msr_val;
1878 u32 tmp;
1879 unsigned range;
1882 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1883 * those are Read-As-Zero
1885 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1886 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
1888 /* check first whether TOP_MEM2 is enabled */
1889 rdmsrl(MSR_K8_SYSCFG, msr_val);
1890 if (msr_val & (1U << 21)) {
1891 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1892 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1893 } else
1894 edac_dbg(0, " TOP_MEM2 disabled\n");
1896 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1898 read_dram_ctl_register(pvt);
1900 for (range = 0; range < DRAM_RANGES; range++) {
1901 u8 rw;
1903 /* read settings for this DRAM range */
1904 read_dram_base_limit_regs(pvt, range);
1906 rw = dram_rw(pvt, range);
1907 if (!rw)
1908 continue;
1910 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1911 range,
1912 get_dram_base(pvt, range),
1913 get_dram_limit(pvt, range));
1915 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1916 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1917 (rw & 0x1) ? "R" : "-",
1918 (rw & 0x2) ? "W" : "-",
1919 dram_intlv_sel(pvt, range),
1920 dram_dst_node(pvt, range));
1923 read_dct_base_mask(pvt);
1925 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1926 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1928 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1930 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1931 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1933 if (!dct_ganging_enabled(pvt)) {
1934 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1935 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1938 pvt->ecc_sym_sz = 4;
1940 if (c->x86 >= 0x10) {
1941 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1942 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1944 /* F10h, revD and later can do x8 ECC too */
1945 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
1946 pvt->ecc_sym_sz = 8;
1948 dump_misc_regs(pvt);
1952 * NOTE: CPU Revision Dependent code
1954 * Input:
1955 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
1956 * k8 private pointer to -->
1957 * DRAM Bank Address mapping register
1958 * node_id
1959 * DCL register where dual_channel_active is
1961 * The DBAM register consists of 4 sets of 4 bits each definitions:
1963 * Bits: CSROWs
1964 * 0-3 CSROWs 0 and 1
1965 * 4-7 CSROWs 2 and 3
1966 * 8-11 CSROWs 4 and 5
1967 * 12-15 CSROWs 6 and 7
1969 * Values range from: 0 to 15
1970 * The meaning of the values depends on CPU revision and dual-channel state,
1971 * see relevant BKDG more info.
1973 * The memory controller provides for total of only 8 CSROWs in its current
1974 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
1975 * single channel or two (2) DIMMs in dual channel mode.
1977 * The following code logic collapses the various tables for CSROW based on CPU
1978 * revision.
1980 * Returns:
1981 * The number of PAGE_SIZE pages on the specified CSROW number it
1982 * encompasses
1985 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
1987 u32 cs_mode, nr_pages;
1988 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
1992 * The math on this doesn't look right on the surface because x/2*4 can
1993 * be simplified to x*2 but this expression makes use of the fact that
1994 * it is integral math where 1/2=0. This intermediate value becomes the
1995 * number of bits to shift the DBAM register to extract the proper CSROW
1996 * field.
1998 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2000 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2002 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2003 csrow_nr, dct, cs_mode);
2004 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2006 return nr_pages;
2010 * Initialize the array of csrow attribute instances, based on the values
2011 * from pci config hardware registers.
2013 static int init_csrows(struct mem_ctl_info *mci)
2015 struct amd64_pvt *pvt = mci->pvt_info;
2016 struct csrow_info *csrow;
2017 struct dimm_info *dimm;
2018 enum edac_type edac_mode;
2019 enum mem_type mtype;
2020 int i, j, empty = 1;
2021 int nr_pages = 0;
2022 u32 val;
2024 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2026 pvt->nbcfg = val;
2028 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2029 pvt->mc_node_id, val,
2030 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2033 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2035 for_each_chip_select(i, 0, pvt) {
2036 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2037 bool row_dct1 = false;
2039 if (boot_cpu_data.x86 != 0xf)
2040 row_dct1 = !!csrow_enabled(i, 1, pvt);
2042 if (!row_dct0 && !row_dct1)
2043 continue;
2045 csrow = mci->csrows[i];
2046 empty = 0;
2048 edac_dbg(1, "MC node: %d, csrow: %d\n",
2049 pvt->mc_node_id, i);
2051 if (row_dct0)
2052 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2054 /* K8 has only one DCT */
2055 if (boot_cpu_data.x86 != 0xf && row_dct1)
2056 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2058 mtype = amd64_determine_memory_type(pvt, i);
2060 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2063 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2065 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2066 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2067 EDAC_S4ECD4ED : EDAC_SECDED;
2068 else
2069 edac_mode = EDAC_NONE;
2071 for (j = 0; j < pvt->channel_count; j++) {
2072 dimm = csrow->channels[j]->dimm;
2073 dimm->mtype = mtype;
2074 dimm->edac_mode = edac_mode;
2075 dimm->nr_pages = nr_pages;
2077 csrow->nr_pages = nr_pages;
2080 return empty;
2083 /* get all cores on this DCT */
2084 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2086 int cpu;
2088 for_each_online_cpu(cpu)
2089 if (amd_get_nb_id(cpu) == nid)
2090 cpumask_set_cpu(cpu, mask);
2093 /* check MCG_CTL on all the cpus on this node */
2094 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
2096 cpumask_var_t mask;
2097 int cpu, nbe;
2098 bool ret = false;
2100 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2101 amd64_warn("%s: Error allocating mask\n", __func__);
2102 return false;
2105 get_cpus_on_this_dct_cpumask(mask, nid);
2107 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2109 for_each_cpu(cpu, mask) {
2110 struct msr *reg = per_cpu_ptr(msrs, cpu);
2111 nbe = reg->l & MSR_MCGCTL_NBE;
2113 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2114 cpu, reg->q,
2115 (nbe ? "enabled" : "disabled"));
2117 if (!nbe)
2118 goto out;
2120 ret = true;
2122 out:
2123 free_cpumask_var(mask);
2124 return ret;
2127 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2129 cpumask_var_t cmask;
2130 int cpu;
2132 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2133 amd64_warn("%s: error allocating mask\n", __func__);
2134 return false;
2137 get_cpus_on_this_dct_cpumask(cmask, nid);
2139 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2141 for_each_cpu(cpu, cmask) {
2143 struct msr *reg = per_cpu_ptr(msrs, cpu);
2145 if (on) {
2146 if (reg->l & MSR_MCGCTL_NBE)
2147 s->flags.nb_mce_enable = 1;
2149 reg->l |= MSR_MCGCTL_NBE;
2150 } else {
2152 * Turn off NB MCE reporting only when it was off before
2154 if (!s->flags.nb_mce_enable)
2155 reg->l &= ~MSR_MCGCTL_NBE;
2158 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2160 free_cpumask_var(cmask);
2162 return 0;
2165 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2166 struct pci_dev *F3)
2168 bool ret = true;
2169 u32 value, mask = 0x3; /* UECC/CECC enable */
2171 if (toggle_ecc_err_reporting(s, nid, ON)) {
2172 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2173 return false;
2176 amd64_read_pci_cfg(F3, NBCTL, &value);
2178 s->old_nbctl = value & mask;
2179 s->nbctl_valid = true;
2181 value |= mask;
2182 amd64_write_pci_cfg(F3, NBCTL, value);
2184 amd64_read_pci_cfg(F3, NBCFG, &value);
2186 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2187 nid, value, !!(value & NBCFG_ECC_ENABLE));
2189 if (!(value & NBCFG_ECC_ENABLE)) {
2190 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2192 s->flags.nb_ecc_prev = 0;
2194 /* Attempt to turn on DRAM ECC Enable */
2195 value |= NBCFG_ECC_ENABLE;
2196 amd64_write_pci_cfg(F3, NBCFG, value);
2198 amd64_read_pci_cfg(F3, NBCFG, &value);
2200 if (!(value & NBCFG_ECC_ENABLE)) {
2201 amd64_warn("Hardware rejected DRAM ECC enable,"
2202 "check memory DIMM configuration.\n");
2203 ret = false;
2204 } else {
2205 amd64_info("Hardware accepted DRAM ECC Enable\n");
2207 } else {
2208 s->flags.nb_ecc_prev = 1;
2211 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2212 nid, value, !!(value & NBCFG_ECC_ENABLE));
2214 return ret;
2217 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2218 struct pci_dev *F3)
2220 u32 value, mask = 0x3; /* UECC/CECC enable */
2223 if (!s->nbctl_valid)
2224 return;
2226 amd64_read_pci_cfg(F3, NBCTL, &value);
2227 value &= ~mask;
2228 value |= s->old_nbctl;
2230 amd64_write_pci_cfg(F3, NBCTL, value);
2232 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2233 if (!s->flags.nb_ecc_prev) {
2234 amd64_read_pci_cfg(F3, NBCFG, &value);
2235 value &= ~NBCFG_ECC_ENABLE;
2236 amd64_write_pci_cfg(F3, NBCFG, value);
2239 /* restore the NB Enable MCGCTL bit */
2240 if (toggle_ecc_err_reporting(s, nid, OFF))
2241 amd64_warn("Error restoring NB MCGCTL settings!\n");
2245 * EDAC requires that the BIOS have ECC enabled before
2246 * taking over the processing of ECC errors. A command line
2247 * option allows to force-enable hardware ECC later in
2248 * enable_ecc_error_reporting().
2250 static const char *ecc_msg =
2251 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2252 " Either enable ECC checking or force module loading by setting "
2253 "'ecc_enable_override'.\n"
2254 " (Note that use of the override may cause unknown side effects.)\n";
2256 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2258 u32 value;
2259 u8 ecc_en = 0;
2260 bool nb_mce_en = false;
2262 amd64_read_pci_cfg(F3, NBCFG, &value);
2264 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2265 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2267 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2268 if (!nb_mce_en)
2269 amd64_notice("NB MCE bank disabled, set MSR "
2270 "0x%08x[4] on node %d to enable.\n",
2271 MSR_IA32_MCG_CTL, nid);
2273 if (!ecc_en || !nb_mce_en) {
2274 amd64_notice("%s", ecc_msg);
2275 return false;
2277 return true;
2280 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2282 int rc;
2284 rc = amd64_create_sysfs_dbg_files(mci);
2285 if (rc < 0)
2286 return rc;
2288 if (boot_cpu_data.x86 >= 0x10) {
2289 rc = amd64_create_sysfs_inject_files(mci);
2290 if (rc < 0)
2291 return rc;
2294 return 0;
2297 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2299 amd64_remove_sysfs_dbg_files(mci);
2301 if (boot_cpu_data.x86 >= 0x10)
2302 amd64_remove_sysfs_inject_files(mci);
2305 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2306 struct amd64_family_type *fam)
2308 struct amd64_pvt *pvt = mci->pvt_info;
2310 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2311 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2313 if (pvt->nbcap & NBCAP_SECDED)
2314 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2316 if (pvt->nbcap & NBCAP_CHIPKILL)
2317 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2319 mci->edac_cap = amd64_determine_edac_cap(pvt);
2320 mci->mod_name = EDAC_MOD_STR;
2321 mci->mod_ver = EDAC_AMD64_VERSION;
2322 mci->ctl_name = fam->ctl_name;
2323 mci->dev_name = pci_name(pvt->F2);
2324 mci->ctl_page_to_phys = NULL;
2326 /* memory scrubber interface */
2327 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2328 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2332 * returns a pointer to the family descriptor on success, NULL otherwise.
2334 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2336 u8 fam = boot_cpu_data.x86;
2337 struct amd64_family_type *fam_type = NULL;
2339 switch (fam) {
2340 case 0xf:
2341 fam_type = &amd64_family_types[K8_CPUS];
2342 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2343 break;
2345 case 0x10:
2346 fam_type = &amd64_family_types[F10_CPUS];
2347 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2348 break;
2350 case 0x15:
2351 fam_type = &amd64_family_types[F15_CPUS];
2352 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2353 break;
2355 default:
2356 amd64_err("Unsupported family!\n");
2357 return NULL;
2360 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2362 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2363 (fam == 0xf ?
2364 (pvt->ext_model >= K8_REV_F ? "revF or later "
2365 : "revE or earlier ")
2366 : ""), pvt->mc_node_id);
2367 return fam_type;
2370 static int amd64_init_one_instance(struct pci_dev *F2)
2372 struct amd64_pvt *pvt = NULL;
2373 struct amd64_family_type *fam_type = NULL;
2374 struct mem_ctl_info *mci = NULL;
2375 struct edac_mc_layer layers[2];
2376 int err = 0, ret;
2377 u16 nid = amd_get_node_id(F2);
2379 ret = -ENOMEM;
2380 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2381 if (!pvt)
2382 goto err_ret;
2384 pvt->mc_node_id = nid;
2385 pvt->F2 = F2;
2387 ret = -EINVAL;
2388 fam_type = amd64_per_family_init(pvt);
2389 if (!fam_type)
2390 goto err_free;
2392 ret = -ENODEV;
2393 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2394 if (err)
2395 goto err_free;
2397 read_mc_regs(pvt);
2400 * We need to determine how many memory channels there are. Then use
2401 * that information for calculating the size of the dynamic instance
2402 * tables in the 'mci' structure.
2404 ret = -EINVAL;
2405 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2406 if (pvt->channel_count < 0)
2407 goto err_siblings;
2409 ret = -ENOMEM;
2410 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2411 layers[0].size = pvt->csels[0].b_cnt;
2412 layers[0].is_virt_csrow = true;
2413 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2414 layers[1].size = pvt->channel_count;
2415 layers[1].is_virt_csrow = false;
2416 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2417 if (!mci)
2418 goto err_siblings;
2420 mci->pvt_info = pvt;
2421 mci->pdev = &pvt->F2->dev;
2422 mci->csbased = 1;
2424 setup_mci_misc_attrs(mci, fam_type);
2426 if (init_csrows(mci))
2427 mci->edac_cap = EDAC_FLAG_NONE;
2429 ret = -ENODEV;
2430 if (edac_mc_add_mc(mci)) {
2431 edac_dbg(1, "failed edac_mc_add_mc()\n");
2432 goto err_add_mc;
2434 if (set_mc_sysfs_attrs(mci)) {
2435 edac_dbg(1, "failed edac_mc_add_mc()\n");
2436 goto err_add_sysfs;
2439 /* register stuff with EDAC MCE */
2440 if (report_gart_errors)
2441 amd_report_gart_errors(true);
2443 amd_register_ecc_decoder(amd64_decode_bus_error);
2445 mcis[nid] = mci;
2447 atomic_inc(&drv_instances);
2449 return 0;
2451 err_add_sysfs:
2452 edac_mc_del_mc(mci->pdev);
2453 err_add_mc:
2454 edac_mc_free(mci);
2456 err_siblings:
2457 free_mc_sibling_devs(pvt);
2459 err_free:
2460 kfree(pvt);
2462 err_ret:
2463 return ret;
2466 static int amd64_probe_one_instance(struct pci_dev *pdev,
2467 const struct pci_device_id *mc_type)
2469 u16 nid = amd_get_node_id(pdev);
2470 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2471 struct ecc_settings *s;
2472 int ret = 0;
2474 ret = pci_enable_device(pdev);
2475 if (ret < 0) {
2476 edac_dbg(0, "ret=%d\n", ret);
2477 return -EIO;
2480 ret = -ENOMEM;
2481 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2482 if (!s)
2483 goto err_out;
2485 ecc_stngs[nid] = s;
2487 if (!ecc_enabled(F3, nid)) {
2488 ret = -ENODEV;
2490 if (!ecc_enable_override)
2491 goto err_enable;
2493 amd64_warn("Forcing ECC on!\n");
2495 if (!enable_ecc_error_reporting(s, nid, F3))
2496 goto err_enable;
2499 ret = amd64_init_one_instance(pdev);
2500 if (ret < 0) {
2501 amd64_err("Error probing instance: %d\n", nid);
2502 restore_ecc_error_reporting(s, nid, F3);
2505 return ret;
2507 err_enable:
2508 kfree(s);
2509 ecc_stngs[nid] = NULL;
2511 err_out:
2512 return ret;
2515 static void amd64_remove_one_instance(struct pci_dev *pdev)
2517 struct mem_ctl_info *mci;
2518 struct amd64_pvt *pvt;
2519 u16 nid = amd_get_node_id(pdev);
2520 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2521 struct ecc_settings *s = ecc_stngs[nid];
2523 mci = find_mci_by_dev(&pdev->dev);
2524 del_mc_sysfs_attrs(mci);
2525 /* Remove from EDAC CORE tracking list */
2526 mci = edac_mc_del_mc(&pdev->dev);
2527 if (!mci)
2528 return;
2530 pvt = mci->pvt_info;
2532 restore_ecc_error_reporting(s, nid, F3);
2534 free_mc_sibling_devs(pvt);
2536 /* unregister from EDAC MCE */
2537 amd_report_gart_errors(false);
2538 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2540 kfree(ecc_stngs[nid]);
2541 ecc_stngs[nid] = NULL;
2543 /* Free the EDAC CORE resources */
2544 mci->pvt_info = NULL;
2545 mcis[nid] = NULL;
2547 kfree(pvt);
2548 edac_mc_free(mci);
2552 * This table is part of the interface for loading drivers for PCI devices. The
2553 * PCI core identifies what devices are on a system during boot, and then
2554 * inquiry this table to see if this driver is for a given device found.
2556 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2558 .vendor = PCI_VENDOR_ID_AMD,
2559 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2560 .subvendor = PCI_ANY_ID,
2561 .subdevice = PCI_ANY_ID,
2562 .class = 0,
2563 .class_mask = 0,
2566 .vendor = PCI_VENDOR_ID_AMD,
2567 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2568 .subvendor = PCI_ANY_ID,
2569 .subdevice = PCI_ANY_ID,
2570 .class = 0,
2571 .class_mask = 0,
2574 .vendor = PCI_VENDOR_ID_AMD,
2575 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2576 .subvendor = PCI_ANY_ID,
2577 .subdevice = PCI_ANY_ID,
2578 .class = 0,
2579 .class_mask = 0,
2582 {0, }
2584 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2586 static struct pci_driver amd64_pci_driver = {
2587 .name = EDAC_MOD_STR,
2588 .probe = amd64_probe_one_instance,
2589 .remove = amd64_remove_one_instance,
2590 .id_table = amd64_pci_table,
2593 static void setup_pci_device(void)
2595 struct mem_ctl_info *mci;
2596 struct amd64_pvt *pvt;
2598 if (amd64_ctl_pci)
2599 return;
2601 mci = mcis[0];
2602 if (mci) {
2604 pvt = mci->pvt_info;
2605 amd64_ctl_pci =
2606 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2608 if (!amd64_ctl_pci) {
2609 pr_warning("%s(): Unable to create PCI control\n",
2610 __func__);
2612 pr_warning("%s(): PCI error report via EDAC not set\n",
2613 __func__);
2618 static int __init amd64_edac_init(void)
2620 int err = -ENODEV;
2622 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2624 opstate_init();
2626 if (amd_cache_northbridges() < 0)
2627 goto err_ret;
2629 err = -ENOMEM;
2630 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2631 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2632 if (!(mcis && ecc_stngs))
2633 goto err_free;
2635 msrs = msrs_alloc();
2636 if (!msrs)
2637 goto err_free;
2639 err = pci_register_driver(&amd64_pci_driver);
2640 if (err)
2641 goto err_pci;
2643 err = -ENODEV;
2644 if (!atomic_read(&drv_instances))
2645 goto err_no_instances;
2647 setup_pci_device();
2648 return 0;
2650 err_no_instances:
2651 pci_unregister_driver(&amd64_pci_driver);
2653 err_pci:
2654 msrs_free(msrs);
2655 msrs = NULL;
2657 err_free:
2658 kfree(mcis);
2659 mcis = NULL;
2661 kfree(ecc_stngs);
2662 ecc_stngs = NULL;
2664 err_ret:
2665 return err;
2668 static void __exit amd64_edac_exit(void)
2670 if (amd64_ctl_pci)
2671 edac_pci_release_generic_ctl(amd64_ctl_pci);
2673 pci_unregister_driver(&amd64_pci_driver);
2675 kfree(ecc_stngs);
2676 ecc_stngs = NULL;
2678 kfree(mcis);
2679 mcis = NULL;
2681 msrs_free(msrs);
2682 msrs = NULL;
2685 module_init(amd64_edac_init);
2686 module_exit(amd64_edac_exit);
2688 MODULE_LICENSE("GPL");
2689 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2690 "Dave Peterson, Thayne Harbaugh");
2691 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2692 EDAC_AMD64_VERSION);
2694 module_param(edac_op_state, int, 0444);
2695 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");