[MIPS] Alchemy: kill useless time variables
[linux-2.6/btrfs-unstable.git] / fs / xfs / xfs_vfsops.c
blobfc48158fe4797acae6de9c0c9152ce506c2f154e
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_quota.h"
43 #include "xfs_error.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_buf_item.h"
47 #include "xfs_log_priv.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_extfree_item.h"
50 #include "xfs_acl.h"
51 #include "xfs_attr.h"
52 #include "xfs_clnt.h"
53 #include "xfs_mru_cache.h"
54 #include "xfs_filestream.h"
55 #include "xfs_fsops.h"
56 #include "xfs_vnodeops.h"
57 #include "xfs_vfsops.h"
58 #include "xfs_utils.h"
61 int __init
62 xfs_init(void)
64 #ifdef XFS_DABUF_DEBUG
65 extern spinlock_t xfs_dabuf_global_lock;
66 spin_lock_init(&xfs_dabuf_global_lock);
67 #endif
70 * Initialize all of the zone allocators we use.
72 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
73 "xfs_log_ticket");
74 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
75 "xfs_bmap_free_item");
76 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
77 "xfs_btree_cur");
78 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
79 "xfs_da_state");
80 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
81 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
82 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
83 xfs_acl_zone_init(xfs_acl_zone, "xfs_acl");
84 xfs_mru_cache_init();
85 xfs_filestream_init();
88 * The size of the zone allocated buf log item is the maximum
89 * size possible under XFS. This wastes a little bit of memory,
90 * but it is much faster.
92 xfs_buf_item_zone =
93 kmem_zone_init((sizeof(xfs_buf_log_item_t) +
94 (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
95 NBWORD) * sizeof(int))),
96 "xfs_buf_item");
97 xfs_efd_zone =
98 kmem_zone_init((sizeof(xfs_efd_log_item_t) +
99 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
100 sizeof(xfs_extent_t))),
101 "xfs_efd_item");
102 xfs_efi_zone =
103 kmem_zone_init((sizeof(xfs_efi_log_item_t) +
104 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
105 sizeof(xfs_extent_t))),
106 "xfs_efi_item");
109 * These zones warrant special memory allocator hints
111 xfs_inode_zone =
112 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
113 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
114 KM_ZONE_SPREAD, NULL);
115 xfs_ili_zone =
116 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
117 KM_ZONE_SPREAD, NULL);
120 * Allocate global trace buffers.
122 #ifdef XFS_ALLOC_TRACE
123 xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP);
124 #endif
125 #ifdef XFS_BMAP_TRACE
126 xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP);
127 #endif
128 #ifdef XFS_BMBT_TRACE
129 xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP);
130 #endif
131 #ifdef XFS_ATTR_TRACE
132 xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP);
133 #endif
134 #ifdef XFS_DIR2_TRACE
135 xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP);
136 #endif
138 xfs_dir_startup();
140 #if (defined(DEBUG) || defined(INDUCE_IO_ERROR))
141 xfs_error_test_init();
142 #endif /* DEBUG || INDUCE_IO_ERROR */
144 xfs_init_procfs();
145 xfs_sysctl_register();
146 return 0;
149 void __exit
150 xfs_cleanup(void)
152 extern kmem_zone_t *xfs_inode_zone;
153 extern kmem_zone_t *xfs_efd_zone;
154 extern kmem_zone_t *xfs_efi_zone;
156 xfs_cleanup_procfs();
157 xfs_sysctl_unregister();
158 xfs_filestream_uninit();
159 xfs_mru_cache_uninit();
160 xfs_acl_zone_destroy(xfs_acl_zone);
162 #ifdef XFS_DIR2_TRACE
163 ktrace_free(xfs_dir2_trace_buf);
164 #endif
165 #ifdef XFS_ATTR_TRACE
166 ktrace_free(xfs_attr_trace_buf);
167 #endif
168 #ifdef XFS_BMBT_TRACE
169 ktrace_free(xfs_bmbt_trace_buf);
170 #endif
171 #ifdef XFS_BMAP_TRACE
172 ktrace_free(xfs_bmap_trace_buf);
173 #endif
174 #ifdef XFS_ALLOC_TRACE
175 ktrace_free(xfs_alloc_trace_buf);
176 #endif
178 kmem_zone_destroy(xfs_bmap_free_item_zone);
179 kmem_zone_destroy(xfs_btree_cur_zone);
180 kmem_zone_destroy(xfs_inode_zone);
181 kmem_zone_destroy(xfs_trans_zone);
182 kmem_zone_destroy(xfs_da_state_zone);
183 kmem_zone_destroy(xfs_dabuf_zone);
184 kmem_zone_destroy(xfs_buf_item_zone);
185 kmem_zone_destroy(xfs_efd_zone);
186 kmem_zone_destroy(xfs_efi_zone);
187 kmem_zone_destroy(xfs_ifork_zone);
188 kmem_zone_destroy(xfs_ili_zone);
192 * xfs_start_flags
194 * This function fills in xfs_mount_t fields based on mount args.
195 * Note: the superblock has _not_ yet been read in.
197 STATIC int
198 xfs_start_flags(
199 struct xfs_mount_args *ap,
200 struct xfs_mount *mp)
202 /* Values are in BBs */
203 if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
205 * At this point the superblock has not been read
206 * in, therefore we do not know the block size.
207 * Before the mount call ends we will convert
208 * these to FSBs.
210 mp->m_dalign = ap->sunit;
211 mp->m_swidth = ap->swidth;
214 if (ap->logbufs != -1 &&
215 ap->logbufs != 0 &&
216 (ap->logbufs < XLOG_MIN_ICLOGS ||
217 ap->logbufs > XLOG_MAX_ICLOGS)) {
218 cmn_err(CE_WARN,
219 "XFS: invalid logbufs value: %d [not %d-%d]",
220 ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
221 return XFS_ERROR(EINVAL);
223 mp->m_logbufs = ap->logbufs;
224 if (ap->logbufsize != -1 &&
225 ap->logbufsize != 0 &&
226 (ap->logbufsize < XLOG_MIN_RECORD_BSIZE ||
227 ap->logbufsize > XLOG_MAX_RECORD_BSIZE ||
228 !is_power_of_2(ap->logbufsize))) {
229 cmn_err(CE_WARN,
230 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
231 ap->logbufsize);
232 return XFS_ERROR(EINVAL);
234 mp->m_logbsize = ap->logbufsize;
235 mp->m_fsname_len = strlen(ap->fsname) + 1;
236 mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
237 strcpy(mp->m_fsname, ap->fsname);
238 if (ap->rtname[0]) {
239 mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP);
240 strcpy(mp->m_rtname, ap->rtname);
242 if (ap->logname[0]) {
243 mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP);
244 strcpy(mp->m_logname, ap->logname);
247 if (ap->flags & XFSMNT_WSYNC)
248 mp->m_flags |= XFS_MOUNT_WSYNC;
249 #if XFS_BIG_INUMS
250 if (ap->flags & XFSMNT_INO64) {
251 mp->m_flags |= XFS_MOUNT_INO64;
252 mp->m_inoadd = XFS_INO64_OFFSET;
254 #endif
255 if (ap->flags & XFSMNT_RETERR)
256 mp->m_flags |= XFS_MOUNT_RETERR;
257 if (ap->flags & XFSMNT_NOALIGN)
258 mp->m_flags |= XFS_MOUNT_NOALIGN;
259 if (ap->flags & XFSMNT_SWALLOC)
260 mp->m_flags |= XFS_MOUNT_SWALLOC;
261 if (ap->flags & XFSMNT_OSYNCISOSYNC)
262 mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
263 if (ap->flags & XFSMNT_32BITINODES)
264 mp->m_flags |= XFS_MOUNT_32BITINODES;
266 if (ap->flags & XFSMNT_IOSIZE) {
267 if (ap->iosizelog > XFS_MAX_IO_LOG ||
268 ap->iosizelog < XFS_MIN_IO_LOG) {
269 cmn_err(CE_WARN,
270 "XFS: invalid log iosize: %d [not %d-%d]",
271 ap->iosizelog, XFS_MIN_IO_LOG,
272 XFS_MAX_IO_LOG);
273 return XFS_ERROR(EINVAL);
276 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
277 mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
280 if (ap->flags & XFSMNT_IKEEP)
281 mp->m_flags |= XFS_MOUNT_IKEEP;
282 if (ap->flags & XFSMNT_DIRSYNC)
283 mp->m_flags |= XFS_MOUNT_DIRSYNC;
284 if (ap->flags & XFSMNT_ATTR2)
285 mp->m_flags |= XFS_MOUNT_ATTR2;
287 if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE)
288 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
291 * no recovery flag requires a read-only mount
293 if (ap->flags & XFSMNT_NORECOVERY) {
294 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
295 cmn_err(CE_WARN,
296 "XFS: tried to mount a FS read-write without recovery!");
297 return XFS_ERROR(EINVAL);
299 mp->m_flags |= XFS_MOUNT_NORECOVERY;
302 if (ap->flags & XFSMNT_NOUUID)
303 mp->m_flags |= XFS_MOUNT_NOUUID;
304 if (ap->flags & XFSMNT_BARRIER)
305 mp->m_flags |= XFS_MOUNT_BARRIER;
306 else
307 mp->m_flags &= ~XFS_MOUNT_BARRIER;
309 if (ap->flags2 & XFSMNT2_FILESTREAMS)
310 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
312 if (ap->flags & XFSMNT_DMAPI)
313 mp->m_flags |= XFS_MOUNT_DMAPI;
314 return 0;
318 * This function fills in xfs_mount_t fields based on mount args.
319 * Note: the superblock _has_ now been read in.
321 STATIC int
322 xfs_finish_flags(
323 struct xfs_mount_args *ap,
324 struct xfs_mount *mp)
326 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
328 /* Fail a mount where the logbuf is smaller then the log stripe */
329 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
330 if ((ap->logbufsize <= 0) &&
331 (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
332 mp->m_logbsize = mp->m_sb.sb_logsunit;
333 } else if (ap->logbufsize > 0 &&
334 ap->logbufsize < mp->m_sb.sb_logsunit) {
335 cmn_err(CE_WARN,
336 "XFS: logbuf size must be greater than or equal to log stripe size");
337 return XFS_ERROR(EINVAL);
339 } else {
340 /* Fail a mount if the logbuf is larger than 32K */
341 if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
342 cmn_err(CE_WARN,
343 "XFS: logbuf size for version 1 logs must be 16K or 32K");
344 return XFS_ERROR(EINVAL);
348 if (xfs_sb_version_hasattr2(&mp->m_sb))
349 mp->m_flags |= XFS_MOUNT_ATTR2;
352 * prohibit r/w mounts of read-only filesystems
354 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
355 cmn_err(CE_WARN,
356 "XFS: cannot mount a read-only filesystem as read-write");
357 return XFS_ERROR(EROFS);
361 * check for shared mount.
363 if (ap->flags & XFSMNT_SHARED) {
364 if (!xfs_sb_version_hasshared(&mp->m_sb))
365 return XFS_ERROR(EINVAL);
368 * For IRIX 6.5, shared mounts must have the shared
369 * version bit set, have the persistent readonly
370 * field set, must be version 0 and can only be mounted
371 * read-only.
373 if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
374 (mp->m_sb.sb_shared_vn != 0))
375 return XFS_ERROR(EINVAL);
377 mp->m_flags |= XFS_MOUNT_SHARED;
380 * Shared XFS V0 can't deal with DMI. Return EINVAL.
382 if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
383 return XFS_ERROR(EINVAL);
386 if (ap->flags & XFSMNT_UQUOTA) {
387 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
388 if (ap->flags & XFSMNT_UQUOTAENF)
389 mp->m_qflags |= XFS_UQUOTA_ENFD;
392 if (ap->flags & XFSMNT_GQUOTA) {
393 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
394 if (ap->flags & XFSMNT_GQUOTAENF)
395 mp->m_qflags |= XFS_OQUOTA_ENFD;
396 } else if (ap->flags & XFSMNT_PQUOTA) {
397 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
398 if (ap->flags & XFSMNT_PQUOTAENF)
399 mp->m_qflags |= XFS_OQUOTA_ENFD;
402 return 0;
406 * xfs_mount
408 * The file system configurations are:
409 * (1) device (partition) with data and internal log
410 * (2) logical volume with data and log subvolumes.
411 * (3) logical volume with data, log, and realtime subvolumes.
413 * We only have to handle opening the log and realtime volumes here if
414 * they are present. The data subvolume has already been opened by
415 * get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev.
418 xfs_mount(
419 struct xfs_mount *mp,
420 struct xfs_mount_args *args,
421 cred_t *credp)
423 struct block_device *ddev, *logdev, *rtdev;
424 int flags = 0, error;
426 ddev = mp->m_super->s_bdev;
427 logdev = rtdev = NULL;
429 error = xfs_dmops_get(mp, args);
430 if (error)
431 return error;
432 error = xfs_qmops_get(mp, args);
433 if (error)
434 return error;
436 if (args->flags & XFSMNT_QUIET)
437 flags |= XFS_MFSI_QUIET;
440 * Open real time and log devices - order is important.
442 if (args->logname[0]) {
443 error = xfs_blkdev_get(mp, args->logname, &logdev);
444 if (error)
445 return error;
447 if (args->rtname[0]) {
448 error = xfs_blkdev_get(mp, args->rtname, &rtdev);
449 if (error) {
450 xfs_blkdev_put(logdev);
451 return error;
454 if (rtdev == ddev || rtdev == logdev) {
455 cmn_err(CE_WARN,
456 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
457 xfs_blkdev_put(logdev);
458 xfs_blkdev_put(rtdev);
459 return EINVAL;
464 * Setup xfs_mount buffer target pointers
466 error = ENOMEM;
467 mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
468 if (!mp->m_ddev_targp) {
469 xfs_blkdev_put(logdev);
470 xfs_blkdev_put(rtdev);
471 return error;
473 if (rtdev) {
474 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
475 if (!mp->m_rtdev_targp) {
476 xfs_blkdev_put(logdev);
477 xfs_blkdev_put(rtdev);
478 goto error0;
481 mp->m_logdev_targp = (logdev && logdev != ddev) ?
482 xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp;
483 if (!mp->m_logdev_targp) {
484 xfs_blkdev_put(logdev);
485 xfs_blkdev_put(rtdev);
486 goto error0;
490 * Setup flags based on mount(2) options and then the superblock
492 error = xfs_start_flags(args, mp);
493 if (error)
494 goto error1;
495 error = xfs_readsb(mp, flags);
496 if (error)
497 goto error1;
498 error = xfs_finish_flags(args, mp);
499 if (error)
500 goto error2;
503 * Setup xfs_mount buffer target pointers based on superblock
505 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
506 mp->m_sb.sb_sectsize);
507 if (!error && logdev && logdev != ddev) {
508 unsigned int log_sector_size = BBSIZE;
510 if (xfs_sb_version_hassector(&mp->m_sb))
511 log_sector_size = mp->m_sb.sb_logsectsize;
512 error = xfs_setsize_buftarg(mp->m_logdev_targp,
513 mp->m_sb.sb_blocksize,
514 log_sector_size);
516 if (!error && rtdev)
517 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
518 mp->m_sb.sb_blocksize,
519 mp->m_sb.sb_sectsize);
520 if (error)
521 goto error2;
523 if (mp->m_flags & XFS_MOUNT_BARRIER)
524 xfs_mountfs_check_barriers(mp);
526 if ((error = xfs_filestream_mount(mp)))
527 goto error2;
529 error = xfs_mountfs(mp, flags);
530 if (error)
531 goto error2;
533 XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname);
535 return 0;
537 error2:
538 if (mp->m_sb_bp)
539 xfs_freesb(mp);
540 error1:
541 xfs_binval(mp->m_ddev_targp);
542 if (logdev && logdev != ddev)
543 xfs_binval(mp->m_logdev_targp);
544 if (rtdev)
545 xfs_binval(mp->m_rtdev_targp);
546 error0:
547 xfs_unmountfs_close(mp, credp);
548 xfs_qmops_put(mp);
549 xfs_dmops_put(mp);
550 return error;
554 xfs_unmount(
555 xfs_mount_t *mp,
556 int flags,
557 cred_t *credp)
559 xfs_inode_t *rip;
560 bhv_vnode_t *rvp;
561 int unmount_event_wanted = 0;
562 int unmount_event_flags = 0;
563 int xfs_unmountfs_needed = 0;
564 int error;
566 rip = mp->m_rootip;
567 rvp = XFS_ITOV(rip);
569 #ifdef HAVE_DMAPI
570 if (mp->m_flags & XFS_MOUNT_DMAPI) {
571 error = XFS_SEND_PREUNMOUNT(mp,
572 rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL,
573 NULL, NULL, 0, 0,
574 (mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))?
575 0:DM_FLAGS_UNWANTED);
576 if (error)
577 return XFS_ERROR(error);
578 unmount_event_wanted = 1;
579 unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))?
580 0 : DM_FLAGS_UNWANTED;
582 #endif
585 * Blow away any referenced inode in the filestreams cache.
586 * This can and will cause log traffic as inodes go inactive
587 * here.
589 xfs_filestream_unmount(mp);
591 XFS_bflush(mp->m_ddev_targp);
592 error = xfs_unmount_flush(mp, 0);
593 if (error)
594 goto out;
596 ASSERT(vn_count(rvp) == 1);
599 * Drop the reference count
601 IRELE(rip);
604 * If we're forcing a shutdown, typically because of a media error,
605 * we want to make sure we invalidate dirty pages that belong to
606 * referenced vnodes as well.
608 if (XFS_FORCED_SHUTDOWN(mp)) {
609 error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE);
610 ASSERT(error != EFSCORRUPTED);
612 xfs_unmountfs_needed = 1;
614 out:
615 /* Send DMAPI event, if required.
616 * Then do xfs_unmountfs() if needed.
617 * Then return error (or zero).
619 if (unmount_event_wanted) {
620 /* Note: mp structure must still exist for
621 * XFS_SEND_UNMOUNT() call.
623 XFS_SEND_UNMOUNT(mp, error == 0 ? rip : NULL,
624 DM_RIGHT_NULL, 0, error, unmount_event_flags);
626 if (xfs_unmountfs_needed) {
628 * Call common unmount function to flush to disk
629 * and free the super block buffer & mount structures.
631 xfs_unmountfs(mp, credp);
632 xfs_qmops_put(mp);
633 xfs_dmops_put(mp);
634 kmem_free(mp, sizeof(xfs_mount_t));
637 return XFS_ERROR(error);
640 STATIC void
641 xfs_quiesce_fs(
642 xfs_mount_t *mp)
644 int count = 0, pincount;
646 xfs_flush_buftarg(mp->m_ddev_targp, 0);
647 xfs_finish_reclaim_all(mp, 0);
649 /* This loop must run at least twice.
650 * The first instance of the loop will flush
651 * most meta data but that will generate more
652 * meta data (typically directory updates).
653 * Which then must be flushed and logged before
654 * we can write the unmount record.
656 do {
657 xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL);
658 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
659 if (!pincount) {
660 delay(50);
661 count++;
663 } while (count < 2);
667 * Second stage of a quiesce. The data is already synced, now we have to take
668 * care of the metadata. New transactions are already blocked, so we need to
669 * wait for any remaining transactions to drain out before proceding.
671 void
672 xfs_attr_quiesce(
673 xfs_mount_t *mp)
675 int error = 0;
677 /* wait for all modifications to complete */
678 while (atomic_read(&mp->m_active_trans) > 0)
679 delay(100);
681 /* flush inodes and push all remaining buffers out to disk */
682 xfs_quiesce_fs(mp);
684 ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
686 /* Push the superblock and write an unmount record */
687 error = xfs_log_sbcount(mp, 1);
688 if (error)
689 xfs_fs_cmn_err(CE_WARN, mp,
690 "xfs_attr_quiesce: failed to log sb changes. "
691 "Frozen image may not be consistent.");
692 xfs_log_unmount_write(mp);
693 xfs_unmountfs_writesb(mp);
697 xfs_mntupdate(
698 struct xfs_mount *mp,
699 int *flags,
700 struct xfs_mount_args *args)
702 if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */
703 if (mp->m_flags & XFS_MOUNT_RDONLY)
704 mp->m_flags &= ~XFS_MOUNT_RDONLY;
705 if (args->flags & XFSMNT_BARRIER) {
706 mp->m_flags |= XFS_MOUNT_BARRIER;
707 xfs_mountfs_check_barriers(mp);
708 } else {
709 mp->m_flags &= ~XFS_MOUNT_BARRIER;
711 } else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */
712 xfs_filestream_flush(mp);
713 xfs_sync(mp, SYNC_DATA_QUIESCE);
714 xfs_attr_quiesce(mp);
715 mp->m_flags |= XFS_MOUNT_RDONLY;
717 return 0;
721 * xfs_unmount_flush implements a set of flush operation on special
722 * inodes, which are needed as a separate set of operations so that
723 * they can be called as part of relocation process.
726 xfs_unmount_flush(
727 xfs_mount_t *mp, /* Mount structure we are getting
728 rid of. */
729 int relocation) /* Called from vfs relocation. */
731 xfs_inode_t *rip = mp->m_rootip;
732 xfs_inode_t *rbmip;
733 xfs_inode_t *rsumip = NULL;
734 bhv_vnode_t *rvp = XFS_ITOV(rip);
735 int error;
737 xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
738 xfs_iflock(rip);
741 * Flush out the real time inodes.
743 if ((rbmip = mp->m_rbmip) != NULL) {
744 xfs_ilock(rbmip, XFS_ILOCK_EXCL);
745 xfs_iflock(rbmip);
746 error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC);
747 xfs_iunlock(rbmip, XFS_ILOCK_EXCL);
749 if (error == EFSCORRUPTED)
750 goto fscorrupt_out;
752 ASSERT(vn_count(XFS_ITOV(rbmip)) == 1);
754 rsumip = mp->m_rsumip;
755 xfs_ilock(rsumip, XFS_ILOCK_EXCL);
756 xfs_iflock(rsumip);
757 error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC);
758 xfs_iunlock(rsumip, XFS_ILOCK_EXCL);
760 if (error == EFSCORRUPTED)
761 goto fscorrupt_out;
763 ASSERT(vn_count(XFS_ITOV(rsumip)) == 1);
767 * Synchronously flush root inode to disk
769 error = xfs_iflush(rip, XFS_IFLUSH_SYNC);
770 if (error == EFSCORRUPTED)
771 goto fscorrupt_out2;
773 if (vn_count(rvp) != 1 && !relocation) {
774 xfs_iunlock(rip, XFS_ILOCK_EXCL);
775 return XFS_ERROR(EBUSY);
779 * Release dquot that rootinode, rbmino and rsumino might be holding,
780 * flush and purge the quota inodes.
782 error = XFS_QM_UNMOUNT(mp);
783 if (error == EFSCORRUPTED)
784 goto fscorrupt_out2;
786 if (rbmip) {
787 IRELE(rbmip);
788 IRELE(rsumip);
791 xfs_iunlock(rip, XFS_ILOCK_EXCL);
792 return 0;
794 fscorrupt_out:
795 xfs_ifunlock(rip);
797 fscorrupt_out2:
798 xfs_iunlock(rip, XFS_ILOCK_EXCL);
800 return XFS_ERROR(EFSCORRUPTED);
804 * xfs_sync flushes any pending I/O to file system vfsp.
806 * This routine is called by vfs_sync() to make sure that things make it
807 * out to disk eventually, on sync() system calls to flush out everything,
808 * and when the file system is unmounted. For the vfs_sync() case, all
809 * we really need to do is sync out the log to make all of our meta-data
810 * updates permanent (except for timestamps). For calls from pflushd(),
811 * dirty pages are kept moving by calling pdflush() on the inodes
812 * containing them. We also flush the inodes that we can lock without
813 * sleeping and the superblock if we can lock it without sleeping from
814 * vfs_sync() so that items at the tail of the log are always moving out.
816 * Flags:
817 * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want
818 * to sleep if we can help it. All we really need
819 * to do is ensure that the log is synced at least
820 * periodically. We also push the inodes and
821 * superblock if we can lock them without sleeping
822 * and they are not pinned.
823 * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not
824 * set, then we really want to lock each inode and flush
825 * it.
826 * SYNC_WAIT - All the flushes that take place in this call should
827 * be synchronous.
828 * SYNC_DELWRI - This tells us to push dirty pages associated with
829 * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to
830 * determine if they should be flushed sync, async, or
831 * delwri.
832 * SYNC_CLOSE - This flag is passed when the system is being
833 * unmounted. We should sync and invalidate everything.
834 * SYNC_FSDATA - This indicates that the caller would like to make
835 * sure the superblock is safe on disk. We can ensure
836 * this by simply making sure the log gets flushed
837 * if SYNC_BDFLUSH is set, and by actually writing it
838 * out otherwise.
839 * SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete
840 * before we return (including direct I/O). Forms the drain
841 * side of the write barrier needed to safely quiesce the
842 * filesystem.
846 xfs_sync(
847 xfs_mount_t *mp,
848 int flags)
850 int error;
853 * Get the Quota Manager to flush the dquots.
855 * If XFS quota support is not enabled or this filesystem
856 * instance does not use quotas XFS_QM_DQSYNC will always
857 * return zero.
859 error = XFS_QM_DQSYNC(mp, flags);
860 if (error) {
862 * If we got an IO error, we will be shutting down.
863 * So, there's nothing more for us to do here.
865 ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp));
866 if (XFS_FORCED_SHUTDOWN(mp))
867 return XFS_ERROR(error);
870 if (flags & SYNC_IOWAIT)
871 xfs_filestream_flush(mp);
873 return xfs_syncsub(mp, flags, NULL);
877 * xfs sync routine for internal use
879 * This routine supports all of the flags defined for the generic vfs_sync
880 * interface as explained above under xfs_sync.
884 xfs_sync_inodes(
885 xfs_mount_t *mp,
886 int flags,
887 int *bypassed)
889 xfs_inode_t *ip = NULL;
890 bhv_vnode_t *vp = NULL;
891 int error;
892 int last_error;
893 uint64_t fflag;
894 uint lock_flags;
895 uint base_lock_flags;
896 boolean_t mount_locked;
897 boolean_t vnode_refed;
898 int preempt;
899 xfs_iptr_t *ipointer;
900 #ifdef DEBUG
901 boolean_t ipointer_in = B_FALSE;
903 #define IPOINTER_SET ipointer_in = B_TRUE
904 #define IPOINTER_CLR ipointer_in = B_FALSE
905 #else
906 #define IPOINTER_SET
907 #define IPOINTER_CLR
908 #endif
911 /* Insert a marker record into the inode list after inode ip. The list
912 * must be locked when this is called. After the call the list will no
913 * longer be locked.
915 #define IPOINTER_INSERT(ip, mp) { \
916 ASSERT(ipointer_in == B_FALSE); \
917 ipointer->ip_mnext = ip->i_mnext; \
918 ipointer->ip_mprev = ip; \
919 ip->i_mnext = (xfs_inode_t *)ipointer; \
920 ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \
921 preempt = 0; \
922 XFS_MOUNT_IUNLOCK(mp); \
923 mount_locked = B_FALSE; \
924 IPOINTER_SET; \
927 /* Remove the marker from the inode list. If the marker was the only item
928 * in the list then there are no remaining inodes and we should zero out
929 * the whole list. If we are the current head of the list then move the head
930 * past us.
932 #define IPOINTER_REMOVE(ip, mp) { \
933 ASSERT(ipointer_in == B_TRUE); \
934 if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \
935 ip = ipointer->ip_mnext; \
936 ip->i_mprev = ipointer->ip_mprev; \
937 ipointer->ip_mprev->i_mnext = ip; \
938 if (mp->m_inodes == (xfs_inode_t *)ipointer) { \
939 mp->m_inodes = ip; \
941 } else { \
942 ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \
943 mp->m_inodes = NULL; \
944 ip = NULL; \
946 IPOINTER_CLR; \
949 #define XFS_PREEMPT_MASK 0x7f
951 ASSERT(!(flags & SYNC_BDFLUSH));
953 if (bypassed)
954 *bypassed = 0;
955 if (mp->m_flags & XFS_MOUNT_RDONLY)
956 return 0;
957 error = 0;
958 last_error = 0;
959 preempt = 0;
961 /* Allocate a reference marker */
962 ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP);
964 fflag = XFS_B_ASYNC; /* default is don't wait */
965 if (flags & SYNC_DELWRI)
966 fflag = XFS_B_DELWRI;
967 if (flags & SYNC_WAIT)
968 fflag = 0; /* synchronous overrides all */
970 base_lock_flags = XFS_ILOCK_SHARED;
971 if (flags & (SYNC_DELWRI | SYNC_CLOSE)) {
973 * We need the I/O lock if we're going to call any of
974 * the flush/inval routines.
976 base_lock_flags |= XFS_IOLOCK_SHARED;
979 XFS_MOUNT_ILOCK(mp);
981 ip = mp->m_inodes;
983 mount_locked = B_TRUE;
984 vnode_refed = B_FALSE;
986 IPOINTER_CLR;
988 do {
989 ASSERT(ipointer_in == B_FALSE);
990 ASSERT(vnode_refed == B_FALSE);
992 lock_flags = base_lock_flags;
995 * There were no inodes in the list, just break out
996 * of the loop.
998 if (ip == NULL) {
999 break;
1003 * We found another sync thread marker - skip it
1005 if (ip->i_mount == NULL) {
1006 ip = ip->i_mnext;
1007 continue;
1010 vp = XFS_ITOV_NULL(ip);
1013 * If the vnode is gone then this is being torn down,
1014 * call reclaim if it is flushed, else let regular flush
1015 * code deal with it later in the loop.
1018 if (vp == NULL) {
1019 /* Skip ones already in reclaim */
1020 if (ip->i_flags & XFS_IRECLAIM) {
1021 ip = ip->i_mnext;
1022 continue;
1024 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) {
1025 ip = ip->i_mnext;
1026 } else if ((xfs_ipincount(ip) == 0) &&
1027 xfs_iflock_nowait(ip)) {
1028 IPOINTER_INSERT(ip, mp);
1030 xfs_finish_reclaim(ip, 1,
1031 XFS_IFLUSH_DELWRI_ELSE_ASYNC);
1033 XFS_MOUNT_ILOCK(mp);
1034 mount_locked = B_TRUE;
1035 IPOINTER_REMOVE(ip, mp);
1036 } else {
1037 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1038 ip = ip->i_mnext;
1040 continue;
1043 if (VN_BAD(vp)) {
1044 ip = ip->i_mnext;
1045 continue;
1048 if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) {
1049 XFS_MOUNT_IUNLOCK(mp);
1050 kmem_free(ipointer, sizeof(xfs_iptr_t));
1051 return 0;
1055 * Try to lock without sleeping. We're out of order with
1056 * the inode list lock here, so if we fail we need to drop
1057 * the mount lock and try again. If we're called from
1058 * bdflush() here, then don't bother.
1060 * The inode lock here actually coordinates with the
1061 * almost spurious inode lock in xfs_ireclaim() to prevent
1062 * the vnode we handle here without a reference from
1063 * being freed while we reference it. If we lock the inode
1064 * while it's on the mount list here, then the spurious inode
1065 * lock in xfs_ireclaim() after the inode is pulled from
1066 * the mount list will sleep until we release it here.
1067 * This keeps the vnode from being freed while we reference
1068 * it.
1070 if (xfs_ilock_nowait(ip, lock_flags) == 0) {
1071 if (vp == NULL) {
1072 ip = ip->i_mnext;
1073 continue;
1076 vp = vn_grab(vp);
1077 if (vp == NULL) {
1078 ip = ip->i_mnext;
1079 continue;
1082 IPOINTER_INSERT(ip, mp);
1083 xfs_ilock(ip, lock_flags);
1085 ASSERT(vp == XFS_ITOV(ip));
1086 ASSERT(ip->i_mount == mp);
1088 vnode_refed = B_TRUE;
1091 /* From here on in the loop we may have a marker record
1092 * in the inode list.
1096 * If we have to flush data or wait for I/O completion
1097 * we need to drop the ilock that we currently hold.
1098 * If we need to drop the lock, insert a marker if we
1099 * have not already done so.
1101 if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) ||
1102 ((flags & SYNC_DELWRI) && VN_DIRTY(vp))) {
1103 if (mount_locked) {
1104 IPOINTER_INSERT(ip, mp);
1106 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1108 if (flags & SYNC_CLOSE) {
1109 /* Shutdown case. Flush and invalidate. */
1110 if (XFS_FORCED_SHUTDOWN(mp))
1111 xfs_tosspages(ip, 0, -1,
1112 FI_REMAPF);
1113 else
1114 error = xfs_flushinval_pages(ip,
1115 0, -1, FI_REMAPF);
1116 } else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) {
1117 error = xfs_flush_pages(ip, 0,
1118 -1, fflag, FI_NONE);
1122 * When freezing, we need to wait ensure all I/O (including direct
1123 * I/O) is complete to ensure no further data modification can take
1124 * place after this point
1126 if (flags & SYNC_IOWAIT)
1127 vn_iowait(ip);
1129 xfs_ilock(ip, XFS_ILOCK_SHARED);
1132 if ((flags & SYNC_ATTR) &&
1133 (ip->i_update_core ||
1134 (ip->i_itemp && ip->i_itemp->ili_format.ilf_fields))) {
1135 if (mount_locked)
1136 IPOINTER_INSERT(ip, mp);
1138 if (flags & SYNC_WAIT) {
1139 xfs_iflock(ip);
1140 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
1143 * If we can't acquire the flush lock, then the inode
1144 * is already being flushed so don't bother waiting.
1146 * If we can lock it then do a delwri flush so we can
1147 * combine multiple inode flushes in each disk write.
1149 } else if (xfs_iflock_nowait(ip)) {
1150 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
1151 } else if (bypassed) {
1152 (*bypassed)++;
1156 if (lock_flags != 0) {
1157 xfs_iunlock(ip, lock_flags);
1160 if (vnode_refed) {
1162 * If we had to take a reference on the vnode
1163 * above, then wait until after we've unlocked
1164 * the inode to release the reference. This is
1165 * because we can be already holding the inode
1166 * lock when IRELE() calls xfs_inactive().
1168 * Make sure to drop the mount lock before calling
1169 * IRELE() so that we don't trip over ourselves if
1170 * we have to go for the mount lock again in the
1171 * inactive code.
1173 if (mount_locked) {
1174 IPOINTER_INSERT(ip, mp);
1177 IRELE(ip);
1179 vnode_refed = B_FALSE;
1182 if (error) {
1183 last_error = error;
1187 * bail out if the filesystem is corrupted.
1189 if (error == EFSCORRUPTED) {
1190 if (!mount_locked) {
1191 XFS_MOUNT_ILOCK(mp);
1192 IPOINTER_REMOVE(ip, mp);
1194 XFS_MOUNT_IUNLOCK(mp);
1195 ASSERT(ipointer_in == B_FALSE);
1196 kmem_free(ipointer, sizeof(xfs_iptr_t));
1197 return XFS_ERROR(error);
1200 /* Let other threads have a chance at the mount lock
1201 * if we have looped many times without dropping the
1202 * lock.
1204 if ((++preempt & XFS_PREEMPT_MASK) == 0) {
1205 if (mount_locked) {
1206 IPOINTER_INSERT(ip, mp);
1210 if (mount_locked == B_FALSE) {
1211 XFS_MOUNT_ILOCK(mp);
1212 mount_locked = B_TRUE;
1213 IPOINTER_REMOVE(ip, mp);
1214 continue;
1217 ASSERT(ipointer_in == B_FALSE);
1218 ip = ip->i_mnext;
1220 } while (ip != mp->m_inodes);
1222 XFS_MOUNT_IUNLOCK(mp);
1224 ASSERT(ipointer_in == B_FALSE);
1226 kmem_free(ipointer, sizeof(xfs_iptr_t));
1227 return XFS_ERROR(last_error);
1231 * xfs sync routine for internal use
1233 * This routine supports all of the flags defined for the generic vfs_sync
1234 * interface as explained above under xfs_sync.
1238 xfs_syncsub(
1239 xfs_mount_t *mp,
1240 int flags,
1241 int *bypassed)
1243 int error = 0;
1244 int last_error = 0;
1245 uint log_flags = XFS_LOG_FORCE;
1246 xfs_buf_t *bp;
1247 xfs_buf_log_item_t *bip;
1250 * Sync out the log. This ensures that the log is periodically
1251 * flushed even if there is not enough activity to fill it up.
1253 if (flags & SYNC_WAIT)
1254 log_flags |= XFS_LOG_SYNC;
1256 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1258 if (flags & (SYNC_ATTR|SYNC_DELWRI)) {
1259 if (flags & SYNC_BDFLUSH)
1260 xfs_finish_reclaim_all(mp, 1);
1261 else
1262 error = xfs_sync_inodes(mp, flags, bypassed);
1266 * Flushing out dirty data above probably generated more
1267 * log activity, so if this isn't vfs_sync() then flush
1268 * the log again.
1270 if (flags & SYNC_DELWRI) {
1271 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1274 if (flags & SYNC_FSDATA) {
1276 * If this is vfs_sync() then only sync the superblock
1277 * if we can lock it without sleeping and it is not pinned.
1279 if (flags & SYNC_BDFLUSH) {
1280 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
1281 if (bp != NULL) {
1282 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
1283 if ((bip != NULL) &&
1284 xfs_buf_item_dirty(bip)) {
1285 if (!(XFS_BUF_ISPINNED(bp))) {
1286 XFS_BUF_ASYNC(bp);
1287 error = xfs_bwrite(mp, bp);
1288 } else {
1289 xfs_buf_relse(bp);
1291 } else {
1292 xfs_buf_relse(bp);
1295 } else {
1296 bp = xfs_getsb(mp, 0);
1298 * If the buffer is pinned then push on the log so
1299 * we won't get stuck waiting in the write for
1300 * someone, maybe ourselves, to flush the log.
1301 * Even though we just pushed the log above, we
1302 * did not have the superblock buffer locked at
1303 * that point so it can become pinned in between
1304 * there and here.
1306 if (XFS_BUF_ISPINNED(bp))
1307 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1308 if (flags & SYNC_WAIT)
1309 XFS_BUF_UNASYNC(bp);
1310 else
1311 XFS_BUF_ASYNC(bp);
1312 error = xfs_bwrite(mp, bp);
1314 if (error) {
1315 last_error = error;
1320 * Now check to see if the log needs a "dummy" transaction.
1322 if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) {
1323 xfs_trans_t *tp;
1324 xfs_inode_t *ip;
1327 * Put a dummy transaction in the log to tell
1328 * recovery that all others are OK.
1330 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
1331 if ((error = xfs_trans_reserve(tp, 0,
1332 XFS_ICHANGE_LOG_RES(mp),
1333 0, 0, 0))) {
1334 xfs_trans_cancel(tp, 0);
1335 return error;
1338 ip = mp->m_rootip;
1339 xfs_ilock(ip, XFS_ILOCK_EXCL);
1341 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1342 xfs_trans_ihold(tp, ip);
1343 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1344 error = xfs_trans_commit(tp, 0);
1345 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1346 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1350 * When shutting down, we need to insure that the AIL is pushed
1351 * to disk or the filesystem can appear corrupt from the PROM.
1353 if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) {
1354 XFS_bflush(mp->m_ddev_targp);
1355 if (mp->m_rtdev_targp) {
1356 XFS_bflush(mp->m_rtdev_targp);
1360 return XFS_ERROR(last_error);