dt-bindings: rockchip-thermal: fix the misleading description
[linux-2.6/btrfs-unstable.git] / drivers / md / raid10.c
blob39fddda2fef2d918863699e3f283f441f6fb52c1
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
75 * Number of guaranteed r10bios in case of extreme VM load:
77 #define NR_RAID10_BIOS 256
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
89 #define IO_MADE_GOOD ((struct bio *)2)
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
97 static int max_queued_requests = 1024;
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
118 static void r10bio_pool_free(void *r10_bio, void *data)
120 kfree(r10_bio);
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
158 * Allocate bios.
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
198 return r10_bio;
200 out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207 out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
218 static void r10buf_pool_free(void *__r10_bio, void *data)
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
232 bio_put(bio);
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
238 r10bio_pool_free(r10bio, conf);
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
243 int i;
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
257 static void free_r10bio(struct r10bio *r10_bio)
259 struct r10conf *conf = r10_bio->mddev->private;
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
265 static void put_buf(struct r10bio *r10_bio)
267 struct r10conf *conf = r10_bio->mddev->private;
269 mempool_free(r10_bio, conf->r10buf_pool);
271 lower_barrier(conf);
274 static void reschedule_retry(struct r10bio *r10_bio)
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
296 static void raid_end_bio_io(struct r10bio *r10_bio)
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
318 allow_barrier(conf);
320 free_r10bio(r10_bio);
324 * Update disk head position estimator based on IRQ completion info.
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
328 struct r10conf *conf = r10_bio->mddev->private;
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
335 * Find the disk number which triggered given bio
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
340 int slot;
341 int repl = 0;
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
362 static void raid10_end_read_request(struct bio *bio)
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot, r10_bio);
378 if (uptodate) {
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
404 * oops, read error - keep the refcount on the rdev
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
417 static void close_write(struct r10bio *r10_bio)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
424 md_write_end(r10_bio->mddev);
427 static void one_write_done(struct r10bio *r10_bio)
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
442 static void raid10_end_write_request(struct bio *bio)
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450 bool discard_error;
452 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
461 rdev = conf->mirrors[dev].rdev;
464 * this branch is our 'one mirror IO has finished' event handler:
466 if (bio->bi_error && !discard_error) {
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
480 } else {
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
490 sector_t first_bad;
491 int bad_sectors;
494 * Do not set R10BIO_Uptodate if the current device is
495 * rebuilding or Faulty. This is because we cannot use
496 * such device for properly reading the data back (we could
497 * potentially use it, if the current write would have felt
498 * before rdev->recovery_offset, but for simplicity we don't
499 * check this here.
501 if (test_bit(In_sync, &rdev->flags) &&
502 !test_bit(Faulty, &rdev->flags))
503 set_bit(R10BIO_Uptodate, &r10_bio->state);
505 /* Maybe we can clear some bad blocks. */
506 if (is_badblock(rdev,
507 r10_bio->devs[slot].addr,
508 r10_bio->sectors,
509 &first_bad, &bad_sectors) && !discard_error) {
510 bio_put(bio);
511 if (repl)
512 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513 else
514 r10_bio->devs[slot].bio = IO_MADE_GOOD;
515 dec_rdev = 0;
516 set_bit(R10BIO_MadeGood, &r10_bio->state);
522 * Let's see if all mirrored write operations have finished
523 * already.
525 one_write_done(r10_bio);
526 if (dec_rdev)
527 rdev_dec_pending(rdev, conf->mddev);
531 * RAID10 layout manager
532 * As well as the chunksize and raid_disks count, there are two
533 * parameters: near_copies and far_copies.
534 * near_copies * far_copies must be <= raid_disks.
535 * Normally one of these will be 1.
536 * If both are 1, we get raid0.
537 * If near_copies == raid_disks, we get raid1.
539 * Chunks are laid out in raid0 style with near_copies copies of the
540 * first chunk, followed by near_copies copies of the next chunk and
541 * so on.
542 * If far_copies > 1, then after 1/far_copies of the array has been assigned
543 * as described above, we start again with a device offset of near_copies.
544 * So we effectively have another copy of the whole array further down all
545 * the drives, but with blocks on different drives.
546 * With this layout, and block is never stored twice on the one device.
548 * raid10_find_phys finds the sector offset of a given virtual sector
549 * on each device that it is on.
551 * raid10_find_virt does the reverse mapping, from a device and a
552 * sector offset to a virtual address
555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
557 int n,f;
558 sector_t sector;
559 sector_t chunk;
560 sector_t stripe;
561 int dev;
562 int slot = 0;
563 int last_far_set_start, last_far_set_size;
565 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566 last_far_set_start *= geo->far_set_size;
568 last_far_set_size = geo->far_set_size;
569 last_far_set_size += (geo->raid_disks % geo->far_set_size);
571 /* now calculate first sector/dev */
572 chunk = r10bio->sector >> geo->chunk_shift;
573 sector = r10bio->sector & geo->chunk_mask;
575 chunk *= geo->near_copies;
576 stripe = chunk;
577 dev = sector_div(stripe, geo->raid_disks);
578 if (geo->far_offset)
579 stripe *= geo->far_copies;
581 sector += stripe << geo->chunk_shift;
583 /* and calculate all the others */
584 for (n = 0; n < geo->near_copies; n++) {
585 int d = dev;
586 int set;
587 sector_t s = sector;
588 r10bio->devs[slot].devnum = d;
589 r10bio->devs[slot].addr = s;
590 slot++;
592 for (f = 1; f < geo->far_copies; f++) {
593 set = d / geo->far_set_size;
594 d += geo->near_copies;
596 if ((geo->raid_disks % geo->far_set_size) &&
597 (d > last_far_set_start)) {
598 d -= last_far_set_start;
599 d %= last_far_set_size;
600 d += last_far_set_start;
601 } else {
602 d %= geo->far_set_size;
603 d += geo->far_set_size * set;
605 s += geo->stride;
606 r10bio->devs[slot].devnum = d;
607 r10bio->devs[slot].addr = s;
608 slot++;
610 dev++;
611 if (dev >= geo->raid_disks) {
612 dev = 0;
613 sector += (geo->chunk_mask + 1);
618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
620 struct geom *geo = &conf->geo;
622 if (conf->reshape_progress != MaxSector &&
623 ((r10bio->sector >= conf->reshape_progress) !=
624 conf->mddev->reshape_backwards)) {
625 set_bit(R10BIO_Previous, &r10bio->state);
626 geo = &conf->prev;
627 } else
628 clear_bit(R10BIO_Previous, &r10bio->state);
630 __raid10_find_phys(geo, r10bio);
633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
635 sector_t offset, chunk, vchunk;
636 /* Never use conf->prev as this is only called during resync
637 * or recovery, so reshape isn't happening
639 struct geom *geo = &conf->geo;
640 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641 int far_set_size = geo->far_set_size;
642 int last_far_set_start;
644 if (geo->raid_disks % geo->far_set_size) {
645 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646 last_far_set_start *= geo->far_set_size;
648 if (dev >= last_far_set_start) {
649 far_set_size = geo->far_set_size;
650 far_set_size += (geo->raid_disks % geo->far_set_size);
651 far_set_start = last_far_set_start;
655 offset = sector & geo->chunk_mask;
656 if (geo->far_offset) {
657 int fc;
658 chunk = sector >> geo->chunk_shift;
659 fc = sector_div(chunk, geo->far_copies);
660 dev -= fc * geo->near_copies;
661 if (dev < far_set_start)
662 dev += far_set_size;
663 } else {
664 while (sector >= geo->stride) {
665 sector -= geo->stride;
666 if (dev < (geo->near_copies + far_set_start))
667 dev += far_set_size - geo->near_copies;
668 else
669 dev -= geo->near_copies;
671 chunk = sector >> geo->chunk_shift;
673 vchunk = chunk * geo->raid_disks + dev;
674 sector_div(vchunk, geo->near_copies);
675 return (vchunk << geo->chunk_shift) + offset;
679 * This routine returns the disk from which the requested read should
680 * be done. There is a per-array 'next expected sequential IO' sector
681 * number - if this matches on the next IO then we use the last disk.
682 * There is also a per-disk 'last know head position' sector that is
683 * maintained from IRQ contexts, both the normal and the resync IO
684 * completion handlers update this position correctly. If there is no
685 * perfect sequential match then we pick the disk whose head is closest.
687 * If there are 2 mirrors in the same 2 devices, performance degrades
688 * because position is mirror, not device based.
690 * The rdev for the device selected will have nr_pending incremented.
694 * FIXME: possibly should rethink readbalancing and do it differently
695 * depending on near_copies / far_copies geometry.
697 static struct md_rdev *read_balance(struct r10conf *conf,
698 struct r10bio *r10_bio,
699 int *max_sectors)
701 const sector_t this_sector = r10_bio->sector;
702 int disk, slot;
703 int sectors = r10_bio->sectors;
704 int best_good_sectors;
705 sector_t new_distance, best_dist;
706 struct md_rdev *best_rdev, *rdev = NULL;
707 int do_balance;
708 int best_slot;
709 struct geom *geo = &conf->geo;
711 raid10_find_phys(conf, r10_bio);
712 rcu_read_lock();
713 sectors = r10_bio->sectors;
714 best_slot = -1;
715 best_rdev = NULL;
716 best_dist = MaxSector;
717 best_good_sectors = 0;
718 do_balance = 1;
720 * Check if we can balance. We can balance on the whole
721 * device if no resync is going on (recovery is ok), or below
722 * the resync window. We take the first readable disk when
723 * above the resync window.
725 if (conf->mddev->recovery_cp < MaxSector
726 && (this_sector + sectors >= conf->next_resync))
727 do_balance = 0;
729 for (slot = 0; slot < conf->copies ; slot++) {
730 sector_t first_bad;
731 int bad_sectors;
732 sector_t dev_sector;
734 if (r10_bio->devs[slot].bio == IO_BLOCKED)
735 continue;
736 disk = r10_bio->devs[slot].devnum;
737 rdev = rcu_dereference(conf->mirrors[disk].replacement);
738 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
739 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
740 rdev = rcu_dereference(conf->mirrors[disk].rdev);
741 if (rdev == NULL ||
742 test_bit(Faulty, &rdev->flags))
743 continue;
744 if (!test_bit(In_sync, &rdev->flags) &&
745 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
746 continue;
748 dev_sector = r10_bio->devs[slot].addr;
749 if (is_badblock(rdev, dev_sector, sectors,
750 &first_bad, &bad_sectors)) {
751 if (best_dist < MaxSector)
752 /* Already have a better slot */
753 continue;
754 if (first_bad <= dev_sector) {
755 /* Cannot read here. If this is the
756 * 'primary' device, then we must not read
757 * beyond 'bad_sectors' from another device.
759 bad_sectors -= (dev_sector - first_bad);
760 if (!do_balance && sectors > bad_sectors)
761 sectors = bad_sectors;
762 if (best_good_sectors > sectors)
763 best_good_sectors = sectors;
764 } else {
765 sector_t good_sectors =
766 first_bad - dev_sector;
767 if (good_sectors > best_good_sectors) {
768 best_good_sectors = good_sectors;
769 best_slot = slot;
770 best_rdev = rdev;
772 if (!do_balance)
773 /* Must read from here */
774 break;
776 continue;
777 } else
778 best_good_sectors = sectors;
780 if (!do_balance)
781 break;
783 /* This optimisation is debatable, and completely destroys
784 * sequential read speed for 'far copies' arrays. So only
785 * keep it for 'near' arrays, and review those later.
787 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
788 break;
790 /* for far > 1 always use the lowest address */
791 if (geo->far_copies > 1)
792 new_distance = r10_bio->devs[slot].addr;
793 else
794 new_distance = abs(r10_bio->devs[slot].addr -
795 conf->mirrors[disk].head_position);
796 if (new_distance < best_dist) {
797 best_dist = new_distance;
798 best_slot = slot;
799 best_rdev = rdev;
802 if (slot >= conf->copies) {
803 slot = best_slot;
804 rdev = best_rdev;
807 if (slot >= 0) {
808 atomic_inc(&rdev->nr_pending);
809 r10_bio->read_slot = slot;
810 } else
811 rdev = NULL;
812 rcu_read_unlock();
813 *max_sectors = best_good_sectors;
815 return rdev;
818 static int raid10_congested(struct mddev *mddev, int bits)
820 struct r10conf *conf = mddev->private;
821 int i, ret = 0;
823 if ((bits & (1 << WB_async_congested)) &&
824 conf->pending_count >= max_queued_requests)
825 return 1;
827 rcu_read_lock();
828 for (i = 0;
829 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
830 && ret == 0;
831 i++) {
832 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
833 if (rdev && !test_bit(Faulty, &rdev->flags)) {
834 struct request_queue *q = bdev_get_queue(rdev->bdev);
836 ret |= bdi_congested(&q->backing_dev_info, bits);
839 rcu_read_unlock();
840 return ret;
843 static void flush_pending_writes(struct r10conf *conf)
845 /* Any writes that have been queued but are awaiting
846 * bitmap updates get flushed here.
848 spin_lock_irq(&conf->device_lock);
850 if (conf->pending_bio_list.head) {
851 struct bio *bio;
852 bio = bio_list_get(&conf->pending_bio_list);
853 conf->pending_count = 0;
854 spin_unlock_irq(&conf->device_lock);
855 /* flush any pending bitmap writes to disk
856 * before proceeding w/ I/O */
857 bitmap_unplug(conf->mddev->bitmap);
858 wake_up(&conf->wait_barrier);
860 while (bio) { /* submit pending writes */
861 struct bio *next = bio->bi_next;
862 bio->bi_next = NULL;
863 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
864 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
865 /* Just ignore it */
866 bio_endio(bio);
867 else
868 generic_make_request(bio);
869 bio = next;
871 } else
872 spin_unlock_irq(&conf->device_lock);
875 /* Barriers....
876 * Sometimes we need to suspend IO while we do something else,
877 * either some resync/recovery, or reconfigure the array.
878 * To do this we raise a 'barrier'.
879 * The 'barrier' is a counter that can be raised multiple times
880 * to count how many activities are happening which preclude
881 * normal IO.
882 * We can only raise the barrier if there is no pending IO.
883 * i.e. if nr_pending == 0.
884 * We choose only to raise the barrier if no-one is waiting for the
885 * barrier to go down. This means that as soon as an IO request
886 * is ready, no other operations which require a barrier will start
887 * until the IO request has had a chance.
889 * So: regular IO calls 'wait_barrier'. When that returns there
890 * is no backgroup IO happening, It must arrange to call
891 * allow_barrier when it has finished its IO.
892 * backgroup IO calls must call raise_barrier. Once that returns
893 * there is no normal IO happeing. It must arrange to call
894 * lower_barrier when the particular background IO completes.
897 static void raise_barrier(struct r10conf *conf, int force)
899 BUG_ON(force && !conf->barrier);
900 spin_lock_irq(&conf->resync_lock);
902 /* Wait until no block IO is waiting (unless 'force') */
903 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
904 conf->resync_lock);
906 /* block any new IO from starting */
907 conf->barrier++;
909 /* Now wait for all pending IO to complete */
910 wait_event_lock_irq(conf->wait_barrier,
911 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
912 conf->resync_lock);
914 spin_unlock_irq(&conf->resync_lock);
917 static void lower_barrier(struct r10conf *conf)
919 unsigned long flags;
920 spin_lock_irqsave(&conf->resync_lock, flags);
921 conf->barrier--;
922 spin_unlock_irqrestore(&conf->resync_lock, flags);
923 wake_up(&conf->wait_barrier);
926 static void wait_barrier(struct r10conf *conf)
928 spin_lock_irq(&conf->resync_lock);
929 if (conf->barrier) {
930 conf->nr_waiting++;
931 /* Wait for the barrier to drop.
932 * However if there are already pending
933 * requests (preventing the barrier from
934 * rising completely), and the
935 * pre-process bio queue isn't empty,
936 * then don't wait, as we need to empty
937 * that queue to get the nr_pending
938 * count down.
940 wait_event_lock_irq(conf->wait_barrier,
941 !conf->barrier ||
942 (atomic_read(&conf->nr_pending) &&
943 current->bio_list &&
944 !bio_list_empty(current->bio_list)),
945 conf->resync_lock);
946 conf->nr_waiting--;
947 if (!conf->nr_waiting)
948 wake_up(&conf->wait_barrier);
950 atomic_inc(&conf->nr_pending);
951 spin_unlock_irq(&conf->resync_lock);
954 static void allow_barrier(struct r10conf *conf)
956 if ((atomic_dec_and_test(&conf->nr_pending)) ||
957 (conf->array_freeze_pending))
958 wake_up(&conf->wait_barrier);
961 static void freeze_array(struct r10conf *conf, int extra)
963 /* stop syncio and normal IO and wait for everything to
964 * go quiet.
965 * We increment barrier and nr_waiting, and then
966 * wait until nr_pending match nr_queued+extra
967 * This is called in the context of one normal IO request
968 * that has failed. Thus any sync request that might be pending
969 * will be blocked by nr_pending, and we need to wait for
970 * pending IO requests to complete or be queued for re-try.
971 * Thus the number queued (nr_queued) plus this request (extra)
972 * must match the number of pending IOs (nr_pending) before
973 * we continue.
975 spin_lock_irq(&conf->resync_lock);
976 conf->array_freeze_pending++;
977 conf->barrier++;
978 conf->nr_waiting++;
979 wait_event_lock_irq_cmd(conf->wait_barrier,
980 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
981 conf->resync_lock,
982 flush_pending_writes(conf));
984 conf->array_freeze_pending--;
985 spin_unlock_irq(&conf->resync_lock);
988 static void unfreeze_array(struct r10conf *conf)
990 /* reverse the effect of the freeze */
991 spin_lock_irq(&conf->resync_lock);
992 conf->barrier--;
993 conf->nr_waiting--;
994 wake_up(&conf->wait_barrier);
995 spin_unlock_irq(&conf->resync_lock);
998 static sector_t choose_data_offset(struct r10bio *r10_bio,
999 struct md_rdev *rdev)
1001 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1002 test_bit(R10BIO_Previous, &r10_bio->state))
1003 return rdev->data_offset;
1004 else
1005 return rdev->new_data_offset;
1008 struct raid10_plug_cb {
1009 struct blk_plug_cb cb;
1010 struct bio_list pending;
1011 int pending_cnt;
1014 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1016 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1017 cb);
1018 struct mddev *mddev = plug->cb.data;
1019 struct r10conf *conf = mddev->private;
1020 struct bio *bio;
1022 if (from_schedule || current->bio_list) {
1023 spin_lock_irq(&conf->device_lock);
1024 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1025 conf->pending_count += plug->pending_cnt;
1026 spin_unlock_irq(&conf->device_lock);
1027 wake_up(&conf->wait_barrier);
1028 md_wakeup_thread(mddev->thread);
1029 kfree(plug);
1030 return;
1033 /* we aren't scheduling, so we can do the write-out directly. */
1034 bio = bio_list_get(&plug->pending);
1035 bitmap_unplug(mddev->bitmap);
1036 wake_up(&conf->wait_barrier);
1038 while (bio) { /* submit pending writes */
1039 struct bio *next = bio->bi_next;
1040 bio->bi_next = NULL;
1041 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1042 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1043 /* Just ignore it */
1044 bio_endio(bio);
1045 else
1046 generic_make_request(bio);
1047 bio = next;
1049 kfree(plug);
1052 static void __make_request(struct mddev *mddev, struct bio *bio)
1054 struct r10conf *conf = mddev->private;
1055 struct r10bio *r10_bio;
1056 struct bio *read_bio;
1057 int i;
1058 const int op = bio_op(bio);
1059 const int rw = bio_data_dir(bio);
1060 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1061 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1062 unsigned long flags;
1063 struct md_rdev *blocked_rdev;
1064 struct blk_plug_cb *cb;
1065 struct raid10_plug_cb *plug = NULL;
1066 int sectors_handled;
1067 int max_sectors;
1068 int sectors;
1070 md_write_start(mddev, bio);
1073 * Register the new request and wait if the reconstruction
1074 * thread has put up a bar for new requests.
1075 * Continue immediately if no resync is active currently.
1077 wait_barrier(conf);
1079 sectors = bio_sectors(bio);
1080 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1081 bio->bi_iter.bi_sector < conf->reshape_progress &&
1082 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1083 /* IO spans the reshape position. Need to wait for
1084 * reshape to pass
1086 allow_barrier(conf);
1087 wait_event(conf->wait_barrier,
1088 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1089 conf->reshape_progress >= bio->bi_iter.bi_sector +
1090 sectors);
1091 wait_barrier(conf);
1093 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1094 bio_data_dir(bio) == WRITE &&
1095 (mddev->reshape_backwards
1096 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1097 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1098 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1099 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1100 /* Need to update reshape_position in metadata */
1101 mddev->reshape_position = conf->reshape_progress;
1102 set_mask_bits(&mddev->flags, 0,
1103 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1104 md_wakeup_thread(mddev->thread);
1105 wait_event(mddev->sb_wait,
1106 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1108 conf->reshape_safe = mddev->reshape_position;
1111 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1113 r10_bio->master_bio = bio;
1114 r10_bio->sectors = sectors;
1116 r10_bio->mddev = mddev;
1117 r10_bio->sector = bio->bi_iter.bi_sector;
1118 r10_bio->state = 0;
1120 /* We might need to issue multiple reads to different
1121 * devices if there are bad blocks around, so we keep
1122 * track of the number of reads in bio->bi_phys_segments.
1123 * If this is 0, there is only one r10_bio and no locking
1124 * will be needed when the request completes. If it is
1125 * non-zero, then it is the number of not-completed requests.
1127 bio->bi_phys_segments = 0;
1128 bio_clear_flag(bio, BIO_SEG_VALID);
1130 if (rw == READ) {
1132 * read balancing logic:
1134 struct md_rdev *rdev;
1135 int slot;
1137 read_again:
1138 rdev = read_balance(conf, r10_bio, &max_sectors);
1139 if (!rdev) {
1140 raid_end_bio_io(r10_bio);
1141 return;
1143 slot = r10_bio->read_slot;
1145 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1146 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1147 max_sectors);
1149 r10_bio->devs[slot].bio = read_bio;
1150 r10_bio->devs[slot].rdev = rdev;
1152 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1153 choose_data_offset(r10_bio, rdev);
1154 read_bio->bi_bdev = rdev->bdev;
1155 read_bio->bi_end_io = raid10_end_read_request;
1156 bio_set_op_attrs(read_bio, op, do_sync);
1157 read_bio->bi_private = r10_bio;
1159 if (max_sectors < r10_bio->sectors) {
1160 /* Could not read all from this device, so we will
1161 * need another r10_bio.
1163 sectors_handled = (r10_bio->sector + max_sectors
1164 - bio->bi_iter.bi_sector);
1165 r10_bio->sectors = max_sectors;
1166 spin_lock_irq(&conf->device_lock);
1167 if (bio->bi_phys_segments == 0)
1168 bio->bi_phys_segments = 2;
1169 else
1170 bio->bi_phys_segments++;
1171 spin_unlock_irq(&conf->device_lock);
1172 /* Cannot call generic_make_request directly
1173 * as that will be queued in __generic_make_request
1174 * and subsequent mempool_alloc might block
1175 * waiting for it. so hand bio over to raid10d.
1177 reschedule_retry(r10_bio);
1179 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1181 r10_bio->master_bio = bio;
1182 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1183 r10_bio->state = 0;
1184 r10_bio->mddev = mddev;
1185 r10_bio->sector = bio->bi_iter.bi_sector +
1186 sectors_handled;
1187 goto read_again;
1188 } else
1189 generic_make_request(read_bio);
1190 return;
1194 * WRITE:
1196 if (conf->pending_count >= max_queued_requests) {
1197 md_wakeup_thread(mddev->thread);
1198 wait_event(conf->wait_barrier,
1199 conf->pending_count < max_queued_requests);
1201 /* first select target devices under rcu_lock and
1202 * inc refcount on their rdev. Record them by setting
1203 * bios[x] to bio
1204 * If there are known/acknowledged bad blocks on any device
1205 * on which we have seen a write error, we want to avoid
1206 * writing to those blocks. This potentially requires several
1207 * writes to write around the bad blocks. Each set of writes
1208 * gets its own r10_bio with a set of bios attached. The number
1209 * of r10_bios is recored in bio->bi_phys_segments just as with
1210 * the read case.
1213 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1214 raid10_find_phys(conf, r10_bio);
1215 retry_write:
1216 blocked_rdev = NULL;
1217 rcu_read_lock();
1218 max_sectors = r10_bio->sectors;
1220 for (i = 0; i < conf->copies; i++) {
1221 int d = r10_bio->devs[i].devnum;
1222 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1223 struct md_rdev *rrdev = rcu_dereference(
1224 conf->mirrors[d].replacement);
1225 if (rdev == rrdev)
1226 rrdev = NULL;
1227 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1228 atomic_inc(&rdev->nr_pending);
1229 blocked_rdev = rdev;
1230 break;
1232 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1233 atomic_inc(&rrdev->nr_pending);
1234 blocked_rdev = rrdev;
1235 break;
1237 if (rdev && (test_bit(Faulty, &rdev->flags)))
1238 rdev = NULL;
1239 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1240 rrdev = NULL;
1242 r10_bio->devs[i].bio = NULL;
1243 r10_bio->devs[i].repl_bio = NULL;
1245 if (!rdev && !rrdev) {
1246 set_bit(R10BIO_Degraded, &r10_bio->state);
1247 continue;
1249 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1250 sector_t first_bad;
1251 sector_t dev_sector = r10_bio->devs[i].addr;
1252 int bad_sectors;
1253 int is_bad;
1255 is_bad = is_badblock(rdev, dev_sector,
1256 max_sectors,
1257 &first_bad, &bad_sectors);
1258 if (is_bad < 0) {
1259 /* Mustn't write here until the bad block
1260 * is acknowledged
1262 atomic_inc(&rdev->nr_pending);
1263 set_bit(BlockedBadBlocks, &rdev->flags);
1264 blocked_rdev = rdev;
1265 break;
1267 if (is_bad && first_bad <= dev_sector) {
1268 /* Cannot write here at all */
1269 bad_sectors -= (dev_sector - first_bad);
1270 if (bad_sectors < max_sectors)
1271 /* Mustn't write more than bad_sectors
1272 * to other devices yet
1274 max_sectors = bad_sectors;
1275 /* We don't set R10BIO_Degraded as that
1276 * only applies if the disk is missing,
1277 * so it might be re-added, and we want to
1278 * know to recover this chunk.
1279 * In this case the device is here, and the
1280 * fact that this chunk is not in-sync is
1281 * recorded in the bad block log.
1283 continue;
1285 if (is_bad) {
1286 int good_sectors = first_bad - dev_sector;
1287 if (good_sectors < max_sectors)
1288 max_sectors = good_sectors;
1291 if (rdev) {
1292 r10_bio->devs[i].bio = bio;
1293 atomic_inc(&rdev->nr_pending);
1295 if (rrdev) {
1296 r10_bio->devs[i].repl_bio = bio;
1297 atomic_inc(&rrdev->nr_pending);
1300 rcu_read_unlock();
1302 if (unlikely(blocked_rdev)) {
1303 /* Have to wait for this device to get unblocked, then retry */
1304 int j;
1305 int d;
1307 for (j = 0; j < i; j++) {
1308 if (r10_bio->devs[j].bio) {
1309 d = r10_bio->devs[j].devnum;
1310 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1312 if (r10_bio->devs[j].repl_bio) {
1313 struct md_rdev *rdev;
1314 d = r10_bio->devs[j].devnum;
1315 rdev = conf->mirrors[d].replacement;
1316 if (!rdev) {
1317 /* Race with remove_disk */
1318 smp_mb();
1319 rdev = conf->mirrors[d].rdev;
1321 rdev_dec_pending(rdev, mddev);
1324 allow_barrier(conf);
1325 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1326 wait_barrier(conf);
1327 goto retry_write;
1330 if (max_sectors < r10_bio->sectors) {
1331 /* We are splitting this into multiple parts, so
1332 * we need to prepare for allocating another r10_bio.
1334 r10_bio->sectors = max_sectors;
1335 spin_lock_irq(&conf->device_lock);
1336 if (bio->bi_phys_segments == 0)
1337 bio->bi_phys_segments = 2;
1338 else
1339 bio->bi_phys_segments++;
1340 spin_unlock_irq(&conf->device_lock);
1342 sectors_handled = r10_bio->sector + max_sectors -
1343 bio->bi_iter.bi_sector;
1345 atomic_set(&r10_bio->remaining, 1);
1346 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1348 for (i = 0; i < conf->copies; i++) {
1349 struct bio *mbio;
1350 int d = r10_bio->devs[i].devnum;
1351 if (r10_bio->devs[i].bio) {
1352 struct md_rdev *rdev = conf->mirrors[d].rdev;
1353 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1354 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1355 max_sectors);
1356 r10_bio->devs[i].bio = mbio;
1358 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1359 choose_data_offset(r10_bio,
1360 rdev));
1361 mbio->bi_bdev = rdev->bdev;
1362 mbio->bi_end_io = raid10_end_write_request;
1363 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1364 mbio->bi_private = r10_bio;
1366 atomic_inc(&r10_bio->remaining);
1368 cb = blk_check_plugged(raid10_unplug, mddev,
1369 sizeof(*plug));
1370 if (cb)
1371 plug = container_of(cb, struct raid10_plug_cb,
1372 cb);
1373 else
1374 plug = NULL;
1375 spin_lock_irqsave(&conf->device_lock, flags);
1376 if (plug) {
1377 bio_list_add(&plug->pending, mbio);
1378 plug->pending_cnt++;
1379 } else {
1380 bio_list_add(&conf->pending_bio_list, mbio);
1381 conf->pending_count++;
1383 spin_unlock_irqrestore(&conf->device_lock, flags);
1384 if (!plug)
1385 md_wakeup_thread(mddev->thread);
1388 if (r10_bio->devs[i].repl_bio) {
1389 struct md_rdev *rdev = conf->mirrors[d].replacement;
1390 if (rdev == NULL) {
1391 /* Replacement just got moved to main 'rdev' */
1392 smp_mb();
1393 rdev = conf->mirrors[d].rdev;
1395 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1396 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1397 max_sectors);
1398 r10_bio->devs[i].repl_bio = mbio;
1400 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1401 choose_data_offset(
1402 r10_bio, rdev));
1403 mbio->bi_bdev = rdev->bdev;
1404 mbio->bi_end_io = raid10_end_write_request;
1405 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1406 mbio->bi_private = r10_bio;
1408 atomic_inc(&r10_bio->remaining);
1409 spin_lock_irqsave(&conf->device_lock, flags);
1410 bio_list_add(&conf->pending_bio_list, mbio);
1411 conf->pending_count++;
1412 spin_unlock_irqrestore(&conf->device_lock, flags);
1413 if (!mddev_check_plugged(mddev))
1414 md_wakeup_thread(mddev->thread);
1418 /* Don't remove the bias on 'remaining' (one_write_done) until
1419 * after checking if we need to go around again.
1422 if (sectors_handled < bio_sectors(bio)) {
1423 one_write_done(r10_bio);
1424 /* We need another r10_bio. It has already been counted
1425 * in bio->bi_phys_segments.
1427 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1429 r10_bio->master_bio = bio;
1430 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1432 r10_bio->mddev = mddev;
1433 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1434 r10_bio->state = 0;
1435 goto retry_write;
1437 one_write_done(r10_bio);
1440 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1442 struct r10conf *conf = mddev->private;
1443 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1444 int chunk_sects = chunk_mask + 1;
1446 struct bio *split;
1448 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1449 md_flush_request(mddev, bio);
1450 return;
1453 do {
1456 * If this request crosses a chunk boundary, we need to split
1457 * it.
1459 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1460 bio_sectors(bio) > chunk_sects
1461 && (conf->geo.near_copies < conf->geo.raid_disks
1462 || conf->prev.near_copies <
1463 conf->prev.raid_disks))) {
1464 split = bio_split(bio, chunk_sects -
1465 (bio->bi_iter.bi_sector &
1466 (chunk_sects - 1)),
1467 GFP_NOIO, fs_bio_set);
1468 bio_chain(split, bio);
1469 } else {
1470 split = bio;
1473 __make_request(mddev, split);
1474 } while (split != bio);
1476 /* In case raid10d snuck in to freeze_array */
1477 wake_up(&conf->wait_barrier);
1480 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1482 struct r10conf *conf = mddev->private;
1483 int i;
1485 if (conf->geo.near_copies < conf->geo.raid_disks)
1486 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1487 if (conf->geo.near_copies > 1)
1488 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1489 if (conf->geo.far_copies > 1) {
1490 if (conf->geo.far_offset)
1491 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1492 else
1493 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1494 if (conf->geo.far_set_size != conf->geo.raid_disks)
1495 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1497 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1498 conf->geo.raid_disks - mddev->degraded);
1499 rcu_read_lock();
1500 for (i = 0; i < conf->geo.raid_disks; i++) {
1501 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1504 rcu_read_unlock();
1505 seq_printf(seq, "]");
1508 /* check if there are enough drives for
1509 * every block to appear on atleast one.
1510 * Don't consider the device numbered 'ignore'
1511 * as we might be about to remove it.
1513 static int _enough(struct r10conf *conf, int previous, int ignore)
1515 int first = 0;
1516 int has_enough = 0;
1517 int disks, ncopies;
1518 if (previous) {
1519 disks = conf->prev.raid_disks;
1520 ncopies = conf->prev.near_copies;
1521 } else {
1522 disks = conf->geo.raid_disks;
1523 ncopies = conf->geo.near_copies;
1526 rcu_read_lock();
1527 do {
1528 int n = conf->copies;
1529 int cnt = 0;
1530 int this = first;
1531 while (n--) {
1532 struct md_rdev *rdev;
1533 if (this != ignore &&
1534 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1535 test_bit(In_sync, &rdev->flags))
1536 cnt++;
1537 this = (this+1) % disks;
1539 if (cnt == 0)
1540 goto out;
1541 first = (first + ncopies) % disks;
1542 } while (first != 0);
1543 has_enough = 1;
1544 out:
1545 rcu_read_unlock();
1546 return has_enough;
1549 static int enough(struct r10conf *conf, int ignore)
1551 /* when calling 'enough', both 'prev' and 'geo' must
1552 * be stable.
1553 * This is ensured if ->reconfig_mutex or ->device_lock
1554 * is held.
1556 return _enough(conf, 0, ignore) &&
1557 _enough(conf, 1, ignore);
1560 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1562 char b[BDEVNAME_SIZE];
1563 struct r10conf *conf = mddev->private;
1564 unsigned long flags;
1567 * If it is not operational, then we have already marked it as dead
1568 * else if it is the last working disks, ignore the error, let the
1569 * next level up know.
1570 * else mark the drive as failed
1572 spin_lock_irqsave(&conf->device_lock, flags);
1573 if (test_bit(In_sync, &rdev->flags)
1574 && !enough(conf, rdev->raid_disk)) {
1576 * Don't fail the drive, just return an IO error.
1578 spin_unlock_irqrestore(&conf->device_lock, flags);
1579 return;
1581 if (test_and_clear_bit(In_sync, &rdev->flags))
1582 mddev->degraded++;
1584 * If recovery is running, make sure it aborts.
1586 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1587 set_bit(Blocked, &rdev->flags);
1588 set_bit(Faulty, &rdev->flags);
1589 set_mask_bits(&mddev->flags, 0,
1590 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1591 spin_unlock_irqrestore(&conf->device_lock, flags);
1592 printk(KERN_ALERT
1593 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1594 "md/raid10:%s: Operation continuing on %d devices.\n",
1595 mdname(mddev), bdevname(rdev->bdev, b),
1596 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1599 static void print_conf(struct r10conf *conf)
1601 int i;
1602 struct md_rdev *rdev;
1604 printk(KERN_DEBUG "RAID10 conf printout:\n");
1605 if (!conf) {
1606 printk(KERN_DEBUG "(!conf)\n");
1607 return;
1609 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1610 conf->geo.raid_disks);
1612 /* This is only called with ->reconfix_mutex held, so
1613 * rcu protection of rdev is not needed */
1614 for (i = 0; i < conf->geo.raid_disks; i++) {
1615 char b[BDEVNAME_SIZE];
1616 rdev = conf->mirrors[i].rdev;
1617 if (rdev)
1618 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1619 i, !test_bit(In_sync, &rdev->flags),
1620 !test_bit(Faulty, &rdev->flags),
1621 bdevname(rdev->bdev,b));
1625 static void close_sync(struct r10conf *conf)
1627 wait_barrier(conf);
1628 allow_barrier(conf);
1630 mempool_destroy(conf->r10buf_pool);
1631 conf->r10buf_pool = NULL;
1634 static int raid10_spare_active(struct mddev *mddev)
1636 int i;
1637 struct r10conf *conf = mddev->private;
1638 struct raid10_info *tmp;
1639 int count = 0;
1640 unsigned long flags;
1643 * Find all non-in_sync disks within the RAID10 configuration
1644 * and mark them in_sync
1646 for (i = 0; i < conf->geo.raid_disks; i++) {
1647 tmp = conf->mirrors + i;
1648 if (tmp->replacement
1649 && tmp->replacement->recovery_offset == MaxSector
1650 && !test_bit(Faulty, &tmp->replacement->flags)
1651 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1652 /* Replacement has just become active */
1653 if (!tmp->rdev
1654 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1655 count++;
1656 if (tmp->rdev) {
1657 /* Replaced device not technically faulty,
1658 * but we need to be sure it gets removed
1659 * and never re-added.
1661 set_bit(Faulty, &tmp->rdev->flags);
1662 sysfs_notify_dirent_safe(
1663 tmp->rdev->sysfs_state);
1665 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1666 } else if (tmp->rdev
1667 && tmp->rdev->recovery_offset == MaxSector
1668 && !test_bit(Faulty, &tmp->rdev->flags)
1669 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1670 count++;
1671 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1674 spin_lock_irqsave(&conf->device_lock, flags);
1675 mddev->degraded -= count;
1676 spin_unlock_irqrestore(&conf->device_lock, flags);
1678 print_conf(conf);
1679 return count;
1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1684 struct r10conf *conf = mddev->private;
1685 int err = -EEXIST;
1686 int mirror;
1687 int first = 0;
1688 int last = conf->geo.raid_disks - 1;
1690 if (mddev->recovery_cp < MaxSector)
1691 /* only hot-add to in-sync arrays, as recovery is
1692 * very different from resync
1694 return -EBUSY;
1695 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1696 return -EINVAL;
1698 if (md_integrity_add_rdev(rdev, mddev))
1699 return -ENXIO;
1701 if (rdev->raid_disk >= 0)
1702 first = last = rdev->raid_disk;
1704 if (rdev->saved_raid_disk >= first &&
1705 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706 mirror = rdev->saved_raid_disk;
1707 else
1708 mirror = first;
1709 for ( ; mirror <= last ; mirror++) {
1710 struct raid10_info *p = &conf->mirrors[mirror];
1711 if (p->recovery_disabled == mddev->recovery_disabled)
1712 continue;
1713 if (p->rdev) {
1714 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715 p->replacement != NULL)
1716 continue;
1717 clear_bit(In_sync, &rdev->flags);
1718 set_bit(Replacement, &rdev->flags);
1719 rdev->raid_disk = mirror;
1720 err = 0;
1721 if (mddev->gendisk)
1722 disk_stack_limits(mddev->gendisk, rdev->bdev,
1723 rdev->data_offset << 9);
1724 conf->fullsync = 1;
1725 rcu_assign_pointer(p->replacement, rdev);
1726 break;
1729 if (mddev->gendisk)
1730 disk_stack_limits(mddev->gendisk, rdev->bdev,
1731 rdev->data_offset << 9);
1733 p->head_position = 0;
1734 p->recovery_disabled = mddev->recovery_disabled - 1;
1735 rdev->raid_disk = mirror;
1736 err = 0;
1737 if (rdev->saved_raid_disk != mirror)
1738 conf->fullsync = 1;
1739 rcu_assign_pointer(p->rdev, rdev);
1740 break;
1742 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1743 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1745 print_conf(conf);
1746 return err;
1749 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1751 struct r10conf *conf = mddev->private;
1752 int err = 0;
1753 int number = rdev->raid_disk;
1754 struct md_rdev **rdevp;
1755 struct raid10_info *p = conf->mirrors + number;
1757 print_conf(conf);
1758 if (rdev == p->rdev)
1759 rdevp = &p->rdev;
1760 else if (rdev == p->replacement)
1761 rdevp = &p->replacement;
1762 else
1763 return 0;
1765 if (test_bit(In_sync, &rdev->flags) ||
1766 atomic_read(&rdev->nr_pending)) {
1767 err = -EBUSY;
1768 goto abort;
1770 /* Only remove non-faulty devices if recovery
1771 * is not possible.
1773 if (!test_bit(Faulty, &rdev->flags) &&
1774 mddev->recovery_disabled != p->recovery_disabled &&
1775 (!p->replacement || p->replacement == rdev) &&
1776 number < conf->geo.raid_disks &&
1777 enough(conf, -1)) {
1778 err = -EBUSY;
1779 goto abort;
1781 *rdevp = NULL;
1782 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1783 synchronize_rcu();
1784 if (atomic_read(&rdev->nr_pending)) {
1785 /* lost the race, try later */
1786 err = -EBUSY;
1787 *rdevp = rdev;
1788 goto abort;
1791 if (p->replacement) {
1792 /* We must have just cleared 'rdev' */
1793 p->rdev = p->replacement;
1794 clear_bit(Replacement, &p->replacement->flags);
1795 smp_mb(); /* Make sure other CPUs may see both as identical
1796 * but will never see neither -- if they are careful.
1798 p->replacement = NULL;
1799 clear_bit(WantReplacement, &rdev->flags);
1800 } else
1801 /* We might have just remove the Replacement as faulty
1802 * Clear the flag just in case
1804 clear_bit(WantReplacement, &rdev->flags);
1806 err = md_integrity_register(mddev);
1808 abort:
1810 print_conf(conf);
1811 return err;
1814 static void end_sync_read(struct bio *bio)
1816 struct r10bio *r10_bio = bio->bi_private;
1817 struct r10conf *conf = r10_bio->mddev->private;
1818 int d;
1820 if (bio == r10_bio->master_bio) {
1821 /* this is a reshape read */
1822 d = r10_bio->read_slot; /* really the read dev */
1823 } else
1824 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1826 if (!bio->bi_error)
1827 set_bit(R10BIO_Uptodate, &r10_bio->state);
1828 else
1829 /* The write handler will notice the lack of
1830 * R10BIO_Uptodate and record any errors etc
1832 atomic_add(r10_bio->sectors,
1833 &conf->mirrors[d].rdev->corrected_errors);
1835 /* for reconstruct, we always reschedule after a read.
1836 * for resync, only after all reads
1838 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840 atomic_dec_and_test(&r10_bio->remaining)) {
1841 /* we have read all the blocks,
1842 * do the comparison in process context in raid10d
1844 reschedule_retry(r10_bio);
1848 static void end_sync_request(struct r10bio *r10_bio)
1850 struct mddev *mddev = r10_bio->mddev;
1852 while (atomic_dec_and_test(&r10_bio->remaining)) {
1853 if (r10_bio->master_bio == NULL) {
1854 /* the primary of several recovery bios */
1855 sector_t s = r10_bio->sectors;
1856 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857 test_bit(R10BIO_WriteError, &r10_bio->state))
1858 reschedule_retry(r10_bio);
1859 else
1860 put_buf(r10_bio);
1861 md_done_sync(mddev, s, 1);
1862 break;
1863 } else {
1864 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866 test_bit(R10BIO_WriteError, &r10_bio->state))
1867 reschedule_retry(r10_bio);
1868 else
1869 put_buf(r10_bio);
1870 r10_bio = r10_bio2;
1875 static void end_sync_write(struct bio *bio)
1877 struct r10bio *r10_bio = bio->bi_private;
1878 struct mddev *mddev = r10_bio->mddev;
1879 struct r10conf *conf = mddev->private;
1880 int d;
1881 sector_t first_bad;
1882 int bad_sectors;
1883 int slot;
1884 int repl;
1885 struct md_rdev *rdev = NULL;
1887 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888 if (repl)
1889 rdev = conf->mirrors[d].replacement;
1890 else
1891 rdev = conf->mirrors[d].rdev;
1893 if (bio->bi_error) {
1894 if (repl)
1895 md_error(mddev, rdev);
1896 else {
1897 set_bit(WriteErrorSeen, &rdev->flags);
1898 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899 set_bit(MD_RECOVERY_NEEDED,
1900 &rdev->mddev->recovery);
1901 set_bit(R10BIO_WriteError, &r10_bio->state);
1903 } else if (is_badblock(rdev,
1904 r10_bio->devs[slot].addr,
1905 r10_bio->sectors,
1906 &first_bad, &bad_sectors))
1907 set_bit(R10BIO_MadeGood, &r10_bio->state);
1909 rdev_dec_pending(rdev, mddev);
1911 end_sync_request(r10_bio);
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write. The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1932 struct r10conf *conf = mddev->private;
1933 int i, first;
1934 struct bio *tbio, *fbio;
1935 int vcnt;
1937 atomic_set(&r10_bio->remaining, 1);
1939 /* find the first device with a block */
1940 for (i=0; i<conf->copies; i++)
1941 if (!r10_bio->devs[i].bio->bi_error)
1942 break;
1944 if (i == conf->copies)
1945 goto done;
1947 first = i;
1948 fbio = r10_bio->devs[i].bio;
1949 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950 fbio->bi_iter.bi_idx = 0;
1952 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953 /* now find blocks with errors */
1954 for (i=0 ; i < conf->copies ; i++) {
1955 int j, d;
1957 tbio = r10_bio->devs[i].bio;
1959 if (tbio->bi_end_io != end_sync_read)
1960 continue;
1961 if (i == first)
1962 continue;
1963 if (!r10_bio->devs[i].bio->bi_error) {
1964 /* We know that the bi_io_vec layout is the same for
1965 * both 'first' and 'i', so we just compare them.
1966 * All vec entries are PAGE_SIZE;
1968 int sectors = r10_bio->sectors;
1969 for (j = 0; j < vcnt; j++) {
1970 int len = PAGE_SIZE;
1971 if (sectors < (len / 512))
1972 len = sectors * 512;
1973 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974 page_address(tbio->bi_io_vec[j].bv_page),
1975 len))
1976 break;
1977 sectors -= len/512;
1979 if (j == vcnt)
1980 continue;
1981 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983 /* Don't fix anything. */
1984 continue;
1986 /* Ok, we need to write this bio, either to correct an
1987 * inconsistency or to correct an unreadable block.
1988 * First we need to fixup bv_offset, bv_len and
1989 * bi_vecs, as the read request might have corrupted these
1991 bio_reset(tbio);
1993 tbio->bi_vcnt = vcnt;
1994 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1995 tbio->bi_private = r10_bio;
1996 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1997 tbio->bi_end_io = end_sync_write;
1998 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2000 bio_copy_data(tbio, fbio);
2002 d = r10_bio->devs[i].devnum;
2003 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004 atomic_inc(&r10_bio->remaining);
2005 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2007 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009 generic_make_request(tbio);
2012 /* Now write out to any replacement devices
2013 * that are active
2015 for (i = 0; i < conf->copies; i++) {
2016 int d;
2018 tbio = r10_bio->devs[i].repl_bio;
2019 if (!tbio || !tbio->bi_end_io)
2020 continue;
2021 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022 && r10_bio->devs[i].bio != fbio)
2023 bio_copy_data(tbio, fbio);
2024 d = r10_bio->devs[i].devnum;
2025 atomic_inc(&r10_bio->remaining);
2026 md_sync_acct(conf->mirrors[d].replacement->bdev,
2027 bio_sectors(tbio));
2028 generic_make_request(tbio);
2031 done:
2032 if (atomic_dec_and_test(&r10_bio->remaining)) {
2033 md_done_sync(mddev, r10_bio->sectors, 1);
2034 put_buf(r10_bio);
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2048 static void fix_recovery_read_error(struct r10bio *r10_bio)
2050 /* We got a read error during recovery.
2051 * We repeat the read in smaller page-sized sections.
2052 * If a read succeeds, write it to the new device or record
2053 * a bad block if we cannot.
2054 * If a read fails, record a bad block on both old and
2055 * new devices.
2057 struct mddev *mddev = r10_bio->mddev;
2058 struct r10conf *conf = mddev->private;
2059 struct bio *bio = r10_bio->devs[0].bio;
2060 sector_t sect = 0;
2061 int sectors = r10_bio->sectors;
2062 int idx = 0;
2063 int dr = r10_bio->devs[0].devnum;
2064 int dw = r10_bio->devs[1].devnum;
2066 while (sectors) {
2067 int s = sectors;
2068 struct md_rdev *rdev;
2069 sector_t addr;
2070 int ok;
2072 if (s > (PAGE_SIZE>>9))
2073 s = PAGE_SIZE >> 9;
2075 rdev = conf->mirrors[dr].rdev;
2076 addr = r10_bio->devs[0].addr + sect,
2077 ok = sync_page_io(rdev,
2078 addr,
2079 s << 9,
2080 bio->bi_io_vec[idx].bv_page,
2081 REQ_OP_READ, 0, false);
2082 if (ok) {
2083 rdev = conf->mirrors[dw].rdev;
2084 addr = r10_bio->devs[1].addr + sect;
2085 ok = sync_page_io(rdev,
2086 addr,
2087 s << 9,
2088 bio->bi_io_vec[idx].bv_page,
2089 REQ_OP_WRITE, 0, false);
2090 if (!ok) {
2091 set_bit(WriteErrorSeen, &rdev->flags);
2092 if (!test_and_set_bit(WantReplacement,
2093 &rdev->flags))
2094 set_bit(MD_RECOVERY_NEEDED,
2095 &rdev->mddev->recovery);
2098 if (!ok) {
2099 /* We don't worry if we cannot set a bad block -
2100 * it really is bad so there is no loss in not
2101 * recording it yet
2103 rdev_set_badblocks(rdev, addr, s, 0);
2105 if (rdev != conf->mirrors[dw].rdev) {
2106 /* need bad block on destination too */
2107 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108 addr = r10_bio->devs[1].addr + sect;
2109 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110 if (!ok) {
2111 /* just abort the recovery */
2112 printk(KERN_NOTICE
2113 "md/raid10:%s: recovery aborted"
2114 " due to read error\n",
2115 mdname(mddev));
2117 conf->mirrors[dw].recovery_disabled
2118 = mddev->recovery_disabled;
2119 set_bit(MD_RECOVERY_INTR,
2120 &mddev->recovery);
2121 break;
2126 sectors -= s;
2127 sect += s;
2128 idx++;
2132 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2134 struct r10conf *conf = mddev->private;
2135 int d;
2136 struct bio *wbio, *wbio2;
2138 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139 fix_recovery_read_error(r10_bio);
2140 end_sync_request(r10_bio);
2141 return;
2145 * share the pages with the first bio
2146 * and submit the write request
2148 d = r10_bio->devs[1].devnum;
2149 wbio = r10_bio->devs[1].bio;
2150 wbio2 = r10_bio->devs[1].repl_bio;
2151 /* Need to test wbio2->bi_end_io before we call
2152 * generic_make_request as if the former is NULL,
2153 * the latter is free to free wbio2.
2155 if (wbio2 && !wbio2->bi_end_io)
2156 wbio2 = NULL;
2157 if (wbio->bi_end_io) {
2158 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160 generic_make_request(wbio);
2162 if (wbio2) {
2163 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164 md_sync_acct(conf->mirrors[d].replacement->bdev,
2165 bio_sectors(wbio2));
2166 generic_make_request(wbio2);
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2176 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2178 long cur_time_mon;
2179 unsigned long hours_since_last;
2180 unsigned int read_errors = atomic_read(&rdev->read_errors);
2182 cur_time_mon = ktime_get_seconds();
2184 if (rdev->last_read_error == 0) {
2185 /* first time we've seen a read error */
2186 rdev->last_read_error = cur_time_mon;
2187 return;
2190 hours_since_last = (long)(cur_time_mon -
2191 rdev->last_read_error) / 3600;
2193 rdev->last_read_error = cur_time_mon;
2196 * if hours_since_last is > the number of bits in read_errors
2197 * just set read errors to 0. We do this to avoid
2198 * overflowing the shift of read_errors by hours_since_last.
2200 if (hours_since_last >= 8 * sizeof(read_errors))
2201 atomic_set(&rdev->read_errors, 0);
2202 else
2203 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2206 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2207 int sectors, struct page *page, int rw)
2209 sector_t first_bad;
2210 int bad_sectors;
2212 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2213 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2214 return -1;
2215 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2216 /* success */
2217 return 1;
2218 if (rw == WRITE) {
2219 set_bit(WriteErrorSeen, &rdev->flags);
2220 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2221 set_bit(MD_RECOVERY_NEEDED,
2222 &rdev->mddev->recovery);
2224 /* need to record an error - either for the block or the device */
2225 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2226 md_error(rdev->mddev, rdev);
2227 return 0;
2231 * This is a kernel thread which:
2233 * 1. Retries failed read operations on working mirrors.
2234 * 2. Updates the raid superblock when problems encounter.
2235 * 3. Performs writes following reads for array synchronising.
2238 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2240 int sect = 0; /* Offset from r10_bio->sector */
2241 int sectors = r10_bio->sectors;
2242 struct md_rdev*rdev;
2243 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2244 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2246 /* still own a reference to this rdev, so it cannot
2247 * have been cleared recently.
2249 rdev = conf->mirrors[d].rdev;
2251 if (test_bit(Faulty, &rdev->flags))
2252 /* drive has already been failed, just ignore any
2253 more fix_read_error() attempts */
2254 return;
2256 check_decay_read_errors(mddev, rdev);
2257 atomic_inc(&rdev->read_errors);
2258 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2259 char b[BDEVNAME_SIZE];
2260 bdevname(rdev->bdev, b);
2262 printk(KERN_NOTICE
2263 "md/raid10:%s: %s: Raid device exceeded "
2264 "read_error threshold [cur %d:max %d]\n",
2265 mdname(mddev), b,
2266 atomic_read(&rdev->read_errors), max_read_errors);
2267 printk(KERN_NOTICE
2268 "md/raid10:%s: %s: Failing raid device\n",
2269 mdname(mddev), b);
2270 md_error(mddev, rdev);
2271 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2272 return;
2275 while(sectors) {
2276 int s = sectors;
2277 int sl = r10_bio->read_slot;
2278 int success = 0;
2279 int start;
2281 if (s > (PAGE_SIZE>>9))
2282 s = PAGE_SIZE >> 9;
2284 rcu_read_lock();
2285 do {
2286 sector_t first_bad;
2287 int bad_sectors;
2289 d = r10_bio->devs[sl].devnum;
2290 rdev = rcu_dereference(conf->mirrors[d].rdev);
2291 if (rdev &&
2292 test_bit(In_sync, &rdev->flags) &&
2293 !test_bit(Faulty, &rdev->flags) &&
2294 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295 &first_bad, &bad_sectors) == 0) {
2296 atomic_inc(&rdev->nr_pending);
2297 rcu_read_unlock();
2298 success = sync_page_io(rdev,
2299 r10_bio->devs[sl].addr +
2300 sect,
2301 s<<9,
2302 conf->tmppage,
2303 REQ_OP_READ, 0, false);
2304 rdev_dec_pending(rdev, mddev);
2305 rcu_read_lock();
2306 if (success)
2307 break;
2309 sl++;
2310 if (sl == conf->copies)
2311 sl = 0;
2312 } while (!success && sl != r10_bio->read_slot);
2313 rcu_read_unlock();
2315 if (!success) {
2316 /* Cannot read from anywhere, just mark the block
2317 * as bad on the first device to discourage future
2318 * reads.
2320 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2321 rdev = conf->mirrors[dn].rdev;
2323 if (!rdev_set_badblocks(
2324 rdev,
2325 r10_bio->devs[r10_bio->read_slot].addr
2326 + sect,
2327 s, 0)) {
2328 md_error(mddev, rdev);
2329 r10_bio->devs[r10_bio->read_slot].bio
2330 = IO_BLOCKED;
2332 break;
2335 start = sl;
2336 /* write it back and re-read */
2337 rcu_read_lock();
2338 while (sl != r10_bio->read_slot) {
2339 char b[BDEVNAME_SIZE];
2341 if (sl==0)
2342 sl = conf->copies;
2343 sl--;
2344 d = r10_bio->devs[sl].devnum;
2345 rdev = rcu_dereference(conf->mirrors[d].rdev);
2346 if (!rdev ||
2347 test_bit(Faulty, &rdev->flags) ||
2348 !test_bit(In_sync, &rdev->flags))
2349 continue;
2351 atomic_inc(&rdev->nr_pending);
2352 rcu_read_unlock();
2353 if (r10_sync_page_io(rdev,
2354 r10_bio->devs[sl].addr +
2355 sect,
2356 s, conf->tmppage, WRITE)
2357 == 0) {
2358 /* Well, this device is dead */
2359 printk(KERN_NOTICE
2360 "md/raid10:%s: read correction "
2361 "write failed"
2362 " (%d sectors at %llu on %s)\n",
2363 mdname(mddev), s,
2364 (unsigned long long)(
2365 sect +
2366 choose_data_offset(r10_bio,
2367 rdev)),
2368 bdevname(rdev->bdev, b));
2369 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2370 "drive\n",
2371 mdname(mddev),
2372 bdevname(rdev->bdev, b));
2374 rdev_dec_pending(rdev, mddev);
2375 rcu_read_lock();
2377 sl = start;
2378 while (sl != r10_bio->read_slot) {
2379 char b[BDEVNAME_SIZE];
2381 if (sl==0)
2382 sl = conf->copies;
2383 sl--;
2384 d = r10_bio->devs[sl].devnum;
2385 rdev = rcu_dereference(conf->mirrors[d].rdev);
2386 if (!rdev ||
2387 test_bit(Faulty, &rdev->flags) ||
2388 !test_bit(In_sync, &rdev->flags))
2389 continue;
2391 atomic_inc(&rdev->nr_pending);
2392 rcu_read_unlock();
2393 switch (r10_sync_page_io(rdev,
2394 r10_bio->devs[sl].addr +
2395 sect,
2396 s, conf->tmppage,
2397 READ)) {
2398 case 0:
2399 /* Well, this device is dead */
2400 printk(KERN_NOTICE
2401 "md/raid10:%s: unable to read back "
2402 "corrected sectors"
2403 " (%d sectors at %llu on %s)\n",
2404 mdname(mddev), s,
2405 (unsigned long long)(
2406 sect +
2407 choose_data_offset(r10_bio, rdev)),
2408 bdevname(rdev->bdev, b));
2409 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2410 "drive\n",
2411 mdname(mddev),
2412 bdevname(rdev->bdev, b));
2413 break;
2414 case 1:
2415 printk(KERN_INFO
2416 "md/raid10:%s: read error corrected"
2417 " (%d sectors at %llu on %s)\n",
2418 mdname(mddev), s,
2419 (unsigned long long)(
2420 sect +
2421 choose_data_offset(r10_bio, rdev)),
2422 bdevname(rdev->bdev, b));
2423 atomic_add(s, &rdev->corrected_errors);
2426 rdev_dec_pending(rdev, mddev);
2427 rcu_read_lock();
2429 rcu_read_unlock();
2431 sectors -= s;
2432 sect += s;
2436 static int narrow_write_error(struct r10bio *r10_bio, int i)
2438 struct bio *bio = r10_bio->master_bio;
2439 struct mddev *mddev = r10_bio->mddev;
2440 struct r10conf *conf = mddev->private;
2441 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2442 /* bio has the data to be written to slot 'i' where
2443 * we just recently had a write error.
2444 * We repeatedly clone the bio and trim down to one block,
2445 * then try the write. Where the write fails we record
2446 * a bad block.
2447 * It is conceivable that the bio doesn't exactly align with
2448 * blocks. We must handle this.
2450 * We currently own a reference to the rdev.
2453 int block_sectors;
2454 sector_t sector;
2455 int sectors;
2456 int sect_to_write = r10_bio->sectors;
2457 int ok = 1;
2459 if (rdev->badblocks.shift < 0)
2460 return 0;
2462 block_sectors = roundup(1 << rdev->badblocks.shift,
2463 bdev_logical_block_size(rdev->bdev) >> 9);
2464 sector = r10_bio->sector;
2465 sectors = ((r10_bio->sector + block_sectors)
2466 & ~(sector_t)(block_sectors - 1))
2467 - sector;
2469 while (sect_to_write) {
2470 struct bio *wbio;
2471 sector_t wsector;
2472 if (sectors > sect_to_write)
2473 sectors = sect_to_write;
2474 /* Write at 'sector' for 'sectors' */
2475 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2476 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2477 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2478 wbio->bi_iter.bi_sector = wsector +
2479 choose_data_offset(r10_bio, rdev);
2480 wbio->bi_bdev = rdev->bdev;
2481 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2483 if (submit_bio_wait(wbio) < 0)
2484 /* Failure! */
2485 ok = rdev_set_badblocks(rdev, wsector,
2486 sectors, 0)
2487 && ok;
2489 bio_put(wbio);
2490 sect_to_write -= sectors;
2491 sector += sectors;
2492 sectors = block_sectors;
2494 return ok;
2497 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2499 int slot = r10_bio->read_slot;
2500 struct bio *bio;
2501 struct r10conf *conf = mddev->private;
2502 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2503 char b[BDEVNAME_SIZE];
2504 unsigned long do_sync;
2505 int max_sectors;
2507 /* we got a read error. Maybe the drive is bad. Maybe just
2508 * the block and we can fix it.
2509 * We freeze all other IO, and try reading the block from
2510 * other devices. When we find one, we re-write
2511 * and check it that fixes the read error.
2512 * This is all done synchronously while the array is
2513 * frozen.
2515 bio = r10_bio->devs[slot].bio;
2516 bdevname(bio->bi_bdev, b);
2517 bio_put(bio);
2518 r10_bio->devs[slot].bio = NULL;
2520 if (mddev->ro == 0) {
2521 freeze_array(conf, 1);
2522 fix_read_error(conf, mddev, r10_bio);
2523 unfreeze_array(conf);
2524 } else
2525 r10_bio->devs[slot].bio = IO_BLOCKED;
2527 rdev_dec_pending(rdev, mddev);
2529 read_more:
2530 rdev = read_balance(conf, r10_bio, &max_sectors);
2531 if (rdev == NULL) {
2532 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2533 " read error for block %llu\n",
2534 mdname(mddev), b,
2535 (unsigned long long)r10_bio->sector);
2536 raid_end_bio_io(r10_bio);
2537 return;
2540 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2541 slot = r10_bio->read_slot;
2542 printk_ratelimited(
2543 KERN_ERR
2544 "md/raid10:%s: %s: redirecting "
2545 "sector %llu to another mirror\n",
2546 mdname(mddev),
2547 bdevname(rdev->bdev, b),
2548 (unsigned long long)r10_bio->sector);
2549 bio = bio_clone_mddev(r10_bio->master_bio,
2550 GFP_NOIO, mddev);
2551 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2552 r10_bio->devs[slot].bio = bio;
2553 r10_bio->devs[slot].rdev = rdev;
2554 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2555 + choose_data_offset(r10_bio, rdev);
2556 bio->bi_bdev = rdev->bdev;
2557 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2558 bio->bi_private = r10_bio;
2559 bio->bi_end_io = raid10_end_read_request;
2560 if (max_sectors < r10_bio->sectors) {
2561 /* Drat - have to split this up more */
2562 struct bio *mbio = r10_bio->master_bio;
2563 int sectors_handled =
2564 r10_bio->sector + max_sectors
2565 - mbio->bi_iter.bi_sector;
2566 r10_bio->sectors = max_sectors;
2567 spin_lock_irq(&conf->device_lock);
2568 if (mbio->bi_phys_segments == 0)
2569 mbio->bi_phys_segments = 2;
2570 else
2571 mbio->bi_phys_segments++;
2572 spin_unlock_irq(&conf->device_lock);
2573 generic_make_request(bio);
2575 r10_bio = mempool_alloc(conf->r10bio_pool,
2576 GFP_NOIO);
2577 r10_bio->master_bio = mbio;
2578 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2579 r10_bio->state = 0;
2580 set_bit(R10BIO_ReadError,
2581 &r10_bio->state);
2582 r10_bio->mddev = mddev;
2583 r10_bio->sector = mbio->bi_iter.bi_sector
2584 + sectors_handled;
2586 goto read_more;
2587 } else
2588 generic_make_request(bio);
2591 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2593 /* Some sort of write request has finished and it
2594 * succeeded in writing where we thought there was a
2595 * bad block. So forget the bad block.
2596 * Or possibly if failed and we need to record
2597 * a bad block.
2599 int m;
2600 struct md_rdev *rdev;
2602 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2603 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2604 for (m = 0; m < conf->copies; m++) {
2605 int dev = r10_bio->devs[m].devnum;
2606 rdev = conf->mirrors[dev].rdev;
2607 if (r10_bio->devs[m].bio == NULL)
2608 continue;
2609 if (!r10_bio->devs[m].bio->bi_error) {
2610 rdev_clear_badblocks(
2611 rdev,
2612 r10_bio->devs[m].addr,
2613 r10_bio->sectors, 0);
2614 } else {
2615 if (!rdev_set_badblocks(
2616 rdev,
2617 r10_bio->devs[m].addr,
2618 r10_bio->sectors, 0))
2619 md_error(conf->mddev, rdev);
2621 rdev = conf->mirrors[dev].replacement;
2622 if (r10_bio->devs[m].repl_bio == NULL)
2623 continue;
2625 if (!r10_bio->devs[m].repl_bio->bi_error) {
2626 rdev_clear_badblocks(
2627 rdev,
2628 r10_bio->devs[m].addr,
2629 r10_bio->sectors, 0);
2630 } else {
2631 if (!rdev_set_badblocks(
2632 rdev,
2633 r10_bio->devs[m].addr,
2634 r10_bio->sectors, 0))
2635 md_error(conf->mddev, rdev);
2638 put_buf(r10_bio);
2639 } else {
2640 bool fail = false;
2641 for (m = 0; m < conf->copies; m++) {
2642 int dev = r10_bio->devs[m].devnum;
2643 struct bio *bio = r10_bio->devs[m].bio;
2644 rdev = conf->mirrors[dev].rdev;
2645 if (bio == IO_MADE_GOOD) {
2646 rdev_clear_badblocks(
2647 rdev,
2648 r10_bio->devs[m].addr,
2649 r10_bio->sectors, 0);
2650 rdev_dec_pending(rdev, conf->mddev);
2651 } else if (bio != NULL && bio->bi_error) {
2652 fail = true;
2653 if (!narrow_write_error(r10_bio, m)) {
2654 md_error(conf->mddev, rdev);
2655 set_bit(R10BIO_Degraded,
2656 &r10_bio->state);
2658 rdev_dec_pending(rdev, conf->mddev);
2660 bio = r10_bio->devs[m].repl_bio;
2661 rdev = conf->mirrors[dev].replacement;
2662 if (rdev && bio == IO_MADE_GOOD) {
2663 rdev_clear_badblocks(
2664 rdev,
2665 r10_bio->devs[m].addr,
2666 r10_bio->sectors, 0);
2667 rdev_dec_pending(rdev, conf->mddev);
2670 if (fail) {
2671 spin_lock_irq(&conf->device_lock);
2672 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2673 conf->nr_queued++;
2674 spin_unlock_irq(&conf->device_lock);
2675 md_wakeup_thread(conf->mddev->thread);
2676 } else {
2677 if (test_bit(R10BIO_WriteError,
2678 &r10_bio->state))
2679 close_write(r10_bio);
2680 raid_end_bio_io(r10_bio);
2685 static void raid10d(struct md_thread *thread)
2687 struct mddev *mddev = thread->mddev;
2688 struct r10bio *r10_bio;
2689 unsigned long flags;
2690 struct r10conf *conf = mddev->private;
2691 struct list_head *head = &conf->retry_list;
2692 struct blk_plug plug;
2694 md_check_recovery(mddev);
2696 if (!list_empty_careful(&conf->bio_end_io_list) &&
2697 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2698 LIST_HEAD(tmp);
2699 spin_lock_irqsave(&conf->device_lock, flags);
2700 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2701 while (!list_empty(&conf->bio_end_io_list)) {
2702 list_move(conf->bio_end_io_list.prev, &tmp);
2703 conf->nr_queued--;
2706 spin_unlock_irqrestore(&conf->device_lock, flags);
2707 while (!list_empty(&tmp)) {
2708 r10_bio = list_first_entry(&tmp, struct r10bio,
2709 retry_list);
2710 list_del(&r10_bio->retry_list);
2711 if (mddev->degraded)
2712 set_bit(R10BIO_Degraded, &r10_bio->state);
2714 if (test_bit(R10BIO_WriteError,
2715 &r10_bio->state))
2716 close_write(r10_bio);
2717 raid_end_bio_io(r10_bio);
2721 blk_start_plug(&plug);
2722 for (;;) {
2724 flush_pending_writes(conf);
2726 spin_lock_irqsave(&conf->device_lock, flags);
2727 if (list_empty(head)) {
2728 spin_unlock_irqrestore(&conf->device_lock, flags);
2729 break;
2731 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2732 list_del(head->prev);
2733 conf->nr_queued--;
2734 spin_unlock_irqrestore(&conf->device_lock, flags);
2736 mddev = r10_bio->mddev;
2737 conf = mddev->private;
2738 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2739 test_bit(R10BIO_WriteError, &r10_bio->state))
2740 handle_write_completed(conf, r10_bio);
2741 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2742 reshape_request_write(mddev, r10_bio);
2743 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2744 sync_request_write(mddev, r10_bio);
2745 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2746 recovery_request_write(mddev, r10_bio);
2747 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2748 handle_read_error(mddev, r10_bio);
2749 else {
2750 /* just a partial read to be scheduled from a
2751 * separate context
2753 int slot = r10_bio->read_slot;
2754 generic_make_request(r10_bio->devs[slot].bio);
2757 cond_resched();
2758 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2759 md_check_recovery(mddev);
2761 blk_finish_plug(&plug);
2764 static int init_resync(struct r10conf *conf)
2766 int buffs;
2767 int i;
2769 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2770 BUG_ON(conf->r10buf_pool);
2771 conf->have_replacement = 0;
2772 for (i = 0; i < conf->geo.raid_disks; i++)
2773 if (conf->mirrors[i].replacement)
2774 conf->have_replacement = 1;
2775 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2776 if (!conf->r10buf_pool)
2777 return -ENOMEM;
2778 conf->next_resync = 0;
2779 return 0;
2783 * perform a "sync" on one "block"
2785 * We need to make sure that no normal I/O request - particularly write
2786 * requests - conflict with active sync requests.
2788 * This is achieved by tracking pending requests and a 'barrier' concept
2789 * that can be installed to exclude normal IO requests.
2791 * Resync and recovery are handled very differently.
2792 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2794 * For resync, we iterate over virtual addresses, read all copies,
2795 * and update if there are differences. If only one copy is live,
2796 * skip it.
2797 * For recovery, we iterate over physical addresses, read a good
2798 * value for each non-in_sync drive, and over-write.
2800 * So, for recovery we may have several outstanding complex requests for a
2801 * given address, one for each out-of-sync device. We model this by allocating
2802 * a number of r10_bio structures, one for each out-of-sync device.
2803 * As we setup these structures, we collect all bio's together into a list
2804 * which we then process collectively to add pages, and then process again
2805 * to pass to generic_make_request.
2807 * The r10_bio structures are linked using a borrowed master_bio pointer.
2808 * This link is counted in ->remaining. When the r10_bio that points to NULL
2809 * has its remaining count decremented to 0, the whole complex operation
2810 * is complete.
2814 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2815 int *skipped)
2817 struct r10conf *conf = mddev->private;
2818 struct r10bio *r10_bio;
2819 struct bio *biolist = NULL, *bio;
2820 sector_t max_sector, nr_sectors;
2821 int i;
2822 int max_sync;
2823 sector_t sync_blocks;
2824 sector_t sectors_skipped = 0;
2825 int chunks_skipped = 0;
2826 sector_t chunk_mask = conf->geo.chunk_mask;
2828 if (!conf->r10buf_pool)
2829 if (init_resync(conf))
2830 return 0;
2833 * Allow skipping a full rebuild for incremental assembly
2834 * of a clean array, like RAID1 does.
2836 if (mddev->bitmap == NULL &&
2837 mddev->recovery_cp == MaxSector &&
2838 mddev->reshape_position == MaxSector &&
2839 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2840 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2841 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2842 conf->fullsync == 0) {
2843 *skipped = 1;
2844 return mddev->dev_sectors - sector_nr;
2847 skipped:
2848 max_sector = mddev->dev_sectors;
2849 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2850 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2851 max_sector = mddev->resync_max_sectors;
2852 if (sector_nr >= max_sector) {
2853 /* If we aborted, we need to abort the
2854 * sync on the 'current' bitmap chucks (there can
2855 * be several when recovering multiple devices).
2856 * as we may have started syncing it but not finished.
2857 * We can find the current address in
2858 * mddev->curr_resync, but for recovery,
2859 * we need to convert that to several
2860 * virtual addresses.
2862 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2863 end_reshape(conf);
2864 close_sync(conf);
2865 return 0;
2868 if (mddev->curr_resync < max_sector) { /* aborted */
2869 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2870 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2871 &sync_blocks, 1);
2872 else for (i = 0; i < conf->geo.raid_disks; i++) {
2873 sector_t sect =
2874 raid10_find_virt(conf, mddev->curr_resync, i);
2875 bitmap_end_sync(mddev->bitmap, sect,
2876 &sync_blocks, 1);
2878 } else {
2879 /* completed sync */
2880 if ((!mddev->bitmap || conf->fullsync)
2881 && conf->have_replacement
2882 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2883 /* Completed a full sync so the replacements
2884 * are now fully recovered.
2886 rcu_read_lock();
2887 for (i = 0; i < conf->geo.raid_disks; i++) {
2888 struct md_rdev *rdev =
2889 rcu_dereference(conf->mirrors[i].replacement);
2890 if (rdev)
2891 rdev->recovery_offset = MaxSector;
2893 rcu_read_unlock();
2895 conf->fullsync = 0;
2897 bitmap_close_sync(mddev->bitmap);
2898 close_sync(conf);
2899 *skipped = 1;
2900 return sectors_skipped;
2903 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2904 return reshape_request(mddev, sector_nr, skipped);
2906 if (chunks_skipped >= conf->geo.raid_disks) {
2907 /* if there has been nothing to do on any drive,
2908 * then there is nothing to do at all..
2910 *skipped = 1;
2911 return (max_sector - sector_nr) + sectors_skipped;
2914 if (max_sector > mddev->resync_max)
2915 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2917 /* make sure whole request will fit in a chunk - if chunks
2918 * are meaningful
2920 if (conf->geo.near_copies < conf->geo.raid_disks &&
2921 max_sector > (sector_nr | chunk_mask))
2922 max_sector = (sector_nr | chunk_mask) + 1;
2925 * If there is non-resync activity waiting for a turn, then let it
2926 * though before starting on this new sync request.
2928 if (conf->nr_waiting)
2929 schedule_timeout_uninterruptible(1);
2931 /* Again, very different code for resync and recovery.
2932 * Both must result in an r10bio with a list of bios that
2933 * have bi_end_io, bi_sector, bi_bdev set,
2934 * and bi_private set to the r10bio.
2935 * For recovery, we may actually create several r10bios
2936 * with 2 bios in each, that correspond to the bios in the main one.
2937 * In this case, the subordinate r10bios link back through a
2938 * borrowed master_bio pointer, and the counter in the master
2939 * includes a ref from each subordinate.
2941 /* First, we decide what to do and set ->bi_end_io
2942 * To end_sync_read if we want to read, and
2943 * end_sync_write if we will want to write.
2946 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2947 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2948 /* recovery... the complicated one */
2949 int j;
2950 r10_bio = NULL;
2952 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2953 int still_degraded;
2954 struct r10bio *rb2;
2955 sector_t sect;
2956 int must_sync;
2957 int any_working;
2958 struct raid10_info *mirror = &conf->mirrors[i];
2959 struct md_rdev *mrdev, *mreplace;
2961 rcu_read_lock();
2962 mrdev = rcu_dereference(mirror->rdev);
2963 mreplace = rcu_dereference(mirror->replacement);
2965 if ((mrdev == NULL ||
2966 test_bit(Faulty, &mrdev->flags) ||
2967 test_bit(In_sync, &mrdev->flags)) &&
2968 (mreplace == NULL ||
2969 test_bit(Faulty, &mreplace->flags))) {
2970 rcu_read_unlock();
2971 continue;
2974 still_degraded = 0;
2975 /* want to reconstruct this device */
2976 rb2 = r10_bio;
2977 sect = raid10_find_virt(conf, sector_nr, i);
2978 if (sect >= mddev->resync_max_sectors) {
2979 /* last stripe is not complete - don't
2980 * try to recover this sector.
2982 rcu_read_unlock();
2983 continue;
2985 if (mreplace && test_bit(Faulty, &mreplace->flags))
2986 mreplace = NULL;
2987 /* Unless we are doing a full sync, or a replacement
2988 * we only need to recover the block if it is set in
2989 * the bitmap
2991 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2992 &sync_blocks, 1);
2993 if (sync_blocks < max_sync)
2994 max_sync = sync_blocks;
2995 if (!must_sync &&
2996 mreplace == NULL &&
2997 !conf->fullsync) {
2998 /* yep, skip the sync_blocks here, but don't assume
2999 * that there will never be anything to do here
3001 chunks_skipped = -1;
3002 rcu_read_unlock();
3003 continue;
3005 atomic_inc(&mrdev->nr_pending);
3006 if (mreplace)
3007 atomic_inc(&mreplace->nr_pending);
3008 rcu_read_unlock();
3010 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3011 r10_bio->state = 0;
3012 raise_barrier(conf, rb2 != NULL);
3013 atomic_set(&r10_bio->remaining, 0);
3015 r10_bio->master_bio = (struct bio*)rb2;
3016 if (rb2)
3017 atomic_inc(&rb2->remaining);
3018 r10_bio->mddev = mddev;
3019 set_bit(R10BIO_IsRecover, &r10_bio->state);
3020 r10_bio->sector = sect;
3022 raid10_find_phys(conf, r10_bio);
3024 /* Need to check if the array will still be
3025 * degraded
3027 rcu_read_lock();
3028 for (j = 0; j < conf->geo.raid_disks; j++) {
3029 struct md_rdev *rdev = rcu_dereference(
3030 conf->mirrors[j].rdev);
3031 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3032 still_degraded = 1;
3033 break;
3037 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3038 &sync_blocks, still_degraded);
3040 any_working = 0;
3041 for (j=0; j<conf->copies;j++) {
3042 int k;
3043 int d = r10_bio->devs[j].devnum;
3044 sector_t from_addr, to_addr;
3045 struct md_rdev *rdev =
3046 rcu_dereference(conf->mirrors[d].rdev);
3047 sector_t sector, first_bad;
3048 int bad_sectors;
3049 if (!rdev ||
3050 !test_bit(In_sync, &rdev->flags))
3051 continue;
3052 /* This is where we read from */
3053 any_working = 1;
3054 sector = r10_bio->devs[j].addr;
3056 if (is_badblock(rdev, sector, max_sync,
3057 &first_bad, &bad_sectors)) {
3058 if (first_bad > sector)
3059 max_sync = first_bad - sector;
3060 else {
3061 bad_sectors -= (sector
3062 - first_bad);
3063 if (max_sync > bad_sectors)
3064 max_sync = bad_sectors;
3065 continue;
3068 bio = r10_bio->devs[0].bio;
3069 bio_reset(bio);
3070 bio->bi_next = biolist;
3071 biolist = bio;
3072 bio->bi_private = r10_bio;
3073 bio->bi_end_io = end_sync_read;
3074 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3075 from_addr = r10_bio->devs[j].addr;
3076 bio->bi_iter.bi_sector = from_addr +
3077 rdev->data_offset;
3078 bio->bi_bdev = rdev->bdev;
3079 atomic_inc(&rdev->nr_pending);
3080 /* and we write to 'i' (if not in_sync) */
3082 for (k=0; k<conf->copies; k++)
3083 if (r10_bio->devs[k].devnum == i)
3084 break;
3085 BUG_ON(k == conf->copies);
3086 to_addr = r10_bio->devs[k].addr;
3087 r10_bio->devs[0].devnum = d;
3088 r10_bio->devs[0].addr = from_addr;
3089 r10_bio->devs[1].devnum = i;
3090 r10_bio->devs[1].addr = to_addr;
3092 if (!test_bit(In_sync, &mrdev->flags)) {
3093 bio = r10_bio->devs[1].bio;
3094 bio_reset(bio);
3095 bio->bi_next = biolist;
3096 biolist = bio;
3097 bio->bi_private = r10_bio;
3098 bio->bi_end_io = end_sync_write;
3099 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3100 bio->bi_iter.bi_sector = to_addr
3101 + mrdev->data_offset;
3102 bio->bi_bdev = mrdev->bdev;
3103 atomic_inc(&r10_bio->remaining);
3104 } else
3105 r10_bio->devs[1].bio->bi_end_io = NULL;
3107 /* and maybe write to replacement */
3108 bio = r10_bio->devs[1].repl_bio;
3109 if (bio)
3110 bio->bi_end_io = NULL;
3111 /* Note: if mreplace != NULL, then bio
3112 * cannot be NULL as r10buf_pool_alloc will
3113 * have allocated it.
3114 * So the second test here is pointless.
3115 * But it keeps semantic-checkers happy, and
3116 * this comment keeps human reviewers
3117 * happy.
3119 if (mreplace == NULL || bio == NULL ||
3120 test_bit(Faulty, &mreplace->flags))
3121 break;
3122 bio_reset(bio);
3123 bio->bi_next = biolist;
3124 biolist = bio;
3125 bio->bi_private = r10_bio;
3126 bio->bi_end_io = end_sync_write;
3127 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3128 bio->bi_iter.bi_sector = to_addr +
3129 mreplace->data_offset;
3130 bio->bi_bdev = mreplace->bdev;
3131 atomic_inc(&r10_bio->remaining);
3132 break;
3134 rcu_read_unlock();
3135 if (j == conf->copies) {
3136 /* Cannot recover, so abort the recovery or
3137 * record a bad block */
3138 if (any_working) {
3139 /* problem is that there are bad blocks
3140 * on other device(s)
3142 int k;
3143 for (k = 0; k < conf->copies; k++)
3144 if (r10_bio->devs[k].devnum == i)
3145 break;
3146 if (!test_bit(In_sync,
3147 &mrdev->flags)
3148 && !rdev_set_badblocks(
3149 mrdev,
3150 r10_bio->devs[k].addr,
3151 max_sync, 0))
3152 any_working = 0;
3153 if (mreplace &&
3154 !rdev_set_badblocks(
3155 mreplace,
3156 r10_bio->devs[k].addr,
3157 max_sync, 0))
3158 any_working = 0;
3160 if (!any_working) {
3161 if (!test_and_set_bit(MD_RECOVERY_INTR,
3162 &mddev->recovery))
3163 printk(KERN_INFO "md/raid10:%s: insufficient "
3164 "working devices for recovery.\n",
3165 mdname(mddev));
3166 mirror->recovery_disabled
3167 = mddev->recovery_disabled;
3169 put_buf(r10_bio);
3170 if (rb2)
3171 atomic_dec(&rb2->remaining);
3172 r10_bio = rb2;
3173 rdev_dec_pending(mrdev, mddev);
3174 if (mreplace)
3175 rdev_dec_pending(mreplace, mddev);
3176 break;
3178 rdev_dec_pending(mrdev, mddev);
3179 if (mreplace)
3180 rdev_dec_pending(mreplace, mddev);
3182 if (biolist == NULL) {
3183 while (r10_bio) {
3184 struct r10bio *rb2 = r10_bio;
3185 r10_bio = (struct r10bio*) rb2->master_bio;
3186 rb2->master_bio = NULL;
3187 put_buf(rb2);
3189 goto giveup;
3191 } else {
3192 /* resync. Schedule a read for every block at this virt offset */
3193 int count = 0;
3195 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3197 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3198 &sync_blocks, mddev->degraded) &&
3199 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3200 &mddev->recovery)) {
3201 /* We can skip this block */
3202 *skipped = 1;
3203 return sync_blocks + sectors_skipped;
3205 if (sync_blocks < max_sync)
3206 max_sync = sync_blocks;
3207 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3208 r10_bio->state = 0;
3210 r10_bio->mddev = mddev;
3211 atomic_set(&r10_bio->remaining, 0);
3212 raise_barrier(conf, 0);
3213 conf->next_resync = sector_nr;
3215 r10_bio->master_bio = NULL;
3216 r10_bio->sector = sector_nr;
3217 set_bit(R10BIO_IsSync, &r10_bio->state);
3218 raid10_find_phys(conf, r10_bio);
3219 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3221 for (i = 0; i < conf->copies; i++) {
3222 int d = r10_bio->devs[i].devnum;
3223 sector_t first_bad, sector;
3224 int bad_sectors;
3225 struct md_rdev *rdev;
3227 if (r10_bio->devs[i].repl_bio)
3228 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3230 bio = r10_bio->devs[i].bio;
3231 bio_reset(bio);
3232 bio->bi_error = -EIO;
3233 rcu_read_lock();
3234 rdev = rcu_dereference(conf->mirrors[d].rdev);
3235 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3236 rcu_read_unlock();
3237 continue;
3239 sector = r10_bio->devs[i].addr;
3240 if (is_badblock(rdev, sector, max_sync,
3241 &first_bad, &bad_sectors)) {
3242 if (first_bad > sector)
3243 max_sync = first_bad - sector;
3244 else {
3245 bad_sectors -= (sector - first_bad);
3246 if (max_sync > bad_sectors)
3247 max_sync = bad_sectors;
3248 rcu_read_unlock();
3249 continue;
3252 atomic_inc(&rdev->nr_pending);
3253 atomic_inc(&r10_bio->remaining);
3254 bio->bi_next = biolist;
3255 biolist = bio;
3256 bio->bi_private = r10_bio;
3257 bio->bi_end_io = end_sync_read;
3258 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3259 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3260 bio->bi_bdev = rdev->bdev;
3261 count++;
3263 rdev = rcu_dereference(conf->mirrors[d].replacement);
3264 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3265 rcu_read_unlock();
3266 continue;
3268 atomic_inc(&rdev->nr_pending);
3269 rcu_read_unlock();
3271 /* Need to set up for writing to the replacement */
3272 bio = r10_bio->devs[i].repl_bio;
3273 bio_reset(bio);
3274 bio->bi_error = -EIO;
3276 sector = r10_bio->devs[i].addr;
3277 bio->bi_next = biolist;
3278 biolist = bio;
3279 bio->bi_private = r10_bio;
3280 bio->bi_end_io = end_sync_write;
3281 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3282 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3283 bio->bi_bdev = rdev->bdev;
3284 count++;
3287 if (count < 2) {
3288 for (i=0; i<conf->copies; i++) {
3289 int d = r10_bio->devs[i].devnum;
3290 if (r10_bio->devs[i].bio->bi_end_io)
3291 rdev_dec_pending(conf->mirrors[d].rdev,
3292 mddev);
3293 if (r10_bio->devs[i].repl_bio &&
3294 r10_bio->devs[i].repl_bio->bi_end_io)
3295 rdev_dec_pending(
3296 conf->mirrors[d].replacement,
3297 mddev);
3299 put_buf(r10_bio);
3300 biolist = NULL;
3301 goto giveup;
3305 nr_sectors = 0;
3306 if (sector_nr + max_sync < max_sector)
3307 max_sector = sector_nr + max_sync;
3308 do {
3309 struct page *page;
3310 int len = PAGE_SIZE;
3311 if (sector_nr + (len>>9) > max_sector)
3312 len = (max_sector - sector_nr) << 9;
3313 if (len == 0)
3314 break;
3315 for (bio= biolist ; bio ; bio=bio->bi_next) {
3316 struct bio *bio2;
3317 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3318 if (bio_add_page(bio, page, len, 0))
3319 continue;
3321 /* stop here */
3322 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3323 for (bio2 = biolist;
3324 bio2 && bio2 != bio;
3325 bio2 = bio2->bi_next) {
3326 /* remove last page from this bio */
3327 bio2->bi_vcnt--;
3328 bio2->bi_iter.bi_size -= len;
3329 bio_clear_flag(bio2, BIO_SEG_VALID);
3331 goto bio_full;
3333 nr_sectors += len>>9;
3334 sector_nr += len>>9;
3335 } while (biolist->bi_vcnt < RESYNC_PAGES);
3336 bio_full:
3337 r10_bio->sectors = nr_sectors;
3339 while (biolist) {
3340 bio = biolist;
3341 biolist = biolist->bi_next;
3343 bio->bi_next = NULL;
3344 r10_bio = bio->bi_private;
3345 r10_bio->sectors = nr_sectors;
3347 if (bio->bi_end_io == end_sync_read) {
3348 md_sync_acct(bio->bi_bdev, nr_sectors);
3349 bio->bi_error = 0;
3350 generic_make_request(bio);
3354 if (sectors_skipped)
3355 /* pretend they weren't skipped, it makes
3356 * no important difference in this case
3358 md_done_sync(mddev, sectors_skipped, 1);
3360 return sectors_skipped + nr_sectors;
3361 giveup:
3362 /* There is nowhere to write, so all non-sync
3363 * drives must be failed or in resync, all drives
3364 * have a bad block, so try the next chunk...
3366 if (sector_nr + max_sync < max_sector)
3367 max_sector = sector_nr + max_sync;
3369 sectors_skipped += (max_sector - sector_nr);
3370 chunks_skipped ++;
3371 sector_nr = max_sector;
3372 goto skipped;
3375 static sector_t
3376 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3378 sector_t size;
3379 struct r10conf *conf = mddev->private;
3381 if (!raid_disks)
3382 raid_disks = min(conf->geo.raid_disks,
3383 conf->prev.raid_disks);
3384 if (!sectors)
3385 sectors = conf->dev_sectors;
3387 size = sectors >> conf->geo.chunk_shift;
3388 sector_div(size, conf->geo.far_copies);
3389 size = size * raid_disks;
3390 sector_div(size, conf->geo.near_copies);
3392 return size << conf->geo.chunk_shift;
3395 static void calc_sectors(struct r10conf *conf, sector_t size)
3397 /* Calculate the number of sectors-per-device that will
3398 * actually be used, and set conf->dev_sectors and
3399 * conf->stride
3402 size = size >> conf->geo.chunk_shift;
3403 sector_div(size, conf->geo.far_copies);
3404 size = size * conf->geo.raid_disks;
3405 sector_div(size, conf->geo.near_copies);
3406 /* 'size' is now the number of chunks in the array */
3407 /* calculate "used chunks per device" */
3408 size = size * conf->copies;
3410 /* We need to round up when dividing by raid_disks to
3411 * get the stride size.
3413 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3415 conf->dev_sectors = size << conf->geo.chunk_shift;
3417 if (conf->geo.far_offset)
3418 conf->geo.stride = 1 << conf->geo.chunk_shift;
3419 else {
3420 sector_div(size, conf->geo.far_copies);
3421 conf->geo.stride = size << conf->geo.chunk_shift;
3425 enum geo_type {geo_new, geo_old, geo_start};
3426 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3428 int nc, fc, fo;
3429 int layout, chunk, disks;
3430 switch (new) {
3431 case geo_old:
3432 layout = mddev->layout;
3433 chunk = mddev->chunk_sectors;
3434 disks = mddev->raid_disks - mddev->delta_disks;
3435 break;
3436 case geo_new:
3437 layout = mddev->new_layout;
3438 chunk = mddev->new_chunk_sectors;
3439 disks = mddev->raid_disks;
3440 break;
3441 default: /* avoid 'may be unused' warnings */
3442 case geo_start: /* new when starting reshape - raid_disks not
3443 * updated yet. */
3444 layout = mddev->new_layout;
3445 chunk = mddev->new_chunk_sectors;
3446 disks = mddev->raid_disks + mddev->delta_disks;
3447 break;
3449 if (layout >> 19)
3450 return -1;
3451 if (chunk < (PAGE_SIZE >> 9) ||
3452 !is_power_of_2(chunk))
3453 return -2;
3454 nc = layout & 255;
3455 fc = (layout >> 8) & 255;
3456 fo = layout & (1<<16);
3457 geo->raid_disks = disks;
3458 geo->near_copies = nc;
3459 geo->far_copies = fc;
3460 geo->far_offset = fo;
3461 switch (layout >> 17) {
3462 case 0: /* original layout. simple but not always optimal */
3463 geo->far_set_size = disks;
3464 break;
3465 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3466 * actually using this, but leave code here just in case.*/
3467 geo->far_set_size = disks/fc;
3468 WARN(geo->far_set_size < fc,
3469 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3470 break;
3471 case 2: /* "improved" layout fixed to match documentation */
3472 geo->far_set_size = fc * nc;
3473 break;
3474 default: /* Not a valid layout */
3475 return -1;
3477 geo->chunk_mask = chunk - 1;
3478 geo->chunk_shift = ffz(~chunk);
3479 return nc*fc;
3482 static struct r10conf *setup_conf(struct mddev *mddev)
3484 struct r10conf *conf = NULL;
3485 int err = -EINVAL;
3486 struct geom geo;
3487 int copies;
3489 copies = setup_geo(&geo, mddev, geo_new);
3491 if (copies == -2) {
3492 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3493 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3494 mdname(mddev), PAGE_SIZE);
3495 goto out;
3498 if (copies < 2 || copies > mddev->raid_disks) {
3499 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3500 mdname(mddev), mddev->new_layout);
3501 goto out;
3504 err = -ENOMEM;
3505 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3506 if (!conf)
3507 goto out;
3509 /* FIXME calc properly */
3510 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3511 max(0,-mddev->delta_disks)),
3512 GFP_KERNEL);
3513 if (!conf->mirrors)
3514 goto out;
3516 conf->tmppage = alloc_page(GFP_KERNEL);
3517 if (!conf->tmppage)
3518 goto out;
3520 conf->geo = geo;
3521 conf->copies = copies;
3522 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3523 r10bio_pool_free, conf);
3524 if (!conf->r10bio_pool)
3525 goto out;
3527 calc_sectors(conf, mddev->dev_sectors);
3528 if (mddev->reshape_position == MaxSector) {
3529 conf->prev = conf->geo;
3530 conf->reshape_progress = MaxSector;
3531 } else {
3532 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3533 err = -EINVAL;
3534 goto out;
3536 conf->reshape_progress = mddev->reshape_position;
3537 if (conf->prev.far_offset)
3538 conf->prev.stride = 1 << conf->prev.chunk_shift;
3539 else
3540 /* far_copies must be 1 */
3541 conf->prev.stride = conf->dev_sectors;
3543 conf->reshape_safe = conf->reshape_progress;
3544 spin_lock_init(&conf->device_lock);
3545 INIT_LIST_HEAD(&conf->retry_list);
3546 INIT_LIST_HEAD(&conf->bio_end_io_list);
3548 spin_lock_init(&conf->resync_lock);
3549 init_waitqueue_head(&conf->wait_barrier);
3550 atomic_set(&conf->nr_pending, 0);
3552 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3553 if (!conf->thread)
3554 goto out;
3556 conf->mddev = mddev;
3557 return conf;
3559 out:
3560 if (err == -ENOMEM)
3561 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3562 mdname(mddev));
3563 if (conf) {
3564 mempool_destroy(conf->r10bio_pool);
3565 kfree(conf->mirrors);
3566 safe_put_page(conf->tmppage);
3567 kfree(conf);
3569 return ERR_PTR(err);
3572 static int raid10_run(struct mddev *mddev)
3574 struct r10conf *conf;
3575 int i, disk_idx, chunk_size;
3576 struct raid10_info *disk;
3577 struct md_rdev *rdev;
3578 sector_t size;
3579 sector_t min_offset_diff = 0;
3580 int first = 1;
3581 bool discard_supported = false;
3583 if (mddev->private == NULL) {
3584 conf = setup_conf(mddev);
3585 if (IS_ERR(conf))
3586 return PTR_ERR(conf);
3587 mddev->private = conf;
3589 conf = mddev->private;
3590 if (!conf)
3591 goto out;
3593 mddev->thread = conf->thread;
3594 conf->thread = NULL;
3596 chunk_size = mddev->chunk_sectors << 9;
3597 if (mddev->queue) {
3598 blk_queue_max_discard_sectors(mddev->queue,
3599 mddev->chunk_sectors);
3600 blk_queue_max_write_same_sectors(mddev->queue, 0);
3601 blk_queue_io_min(mddev->queue, chunk_size);
3602 if (conf->geo.raid_disks % conf->geo.near_copies)
3603 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3604 else
3605 blk_queue_io_opt(mddev->queue, chunk_size *
3606 (conf->geo.raid_disks / conf->geo.near_copies));
3609 rdev_for_each(rdev, mddev) {
3610 long long diff;
3611 struct request_queue *q;
3613 disk_idx = rdev->raid_disk;
3614 if (disk_idx < 0)
3615 continue;
3616 if (disk_idx >= conf->geo.raid_disks &&
3617 disk_idx >= conf->prev.raid_disks)
3618 continue;
3619 disk = conf->mirrors + disk_idx;
3621 if (test_bit(Replacement, &rdev->flags)) {
3622 if (disk->replacement)
3623 goto out_free_conf;
3624 disk->replacement = rdev;
3625 } else {
3626 if (disk->rdev)
3627 goto out_free_conf;
3628 disk->rdev = rdev;
3630 q = bdev_get_queue(rdev->bdev);
3631 diff = (rdev->new_data_offset - rdev->data_offset);
3632 if (!mddev->reshape_backwards)
3633 diff = -diff;
3634 if (diff < 0)
3635 diff = 0;
3636 if (first || diff < min_offset_diff)
3637 min_offset_diff = diff;
3639 if (mddev->gendisk)
3640 disk_stack_limits(mddev->gendisk, rdev->bdev,
3641 rdev->data_offset << 9);
3643 disk->head_position = 0;
3645 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3646 discard_supported = true;
3649 if (mddev->queue) {
3650 if (discard_supported)
3651 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3652 mddev->queue);
3653 else
3654 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3655 mddev->queue);
3657 /* need to check that every block has at least one working mirror */
3658 if (!enough(conf, -1)) {
3659 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3660 mdname(mddev));
3661 goto out_free_conf;
3664 if (conf->reshape_progress != MaxSector) {
3665 /* must ensure that shape change is supported */
3666 if (conf->geo.far_copies != 1 &&
3667 conf->geo.far_offset == 0)
3668 goto out_free_conf;
3669 if (conf->prev.far_copies != 1 &&
3670 conf->prev.far_offset == 0)
3671 goto out_free_conf;
3674 mddev->degraded = 0;
3675 for (i = 0;
3676 i < conf->geo.raid_disks
3677 || i < conf->prev.raid_disks;
3678 i++) {
3680 disk = conf->mirrors + i;
3682 if (!disk->rdev && disk->replacement) {
3683 /* The replacement is all we have - use it */
3684 disk->rdev = disk->replacement;
3685 disk->replacement = NULL;
3686 clear_bit(Replacement, &disk->rdev->flags);
3689 if (!disk->rdev ||
3690 !test_bit(In_sync, &disk->rdev->flags)) {
3691 disk->head_position = 0;
3692 mddev->degraded++;
3693 if (disk->rdev &&
3694 disk->rdev->saved_raid_disk < 0)
3695 conf->fullsync = 1;
3697 disk->recovery_disabled = mddev->recovery_disabled - 1;
3700 if (mddev->recovery_cp != MaxSector)
3701 printk(KERN_NOTICE "md/raid10:%s: not clean"
3702 " -- starting background reconstruction\n",
3703 mdname(mddev));
3704 printk(KERN_INFO
3705 "md/raid10:%s: active with %d out of %d devices\n",
3706 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3707 conf->geo.raid_disks);
3709 * Ok, everything is just fine now
3711 mddev->dev_sectors = conf->dev_sectors;
3712 size = raid10_size(mddev, 0, 0);
3713 md_set_array_sectors(mddev, size);
3714 mddev->resync_max_sectors = size;
3716 if (mddev->queue) {
3717 int stripe = conf->geo.raid_disks *
3718 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3720 /* Calculate max read-ahead size.
3721 * We need to readahead at least twice a whole stripe....
3722 * maybe...
3724 stripe /= conf->geo.near_copies;
3725 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3726 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3729 if (md_integrity_register(mddev))
3730 goto out_free_conf;
3732 if (conf->reshape_progress != MaxSector) {
3733 unsigned long before_length, after_length;
3735 before_length = ((1 << conf->prev.chunk_shift) *
3736 conf->prev.far_copies);
3737 after_length = ((1 << conf->geo.chunk_shift) *
3738 conf->geo.far_copies);
3740 if (max(before_length, after_length) > min_offset_diff) {
3741 /* This cannot work */
3742 printk("md/raid10: offset difference not enough to continue reshape\n");
3743 goto out_free_conf;
3745 conf->offset_diff = min_offset_diff;
3747 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3748 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3749 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3750 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3751 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3752 "reshape");
3755 return 0;
3757 out_free_conf:
3758 md_unregister_thread(&mddev->thread);
3759 mempool_destroy(conf->r10bio_pool);
3760 safe_put_page(conf->tmppage);
3761 kfree(conf->mirrors);
3762 kfree(conf);
3763 mddev->private = NULL;
3764 out:
3765 return -EIO;
3768 static void raid10_free(struct mddev *mddev, void *priv)
3770 struct r10conf *conf = priv;
3772 mempool_destroy(conf->r10bio_pool);
3773 safe_put_page(conf->tmppage);
3774 kfree(conf->mirrors);
3775 kfree(conf->mirrors_old);
3776 kfree(conf->mirrors_new);
3777 kfree(conf);
3780 static void raid10_quiesce(struct mddev *mddev, int state)
3782 struct r10conf *conf = mddev->private;
3784 switch(state) {
3785 case 1:
3786 raise_barrier(conf, 0);
3787 break;
3788 case 0:
3789 lower_barrier(conf);
3790 break;
3794 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3796 /* Resize of 'far' arrays is not supported.
3797 * For 'near' and 'offset' arrays we can set the
3798 * number of sectors used to be an appropriate multiple
3799 * of the chunk size.
3800 * For 'offset', this is far_copies*chunksize.
3801 * For 'near' the multiplier is the LCM of
3802 * near_copies and raid_disks.
3803 * So if far_copies > 1 && !far_offset, fail.
3804 * Else find LCM(raid_disks, near_copy)*far_copies and
3805 * multiply by chunk_size. Then round to this number.
3806 * This is mostly done by raid10_size()
3808 struct r10conf *conf = mddev->private;
3809 sector_t oldsize, size;
3811 if (mddev->reshape_position != MaxSector)
3812 return -EBUSY;
3814 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3815 return -EINVAL;
3817 oldsize = raid10_size(mddev, 0, 0);
3818 size = raid10_size(mddev, sectors, 0);
3819 if (mddev->external_size &&
3820 mddev->array_sectors > size)
3821 return -EINVAL;
3822 if (mddev->bitmap) {
3823 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3824 if (ret)
3825 return ret;
3827 md_set_array_sectors(mddev, size);
3828 if (mddev->queue) {
3829 set_capacity(mddev->gendisk, mddev->array_sectors);
3830 revalidate_disk(mddev->gendisk);
3832 if (sectors > mddev->dev_sectors &&
3833 mddev->recovery_cp > oldsize) {
3834 mddev->recovery_cp = oldsize;
3835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3837 calc_sectors(conf, sectors);
3838 mddev->dev_sectors = conf->dev_sectors;
3839 mddev->resync_max_sectors = size;
3840 return 0;
3843 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3845 struct md_rdev *rdev;
3846 struct r10conf *conf;
3848 if (mddev->degraded > 0) {
3849 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3850 mdname(mddev));
3851 return ERR_PTR(-EINVAL);
3853 sector_div(size, devs);
3855 /* Set new parameters */
3856 mddev->new_level = 10;
3857 /* new layout: far_copies = 1, near_copies = 2 */
3858 mddev->new_layout = (1<<8) + 2;
3859 mddev->new_chunk_sectors = mddev->chunk_sectors;
3860 mddev->delta_disks = mddev->raid_disks;
3861 mddev->raid_disks *= 2;
3862 /* make sure it will be not marked as dirty */
3863 mddev->recovery_cp = MaxSector;
3864 mddev->dev_sectors = size;
3866 conf = setup_conf(mddev);
3867 if (!IS_ERR(conf)) {
3868 rdev_for_each(rdev, mddev)
3869 if (rdev->raid_disk >= 0) {
3870 rdev->new_raid_disk = rdev->raid_disk * 2;
3871 rdev->sectors = size;
3873 conf->barrier = 1;
3876 return conf;
3879 static void *raid10_takeover(struct mddev *mddev)
3881 struct r0conf *raid0_conf;
3883 /* raid10 can take over:
3884 * raid0 - providing it has only two drives
3886 if (mddev->level == 0) {
3887 /* for raid0 takeover only one zone is supported */
3888 raid0_conf = mddev->private;
3889 if (raid0_conf->nr_strip_zones > 1) {
3890 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3891 " with more than one zone.\n",
3892 mdname(mddev));
3893 return ERR_PTR(-EINVAL);
3895 return raid10_takeover_raid0(mddev,
3896 raid0_conf->strip_zone->zone_end,
3897 raid0_conf->strip_zone->nb_dev);
3899 return ERR_PTR(-EINVAL);
3902 static int raid10_check_reshape(struct mddev *mddev)
3904 /* Called when there is a request to change
3905 * - layout (to ->new_layout)
3906 * - chunk size (to ->new_chunk_sectors)
3907 * - raid_disks (by delta_disks)
3908 * or when trying to restart a reshape that was ongoing.
3910 * We need to validate the request and possibly allocate
3911 * space if that might be an issue later.
3913 * Currently we reject any reshape of a 'far' mode array,
3914 * allow chunk size to change if new is generally acceptable,
3915 * allow raid_disks to increase, and allow
3916 * a switch between 'near' mode and 'offset' mode.
3918 struct r10conf *conf = mddev->private;
3919 struct geom geo;
3921 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3922 return -EINVAL;
3924 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3925 /* mustn't change number of copies */
3926 return -EINVAL;
3927 if (geo.far_copies > 1 && !geo.far_offset)
3928 /* Cannot switch to 'far' mode */
3929 return -EINVAL;
3931 if (mddev->array_sectors & geo.chunk_mask)
3932 /* not factor of array size */
3933 return -EINVAL;
3935 if (!enough(conf, -1))
3936 return -EINVAL;
3938 kfree(conf->mirrors_new);
3939 conf->mirrors_new = NULL;
3940 if (mddev->delta_disks > 0) {
3941 /* allocate new 'mirrors' list */
3942 conf->mirrors_new = kzalloc(
3943 sizeof(struct raid10_info)
3944 *(mddev->raid_disks +
3945 mddev->delta_disks),
3946 GFP_KERNEL);
3947 if (!conf->mirrors_new)
3948 return -ENOMEM;
3950 return 0;
3954 * Need to check if array has failed when deciding whether to:
3955 * - start an array
3956 * - remove non-faulty devices
3957 * - add a spare
3958 * - allow a reshape
3959 * This determination is simple when no reshape is happening.
3960 * However if there is a reshape, we need to carefully check
3961 * both the before and after sections.
3962 * This is because some failed devices may only affect one
3963 * of the two sections, and some non-in_sync devices may
3964 * be insync in the section most affected by failed devices.
3966 static int calc_degraded(struct r10conf *conf)
3968 int degraded, degraded2;
3969 int i;
3971 rcu_read_lock();
3972 degraded = 0;
3973 /* 'prev' section first */
3974 for (i = 0; i < conf->prev.raid_disks; i++) {
3975 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3976 if (!rdev || test_bit(Faulty, &rdev->flags))
3977 degraded++;
3978 else if (!test_bit(In_sync, &rdev->flags))
3979 /* When we can reduce the number of devices in
3980 * an array, this might not contribute to
3981 * 'degraded'. It does now.
3983 degraded++;
3985 rcu_read_unlock();
3986 if (conf->geo.raid_disks == conf->prev.raid_disks)
3987 return degraded;
3988 rcu_read_lock();
3989 degraded2 = 0;
3990 for (i = 0; i < conf->geo.raid_disks; i++) {
3991 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3992 if (!rdev || test_bit(Faulty, &rdev->flags))
3993 degraded2++;
3994 else if (!test_bit(In_sync, &rdev->flags)) {
3995 /* If reshape is increasing the number of devices,
3996 * this section has already been recovered, so
3997 * it doesn't contribute to degraded.
3998 * else it does.
4000 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4001 degraded2++;
4004 rcu_read_unlock();
4005 if (degraded2 > degraded)
4006 return degraded2;
4007 return degraded;
4010 static int raid10_start_reshape(struct mddev *mddev)
4012 /* A 'reshape' has been requested. This commits
4013 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4014 * This also checks if there are enough spares and adds them
4015 * to the array.
4016 * We currently require enough spares to make the final
4017 * array non-degraded. We also require that the difference
4018 * between old and new data_offset - on each device - is
4019 * enough that we never risk over-writing.
4022 unsigned long before_length, after_length;
4023 sector_t min_offset_diff = 0;
4024 int first = 1;
4025 struct geom new;
4026 struct r10conf *conf = mddev->private;
4027 struct md_rdev *rdev;
4028 int spares = 0;
4029 int ret;
4031 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4032 return -EBUSY;
4034 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4035 return -EINVAL;
4037 before_length = ((1 << conf->prev.chunk_shift) *
4038 conf->prev.far_copies);
4039 after_length = ((1 << conf->geo.chunk_shift) *
4040 conf->geo.far_copies);
4042 rdev_for_each(rdev, mddev) {
4043 if (!test_bit(In_sync, &rdev->flags)
4044 && !test_bit(Faulty, &rdev->flags))
4045 spares++;
4046 if (rdev->raid_disk >= 0) {
4047 long long diff = (rdev->new_data_offset
4048 - rdev->data_offset);
4049 if (!mddev->reshape_backwards)
4050 diff = -diff;
4051 if (diff < 0)
4052 diff = 0;
4053 if (first || diff < min_offset_diff)
4054 min_offset_diff = diff;
4058 if (max(before_length, after_length) > min_offset_diff)
4059 return -EINVAL;
4061 if (spares < mddev->delta_disks)
4062 return -EINVAL;
4064 conf->offset_diff = min_offset_diff;
4065 spin_lock_irq(&conf->device_lock);
4066 if (conf->mirrors_new) {
4067 memcpy(conf->mirrors_new, conf->mirrors,
4068 sizeof(struct raid10_info)*conf->prev.raid_disks);
4069 smp_mb();
4070 kfree(conf->mirrors_old);
4071 conf->mirrors_old = conf->mirrors;
4072 conf->mirrors = conf->mirrors_new;
4073 conf->mirrors_new = NULL;
4075 setup_geo(&conf->geo, mddev, geo_start);
4076 smp_mb();
4077 if (mddev->reshape_backwards) {
4078 sector_t size = raid10_size(mddev, 0, 0);
4079 if (size < mddev->array_sectors) {
4080 spin_unlock_irq(&conf->device_lock);
4081 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4082 mdname(mddev));
4083 return -EINVAL;
4085 mddev->resync_max_sectors = size;
4086 conf->reshape_progress = size;
4087 } else
4088 conf->reshape_progress = 0;
4089 conf->reshape_safe = conf->reshape_progress;
4090 spin_unlock_irq(&conf->device_lock);
4092 if (mddev->delta_disks && mddev->bitmap) {
4093 ret = bitmap_resize(mddev->bitmap,
4094 raid10_size(mddev, 0,
4095 conf->geo.raid_disks),
4096 0, 0);
4097 if (ret)
4098 goto abort;
4100 if (mddev->delta_disks > 0) {
4101 rdev_for_each(rdev, mddev)
4102 if (rdev->raid_disk < 0 &&
4103 !test_bit(Faulty, &rdev->flags)) {
4104 if (raid10_add_disk(mddev, rdev) == 0) {
4105 if (rdev->raid_disk >=
4106 conf->prev.raid_disks)
4107 set_bit(In_sync, &rdev->flags);
4108 else
4109 rdev->recovery_offset = 0;
4111 if (sysfs_link_rdev(mddev, rdev))
4112 /* Failure here is OK */;
4114 } else if (rdev->raid_disk >= conf->prev.raid_disks
4115 && !test_bit(Faulty, &rdev->flags)) {
4116 /* This is a spare that was manually added */
4117 set_bit(In_sync, &rdev->flags);
4120 /* When a reshape changes the number of devices,
4121 * ->degraded is measured against the larger of the
4122 * pre and post numbers.
4124 spin_lock_irq(&conf->device_lock);
4125 mddev->degraded = calc_degraded(conf);
4126 spin_unlock_irq(&conf->device_lock);
4127 mddev->raid_disks = conf->geo.raid_disks;
4128 mddev->reshape_position = conf->reshape_progress;
4129 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4131 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4132 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4133 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4134 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4135 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4137 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4138 "reshape");
4139 if (!mddev->sync_thread) {
4140 ret = -EAGAIN;
4141 goto abort;
4143 conf->reshape_checkpoint = jiffies;
4144 md_wakeup_thread(mddev->sync_thread);
4145 md_new_event(mddev);
4146 return 0;
4148 abort:
4149 mddev->recovery = 0;
4150 spin_lock_irq(&conf->device_lock);
4151 conf->geo = conf->prev;
4152 mddev->raid_disks = conf->geo.raid_disks;
4153 rdev_for_each(rdev, mddev)
4154 rdev->new_data_offset = rdev->data_offset;
4155 smp_wmb();
4156 conf->reshape_progress = MaxSector;
4157 conf->reshape_safe = MaxSector;
4158 mddev->reshape_position = MaxSector;
4159 spin_unlock_irq(&conf->device_lock);
4160 return ret;
4163 /* Calculate the last device-address that could contain
4164 * any block from the chunk that includes the array-address 's'
4165 * and report the next address.
4166 * i.e. the address returned will be chunk-aligned and after
4167 * any data that is in the chunk containing 's'.
4169 static sector_t last_dev_address(sector_t s, struct geom *geo)
4171 s = (s | geo->chunk_mask) + 1;
4172 s >>= geo->chunk_shift;
4173 s *= geo->near_copies;
4174 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4175 s *= geo->far_copies;
4176 s <<= geo->chunk_shift;
4177 return s;
4180 /* Calculate the first device-address that could contain
4181 * any block from the chunk that includes the array-address 's'.
4182 * This too will be the start of a chunk
4184 static sector_t first_dev_address(sector_t s, struct geom *geo)
4186 s >>= geo->chunk_shift;
4187 s *= geo->near_copies;
4188 sector_div(s, geo->raid_disks);
4189 s *= geo->far_copies;
4190 s <<= geo->chunk_shift;
4191 return s;
4194 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4195 int *skipped)
4197 /* We simply copy at most one chunk (smallest of old and new)
4198 * at a time, possibly less if that exceeds RESYNC_PAGES,
4199 * or we hit a bad block or something.
4200 * This might mean we pause for normal IO in the middle of
4201 * a chunk, but that is not a problem as mddev->reshape_position
4202 * can record any location.
4204 * If we will want to write to a location that isn't
4205 * yet recorded as 'safe' (i.e. in metadata on disk) then
4206 * we need to flush all reshape requests and update the metadata.
4208 * When reshaping forwards (e.g. to more devices), we interpret
4209 * 'safe' as the earliest block which might not have been copied
4210 * down yet. We divide this by previous stripe size and multiply
4211 * by previous stripe length to get lowest device offset that we
4212 * cannot write to yet.
4213 * We interpret 'sector_nr' as an address that we want to write to.
4214 * From this we use last_device_address() to find where we might
4215 * write to, and first_device_address on the 'safe' position.
4216 * If this 'next' write position is after the 'safe' position,
4217 * we must update the metadata to increase the 'safe' position.
4219 * When reshaping backwards, we round in the opposite direction
4220 * and perform the reverse test: next write position must not be
4221 * less than current safe position.
4223 * In all this the minimum difference in data offsets
4224 * (conf->offset_diff - always positive) allows a bit of slack,
4225 * so next can be after 'safe', but not by more than offset_diff
4227 * We need to prepare all the bios here before we start any IO
4228 * to ensure the size we choose is acceptable to all devices.
4229 * The means one for each copy for write-out and an extra one for
4230 * read-in.
4231 * We store the read-in bio in ->master_bio and the others in
4232 * ->devs[x].bio and ->devs[x].repl_bio.
4234 struct r10conf *conf = mddev->private;
4235 struct r10bio *r10_bio;
4236 sector_t next, safe, last;
4237 int max_sectors;
4238 int nr_sectors;
4239 int s;
4240 struct md_rdev *rdev;
4241 int need_flush = 0;
4242 struct bio *blist;
4243 struct bio *bio, *read_bio;
4244 int sectors_done = 0;
4246 if (sector_nr == 0) {
4247 /* If restarting in the middle, skip the initial sectors */
4248 if (mddev->reshape_backwards &&
4249 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4250 sector_nr = (raid10_size(mddev, 0, 0)
4251 - conf->reshape_progress);
4252 } else if (!mddev->reshape_backwards &&
4253 conf->reshape_progress > 0)
4254 sector_nr = conf->reshape_progress;
4255 if (sector_nr) {
4256 mddev->curr_resync_completed = sector_nr;
4257 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4258 *skipped = 1;
4259 return sector_nr;
4263 /* We don't use sector_nr to track where we are up to
4264 * as that doesn't work well for ->reshape_backwards.
4265 * So just use ->reshape_progress.
4267 if (mddev->reshape_backwards) {
4268 /* 'next' is the earliest device address that we might
4269 * write to for this chunk in the new layout
4271 next = first_dev_address(conf->reshape_progress - 1,
4272 &conf->geo);
4274 /* 'safe' is the last device address that we might read from
4275 * in the old layout after a restart
4277 safe = last_dev_address(conf->reshape_safe - 1,
4278 &conf->prev);
4280 if (next + conf->offset_diff < safe)
4281 need_flush = 1;
4283 last = conf->reshape_progress - 1;
4284 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4285 & conf->prev.chunk_mask);
4286 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4287 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4288 } else {
4289 /* 'next' is after the last device address that we
4290 * might write to for this chunk in the new layout
4292 next = last_dev_address(conf->reshape_progress, &conf->geo);
4294 /* 'safe' is the earliest device address that we might
4295 * read from in the old layout after a restart
4297 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4299 /* Need to update metadata if 'next' might be beyond 'safe'
4300 * as that would possibly corrupt data
4302 if (next > safe + conf->offset_diff)
4303 need_flush = 1;
4305 sector_nr = conf->reshape_progress;
4306 last = sector_nr | (conf->geo.chunk_mask
4307 & conf->prev.chunk_mask);
4309 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4310 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4313 if (need_flush ||
4314 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4315 /* Need to update reshape_position in metadata */
4316 wait_barrier(conf);
4317 mddev->reshape_position = conf->reshape_progress;
4318 if (mddev->reshape_backwards)
4319 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4320 - conf->reshape_progress;
4321 else
4322 mddev->curr_resync_completed = conf->reshape_progress;
4323 conf->reshape_checkpoint = jiffies;
4324 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325 md_wakeup_thread(mddev->thread);
4326 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4327 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4328 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4329 allow_barrier(conf);
4330 return sectors_done;
4332 conf->reshape_safe = mddev->reshape_position;
4333 allow_barrier(conf);
4336 read_more:
4337 /* Now schedule reads for blocks from sector_nr to last */
4338 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4339 r10_bio->state = 0;
4340 raise_barrier(conf, sectors_done != 0);
4341 atomic_set(&r10_bio->remaining, 0);
4342 r10_bio->mddev = mddev;
4343 r10_bio->sector = sector_nr;
4344 set_bit(R10BIO_IsReshape, &r10_bio->state);
4345 r10_bio->sectors = last - sector_nr + 1;
4346 rdev = read_balance(conf, r10_bio, &max_sectors);
4347 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4349 if (!rdev) {
4350 /* Cannot read from here, so need to record bad blocks
4351 * on all the target devices.
4353 // FIXME
4354 mempool_free(r10_bio, conf->r10buf_pool);
4355 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4356 return sectors_done;
4359 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4361 read_bio->bi_bdev = rdev->bdev;
4362 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4363 + rdev->data_offset);
4364 read_bio->bi_private = r10_bio;
4365 read_bio->bi_end_io = end_sync_read;
4366 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4367 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4368 read_bio->bi_error = 0;
4369 read_bio->bi_vcnt = 0;
4370 read_bio->bi_iter.bi_size = 0;
4371 r10_bio->master_bio = read_bio;
4372 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4374 /* Now find the locations in the new layout */
4375 __raid10_find_phys(&conf->geo, r10_bio);
4377 blist = read_bio;
4378 read_bio->bi_next = NULL;
4380 rcu_read_lock();
4381 for (s = 0; s < conf->copies*2; s++) {
4382 struct bio *b;
4383 int d = r10_bio->devs[s/2].devnum;
4384 struct md_rdev *rdev2;
4385 if (s&1) {
4386 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4387 b = r10_bio->devs[s/2].repl_bio;
4388 } else {
4389 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4390 b = r10_bio->devs[s/2].bio;
4392 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4393 continue;
4395 bio_reset(b);
4396 b->bi_bdev = rdev2->bdev;
4397 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4398 rdev2->new_data_offset;
4399 b->bi_private = r10_bio;
4400 b->bi_end_io = end_reshape_write;
4401 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4402 b->bi_next = blist;
4403 blist = b;
4406 /* Now add as many pages as possible to all of these bios. */
4408 nr_sectors = 0;
4409 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4410 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4411 int len = (max_sectors - s) << 9;
4412 if (len > PAGE_SIZE)
4413 len = PAGE_SIZE;
4414 for (bio = blist; bio ; bio = bio->bi_next) {
4415 struct bio *bio2;
4416 if (bio_add_page(bio, page, len, 0))
4417 continue;
4419 /* Didn't fit, must stop */
4420 for (bio2 = blist;
4421 bio2 && bio2 != bio;
4422 bio2 = bio2->bi_next) {
4423 /* Remove last page from this bio */
4424 bio2->bi_vcnt--;
4425 bio2->bi_iter.bi_size -= len;
4426 bio_clear_flag(bio2, BIO_SEG_VALID);
4428 goto bio_full;
4430 sector_nr += len >> 9;
4431 nr_sectors += len >> 9;
4433 bio_full:
4434 rcu_read_unlock();
4435 r10_bio->sectors = nr_sectors;
4437 /* Now submit the read */
4438 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4439 atomic_inc(&r10_bio->remaining);
4440 read_bio->bi_next = NULL;
4441 generic_make_request(read_bio);
4442 sector_nr += nr_sectors;
4443 sectors_done += nr_sectors;
4444 if (sector_nr <= last)
4445 goto read_more;
4447 /* Now that we have done the whole section we can
4448 * update reshape_progress
4450 if (mddev->reshape_backwards)
4451 conf->reshape_progress -= sectors_done;
4452 else
4453 conf->reshape_progress += sectors_done;
4455 return sectors_done;
4458 static void end_reshape_request(struct r10bio *r10_bio);
4459 static int handle_reshape_read_error(struct mddev *mddev,
4460 struct r10bio *r10_bio);
4461 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4463 /* Reshape read completed. Hopefully we have a block
4464 * to write out.
4465 * If we got a read error then we do sync 1-page reads from
4466 * elsewhere until we find the data - or give up.
4468 struct r10conf *conf = mddev->private;
4469 int s;
4471 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4472 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4473 /* Reshape has been aborted */
4474 md_done_sync(mddev, r10_bio->sectors, 0);
4475 return;
4478 /* We definitely have the data in the pages, schedule the
4479 * writes.
4481 atomic_set(&r10_bio->remaining, 1);
4482 for (s = 0; s < conf->copies*2; s++) {
4483 struct bio *b;
4484 int d = r10_bio->devs[s/2].devnum;
4485 struct md_rdev *rdev;
4486 rcu_read_lock();
4487 if (s&1) {
4488 rdev = rcu_dereference(conf->mirrors[d].replacement);
4489 b = r10_bio->devs[s/2].repl_bio;
4490 } else {
4491 rdev = rcu_dereference(conf->mirrors[d].rdev);
4492 b = r10_bio->devs[s/2].bio;
4494 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4495 rcu_read_unlock();
4496 continue;
4498 atomic_inc(&rdev->nr_pending);
4499 rcu_read_unlock();
4500 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4501 atomic_inc(&r10_bio->remaining);
4502 b->bi_next = NULL;
4503 generic_make_request(b);
4505 end_reshape_request(r10_bio);
4508 static void end_reshape(struct r10conf *conf)
4510 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4511 return;
4513 spin_lock_irq(&conf->device_lock);
4514 conf->prev = conf->geo;
4515 md_finish_reshape(conf->mddev);
4516 smp_wmb();
4517 conf->reshape_progress = MaxSector;
4518 conf->reshape_safe = MaxSector;
4519 spin_unlock_irq(&conf->device_lock);
4521 /* read-ahead size must cover two whole stripes, which is
4522 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4524 if (conf->mddev->queue) {
4525 int stripe = conf->geo.raid_disks *
4526 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4527 stripe /= conf->geo.near_copies;
4528 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4529 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4531 conf->fullsync = 0;
4534 static int handle_reshape_read_error(struct mddev *mddev,
4535 struct r10bio *r10_bio)
4537 /* Use sync reads to get the blocks from somewhere else */
4538 int sectors = r10_bio->sectors;
4539 struct r10conf *conf = mddev->private;
4540 struct {
4541 struct r10bio r10_bio;
4542 struct r10dev devs[conf->copies];
4543 } on_stack;
4544 struct r10bio *r10b = &on_stack.r10_bio;
4545 int slot = 0;
4546 int idx = 0;
4547 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4549 r10b->sector = r10_bio->sector;
4550 __raid10_find_phys(&conf->prev, r10b);
4552 while (sectors) {
4553 int s = sectors;
4554 int success = 0;
4555 int first_slot = slot;
4557 if (s > (PAGE_SIZE >> 9))
4558 s = PAGE_SIZE >> 9;
4560 rcu_read_lock();
4561 while (!success) {
4562 int d = r10b->devs[slot].devnum;
4563 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4564 sector_t addr;
4565 if (rdev == NULL ||
4566 test_bit(Faulty, &rdev->flags) ||
4567 !test_bit(In_sync, &rdev->flags))
4568 goto failed;
4570 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4571 atomic_inc(&rdev->nr_pending);
4572 rcu_read_unlock();
4573 success = sync_page_io(rdev,
4574 addr,
4575 s << 9,
4576 bvec[idx].bv_page,
4577 REQ_OP_READ, 0, false);
4578 rdev_dec_pending(rdev, mddev);
4579 rcu_read_lock();
4580 if (success)
4581 break;
4582 failed:
4583 slot++;
4584 if (slot >= conf->copies)
4585 slot = 0;
4586 if (slot == first_slot)
4587 break;
4589 rcu_read_unlock();
4590 if (!success) {
4591 /* couldn't read this block, must give up */
4592 set_bit(MD_RECOVERY_INTR,
4593 &mddev->recovery);
4594 return -EIO;
4596 sectors -= s;
4597 idx++;
4599 return 0;
4602 static void end_reshape_write(struct bio *bio)
4604 struct r10bio *r10_bio = bio->bi_private;
4605 struct mddev *mddev = r10_bio->mddev;
4606 struct r10conf *conf = mddev->private;
4607 int d;
4608 int slot;
4609 int repl;
4610 struct md_rdev *rdev = NULL;
4612 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4613 if (repl)
4614 rdev = conf->mirrors[d].replacement;
4615 if (!rdev) {
4616 smp_mb();
4617 rdev = conf->mirrors[d].rdev;
4620 if (bio->bi_error) {
4621 /* FIXME should record badblock */
4622 md_error(mddev, rdev);
4625 rdev_dec_pending(rdev, mddev);
4626 end_reshape_request(r10_bio);
4629 static void end_reshape_request(struct r10bio *r10_bio)
4631 if (!atomic_dec_and_test(&r10_bio->remaining))
4632 return;
4633 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4634 bio_put(r10_bio->master_bio);
4635 put_buf(r10_bio);
4638 static void raid10_finish_reshape(struct mddev *mddev)
4640 struct r10conf *conf = mddev->private;
4642 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4643 return;
4645 if (mddev->delta_disks > 0) {
4646 sector_t size = raid10_size(mddev, 0, 0);
4647 md_set_array_sectors(mddev, size);
4648 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4649 mddev->recovery_cp = mddev->resync_max_sectors;
4650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4652 mddev->resync_max_sectors = size;
4653 if (mddev->queue) {
4654 set_capacity(mddev->gendisk, mddev->array_sectors);
4655 revalidate_disk(mddev->gendisk);
4657 } else {
4658 int d;
4659 rcu_read_lock();
4660 for (d = conf->geo.raid_disks ;
4661 d < conf->geo.raid_disks - mddev->delta_disks;
4662 d++) {
4663 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4664 if (rdev)
4665 clear_bit(In_sync, &rdev->flags);
4666 rdev = rcu_dereference(conf->mirrors[d].replacement);
4667 if (rdev)
4668 clear_bit(In_sync, &rdev->flags);
4670 rcu_read_unlock();
4672 mddev->layout = mddev->new_layout;
4673 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4674 mddev->reshape_position = MaxSector;
4675 mddev->delta_disks = 0;
4676 mddev->reshape_backwards = 0;
4679 static struct md_personality raid10_personality =
4681 .name = "raid10",
4682 .level = 10,
4683 .owner = THIS_MODULE,
4684 .make_request = raid10_make_request,
4685 .run = raid10_run,
4686 .free = raid10_free,
4687 .status = raid10_status,
4688 .error_handler = raid10_error,
4689 .hot_add_disk = raid10_add_disk,
4690 .hot_remove_disk= raid10_remove_disk,
4691 .spare_active = raid10_spare_active,
4692 .sync_request = raid10_sync_request,
4693 .quiesce = raid10_quiesce,
4694 .size = raid10_size,
4695 .resize = raid10_resize,
4696 .takeover = raid10_takeover,
4697 .check_reshape = raid10_check_reshape,
4698 .start_reshape = raid10_start_reshape,
4699 .finish_reshape = raid10_finish_reshape,
4700 .congested = raid10_congested,
4703 static int __init raid_init(void)
4705 return register_md_personality(&raid10_personality);
4708 static void raid_exit(void)
4710 unregister_md_personality(&raid10_personality);
4713 module_init(raid_init);
4714 module_exit(raid_exit);
4715 MODULE_LICENSE("GPL");
4716 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4717 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4718 MODULE_ALIAS("md-raid10");
4719 MODULE_ALIAS("md-level-10");
4721 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);