rhashtable: Remove obj_raw_hashfn
[linux-2.6/btrfs-unstable.git] / kernel / power / swap.c
blob570aff817543fc8484b08ecdba09da4751acf060
1 /*
2 * linux/kernel/power/swap.c
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 * This file is released under the GPLv2.
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
35 #include "power.h"
37 #define HIBERNATE_SIG "S1SUSPEND"
40 * The swap map is a data structure used for keeping track of each page
41 * written to a swap partition. It consists of many swap_map_page
42 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43 * These structures are stored on the swap and linked together with the
44 * help of the .next_swap member.
46 * The swap map is created during suspend. The swap map pages are
47 * allocated and populated one at a time, so we only need one memory
48 * page to set up the entire structure.
50 * During resume we pick up all swap_map_page structures into a list.
53 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
56 * Number of free pages that are not high.
58 static inline unsigned long low_free_pages(void)
60 return nr_free_pages() - nr_free_highpages();
64 * Number of pages required to be kept free while writing the image. Always
65 * half of all available low pages before the writing starts.
67 static inline unsigned long reqd_free_pages(void)
69 return low_free_pages() / 2;
72 struct swap_map_page {
73 sector_t entries[MAP_PAGE_ENTRIES];
74 sector_t next_swap;
77 struct swap_map_page_list {
78 struct swap_map_page *map;
79 struct swap_map_page_list *next;
82 /**
83 * The swap_map_handle structure is used for handling swap in
84 * a file-alike way
87 struct swap_map_handle {
88 struct swap_map_page *cur;
89 struct swap_map_page_list *maps;
90 sector_t cur_swap;
91 sector_t first_sector;
92 unsigned int k;
93 unsigned long reqd_free_pages;
94 u32 crc32;
97 struct swsusp_header {
98 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 sizeof(u32)];
100 u32 crc32;
101 sector_t image;
102 unsigned int flags; /* Flags to pass to the "boot" kernel */
103 char orig_sig[10];
104 char sig[10];
105 } __packed;
107 static struct swsusp_header *swsusp_header;
110 * The following functions are used for tracing the allocated
111 * swap pages, so that they can be freed in case of an error.
114 struct swsusp_extent {
115 struct rb_node node;
116 unsigned long start;
117 unsigned long end;
120 static struct rb_root swsusp_extents = RB_ROOT;
122 static int swsusp_extents_insert(unsigned long swap_offset)
124 struct rb_node **new = &(swsusp_extents.rb_node);
125 struct rb_node *parent = NULL;
126 struct swsusp_extent *ext;
128 /* Figure out where to put the new node */
129 while (*new) {
130 ext = rb_entry(*new, struct swsusp_extent, node);
131 parent = *new;
132 if (swap_offset < ext->start) {
133 /* Try to merge */
134 if (swap_offset == ext->start - 1) {
135 ext->start--;
136 return 0;
138 new = &((*new)->rb_left);
139 } else if (swap_offset > ext->end) {
140 /* Try to merge */
141 if (swap_offset == ext->end + 1) {
142 ext->end++;
143 return 0;
145 new = &((*new)->rb_right);
146 } else {
147 /* It already is in the tree */
148 return -EINVAL;
151 /* Add the new node and rebalance the tree. */
152 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 if (!ext)
154 return -ENOMEM;
156 ext->start = swap_offset;
157 ext->end = swap_offset;
158 rb_link_node(&ext->node, parent, new);
159 rb_insert_color(&ext->node, &swsusp_extents);
160 return 0;
164 * alloc_swapdev_block - allocate a swap page and register that it has
165 * been allocated, so that it can be freed in case of an error.
168 sector_t alloc_swapdev_block(int swap)
170 unsigned long offset;
172 offset = swp_offset(get_swap_page_of_type(swap));
173 if (offset) {
174 if (swsusp_extents_insert(offset))
175 swap_free(swp_entry(swap, offset));
176 else
177 return swapdev_block(swap, offset);
179 return 0;
183 * free_all_swap_pages - free swap pages allocated for saving image data.
184 * It also frees the extents used to register which swap entries had been
185 * allocated.
188 void free_all_swap_pages(int swap)
190 struct rb_node *node;
192 while ((node = swsusp_extents.rb_node)) {
193 struct swsusp_extent *ext;
194 unsigned long offset;
196 ext = container_of(node, struct swsusp_extent, node);
197 rb_erase(node, &swsusp_extents);
198 for (offset = ext->start; offset <= ext->end; offset++)
199 swap_free(swp_entry(swap, offset));
201 kfree(ext);
205 int swsusp_swap_in_use(void)
207 return (swsusp_extents.rb_node != NULL);
211 * General things
214 static unsigned short root_swap = 0xffff;
215 struct block_device *hib_resume_bdev;
218 * Saving part
221 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
223 int error;
225 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
226 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
227 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
228 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
229 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
230 swsusp_header->image = handle->first_sector;
231 swsusp_header->flags = flags;
232 if (flags & SF_CRC32_MODE)
233 swsusp_header->crc32 = handle->crc32;
234 error = hib_bio_write_page(swsusp_resume_block,
235 swsusp_header, NULL);
236 } else {
237 printk(KERN_ERR "PM: Swap header not found!\n");
238 error = -ENODEV;
240 return error;
244 * swsusp_swap_check - check if the resume device is a swap device
245 * and get its index (if so)
247 * This is called before saving image
249 static int swsusp_swap_check(void)
251 int res;
253 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
254 &hib_resume_bdev);
255 if (res < 0)
256 return res;
258 root_swap = res;
259 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
260 if (res)
261 return res;
263 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
264 if (res < 0)
265 blkdev_put(hib_resume_bdev, FMODE_WRITE);
267 return res;
271 * write_page - Write one page to given swap location.
272 * @buf: Address we're writing.
273 * @offset: Offset of the swap page we're writing to.
274 * @bio_chain: Link the next write BIO here
277 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
279 void *src;
280 int ret;
282 if (!offset)
283 return -ENOSPC;
285 if (bio_chain) {
286 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
287 __GFP_NORETRY);
288 if (src) {
289 copy_page(src, buf);
290 } else {
291 ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
292 if (ret)
293 return ret;
294 src = (void *)__get_free_page(__GFP_WAIT |
295 __GFP_NOWARN |
296 __GFP_NORETRY);
297 if (src) {
298 copy_page(src, buf);
299 } else {
300 WARN_ON_ONCE(1);
301 bio_chain = NULL; /* Go synchronous */
302 src = buf;
305 } else {
306 src = buf;
308 return hib_bio_write_page(offset, src, bio_chain);
311 static void release_swap_writer(struct swap_map_handle *handle)
313 if (handle->cur)
314 free_page((unsigned long)handle->cur);
315 handle->cur = NULL;
318 static int get_swap_writer(struct swap_map_handle *handle)
320 int ret;
322 ret = swsusp_swap_check();
323 if (ret) {
324 if (ret != -ENOSPC)
325 printk(KERN_ERR "PM: Cannot find swap device, try "
326 "swapon -a.\n");
327 return ret;
329 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
330 if (!handle->cur) {
331 ret = -ENOMEM;
332 goto err_close;
334 handle->cur_swap = alloc_swapdev_block(root_swap);
335 if (!handle->cur_swap) {
336 ret = -ENOSPC;
337 goto err_rel;
339 handle->k = 0;
340 handle->reqd_free_pages = reqd_free_pages();
341 handle->first_sector = handle->cur_swap;
342 return 0;
343 err_rel:
344 release_swap_writer(handle);
345 err_close:
346 swsusp_close(FMODE_WRITE);
347 return ret;
350 static int swap_write_page(struct swap_map_handle *handle, void *buf,
351 struct bio **bio_chain)
353 int error = 0;
354 sector_t offset;
356 if (!handle->cur)
357 return -EINVAL;
358 offset = alloc_swapdev_block(root_swap);
359 error = write_page(buf, offset, bio_chain);
360 if (error)
361 return error;
362 handle->cur->entries[handle->k++] = offset;
363 if (handle->k >= MAP_PAGE_ENTRIES) {
364 offset = alloc_swapdev_block(root_swap);
365 if (!offset)
366 return -ENOSPC;
367 handle->cur->next_swap = offset;
368 error = write_page(handle->cur, handle->cur_swap, bio_chain);
369 if (error)
370 goto out;
371 clear_page(handle->cur);
372 handle->cur_swap = offset;
373 handle->k = 0;
375 if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
376 error = hib_wait_on_bio_chain(bio_chain);
377 if (error)
378 goto out;
380 * Recalculate the number of required free pages, to
381 * make sure we never take more than half.
383 handle->reqd_free_pages = reqd_free_pages();
386 out:
387 return error;
390 static int flush_swap_writer(struct swap_map_handle *handle)
392 if (handle->cur && handle->cur_swap)
393 return write_page(handle->cur, handle->cur_swap, NULL);
394 else
395 return -EINVAL;
398 static int swap_writer_finish(struct swap_map_handle *handle,
399 unsigned int flags, int error)
401 if (!error) {
402 flush_swap_writer(handle);
403 printk(KERN_INFO "PM: S");
404 error = mark_swapfiles(handle, flags);
405 printk("|\n");
408 if (error)
409 free_all_swap_pages(root_swap);
410 release_swap_writer(handle);
411 swsusp_close(FMODE_WRITE);
413 return error;
416 /* We need to remember how much compressed data we need to read. */
417 #define LZO_HEADER sizeof(size_t)
419 /* Number of pages/bytes we'll compress at one time. */
420 #define LZO_UNC_PAGES 32
421 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
423 /* Number of pages/bytes we need for compressed data (worst case). */
424 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
425 LZO_HEADER, PAGE_SIZE)
426 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
428 /* Maximum number of threads for compression/decompression. */
429 #define LZO_THREADS 3
431 /* Minimum/maximum number of pages for read buffering. */
432 #define LZO_MIN_RD_PAGES 1024
433 #define LZO_MAX_RD_PAGES 8192
437 * save_image - save the suspend image data
440 static int save_image(struct swap_map_handle *handle,
441 struct snapshot_handle *snapshot,
442 unsigned int nr_to_write)
444 unsigned int m;
445 int ret;
446 int nr_pages;
447 int err2;
448 struct bio *bio;
449 ktime_t start;
450 ktime_t stop;
452 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
453 nr_to_write);
454 m = nr_to_write / 10;
455 if (!m)
456 m = 1;
457 nr_pages = 0;
458 bio = NULL;
459 start = ktime_get();
460 while (1) {
461 ret = snapshot_read_next(snapshot);
462 if (ret <= 0)
463 break;
464 ret = swap_write_page(handle, data_of(*snapshot), &bio);
465 if (ret)
466 break;
467 if (!(nr_pages % m))
468 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
469 nr_pages / m * 10);
470 nr_pages++;
472 err2 = hib_wait_on_bio_chain(&bio);
473 stop = ktime_get();
474 if (!ret)
475 ret = err2;
476 if (!ret)
477 printk(KERN_INFO "PM: Image saving done.\n");
478 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
479 return ret;
483 * Structure used for CRC32.
485 struct crc_data {
486 struct task_struct *thr; /* thread */
487 atomic_t ready; /* ready to start flag */
488 atomic_t stop; /* ready to stop flag */
489 unsigned run_threads; /* nr current threads */
490 wait_queue_head_t go; /* start crc update */
491 wait_queue_head_t done; /* crc update done */
492 u32 *crc32; /* points to handle's crc32 */
493 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
494 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
498 * CRC32 update function that runs in its own thread.
500 static int crc32_threadfn(void *data)
502 struct crc_data *d = data;
503 unsigned i;
505 while (1) {
506 wait_event(d->go, atomic_read(&d->ready) ||
507 kthread_should_stop());
508 if (kthread_should_stop()) {
509 d->thr = NULL;
510 atomic_set(&d->stop, 1);
511 wake_up(&d->done);
512 break;
514 atomic_set(&d->ready, 0);
516 for (i = 0; i < d->run_threads; i++)
517 *d->crc32 = crc32_le(*d->crc32,
518 d->unc[i], *d->unc_len[i]);
519 atomic_set(&d->stop, 1);
520 wake_up(&d->done);
522 return 0;
525 * Structure used for LZO data compression.
527 struct cmp_data {
528 struct task_struct *thr; /* thread */
529 atomic_t ready; /* ready to start flag */
530 atomic_t stop; /* ready to stop flag */
531 int ret; /* return code */
532 wait_queue_head_t go; /* start compression */
533 wait_queue_head_t done; /* compression done */
534 size_t unc_len; /* uncompressed length */
535 size_t cmp_len; /* compressed length */
536 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
537 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
538 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
542 * Compression function that runs in its own thread.
544 static int lzo_compress_threadfn(void *data)
546 struct cmp_data *d = data;
548 while (1) {
549 wait_event(d->go, atomic_read(&d->ready) ||
550 kthread_should_stop());
551 if (kthread_should_stop()) {
552 d->thr = NULL;
553 d->ret = -1;
554 atomic_set(&d->stop, 1);
555 wake_up(&d->done);
556 break;
558 atomic_set(&d->ready, 0);
560 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
561 d->cmp + LZO_HEADER, &d->cmp_len,
562 d->wrk);
563 atomic_set(&d->stop, 1);
564 wake_up(&d->done);
566 return 0;
570 * save_image_lzo - Save the suspend image data compressed with LZO.
571 * @handle: Swap map handle to use for saving the image.
572 * @snapshot: Image to read data from.
573 * @nr_to_write: Number of pages to save.
575 static int save_image_lzo(struct swap_map_handle *handle,
576 struct snapshot_handle *snapshot,
577 unsigned int nr_to_write)
579 unsigned int m;
580 int ret = 0;
581 int nr_pages;
582 int err2;
583 struct bio *bio;
584 ktime_t start;
585 ktime_t stop;
586 size_t off;
587 unsigned thr, run_threads, nr_threads;
588 unsigned char *page = NULL;
589 struct cmp_data *data = NULL;
590 struct crc_data *crc = NULL;
593 * We'll limit the number of threads for compression to limit memory
594 * footprint.
596 nr_threads = num_online_cpus() - 1;
597 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
599 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
600 if (!page) {
601 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
602 ret = -ENOMEM;
603 goto out_clean;
606 data = vmalloc(sizeof(*data) * nr_threads);
607 if (!data) {
608 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
609 ret = -ENOMEM;
610 goto out_clean;
612 for (thr = 0; thr < nr_threads; thr++)
613 memset(&data[thr], 0, offsetof(struct cmp_data, go));
615 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
616 if (!crc) {
617 printk(KERN_ERR "PM: Failed to allocate crc\n");
618 ret = -ENOMEM;
619 goto out_clean;
621 memset(crc, 0, offsetof(struct crc_data, go));
624 * Start the compression threads.
626 for (thr = 0; thr < nr_threads; thr++) {
627 init_waitqueue_head(&data[thr].go);
628 init_waitqueue_head(&data[thr].done);
630 data[thr].thr = kthread_run(lzo_compress_threadfn,
631 &data[thr],
632 "image_compress/%u", thr);
633 if (IS_ERR(data[thr].thr)) {
634 data[thr].thr = NULL;
635 printk(KERN_ERR
636 "PM: Cannot start compression threads\n");
637 ret = -ENOMEM;
638 goto out_clean;
643 * Start the CRC32 thread.
645 init_waitqueue_head(&crc->go);
646 init_waitqueue_head(&crc->done);
648 handle->crc32 = 0;
649 crc->crc32 = &handle->crc32;
650 for (thr = 0; thr < nr_threads; thr++) {
651 crc->unc[thr] = data[thr].unc;
652 crc->unc_len[thr] = &data[thr].unc_len;
655 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
656 if (IS_ERR(crc->thr)) {
657 crc->thr = NULL;
658 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
659 ret = -ENOMEM;
660 goto out_clean;
664 * Adjust the number of required free pages after all allocations have
665 * been done. We don't want to run out of pages when writing.
667 handle->reqd_free_pages = reqd_free_pages();
669 printk(KERN_INFO
670 "PM: Using %u thread(s) for compression.\n"
671 "PM: Compressing and saving image data (%u pages)...\n",
672 nr_threads, nr_to_write);
673 m = nr_to_write / 10;
674 if (!m)
675 m = 1;
676 nr_pages = 0;
677 bio = NULL;
678 start = ktime_get();
679 for (;;) {
680 for (thr = 0; thr < nr_threads; thr++) {
681 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
682 ret = snapshot_read_next(snapshot);
683 if (ret < 0)
684 goto out_finish;
686 if (!ret)
687 break;
689 memcpy(data[thr].unc + off,
690 data_of(*snapshot), PAGE_SIZE);
692 if (!(nr_pages % m))
693 printk(KERN_INFO
694 "PM: Image saving progress: "
695 "%3d%%\n",
696 nr_pages / m * 10);
697 nr_pages++;
699 if (!off)
700 break;
702 data[thr].unc_len = off;
704 atomic_set(&data[thr].ready, 1);
705 wake_up(&data[thr].go);
708 if (!thr)
709 break;
711 crc->run_threads = thr;
712 atomic_set(&crc->ready, 1);
713 wake_up(&crc->go);
715 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
716 wait_event(data[thr].done,
717 atomic_read(&data[thr].stop));
718 atomic_set(&data[thr].stop, 0);
720 ret = data[thr].ret;
722 if (ret < 0) {
723 printk(KERN_ERR "PM: LZO compression failed\n");
724 goto out_finish;
727 if (unlikely(!data[thr].cmp_len ||
728 data[thr].cmp_len >
729 lzo1x_worst_compress(data[thr].unc_len))) {
730 printk(KERN_ERR
731 "PM: Invalid LZO compressed length\n");
732 ret = -1;
733 goto out_finish;
736 *(size_t *)data[thr].cmp = data[thr].cmp_len;
739 * Given we are writing one page at a time to disk, we
740 * copy that much from the buffer, although the last
741 * bit will likely be smaller than full page. This is
742 * OK - we saved the length of the compressed data, so
743 * any garbage at the end will be discarded when we
744 * read it.
746 for (off = 0;
747 off < LZO_HEADER + data[thr].cmp_len;
748 off += PAGE_SIZE) {
749 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
751 ret = swap_write_page(handle, page, &bio);
752 if (ret)
753 goto out_finish;
757 wait_event(crc->done, atomic_read(&crc->stop));
758 atomic_set(&crc->stop, 0);
761 out_finish:
762 err2 = hib_wait_on_bio_chain(&bio);
763 stop = ktime_get();
764 if (!ret)
765 ret = err2;
766 if (!ret)
767 printk(KERN_INFO "PM: Image saving done.\n");
768 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
769 out_clean:
770 if (crc) {
771 if (crc->thr)
772 kthread_stop(crc->thr);
773 kfree(crc);
775 if (data) {
776 for (thr = 0; thr < nr_threads; thr++)
777 if (data[thr].thr)
778 kthread_stop(data[thr].thr);
779 vfree(data);
781 if (page) free_page((unsigned long)page);
783 return ret;
787 * enough_swap - Make sure we have enough swap to save the image.
789 * Returns TRUE or FALSE after checking the total amount of swap
790 * space avaiable from the resume partition.
793 static int enough_swap(unsigned int nr_pages, unsigned int flags)
795 unsigned int free_swap = count_swap_pages(root_swap, 1);
796 unsigned int required;
798 pr_debug("PM: Free swap pages: %u\n", free_swap);
800 required = PAGES_FOR_IO + nr_pages;
801 return free_swap > required;
805 * swsusp_write - Write entire image and metadata.
806 * @flags: flags to pass to the "boot" kernel in the image header
808 * It is important _NOT_ to umount filesystems at this point. We want
809 * them synced (in case something goes wrong) but we DO not want to mark
810 * filesystem clean: it is not. (And it does not matter, if we resume
811 * correctly, we'll mark system clean, anyway.)
814 int swsusp_write(unsigned int flags)
816 struct swap_map_handle handle;
817 struct snapshot_handle snapshot;
818 struct swsusp_info *header;
819 unsigned long pages;
820 int error;
822 pages = snapshot_get_image_size();
823 error = get_swap_writer(&handle);
824 if (error) {
825 printk(KERN_ERR "PM: Cannot get swap writer\n");
826 return error;
828 if (flags & SF_NOCOMPRESS_MODE) {
829 if (!enough_swap(pages, flags)) {
830 printk(KERN_ERR "PM: Not enough free swap\n");
831 error = -ENOSPC;
832 goto out_finish;
835 memset(&snapshot, 0, sizeof(struct snapshot_handle));
836 error = snapshot_read_next(&snapshot);
837 if (error < PAGE_SIZE) {
838 if (error >= 0)
839 error = -EFAULT;
841 goto out_finish;
843 header = (struct swsusp_info *)data_of(snapshot);
844 error = swap_write_page(&handle, header, NULL);
845 if (!error) {
846 error = (flags & SF_NOCOMPRESS_MODE) ?
847 save_image(&handle, &snapshot, pages - 1) :
848 save_image_lzo(&handle, &snapshot, pages - 1);
850 out_finish:
851 error = swap_writer_finish(&handle, flags, error);
852 return error;
856 * The following functions allow us to read data using a swap map
857 * in a file-alike way
860 static void release_swap_reader(struct swap_map_handle *handle)
862 struct swap_map_page_list *tmp;
864 while (handle->maps) {
865 if (handle->maps->map)
866 free_page((unsigned long)handle->maps->map);
867 tmp = handle->maps;
868 handle->maps = handle->maps->next;
869 kfree(tmp);
871 handle->cur = NULL;
874 static int get_swap_reader(struct swap_map_handle *handle,
875 unsigned int *flags_p)
877 int error;
878 struct swap_map_page_list *tmp, *last;
879 sector_t offset;
881 *flags_p = swsusp_header->flags;
883 if (!swsusp_header->image) /* how can this happen? */
884 return -EINVAL;
886 handle->cur = NULL;
887 last = handle->maps = NULL;
888 offset = swsusp_header->image;
889 while (offset) {
890 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
891 if (!tmp) {
892 release_swap_reader(handle);
893 return -ENOMEM;
895 memset(tmp, 0, sizeof(*tmp));
896 if (!handle->maps)
897 handle->maps = tmp;
898 if (last)
899 last->next = tmp;
900 last = tmp;
902 tmp->map = (struct swap_map_page *)
903 __get_free_page(__GFP_WAIT | __GFP_HIGH);
904 if (!tmp->map) {
905 release_swap_reader(handle);
906 return -ENOMEM;
909 error = hib_bio_read_page(offset, tmp->map, NULL);
910 if (error) {
911 release_swap_reader(handle);
912 return error;
914 offset = tmp->map->next_swap;
916 handle->k = 0;
917 handle->cur = handle->maps->map;
918 return 0;
921 static int swap_read_page(struct swap_map_handle *handle, void *buf,
922 struct bio **bio_chain)
924 sector_t offset;
925 int error;
926 struct swap_map_page_list *tmp;
928 if (!handle->cur)
929 return -EINVAL;
930 offset = handle->cur->entries[handle->k];
931 if (!offset)
932 return -EFAULT;
933 error = hib_bio_read_page(offset, buf, bio_chain);
934 if (error)
935 return error;
936 if (++handle->k >= MAP_PAGE_ENTRIES) {
937 handle->k = 0;
938 free_page((unsigned long)handle->maps->map);
939 tmp = handle->maps;
940 handle->maps = handle->maps->next;
941 kfree(tmp);
942 if (!handle->maps)
943 release_swap_reader(handle);
944 else
945 handle->cur = handle->maps->map;
947 return error;
950 static int swap_reader_finish(struct swap_map_handle *handle)
952 release_swap_reader(handle);
954 return 0;
958 * load_image - load the image using the swap map handle
959 * @handle and the snapshot handle @snapshot
960 * (assume there are @nr_pages pages to load)
963 static int load_image(struct swap_map_handle *handle,
964 struct snapshot_handle *snapshot,
965 unsigned int nr_to_read)
967 unsigned int m;
968 int ret = 0;
969 ktime_t start;
970 ktime_t stop;
971 struct bio *bio;
972 int err2;
973 unsigned nr_pages;
975 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
976 nr_to_read);
977 m = nr_to_read / 10;
978 if (!m)
979 m = 1;
980 nr_pages = 0;
981 bio = NULL;
982 start = ktime_get();
983 for ( ; ; ) {
984 ret = snapshot_write_next(snapshot);
985 if (ret <= 0)
986 break;
987 ret = swap_read_page(handle, data_of(*snapshot), &bio);
988 if (ret)
989 break;
990 if (snapshot->sync_read)
991 ret = hib_wait_on_bio_chain(&bio);
992 if (ret)
993 break;
994 if (!(nr_pages % m))
995 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
996 nr_pages / m * 10);
997 nr_pages++;
999 err2 = hib_wait_on_bio_chain(&bio);
1000 stop = ktime_get();
1001 if (!ret)
1002 ret = err2;
1003 if (!ret) {
1004 printk(KERN_INFO "PM: Image loading done.\n");
1005 snapshot_write_finalize(snapshot);
1006 if (!snapshot_image_loaded(snapshot))
1007 ret = -ENODATA;
1009 swsusp_show_speed(start, stop, nr_to_read, "Read");
1010 return ret;
1014 * Structure used for LZO data decompression.
1016 struct dec_data {
1017 struct task_struct *thr; /* thread */
1018 atomic_t ready; /* ready to start flag */
1019 atomic_t stop; /* ready to stop flag */
1020 int ret; /* return code */
1021 wait_queue_head_t go; /* start decompression */
1022 wait_queue_head_t done; /* decompression done */
1023 size_t unc_len; /* uncompressed length */
1024 size_t cmp_len; /* compressed length */
1025 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1026 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1030 * Deompression function that runs in its own thread.
1032 static int lzo_decompress_threadfn(void *data)
1034 struct dec_data *d = data;
1036 while (1) {
1037 wait_event(d->go, atomic_read(&d->ready) ||
1038 kthread_should_stop());
1039 if (kthread_should_stop()) {
1040 d->thr = NULL;
1041 d->ret = -1;
1042 atomic_set(&d->stop, 1);
1043 wake_up(&d->done);
1044 break;
1046 atomic_set(&d->ready, 0);
1048 d->unc_len = LZO_UNC_SIZE;
1049 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1050 d->unc, &d->unc_len);
1051 atomic_set(&d->stop, 1);
1052 wake_up(&d->done);
1054 return 0;
1058 * load_image_lzo - Load compressed image data and decompress them with LZO.
1059 * @handle: Swap map handle to use for loading data.
1060 * @snapshot: Image to copy uncompressed data into.
1061 * @nr_to_read: Number of pages to load.
1063 static int load_image_lzo(struct swap_map_handle *handle,
1064 struct snapshot_handle *snapshot,
1065 unsigned int nr_to_read)
1067 unsigned int m;
1068 int ret = 0;
1069 int eof = 0;
1070 struct bio *bio;
1071 ktime_t start;
1072 ktime_t stop;
1073 unsigned nr_pages;
1074 size_t off;
1075 unsigned i, thr, run_threads, nr_threads;
1076 unsigned ring = 0, pg = 0, ring_size = 0,
1077 have = 0, want, need, asked = 0;
1078 unsigned long read_pages = 0;
1079 unsigned char **page = NULL;
1080 struct dec_data *data = NULL;
1081 struct crc_data *crc = NULL;
1084 * We'll limit the number of threads for decompression to limit memory
1085 * footprint.
1087 nr_threads = num_online_cpus() - 1;
1088 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1090 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1091 if (!page) {
1092 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1093 ret = -ENOMEM;
1094 goto out_clean;
1097 data = vmalloc(sizeof(*data) * nr_threads);
1098 if (!data) {
1099 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1100 ret = -ENOMEM;
1101 goto out_clean;
1103 for (thr = 0; thr < nr_threads; thr++)
1104 memset(&data[thr], 0, offsetof(struct dec_data, go));
1106 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1107 if (!crc) {
1108 printk(KERN_ERR "PM: Failed to allocate crc\n");
1109 ret = -ENOMEM;
1110 goto out_clean;
1112 memset(crc, 0, offsetof(struct crc_data, go));
1115 * Start the decompression threads.
1117 for (thr = 0; thr < nr_threads; thr++) {
1118 init_waitqueue_head(&data[thr].go);
1119 init_waitqueue_head(&data[thr].done);
1121 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1122 &data[thr],
1123 "image_decompress/%u", thr);
1124 if (IS_ERR(data[thr].thr)) {
1125 data[thr].thr = NULL;
1126 printk(KERN_ERR
1127 "PM: Cannot start decompression threads\n");
1128 ret = -ENOMEM;
1129 goto out_clean;
1134 * Start the CRC32 thread.
1136 init_waitqueue_head(&crc->go);
1137 init_waitqueue_head(&crc->done);
1139 handle->crc32 = 0;
1140 crc->crc32 = &handle->crc32;
1141 for (thr = 0; thr < nr_threads; thr++) {
1142 crc->unc[thr] = data[thr].unc;
1143 crc->unc_len[thr] = &data[thr].unc_len;
1146 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1147 if (IS_ERR(crc->thr)) {
1148 crc->thr = NULL;
1149 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1150 ret = -ENOMEM;
1151 goto out_clean;
1155 * Set the number of pages for read buffering.
1156 * This is complete guesswork, because we'll only know the real
1157 * picture once prepare_image() is called, which is much later on
1158 * during the image load phase. We'll assume the worst case and
1159 * say that none of the image pages are from high memory.
1161 if (low_free_pages() > snapshot_get_image_size())
1162 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1163 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1165 for (i = 0; i < read_pages; i++) {
1166 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1167 __GFP_WAIT | __GFP_HIGH :
1168 __GFP_WAIT | __GFP_NOWARN |
1169 __GFP_NORETRY);
1171 if (!page[i]) {
1172 if (i < LZO_CMP_PAGES) {
1173 ring_size = i;
1174 printk(KERN_ERR
1175 "PM: Failed to allocate LZO pages\n");
1176 ret = -ENOMEM;
1177 goto out_clean;
1178 } else {
1179 break;
1183 want = ring_size = i;
1185 printk(KERN_INFO
1186 "PM: Using %u thread(s) for decompression.\n"
1187 "PM: Loading and decompressing image data (%u pages)...\n",
1188 nr_threads, nr_to_read);
1189 m = nr_to_read / 10;
1190 if (!m)
1191 m = 1;
1192 nr_pages = 0;
1193 bio = NULL;
1194 start = ktime_get();
1196 ret = snapshot_write_next(snapshot);
1197 if (ret <= 0)
1198 goto out_finish;
1200 for(;;) {
1201 for (i = 0; !eof && i < want; i++) {
1202 ret = swap_read_page(handle, page[ring], &bio);
1203 if (ret) {
1205 * On real read error, finish. On end of data,
1206 * set EOF flag and just exit the read loop.
1208 if (handle->cur &&
1209 handle->cur->entries[handle->k]) {
1210 goto out_finish;
1211 } else {
1212 eof = 1;
1213 break;
1216 if (++ring >= ring_size)
1217 ring = 0;
1219 asked += i;
1220 want -= i;
1223 * We are out of data, wait for some more.
1225 if (!have) {
1226 if (!asked)
1227 break;
1229 ret = hib_wait_on_bio_chain(&bio);
1230 if (ret)
1231 goto out_finish;
1232 have += asked;
1233 asked = 0;
1234 if (eof)
1235 eof = 2;
1238 if (crc->run_threads) {
1239 wait_event(crc->done, atomic_read(&crc->stop));
1240 atomic_set(&crc->stop, 0);
1241 crc->run_threads = 0;
1244 for (thr = 0; have && thr < nr_threads; thr++) {
1245 data[thr].cmp_len = *(size_t *)page[pg];
1246 if (unlikely(!data[thr].cmp_len ||
1247 data[thr].cmp_len >
1248 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1249 printk(KERN_ERR
1250 "PM: Invalid LZO compressed length\n");
1251 ret = -1;
1252 goto out_finish;
1255 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1256 PAGE_SIZE);
1257 if (need > have) {
1258 if (eof > 1) {
1259 ret = -1;
1260 goto out_finish;
1262 break;
1265 for (off = 0;
1266 off < LZO_HEADER + data[thr].cmp_len;
1267 off += PAGE_SIZE) {
1268 memcpy(data[thr].cmp + off,
1269 page[pg], PAGE_SIZE);
1270 have--;
1271 want++;
1272 if (++pg >= ring_size)
1273 pg = 0;
1276 atomic_set(&data[thr].ready, 1);
1277 wake_up(&data[thr].go);
1281 * Wait for more data while we are decompressing.
1283 if (have < LZO_CMP_PAGES && asked) {
1284 ret = hib_wait_on_bio_chain(&bio);
1285 if (ret)
1286 goto out_finish;
1287 have += asked;
1288 asked = 0;
1289 if (eof)
1290 eof = 2;
1293 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1294 wait_event(data[thr].done,
1295 atomic_read(&data[thr].stop));
1296 atomic_set(&data[thr].stop, 0);
1298 ret = data[thr].ret;
1300 if (ret < 0) {
1301 printk(KERN_ERR
1302 "PM: LZO decompression failed\n");
1303 goto out_finish;
1306 if (unlikely(!data[thr].unc_len ||
1307 data[thr].unc_len > LZO_UNC_SIZE ||
1308 data[thr].unc_len & (PAGE_SIZE - 1))) {
1309 printk(KERN_ERR
1310 "PM: Invalid LZO uncompressed length\n");
1311 ret = -1;
1312 goto out_finish;
1315 for (off = 0;
1316 off < data[thr].unc_len; off += PAGE_SIZE) {
1317 memcpy(data_of(*snapshot),
1318 data[thr].unc + off, PAGE_SIZE);
1320 if (!(nr_pages % m))
1321 printk(KERN_INFO
1322 "PM: Image loading progress: "
1323 "%3d%%\n",
1324 nr_pages / m * 10);
1325 nr_pages++;
1327 ret = snapshot_write_next(snapshot);
1328 if (ret <= 0) {
1329 crc->run_threads = thr + 1;
1330 atomic_set(&crc->ready, 1);
1331 wake_up(&crc->go);
1332 goto out_finish;
1337 crc->run_threads = thr;
1338 atomic_set(&crc->ready, 1);
1339 wake_up(&crc->go);
1342 out_finish:
1343 if (crc->run_threads) {
1344 wait_event(crc->done, atomic_read(&crc->stop));
1345 atomic_set(&crc->stop, 0);
1347 stop = ktime_get();
1348 if (!ret) {
1349 printk(KERN_INFO "PM: Image loading done.\n");
1350 snapshot_write_finalize(snapshot);
1351 if (!snapshot_image_loaded(snapshot))
1352 ret = -ENODATA;
1353 if (!ret) {
1354 if (swsusp_header->flags & SF_CRC32_MODE) {
1355 if(handle->crc32 != swsusp_header->crc32) {
1356 printk(KERN_ERR
1357 "PM: Invalid image CRC32!\n");
1358 ret = -ENODATA;
1363 swsusp_show_speed(start, stop, nr_to_read, "Read");
1364 out_clean:
1365 for (i = 0; i < ring_size; i++)
1366 free_page((unsigned long)page[i]);
1367 if (crc) {
1368 if (crc->thr)
1369 kthread_stop(crc->thr);
1370 kfree(crc);
1372 if (data) {
1373 for (thr = 0; thr < nr_threads; thr++)
1374 if (data[thr].thr)
1375 kthread_stop(data[thr].thr);
1376 vfree(data);
1378 vfree(page);
1380 return ret;
1384 * swsusp_read - read the hibernation image.
1385 * @flags_p: flags passed by the "frozen" kernel in the image header should
1386 * be written into this memory location
1389 int swsusp_read(unsigned int *flags_p)
1391 int error;
1392 struct swap_map_handle handle;
1393 struct snapshot_handle snapshot;
1394 struct swsusp_info *header;
1396 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1397 error = snapshot_write_next(&snapshot);
1398 if (error < PAGE_SIZE)
1399 return error < 0 ? error : -EFAULT;
1400 header = (struct swsusp_info *)data_of(snapshot);
1401 error = get_swap_reader(&handle, flags_p);
1402 if (error)
1403 goto end;
1404 if (!error)
1405 error = swap_read_page(&handle, header, NULL);
1406 if (!error) {
1407 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1408 load_image(&handle, &snapshot, header->pages - 1) :
1409 load_image_lzo(&handle, &snapshot, header->pages - 1);
1411 swap_reader_finish(&handle);
1412 end:
1413 if (!error)
1414 pr_debug("PM: Image successfully loaded\n");
1415 else
1416 pr_debug("PM: Error %d resuming\n", error);
1417 return error;
1421 * swsusp_check - Check for swsusp signature in the resume device
1424 int swsusp_check(void)
1426 int error;
1428 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1429 FMODE_READ, NULL);
1430 if (!IS_ERR(hib_resume_bdev)) {
1431 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1432 clear_page(swsusp_header);
1433 error = hib_bio_read_page(swsusp_resume_block,
1434 swsusp_header, NULL);
1435 if (error)
1436 goto put;
1438 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1439 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1440 /* Reset swap signature now */
1441 error = hib_bio_write_page(swsusp_resume_block,
1442 swsusp_header, NULL);
1443 } else {
1444 error = -EINVAL;
1447 put:
1448 if (error)
1449 blkdev_put(hib_resume_bdev, FMODE_READ);
1450 else
1451 pr_debug("PM: Image signature found, resuming\n");
1452 } else {
1453 error = PTR_ERR(hib_resume_bdev);
1456 if (error)
1457 pr_debug("PM: Image not found (code %d)\n", error);
1459 return error;
1463 * swsusp_close - close swap device.
1466 void swsusp_close(fmode_t mode)
1468 if (IS_ERR(hib_resume_bdev)) {
1469 pr_debug("PM: Image device not initialised\n");
1470 return;
1473 blkdev_put(hib_resume_bdev, mode);
1477 * swsusp_unmark - Unmark swsusp signature in the resume device
1480 #ifdef CONFIG_SUSPEND
1481 int swsusp_unmark(void)
1483 int error;
1485 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
1486 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1487 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1488 error = hib_bio_write_page(swsusp_resume_block,
1489 swsusp_header, NULL);
1490 } else {
1491 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1492 error = -ENODEV;
1496 * We just returned from suspend, we don't need the image any more.
1498 free_all_swap_pages(root_swap);
1500 return error;
1502 #endif
1504 static int swsusp_header_init(void)
1506 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1507 if (!swsusp_header)
1508 panic("Could not allocate memory for swsusp_header\n");
1509 return 0;
1512 core_initcall(swsusp_header_init);