[MIPS] Alchemy: kill useless time variables
[linux-2.6/btrfs-unstable.git] / fs / binfmt_elf.c
blob9924581df6f6ccbc35520237cbdf8c9c079559f8
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/a.out.h>
20 #include <linux/errno.h>
21 #include <linux/signal.h>
22 #include <linux/binfmts.h>
23 #include <linux/string.h>
24 #include <linux/file.h>
25 #include <linux/fcntl.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/shm.h>
29 #include <linux/personality.h>
30 #include <linux/elfcore.h>
31 #include <linux/init.h>
32 #include <linux/highuid.h>
33 #include <linux/smp.h>
34 #include <linux/compiler.h>
35 #include <linux/highmem.h>
36 #include <linux/pagemap.h>
37 #include <linux/security.h>
38 #include <linux/syscalls.h>
39 #include <linux/random.h>
40 #include <linux/elf.h>
41 #include <linux/utsname.h>
42 #include <asm/uaccess.h>
43 #include <asm/param.h>
44 #include <asm/page.h>
46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
47 static int load_elf_library(struct file *);
48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
49 int, int, unsigned long);
52 * If we don't support core dumping, then supply a NULL so we
53 * don't even try.
55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
57 #else
58 #define elf_core_dump NULL
59 #endif
61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
62 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
63 #else
64 #define ELF_MIN_ALIGN PAGE_SIZE
65 #endif
67 #ifndef ELF_CORE_EFLAGS
68 #define ELF_CORE_EFLAGS 0
69 #endif
71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
75 static struct linux_binfmt elf_format = {
76 .module = THIS_MODULE,
77 .load_binary = load_elf_binary,
78 .load_shlib = load_elf_library,
79 .core_dump = elf_core_dump,
80 .min_coredump = ELF_EXEC_PAGESIZE,
81 .hasvdso = 1
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 static int set_brk(unsigned long start, unsigned long end)
88 start = ELF_PAGEALIGN(start);
89 end = ELF_PAGEALIGN(end);
90 if (end > start) {
91 unsigned long addr;
92 down_write(&current->mm->mmap_sem);
93 addr = do_brk(start, end - start);
94 up_write(&current->mm->mmap_sem);
95 if (BAD_ADDR(addr))
96 return addr;
98 current->mm->start_brk = current->mm->brk = end;
99 return 0;
102 /* We need to explicitly zero any fractional pages
103 after the data section (i.e. bss). This would
104 contain the junk from the file that should not
105 be in memory
107 static int padzero(unsigned long elf_bss)
109 unsigned long nbyte;
111 nbyte = ELF_PAGEOFFSET(elf_bss);
112 if (nbyte) {
113 nbyte = ELF_MIN_ALIGN - nbyte;
114 if (clear_user((void __user *) elf_bss, nbyte))
115 return -EFAULT;
117 return 0;
120 /* Let's use some macros to make this stack manipulation a little clearer */
121 #ifdef CONFIG_STACK_GROWSUP
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
123 #define STACK_ROUND(sp, items) \
124 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ \
126 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127 old_sp; })
128 #else
129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
130 #define STACK_ROUND(sp, items) \
131 (((unsigned long) (sp - items)) &~ 15UL)
132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #endif
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137 unsigned long load_addr, unsigned long interp_load_addr)
139 unsigned long p = bprm->p;
140 int argc = bprm->argc;
141 int envc = bprm->envc;
142 elf_addr_t __user *argv;
143 elf_addr_t __user *envp;
144 elf_addr_t __user *sp;
145 elf_addr_t __user *u_platform;
146 const char *k_platform = ELF_PLATFORM;
147 int items;
148 elf_addr_t *elf_info;
149 int ei_index = 0;
150 struct task_struct *tsk = current;
151 struct vm_area_struct *vma;
154 * In some cases (e.g. Hyper-Threading), we want to avoid L1
155 * evictions by the processes running on the same package. One
156 * thing we can do is to shuffle the initial stack for them.
159 p = arch_align_stack(p);
162 * If this architecture has a platform capability string, copy it
163 * to userspace. In some cases (Sparc), this info is impossible
164 * for userspace to get any other way, in others (i386) it is
165 * merely difficult.
167 u_platform = NULL;
168 if (k_platform) {
169 size_t len = strlen(k_platform) + 1;
171 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
172 if (__copy_to_user(u_platform, k_platform, len))
173 return -EFAULT;
176 /* Create the ELF interpreter info */
177 elf_info = (elf_addr_t *)current->mm->saved_auxv;
178 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
179 #define NEW_AUX_ENT(id, val) \
180 do { \
181 elf_info[ei_index++] = id; \
182 elf_info[ei_index++] = val; \
183 } while (0)
185 #ifdef ARCH_DLINFO
187 * ARCH_DLINFO must come first so PPC can do its special alignment of
188 * AUXV.
189 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
190 * ARCH_DLINFO changes
192 ARCH_DLINFO;
193 #endif
194 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
195 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
196 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
197 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
198 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
199 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
200 NEW_AUX_ENT(AT_BASE, interp_load_addr);
201 NEW_AUX_ENT(AT_FLAGS, 0);
202 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
203 NEW_AUX_ENT(AT_UID, tsk->uid);
204 NEW_AUX_ENT(AT_EUID, tsk->euid);
205 NEW_AUX_ENT(AT_GID, tsk->gid);
206 NEW_AUX_ENT(AT_EGID, tsk->egid);
207 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
208 if (k_platform) {
209 NEW_AUX_ENT(AT_PLATFORM,
210 (elf_addr_t)(unsigned long)u_platform);
212 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
213 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
215 #undef NEW_AUX_ENT
216 /* AT_NULL is zero; clear the rest too */
217 memset(&elf_info[ei_index], 0,
218 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
220 /* And advance past the AT_NULL entry. */
221 ei_index += 2;
223 sp = STACK_ADD(p, ei_index);
225 items = (argc + 1) + (envc + 1) + 1;
226 bprm->p = STACK_ROUND(sp, items);
228 /* Point sp at the lowest address on the stack */
229 #ifdef CONFIG_STACK_GROWSUP
230 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
231 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
232 #else
233 sp = (elf_addr_t __user *)bprm->p;
234 #endif
238 * Grow the stack manually; some architectures have a limit on how
239 * far ahead a user-space access may be in order to grow the stack.
241 vma = find_extend_vma(current->mm, bprm->p);
242 if (!vma)
243 return -EFAULT;
245 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
246 if (__put_user(argc, sp++))
247 return -EFAULT;
248 argv = sp;
249 envp = argv + argc + 1;
251 /* Populate argv and envp */
252 p = current->mm->arg_end = current->mm->arg_start;
253 while (argc-- > 0) {
254 size_t len;
255 if (__put_user((elf_addr_t)p, argv++))
256 return -EFAULT;
257 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
258 if (!len || len > MAX_ARG_STRLEN)
259 return 0;
260 p += len;
262 if (__put_user(0, argv))
263 return -EFAULT;
264 current->mm->arg_end = current->mm->env_start = p;
265 while (envc-- > 0) {
266 size_t len;
267 if (__put_user((elf_addr_t)p, envp++))
268 return -EFAULT;
269 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
270 if (!len || len > MAX_ARG_STRLEN)
271 return 0;
272 p += len;
274 if (__put_user(0, envp))
275 return -EFAULT;
276 current->mm->env_end = p;
278 /* Put the elf_info on the stack in the right place. */
279 sp = (elf_addr_t __user *)envp + 1;
280 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
281 return -EFAULT;
282 return 0;
285 #ifndef elf_map
287 static unsigned long elf_map(struct file *filep, unsigned long addr,
288 struct elf_phdr *eppnt, int prot, int type,
289 unsigned long total_size)
291 unsigned long map_addr;
292 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
293 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
294 addr = ELF_PAGESTART(addr);
295 size = ELF_PAGEALIGN(size);
297 /* mmap() will return -EINVAL if given a zero size, but a
298 * segment with zero filesize is perfectly valid */
299 if (!size)
300 return addr;
302 down_write(&current->mm->mmap_sem);
304 * total_size is the size of the ELF (interpreter) image.
305 * The _first_ mmap needs to know the full size, otherwise
306 * randomization might put this image into an overlapping
307 * position with the ELF binary image. (since size < total_size)
308 * So we first map the 'big' image - and unmap the remainder at
309 * the end. (which unmap is needed for ELF images with holes.)
311 if (total_size) {
312 total_size = ELF_PAGEALIGN(total_size);
313 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
314 if (!BAD_ADDR(map_addr))
315 do_munmap(current->mm, map_addr+size, total_size-size);
316 } else
317 map_addr = do_mmap(filep, addr, size, prot, type, off);
319 up_write(&current->mm->mmap_sem);
320 return(map_addr);
323 #endif /* !elf_map */
325 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
327 int i, first_idx = -1, last_idx = -1;
329 for (i = 0; i < nr; i++) {
330 if (cmds[i].p_type == PT_LOAD) {
331 last_idx = i;
332 if (first_idx == -1)
333 first_idx = i;
336 if (first_idx == -1)
337 return 0;
339 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
340 ELF_PAGESTART(cmds[first_idx].p_vaddr);
344 /* This is much more generalized than the library routine read function,
345 so we keep this separate. Technically the library read function
346 is only provided so that we can read a.out libraries that have
347 an ELF header */
349 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
350 struct file *interpreter, unsigned long *interp_map_addr,
351 unsigned long no_base)
353 struct elf_phdr *elf_phdata;
354 struct elf_phdr *eppnt;
355 unsigned long load_addr = 0;
356 int load_addr_set = 0;
357 unsigned long last_bss = 0, elf_bss = 0;
358 unsigned long error = ~0UL;
359 unsigned long total_size;
360 int retval, i, size;
362 /* First of all, some simple consistency checks */
363 if (interp_elf_ex->e_type != ET_EXEC &&
364 interp_elf_ex->e_type != ET_DYN)
365 goto out;
366 if (!elf_check_arch(interp_elf_ex))
367 goto out;
368 if (!interpreter->f_op || !interpreter->f_op->mmap)
369 goto out;
372 * If the size of this structure has changed, then punt, since
373 * we will be doing the wrong thing.
375 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
376 goto out;
377 if (interp_elf_ex->e_phnum < 1 ||
378 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
379 goto out;
381 /* Now read in all of the header information */
382 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
383 if (size > ELF_MIN_ALIGN)
384 goto out;
385 elf_phdata = kmalloc(size, GFP_KERNEL);
386 if (!elf_phdata)
387 goto out;
389 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
390 (char *)elf_phdata,size);
391 error = -EIO;
392 if (retval != size) {
393 if (retval < 0)
394 error = retval;
395 goto out_close;
398 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
399 if (!total_size) {
400 error = -EINVAL;
401 goto out_close;
404 eppnt = elf_phdata;
405 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
406 if (eppnt->p_type == PT_LOAD) {
407 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
408 int elf_prot = 0;
409 unsigned long vaddr = 0;
410 unsigned long k, map_addr;
412 if (eppnt->p_flags & PF_R)
413 elf_prot = PROT_READ;
414 if (eppnt->p_flags & PF_W)
415 elf_prot |= PROT_WRITE;
416 if (eppnt->p_flags & PF_X)
417 elf_prot |= PROT_EXEC;
418 vaddr = eppnt->p_vaddr;
419 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
420 elf_type |= MAP_FIXED;
421 else if (no_base && interp_elf_ex->e_type == ET_DYN)
422 load_addr = -vaddr;
424 map_addr = elf_map(interpreter, load_addr + vaddr,
425 eppnt, elf_prot, elf_type, total_size);
426 total_size = 0;
427 if (!*interp_map_addr)
428 *interp_map_addr = map_addr;
429 error = map_addr;
430 if (BAD_ADDR(map_addr))
431 goto out_close;
433 if (!load_addr_set &&
434 interp_elf_ex->e_type == ET_DYN) {
435 load_addr = map_addr - ELF_PAGESTART(vaddr);
436 load_addr_set = 1;
440 * Check to see if the section's size will overflow the
441 * allowed task size. Note that p_filesz must always be
442 * <= p_memsize so it's only necessary to check p_memsz.
444 k = load_addr + eppnt->p_vaddr;
445 if (BAD_ADDR(k) ||
446 eppnt->p_filesz > eppnt->p_memsz ||
447 eppnt->p_memsz > TASK_SIZE ||
448 TASK_SIZE - eppnt->p_memsz < k) {
449 error = -ENOMEM;
450 goto out_close;
454 * Find the end of the file mapping for this phdr, and
455 * keep track of the largest address we see for this.
457 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
458 if (k > elf_bss)
459 elf_bss = k;
462 * Do the same thing for the memory mapping - between
463 * elf_bss and last_bss is the bss section.
465 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
466 if (k > last_bss)
467 last_bss = k;
472 * Now fill out the bss section. First pad the last page up
473 * to the page boundary, and then perform a mmap to make sure
474 * that there are zero-mapped pages up to and including the
475 * last bss page.
477 if (padzero(elf_bss)) {
478 error = -EFAULT;
479 goto out_close;
482 /* What we have mapped so far */
483 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
485 /* Map the last of the bss segment */
486 if (last_bss > elf_bss) {
487 down_write(&current->mm->mmap_sem);
488 error = do_brk(elf_bss, last_bss - elf_bss);
489 up_write(&current->mm->mmap_sem);
490 if (BAD_ADDR(error))
491 goto out_close;
494 error = load_addr;
496 out_close:
497 kfree(elf_phdata);
498 out:
499 return error;
503 * These are the functions used to load ELF style executables and shared
504 * libraries. There is no binary dependent code anywhere else.
507 #define INTERPRETER_NONE 0
508 #define INTERPRETER_ELF 2
510 #ifndef STACK_RND_MASK
511 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
512 #endif
514 static unsigned long randomize_stack_top(unsigned long stack_top)
516 unsigned int random_variable = 0;
518 if ((current->flags & PF_RANDOMIZE) &&
519 !(current->personality & ADDR_NO_RANDOMIZE)) {
520 random_variable = get_random_int() & STACK_RND_MASK;
521 random_variable <<= PAGE_SHIFT;
523 #ifdef CONFIG_STACK_GROWSUP
524 return PAGE_ALIGN(stack_top) + random_variable;
525 #else
526 return PAGE_ALIGN(stack_top) - random_variable;
527 #endif
530 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
532 struct file *interpreter = NULL; /* to shut gcc up */
533 unsigned long load_addr = 0, load_bias = 0;
534 int load_addr_set = 0;
535 char * elf_interpreter = NULL;
536 unsigned long error;
537 struct elf_phdr *elf_ppnt, *elf_phdata;
538 unsigned long elf_bss, elf_brk;
539 int elf_exec_fileno;
540 int retval, i;
541 unsigned int size;
542 unsigned long elf_entry;
543 unsigned long interp_load_addr = 0;
544 unsigned long start_code, end_code, start_data, end_data;
545 unsigned long reloc_func_desc = 0;
546 int executable_stack = EXSTACK_DEFAULT;
547 unsigned long def_flags = 0;
548 struct {
549 struct elfhdr elf_ex;
550 struct elfhdr interp_elf_ex;
551 struct exec interp_ex;
552 } *loc;
554 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
555 if (!loc) {
556 retval = -ENOMEM;
557 goto out_ret;
560 /* Get the exec-header */
561 loc->elf_ex = *((struct elfhdr *)bprm->buf);
563 retval = -ENOEXEC;
564 /* First of all, some simple consistency checks */
565 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
566 goto out;
568 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
569 goto out;
570 if (!elf_check_arch(&loc->elf_ex))
571 goto out;
572 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
573 goto out;
575 /* Now read in all of the header information */
576 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
577 goto out;
578 if (loc->elf_ex.e_phnum < 1 ||
579 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
580 goto out;
581 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
582 retval = -ENOMEM;
583 elf_phdata = kmalloc(size, GFP_KERNEL);
584 if (!elf_phdata)
585 goto out;
587 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
588 (char *)elf_phdata, size);
589 if (retval != size) {
590 if (retval >= 0)
591 retval = -EIO;
592 goto out_free_ph;
595 retval = get_unused_fd();
596 if (retval < 0)
597 goto out_free_ph;
598 get_file(bprm->file);
599 fd_install(elf_exec_fileno = retval, bprm->file);
601 elf_ppnt = elf_phdata;
602 elf_bss = 0;
603 elf_brk = 0;
605 start_code = ~0UL;
606 end_code = 0;
607 start_data = 0;
608 end_data = 0;
610 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
611 if (elf_ppnt->p_type == PT_INTERP) {
612 /* This is the program interpreter used for
613 * shared libraries - for now assume that this
614 * is an a.out format binary
616 retval = -ENOEXEC;
617 if (elf_ppnt->p_filesz > PATH_MAX ||
618 elf_ppnt->p_filesz < 2)
619 goto out_free_file;
621 retval = -ENOMEM;
622 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
623 GFP_KERNEL);
624 if (!elf_interpreter)
625 goto out_free_file;
627 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
628 elf_interpreter,
629 elf_ppnt->p_filesz);
630 if (retval != elf_ppnt->p_filesz) {
631 if (retval >= 0)
632 retval = -EIO;
633 goto out_free_interp;
635 /* make sure path is NULL terminated */
636 retval = -ENOEXEC;
637 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
638 goto out_free_interp;
641 * The early SET_PERSONALITY here is so that the lookup
642 * for the interpreter happens in the namespace of the
643 * to-be-execed image. SET_PERSONALITY can select an
644 * alternate root.
646 * However, SET_PERSONALITY is NOT allowed to switch
647 * this task into the new images's memory mapping
648 * policy - that is, TASK_SIZE must still evaluate to
649 * that which is appropriate to the execing application.
650 * This is because exit_mmap() needs to have TASK_SIZE
651 * evaluate to the size of the old image.
653 * So if (say) a 64-bit application is execing a 32-bit
654 * application it is the architecture's responsibility
655 * to defer changing the value of TASK_SIZE until the
656 * switch really is going to happen - do this in
657 * flush_thread(). - akpm
659 SET_PERSONALITY(loc->elf_ex, 0);
661 interpreter = open_exec(elf_interpreter);
662 retval = PTR_ERR(interpreter);
663 if (IS_ERR(interpreter))
664 goto out_free_interp;
667 * If the binary is not readable then enforce
668 * mm->dumpable = 0 regardless of the interpreter's
669 * permissions.
671 if (file_permission(interpreter, MAY_READ) < 0)
672 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
674 retval = kernel_read(interpreter, 0, bprm->buf,
675 BINPRM_BUF_SIZE);
676 if (retval != BINPRM_BUF_SIZE) {
677 if (retval >= 0)
678 retval = -EIO;
679 goto out_free_dentry;
682 /* Get the exec headers */
683 loc->interp_ex = *((struct exec *)bprm->buf);
684 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
685 break;
687 elf_ppnt++;
690 elf_ppnt = elf_phdata;
691 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
692 if (elf_ppnt->p_type == PT_GNU_STACK) {
693 if (elf_ppnt->p_flags & PF_X)
694 executable_stack = EXSTACK_ENABLE_X;
695 else
696 executable_stack = EXSTACK_DISABLE_X;
697 break;
700 /* Some simple consistency checks for the interpreter */
701 if (elf_interpreter) {
702 retval = -ELIBBAD;
703 /* Not an ELF interpreter */
704 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
705 goto out_free_dentry;
706 /* Verify the interpreter has a valid arch */
707 if (!elf_check_arch(&loc->interp_elf_ex))
708 goto out_free_dentry;
709 } else {
710 /* Executables without an interpreter also need a personality */
711 SET_PERSONALITY(loc->elf_ex, 0);
714 /* Flush all traces of the currently running executable */
715 retval = flush_old_exec(bprm);
716 if (retval)
717 goto out_free_dentry;
719 /* OK, This is the point of no return */
720 current->flags &= ~PF_FORKNOEXEC;
721 current->mm->def_flags = def_flags;
723 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
724 may depend on the personality. */
725 SET_PERSONALITY(loc->elf_ex, 0);
726 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
727 current->personality |= READ_IMPLIES_EXEC;
729 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
730 current->flags |= PF_RANDOMIZE;
731 arch_pick_mmap_layout(current->mm);
733 /* Do this so that we can load the interpreter, if need be. We will
734 change some of these later */
735 current->mm->free_area_cache = current->mm->mmap_base;
736 current->mm->cached_hole_size = 0;
737 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
738 executable_stack);
739 if (retval < 0) {
740 send_sig(SIGKILL, current, 0);
741 goto out_free_dentry;
744 current->mm->start_stack = bprm->p;
746 /* Now we do a little grungy work by mmaping the ELF image into
747 the correct location in memory. */
748 for(i = 0, elf_ppnt = elf_phdata;
749 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
750 int elf_prot = 0, elf_flags;
751 unsigned long k, vaddr;
753 if (elf_ppnt->p_type != PT_LOAD)
754 continue;
756 if (unlikely (elf_brk > elf_bss)) {
757 unsigned long nbyte;
759 /* There was a PT_LOAD segment with p_memsz > p_filesz
760 before this one. Map anonymous pages, if needed,
761 and clear the area. */
762 retval = set_brk (elf_bss + load_bias,
763 elf_brk + load_bias);
764 if (retval) {
765 send_sig(SIGKILL, current, 0);
766 goto out_free_dentry;
768 nbyte = ELF_PAGEOFFSET(elf_bss);
769 if (nbyte) {
770 nbyte = ELF_MIN_ALIGN - nbyte;
771 if (nbyte > elf_brk - elf_bss)
772 nbyte = elf_brk - elf_bss;
773 if (clear_user((void __user *)elf_bss +
774 load_bias, nbyte)) {
776 * This bss-zeroing can fail if the ELF
777 * file specifies odd protections. So
778 * we don't check the return value
784 if (elf_ppnt->p_flags & PF_R)
785 elf_prot |= PROT_READ;
786 if (elf_ppnt->p_flags & PF_W)
787 elf_prot |= PROT_WRITE;
788 if (elf_ppnt->p_flags & PF_X)
789 elf_prot |= PROT_EXEC;
791 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
793 vaddr = elf_ppnt->p_vaddr;
794 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
795 elf_flags |= MAP_FIXED;
796 } else if (loc->elf_ex.e_type == ET_DYN) {
797 /* Try and get dynamic programs out of the way of the
798 * default mmap base, as well as whatever program they
799 * might try to exec. This is because the brk will
800 * follow the loader, and is not movable. */
801 #ifdef CONFIG_X86
802 load_bias = 0;
803 #else
804 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
805 #endif
808 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
809 elf_prot, elf_flags, 0);
810 if (BAD_ADDR(error)) {
811 send_sig(SIGKILL, current, 0);
812 retval = IS_ERR((void *)error) ?
813 PTR_ERR((void*)error) : -EINVAL;
814 goto out_free_dentry;
817 if (!load_addr_set) {
818 load_addr_set = 1;
819 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
820 if (loc->elf_ex.e_type == ET_DYN) {
821 load_bias += error -
822 ELF_PAGESTART(load_bias + vaddr);
823 load_addr += load_bias;
824 reloc_func_desc = load_bias;
827 k = elf_ppnt->p_vaddr;
828 if (k < start_code)
829 start_code = k;
830 if (start_data < k)
831 start_data = k;
834 * Check to see if the section's size will overflow the
835 * allowed task size. Note that p_filesz must always be
836 * <= p_memsz so it is only necessary to check p_memsz.
838 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
839 elf_ppnt->p_memsz > TASK_SIZE ||
840 TASK_SIZE - elf_ppnt->p_memsz < k) {
841 /* set_brk can never work. Avoid overflows. */
842 send_sig(SIGKILL, current, 0);
843 retval = -EINVAL;
844 goto out_free_dentry;
847 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
849 if (k > elf_bss)
850 elf_bss = k;
851 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
852 end_code = k;
853 if (end_data < k)
854 end_data = k;
855 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
856 if (k > elf_brk)
857 elf_brk = k;
860 loc->elf_ex.e_entry += load_bias;
861 elf_bss += load_bias;
862 elf_brk += load_bias;
863 start_code += load_bias;
864 end_code += load_bias;
865 start_data += load_bias;
866 end_data += load_bias;
868 /* Calling set_brk effectively mmaps the pages that we need
869 * for the bss and break sections. We must do this before
870 * mapping in the interpreter, to make sure it doesn't wind
871 * up getting placed where the bss needs to go.
873 retval = set_brk(elf_bss, elf_brk);
874 if (retval) {
875 send_sig(SIGKILL, current, 0);
876 goto out_free_dentry;
878 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
879 send_sig(SIGSEGV, current, 0);
880 retval = -EFAULT; /* Nobody gets to see this, but.. */
881 goto out_free_dentry;
884 if (elf_interpreter) {
885 unsigned long uninitialized_var(interp_map_addr);
887 elf_entry = load_elf_interp(&loc->interp_elf_ex,
888 interpreter,
889 &interp_map_addr,
890 load_bias);
891 if (!IS_ERR((void *)elf_entry)) {
893 * load_elf_interp() returns relocation
894 * adjustment
896 interp_load_addr = elf_entry;
897 elf_entry += loc->interp_elf_ex.e_entry;
899 if (BAD_ADDR(elf_entry)) {
900 force_sig(SIGSEGV, current);
901 retval = IS_ERR((void *)elf_entry) ?
902 (int)elf_entry : -EINVAL;
903 goto out_free_dentry;
905 reloc_func_desc = interp_load_addr;
907 allow_write_access(interpreter);
908 fput(interpreter);
909 kfree(elf_interpreter);
910 } else {
911 elf_entry = loc->elf_ex.e_entry;
912 if (BAD_ADDR(elf_entry)) {
913 force_sig(SIGSEGV, current);
914 retval = -EINVAL;
915 goto out_free_dentry;
919 kfree(elf_phdata);
921 sys_close(elf_exec_fileno);
923 set_binfmt(&elf_format);
925 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
926 retval = arch_setup_additional_pages(bprm, executable_stack);
927 if (retval < 0) {
928 send_sig(SIGKILL, current, 0);
929 goto out;
931 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
933 compute_creds(bprm);
934 current->flags &= ~PF_FORKNOEXEC;
935 retval = create_elf_tables(bprm, &loc->elf_ex,
936 load_addr, interp_load_addr);
937 if (retval < 0) {
938 send_sig(SIGKILL, current, 0);
939 goto out;
941 /* N.B. passed_fileno might not be initialized? */
942 current->mm->end_code = end_code;
943 current->mm->start_code = start_code;
944 current->mm->start_data = start_data;
945 current->mm->end_data = end_data;
946 current->mm->start_stack = bprm->p;
948 #ifdef arch_randomize_brk
949 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
950 current->mm->brk = current->mm->start_brk =
951 arch_randomize_brk(current->mm);
952 #endif
954 if (current->personality & MMAP_PAGE_ZERO) {
955 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
956 and some applications "depend" upon this behavior.
957 Since we do not have the power to recompile these, we
958 emulate the SVr4 behavior. Sigh. */
959 down_write(&current->mm->mmap_sem);
960 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
961 MAP_FIXED | MAP_PRIVATE, 0);
962 up_write(&current->mm->mmap_sem);
965 #ifdef ELF_PLAT_INIT
967 * The ABI may specify that certain registers be set up in special
968 * ways (on i386 %edx is the address of a DT_FINI function, for
969 * example. In addition, it may also specify (eg, PowerPC64 ELF)
970 * that the e_entry field is the address of the function descriptor
971 * for the startup routine, rather than the address of the startup
972 * routine itself. This macro performs whatever initialization to
973 * the regs structure is required as well as any relocations to the
974 * function descriptor entries when executing dynamically links apps.
976 ELF_PLAT_INIT(regs, reloc_func_desc);
977 #endif
979 start_thread(regs, elf_entry, bprm->p);
980 if (unlikely(current->ptrace & PT_PTRACED)) {
981 if (current->ptrace & PT_TRACE_EXEC)
982 ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
983 else
984 send_sig(SIGTRAP, current, 0);
986 retval = 0;
987 out:
988 kfree(loc);
989 out_ret:
990 return retval;
992 /* error cleanup */
993 out_free_dentry:
994 allow_write_access(interpreter);
995 if (interpreter)
996 fput(interpreter);
997 out_free_interp:
998 kfree(elf_interpreter);
999 out_free_file:
1000 sys_close(elf_exec_fileno);
1001 out_free_ph:
1002 kfree(elf_phdata);
1003 goto out;
1006 /* This is really simpleminded and specialized - we are loading an
1007 a.out library that is given an ELF header. */
1008 static int load_elf_library(struct file *file)
1010 struct elf_phdr *elf_phdata;
1011 struct elf_phdr *eppnt;
1012 unsigned long elf_bss, bss, len;
1013 int retval, error, i, j;
1014 struct elfhdr elf_ex;
1016 error = -ENOEXEC;
1017 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1018 if (retval != sizeof(elf_ex))
1019 goto out;
1021 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1022 goto out;
1024 /* First of all, some simple consistency checks */
1025 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1026 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1027 goto out;
1029 /* Now read in all of the header information */
1031 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1032 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1034 error = -ENOMEM;
1035 elf_phdata = kmalloc(j, GFP_KERNEL);
1036 if (!elf_phdata)
1037 goto out;
1039 eppnt = elf_phdata;
1040 error = -ENOEXEC;
1041 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1042 if (retval != j)
1043 goto out_free_ph;
1045 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1046 if ((eppnt + i)->p_type == PT_LOAD)
1047 j++;
1048 if (j != 1)
1049 goto out_free_ph;
1051 while (eppnt->p_type != PT_LOAD)
1052 eppnt++;
1054 /* Now use mmap to map the library into memory. */
1055 down_write(&current->mm->mmap_sem);
1056 error = do_mmap(file,
1057 ELF_PAGESTART(eppnt->p_vaddr),
1058 (eppnt->p_filesz +
1059 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1060 PROT_READ | PROT_WRITE | PROT_EXEC,
1061 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1062 (eppnt->p_offset -
1063 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1064 up_write(&current->mm->mmap_sem);
1065 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1066 goto out_free_ph;
1068 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1069 if (padzero(elf_bss)) {
1070 error = -EFAULT;
1071 goto out_free_ph;
1074 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1075 ELF_MIN_ALIGN - 1);
1076 bss = eppnt->p_memsz + eppnt->p_vaddr;
1077 if (bss > len) {
1078 down_write(&current->mm->mmap_sem);
1079 do_brk(len, bss - len);
1080 up_write(&current->mm->mmap_sem);
1082 error = 0;
1084 out_free_ph:
1085 kfree(elf_phdata);
1086 out:
1087 return error;
1091 * Note that some platforms still use traditional core dumps and not
1092 * the ELF core dump. Each platform can select it as appropriate.
1094 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1097 * ELF core dumper
1099 * Modelled on fs/exec.c:aout_core_dump()
1100 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1103 * These are the only things you should do on a core-file: use only these
1104 * functions to write out all the necessary info.
1106 static int dump_write(struct file *file, const void *addr, int nr)
1108 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1111 static int dump_seek(struct file *file, loff_t off)
1113 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1114 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1115 return 0;
1116 } else {
1117 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1118 if (!buf)
1119 return 0;
1120 while (off > 0) {
1121 unsigned long n = off;
1122 if (n > PAGE_SIZE)
1123 n = PAGE_SIZE;
1124 if (!dump_write(file, buf, n))
1125 return 0;
1126 off -= n;
1128 free_page((unsigned long)buf);
1130 return 1;
1134 * Decide what to dump of a segment, part, all or none.
1136 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1137 unsigned long mm_flags)
1139 /* The vma can be set up to tell us the answer directly. */
1140 if (vma->vm_flags & VM_ALWAYSDUMP)
1141 goto whole;
1143 /* Do not dump I/O mapped devices or special mappings */
1144 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1145 return 0;
1147 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1149 /* By default, dump shared memory if mapped from an anonymous file. */
1150 if (vma->vm_flags & VM_SHARED) {
1151 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1152 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1153 goto whole;
1154 return 0;
1157 /* Dump segments that have been written to. */
1158 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1159 goto whole;
1160 if (vma->vm_file == NULL)
1161 return 0;
1163 if (FILTER(MAPPED_PRIVATE))
1164 goto whole;
1167 * If this looks like the beginning of a DSO or executable mapping,
1168 * check for an ELF header. If we find one, dump the first page to
1169 * aid in determining what was mapped here.
1171 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1172 u32 __user *header = (u32 __user *) vma->vm_start;
1173 u32 word;
1175 * Doing it this way gets the constant folded by GCC.
1177 union {
1178 u32 cmp;
1179 char elfmag[SELFMAG];
1180 } magic;
1181 BUILD_BUG_ON(SELFMAG != sizeof word);
1182 magic.elfmag[EI_MAG0] = ELFMAG0;
1183 magic.elfmag[EI_MAG1] = ELFMAG1;
1184 magic.elfmag[EI_MAG2] = ELFMAG2;
1185 magic.elfmag[EI_MAG3] = ELFMAG3;
1186 if (get_user(word, header) == 0 && word == magic.cmp)
1187 return PAGE_SIZE;
1190 #undef FILTER
1192 return 0;
1194 whole:
1195 return vma->vm_end - vma->vm_start;
1198 /* An ELF note in memory */
1199 struct memelfnote
1201 const char *name;
1202 int type;
1203 unsigned int datasz;
1204 void *data;
1207 static int notesize(struct memelfnote *en)
1209 int sz;
1211 sz = sizeof(struct elf_note);
1212 sz += roundup(strlen(en->name) + 1, 4);
1213 sz += roundup(en->datasz, 4);
1215 return sz;
1218 #define DUMP_WRITE(addr, nr, foffset) \
1219 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1221 static int alignfile(struct file *file, loff_t *foffset)
1223 static const char buf[4] = { 0, };
1224 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1225 return 1;
1228 static int writenote(struct memelfnote *men, struct file *file,
1229 loff_t *foffset)
1231 struct elf_note en;
1232 en.n_namesz = strlen(men->name) + 1;
1233 en.n_descsz = men->datasz;
1234 en.n_type = men->type;
1236 DUMP_WRITE(&en, sizeof(en), foffset);
1237 DUMP_WRITE(men->name, en.n_namesz, foffset);
1238 if (!alignfile(file, foffset))
1239 return 0;
1240 DUMP_WRITE(men->data, men->datasz, foffset);
1241 if (!alignfile(file, foffset))
1242 return 0;
1244 return 1;
1246 #undef DUMP_WRITE
1248 #define DUMP_WRITE(addr, nr) \
1249 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1250 goto end_coredump;
1251 #define DUMP_SEEK(off) \
1252 if (!dump_seek(file, (off))) \
1253 goto end_coredump;
1255 static void fill_elf_header(struct elfhdr *elf, int segs,
1256 u16 machine, u32 flags, u8 osabi)
1258 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1259 elf->e_ident[EI_CLASS] = ELF_CLASS;
1260 elf->e_ident[EI_DATA] = ELF_DATA;
1261 elf->e_ident[EI_VERSION] = EV_CURRENT;
1262 elf->e_ident[EI_OSABI] = ELF_OSABI;
1263 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1265 elf->e_type = ET_CORE;
1266 elf->e_machine = machine;
1267 elf->e_version = EV_CURRENT;
1268 elf->e_entry = 0;
1269 elf->e_phoff = sizeof(struct elfhdr);
1270 elf->e_shoff = 0;
1271 elf->e_flags = flags;
1272 elf->e_ehsize = sizeof(struct elfhdr);
1273 elf->e_phentsize = sizeof(struct elf_phdr);
1274 elf->e_phnum = segs;
1275 elf->e_shentsize = 0;
1276 elf->e_shnum = 0;
1277 elf->e_shstrndx = 0;
1278 return;
1281 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1283 phdr->p_type = PT_NOTE;
1284 phdr->p_offset = offset;
1285 phdr->p_vaddr = 0;
1286 phdr->p_paddr = 0;
1287 phdr->p_filesz = sz;
1288 phdr->p_memsz = 0;
1289 phdr->p_flags = 0;
1290 phdr->p_align = 0;
1291 return;
1294 static void fill_note(struct memelfnote *note, const char *name, int type,
1295 unsigned int sz, void *data)
1297 note->name = name;
1298 note->type = type;
1299 note->datasz = sz;
1300 note->data = data;
1301 return;
1305 * fill up all the fields in prstatus from the given task struct, except
1306 * registers which need to be filled up separately.
1308 static void fill_prstatus(struct elf_prstatus *prstatus,
1309 struct task_struct *p, long signr)
1311 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1312 prstatus->pr_sigpend = p->pending.signal.sig[0];
1313 prstatus->pr_sighold = p->blocked.sig[0];
1314 prstatus->pr_pid = task_pid_vnr(p);
1315 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1316 prstatus->pr_pgrp = task_pgrp_vnr(p);
1317 prstatus->pr_sid = task_session_vnr(p);
1318 if (thread_group_leader(p)) {
1320 * This is the record for the group leader. Add in the
1321 * cumulative times of previous dead threads. This total
1322 * won't include the time of each live thread whose state
1323 * is included in the core dump. The final total reported
1324 * to our parent process when it calls wait4 will include
1325 * those sums as well as the little bit more time it takes
1326 * this and each other thread to finish dying after the
1327 * core dump synchronization phase.
1329 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1330 &prstatus->pr_utime);
1331 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1332 &prstatus->pr_stime);
1333 } else {
1334 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1335 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1337 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1338 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1341 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1342 struct mm_struct *mm)
1344 unsigned int i, len;
1346 /* first copy the parameters from user space */
1347 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1349 len = mm->arg_end - mm->arg_start;
1350 if (len >= ELF_PRARGSZ)
1351 len = ELF_PRARGSZ-1;
1352 if (copy_from_user(&psinfo->pr_psargs,
1353 (const char __user *)mm->arg_start, len))
1354 return -EFAULT;
1355 for(i = 0; i < len; i++)
1356 if (psinfo->pr_psargs[i] == 0)
1357 psinfo->pr_psargs[i] = ' ';
1358 psinfo->pr_psargs[len] = 0;
1360 psinfo->pr_pid = task_pid_vnr(p);
1361 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1362 psinfo->pr_pgrp = task_pgrp_vnr(p);
1363 psinfo->pr_sid = task_session_vnr(p);
1365 i = p->state ? ffz(~p->state) + 1 : 0;
1366 psinfo->pr_state = i;
1367 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1368 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1369 psinfo->pr_nice = task_nice(p);
1370 psinfo->pr_flag = p->flags;
1371 SET_UID(psinfo->pr_uid, p->uid);
1372 SET_GID(psinfo->pr_gid, p->gid);
1373 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1375 return 0;
1378 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1380 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1381 int i = 0;
1383 i += 2;
1384 while (auxv[i - 2] != AT_NULL);
1385 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1388 #ifdef CORE_DUMP_USE_REGSET
1389 #include <linux/regset.h>
1391 struct elf_thread_core_info {
1392 struct elf_thread_core_info *next;
1393 struct task_struct *task;
1394 struct elf_prstatus prstatus;
1395 struct memelfnote notes[0];
1398 struct elf_note_info {
1399 struct elf_thread_core_info *thread;
1400 struct memelfnote psinfo;
1401 struct memelfnote auxv;
1402 size_t size;
1403 int thread_notes;
1407 * When a regset has a writeback hook, we call it on each thread before
1408 * dumping user memory. On register window machines, this makes sure the
1409 * user memory backing the register data is up to date before we read it.
1411 static void do_thread_regset_writeback(struct task_struct *task,
1412 const struct user_regset *regset)
1414 if (regset->writeback)
1415 regset->writeback(task, regset, 1);
1418 static int fill_thread_core_info(struct elf_thread_core_info *t,
1419 const struct user_regset_view *view,
1420 long signr, size_t *total)
1422 unsigned int i;
1425 * NT_PRSTATUS is the one special case, because the regset data
1426 * goes into the pr_reg field inside the note contents, rather
1427 * than being the whole note contents. We fill the reset in here.
1428 * We assume that regset 0 is NT_PRSTATUS.
1430 fill_prstatus(&t->prstatus, t->task, signr);
1431 (void) view->regsets[0].get(t->task, &view->regsets[0],
1432 0, sizeof(t->prstatus.pr_reg),
1433 &t->prstatus.pr_reg, NULL);
1435 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1436 sizeof(t->prstatus), &t->prstatus);
1437 *total += notesize(&t->notes[0]);
1439 do_thread_regset_writeback(t->task, &view->regsets[0]);
1442 * Each other regset might generate a note too. For each regset
1443 * that has no core_note_type or is inactive, we leave t->notes[i]
1444 * all zero and we'll know to skip writing it later.
1446 for (i = 1; i < view->n; ++i) {
1447 const struct user_regset *regset = &view->regsets[i];
1448 do_thread_regset_writeback(t->task, regset);
1449 if (regset->core_note_type &&
1450 (!regset->active || regset->active(t->task, regset))) {
1451 int ret;
1452 size_t size = regset->n * regset->size;
1453 void *data = kmalloc(size, GFP_KERNEL);
1454 if (unlikely(!data))
1455 return 0;
1456 ret = regset->get(t->task, regset,
1457 0, size, data, NULL);
1458 if (unlikely(ret))
1459 kfree(data);
1460 else {
1461 if (regset->core_note_type != NT_PRFPREG)
1462 fill_note(&t->notes[i], "LINUX",
1463 regset->core_note_type,
1464 size, data);
1465 else {
1466 t->prstatus.pr_fpvalid = 1;
1467 fill_note(&t->notes[i], "CORE",
1468 NT_PRFPREG, size, data);
1470 *total += notesize(&t->notes[i]);
1475 return 1;
1478 static int fill_note_info(struct elfhdr *elf, int phdrs,
1479 struct elf_note_info *info,
1480 long signr, struct pt_regs *regs)
1482 struct task_struct *dump_task = current;
1483 const struct user_regset_view *view = task_user_regset_view(dump_task);
1484 struct elf_thread_core_info *t;
1485 struct elf_prpsinfo *psinfo;
1486 struct task_struct *g, *p;
1487 unsigned int i;
1489 info->size = 0;
1490 info->thread = NULL;
1492 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1493 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1495 if (psinfo == NULL)
1496 return 0;
1499 * Figure out how many notes we're going to need for each thread.
1501 info->thread_notes = 0;
1502 for (i = 0; i < view->n; ++i)
1503 if (view->regsets[i].core_note_type != 0)
1504 ++info->thread_notes;
1507 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1508 * since it is our one special case.
1510 if (unlikely(info->thread_notes == 0) ||
1511 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1512 WARN_ON(1);
1513 return 0;
1517 * Initialize the ELF file header.
1519 fill_elf_header(elf, phdrs,
1520 view->e_machine, view->e_flags, view->ei_osabi);
1523 * Allocate a structure for each thread.
1525 rcu_read_lock();
1526 do_each_thread(g, p)
1527 if (p->mm == dump_task->mm) {
1528 t = kzalloc(offsetof(struct elf_thread_core_info,
1529 notes[info->thread_notes]),
1530 GFP_ATOMIC);
1531 if (unlikely(!t)) {
1532 rcu_read_unlock();
1533 return 0;
1535 t->task = p;
1536 if (p == dump_task || !info->thread) {
1537 t->next = info->thread;
1538 info->thread = t;
1539 } else {
1541 * Make sure to keep the original task at
1542 * the head of the list.
1544 t->next = info->thread->next;
1545 info->thread->next = t;
1548 while_each_thread(g, p);
1549 rcu_read_unlock();
1552 * Now fill in each thread's information.
1554 for (t = info->thread; t != NULL; t = t->next)
1555 if (!fill_thread_core_info(t, view, signr, &info->size))
1556 return 0;
1559 * Fill in the two process-wide notes.
1561 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1562 info->size += notesize(&info->psinfo);
1564 fill_auxv_note(&info->auxv, current->mm);
1565 info->size += notesize(&info->auxv);
1567 return 1;
1570 static size_t get_note_info_size(struct elf_note_info *info)
1572 return info->size;
1576 * Write all the notes for each thread. When writing the first thread, the
1577 * process-wide notes are interleaved after the first thread-specific note.
1579 static int write_note_info(struct elf_note_info *info,
1580 struct file *file, loff_t *foffset)
1582 bool first = 1;
1583 struct elf_thread_core_info *t = info->thread;
1585 do {
1586 int i;
1588 if (!writenote(&t->notes[0], file, foffset))
1589 return 0;
1591 if (first && !writenote(&info->psinfo, file, foffset))
1592 return 0;
1593 if (first && !writenote(&info->auxv, file, foffset))
1594 return 0;
1596 for (i = 1; i < info->thread_notes; ++i)
1597 if (t->notes[i].data &&
1598 !writenote(&t->notes[i], file, foffset))
1599 return 0;
1601 first = 0;
1602 t = t->next;
1603 } while (t);
1605 return 1;
1608 static void free_note_info(struct elf_note_info *info)
1610 struct elf_thread_core_info *threads = info->thread;
1611 while (threads) {
1612 unsigned int i;
1613 struct elf_thread_core_info *t = threads;
1614 threads = t->next;
1615 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1616 for (i = 1; i < info->thread_notes; ++i)
1617 kfree(t->notes[i].data);
1618 kfree(t);
1620 kfree(info->psinfo.data);
1623 #else
1625 /* Here is the structure in which status of each thread is captured. */
1626 struct elf_thread_status
1628 struct list_head list;
1629 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1630 elf_fpregset_t fpu; /* NT_PRFPREG */
1631 struct task_struct *thread;
1632 #ifdef ELF_CORE_COPY_XFPREGS
1633 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1634 #endif
1635 struct memelfnote notes[3];
1636 int num_notes;
1640 * In order to add the specific thread information for the elf file format,
1641 * we need to keep a linked list of every threads pr_status and then create
1642 * a single section for them in the final core file.
1644 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1646 int sz = 0;
1647 struct task_struct *p = t->thread;
1648 t->num_notes = 0;
1650 fill_prstatus(&t->prstatus, p, signr);
1651 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1653 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1654 &(t->prstatus));
1655 t->num_notes++;
1656 sz += notesize(&t->notes[0]);
1658 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1659 &t->fpu))) {
1660 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1661 &(t->fpu));
1662 t->num_notes++;
1663 sz += notesize(&t->notes[1]);
1666 #ifdef ELF_CORE_COPY_XFPREGS
1667 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1668 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1669 sizeof(t->xfpu), &t->xfpu);
1670 t->num_notes++;
1671 sz += notesize(&t->notes[2]);
1673 #endif
1674 return sz;
1677 struct elf_note_info {
1678 struct memelfnote *notes;
1679 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1680 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1681 struct list_head thread_list;
1682 elf_fpregset_t *fpu;
1683 #ifdef ELF_CORE_COPY_XFPREGS
1684 elf_fpxregset_t *xfpu;
1685 #endif
1686 int thread_status_size;
1687 int numnote;
1690 static int fill_note_info(struct elfhdr *elf, int phdrs,
1691 struct elf_note_info *info,
1692 long signr, struct pt_regs *regs)
1694 #define NUM_NOTES 6
1695 struct list_head *t;
1696 struct task_struct *g, *p;
1698 info->notes = NULL;
1699 info->prstatus = NULL;
1700 info->psinfo = NULL;
1701 info->fpu = NULL;
1702 #ifdef ELF_CORE_COPY_XFPREGS
1703 info->xfpu = NULL;
1704 #endif
1705 INIT_LIST_HEAD(&info->thread_list);
1707 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1708 GFP_KERNEL);
1709 if (!info->notes)
1710 return 0;
1711 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1712 if (!info->psinfo)
1713 return 0;
1714 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1715 if (!info->prstatus)
1716 return 0;
1717 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1718 if (!info->fpu)
1719 return 0;
1720 #ifdef ELF_CORE_COPY_XFPREGS
1721 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1722 if (!info->xfpu)
1723 return 0;
1724 #endif
1726 info->thread_status_size = 0;
1727 if (signr) {
1728 struct elf_thread_status *tmp;
1729 rcu_read_lock();
1730 do_each_thread(g, p)
1731 if (current->mm == p->mm && current != p) {
1732 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
1733 if (!tmp) {
1734 rcu_read_unlock();
1735 return 0;
1737 tmp->thread = p;
1738 list_add(&tmp->list, &info->thread_list);
1740 while_each_thread(g, p);
1741 rcu_read_unlock();
1742 list_for_each(t, &info->thread_list) {
1743 struct elf_thread_status *tmp;
1744 int sz;
1746 tmp = list_entry(t, struct elf_thread_status, list);
1747 sz = elf_dump_thread_status(signr, tmp);
1748 info->thread_status_size += sz;
1751 /* now collect the dump for the current */
1752 memset(info->prstatus, 0, sizeof(*info->prstatus));
1753 fill_prstatus(info->prstatus, current, signr);
1754 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1756 /* Set up header */
1757 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1760 * Set up the notes in similar form to SVR4 core dumps made
1761 * with info from their /proc.
1764 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1765 sizeof(*info->prstatus), info->prstatus);
1766 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1767 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1768 sizeof(*info->psinfo), info->psinfo);
1770 info->numnote = 2;
1772 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1774 /* Try to dump the FPU. */
1775 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1776 info->fpu);
1777 if (info->prstatus->pr_fpvalid)
1778 fill_note(info->notes + info->numnote++,
1779 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1780 #ifdef ELF_CORE_COPY_XFPREGS
1781 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1782 fill_note(info->notes + info->numnote++,
1783 "LINUX", ELF_CORE_XFPREG_TYPE,
1784 sizeof(*info->xfpu), info->xfpu);
1785 #endif
1787 return 1;
1789 #undef NUM_NOTES
1792 static size_t get_note_info_size(struct elf_note_info *info)
1794 int sz = 0;
1795 int i;
1797 for (i = 0; i < info->numnote; i++)
1798 sz += notesize(info->notes + i);
1800 sz += info->thread_status_size;
1802 return sz;
1805 static int write_note_info(struct elf_note_info *info,
1806 struct file *file, loff_t *foffset)
1808 int i;
1809 struct list_head *t;
1811 for (i = 0; i < info->numnote; i++)
1812 if (!writenote(info->notes + i, file, foffset))
1813 return 0;
1815 /* write out the thread status notes section */
1816 list_for_each(t, &info->thread_list) {
1817 struct elf_thread_status *tmp =
1818 list_entry(t, struct elf_thread_status, list);
1820 for (i = 0; i < tmp->num_notes; i++)
1821 if (!writenote(&tmp->notes[i], file, foffset))
1822 return 0;
1825 return 1;
1828 static void free_note_info(struct elf_note_info *info)
1830 while (!list_empty(&info->thread_list)) {
1831 struct list_head *tmp = info->thread_list.next;
1832 list_del(tmp);
1833 kfree(list_entry(tmp, struct elf_thread_status, list));
1836 kfree(info->prstatus);
1837 kfree(info->psinfo);
1838 kfree(info->notes);
1839 kfree(info->fpu);
1840 #ifdef ELF_CORE_COPY_XFPREGS
1841 kfree(info->xfpu);
1842 #endif
1845 #endif
1847 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1848 struct vm_area_struct *gate_vma)
1850 struct vm_area_struct *ret = tsk->mm->mmap;
1852 if (ret)
1853 return ret;
1854 return gate_vma;
1857 * Helper function for iterating across a vma list. It ensures that the caller
1858 * will visit `gate_vma' prior to terminating the search.
1860 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1861 struct vm_area_struct *gate_vma)
1863 struct vm_area_struct *ret;
1865 ret = this_vma->vm_next;
1866 if (ret)
1867 return ret;
1868 if (this_vma == gate_vma)
1869 return NULL;
1870 return gate_vma;
1874 * Actual dumper
1876 * This is a two-pass process; first we find the offsets of the bits,
1877 * and then they are actually written out. If we run out of core limit
1878 * we just truncate.
1880 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1882 int has_dumped = 0;
1883 mm_segment_t fs;
1884 int segs;
1885 size_t size = 0;
1886 struct vm_area_struct *vma, *gate_vma;
1887 struct elfhdr *elf = NULL;
1888 loff_t offset = 0, dataoff, foffset;
1889 unsigned long mm_flags;
1890 struct elf_note_info info;
1893 * We no longer stop all VM operations.
1895 * This is because those proceses that could possibly change map_count
1896 * or the mmap / vma pages are now blocked in do_exit on current
1897 * finishing this core dump.
1899 * Only ptrace can touch these memory addresses, but it doesn't change
1900 * the map_count or the pages allocated. So no possibility of crashing
1901 * exists while dumping the mm->vm_next areas to the core file.
1904 /* alloc memory for large data structures: too large to be on stack */
1905 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1906 if (!elf)
1907 goto cleanup;
1909 segs = current->mm->map_count;
1910 #ifdef ELF_CORE_EXTRA_PHDRS
1911 segs += ELF_CORE_EXTRA_PHDRS;
1912 #endif
1914 gate_vma = get_gate_vma(current);
1915 if (gate_vma != NULL)
1916 segs++;
1919 * Collect all the non-memory information about the process for the
1920 * notes. This also sets up the file header.
1922 if (!fill_note_info(elf, segs + 1, /* including notes section */
1923 &info, signr, regs))
1924 goto cleanup;
1926 has_dumped = 1;
1927 current->flags |= PF_DUMPCORE;
1929 fs = get_fs();
1930 set_fs(KERNEL_DS);
1932 DUMP_WRITE(elf, sizeof(*elf));
1933 offset += sizeof(*elf); /* Elf header */
1934 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1935 foffset = offset;
1937 /* Write notes phdr entry */
1939 struct elf_phdr phdr;
1940 size_t sz = get_note_info_size(&info);
1942 sz += elf_coredump_extra_notes_size();
1944 fill_elf_note_phdr(&phdr, sz, offset);
1945 offset += sz;
1946 DUMP_WRITE(&phdr, sizeof(phdr));
1949 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1952 * We must use the same mm->flags while dumping core to avoid
1953 * inconsistency between the program headers and bodies, otherwise an
1954 * unusable core file can be generated.
1956 mm_flags = current->mm->flags;
1958 /* Write program headers for segments dump */
1959 for (vma = first_vma(current, gate_vma); vma != NULL;
1960 vma = next_vma(vma, gate_vma)) {
1961 struct elf_phdr phdr;
1963 phdr.p_type = PT_LOAD;
1964 phdr.p_offset = offset;
1965 phdr.p_vaddr = vma->vm_start;
1966 phdr.p_paddr = 0;
1967 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1968 phdr.p_memsz = vma->vm_end - vma->vm_start;
1969 offset += phdr.p_filesz;
1970 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1971 if (vma->vm_flags & VM_WRITE)
1972 phdr.p_flags |= PF_W;
1973 if (vma->vm_flags & VM_EXEC)
1974 phdr.p_flags |= PF_X;
1975 phdr.p_align = ELF_EXEC_PAGESIZE;
1977 DUMP_WRITE(&phdr, sizeof(phdr));
1980 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1981 ELF_CORE_WRITE_EXTRA_PHDRS;
1982 #endif
1984 /* write out the notes section */
1985 if (!write_note_info(&info, file, &foffset))
1986 goto end_coredump;
1988 if (elf_coredump_extra_notes_write(file, &foffset))
1989 goto end_coredump;
1991 /* Align to page */
1992 DUMP_SEEK(dataoff - foffset);
1994 for (vma = first_vma(current, gate_vma); vma != NULL;
1995 vma = next_vma(vma, gate_vma)) {
1996 unsigned long addr;
1997 unsigned long end;
1999 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2001 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2002 struct page *page;
2003 struct vm_area_struct *vma;
2005 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2006 &page, &vma) <= 0) {
2007 DUMP_SEEK(PAGE_SIZE);
2008 } else {
2009 if (page == ZERO_PAGE(0)) {
2010 if (!dump_seek(file, PAGE_SIZE)) {
2011 page_cache_release(page);
2012 goto end_coredump;
2014 } else {
2015 void *kaddr;
2016 flush_cache_page(vma, addr,
2017 page_to_pfn(page));
2018 kaddr = kmap(page);
2019 if ((size += PAGE_SIZE) > limit ||
2020 !dump_write(file, kaddr,
2021 PAGE_SIZE)) {
2022 kunmap(page);
2023 page_cache_release(page);
2024 goto end_coredump;
2026 kunmap(page);
2028 page_cache_release(page);
2033 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2034 ELF_CORE_WRITE_EXTRA_DATA;
2035 #endif
2037 end_coredump:
2038 set_fs(fs);
2040 cleanup:
2041 kfree(elf);
2042 free_note_info(&info);
2043 return has_dumped;
2046 #endif /* USE_ELF_CORE_DUMP */
2048 static int __init init_elf_binfmt(void)
2050 return register_binfmt(&elf_format);
2053 static void __exit exit_elf_binfmt(void)
2055 /* Remove the COFF and ELF loaders. */
2056 unregister_binfmt(&elf_format);
2059 core_initcall(init_elf_binfmt);
2060 module_exit(exit_elf_binfmt);
2061 MODULE_LICENSE("GPL");