vlan: Don't check for vlan group before vlan_tx_tag_present.
[linux-2.6/btrfs-unstable.git] / drivers / net / vxge / vxge-main.c
bloba69542ecb68de8592e7f9791d4c627104caba046
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-main.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
14 * The module loadable parameters that are supported by the driver and a brief
15 * explanation of all the variables:
16 * vlan_tag_strip:
17 * Strip VLAN Tag enable/disable. Instructs the device to remove
18 * the VLAN tag from all received tagged frames that are not
19 * replicated at the internal L2 switch.
20 * 0 - Do not strip the VLAN tag.
21 * 1 - Strip the VLAN tag.
23 * addr_learn_en:
24 * Enable learning the mac address of the guest OS interface in
25 * a virtualization environment.
26 * 0 - DISABLE
27 * 1 - ENABLE
29 * max_config_port:
30 * Maximum number of port to be supported.
31 * MIN -1 and MAX - 2
33 * max_config_vpath:
34 * This configures the maximum no of VPATH configures for each
35 * device function.
36 * MIN - 1 and MAX - 17
38 * max_config_dev:
39 * This configures maximum no of Device function to be enabled.
40 * MIN - 1 and MAX - 17
42 ******************************************************************************/
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/if_vlan.h>
47 #include <linux/pci.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <net/ip.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include "vxge-main.h"
54 #include "vxge-reg.h"
56 MODULE_LICENSE("Dual BSD/GPL");
57 MODULE_DESCRIPTION("Neterion's X3100 Series 10GbE PCIe I/O"
58 "Virtualized Server Adapter");
60 static DEFINE_PCI_DEVICE_TABLE(vxge_id_table) = {
61 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_WIN, PCI_ANY_ID,
62 PCI_ANY_ID},
63 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_UNI, PCI_ANY_ID,
64 PCI_ANY_ID},
65 {0}
68 MODULE_DEVICE_TABLE(pci, vxge_id_table);
70 VXGE_MODULE_PARAM_INT(vlan_tag_strip, VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE);
71 VXGE_MODULE_PARAM_INT(addr_learn_en, VXGE_HW_MAC_ADDR_LEARN_DEFAULT);
72 VXGE_MODULE_PARAM_INT(max_config_port, VXGE_MAX_CONFIG_PORT);
73 VXGE_MODULE_PARAM_INT(max_config_vpath, VXGE_USE_DEFAULT);
74 VXGE_MODULE_PARAM_INT(max_mac_vpath, VXGE_MAX_MAC_ADDR_COUNT);
75 VXGE_MODULE_PARAM_INT(max_config_dev, VXGE_MAX_CONFIG_DEV);
77 static u16 vpath_selector[VXGE_HW_MAX_VIRTUAL_PATHS] =
78 {0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31};
79 static unsigned int bw_percentage[VXGE_HW_MAX_VIRTUAL_PATHS] =
80 {[0 ...(VXGE_HW_MAX_VIRTUAL_PATHS - 1)] = 0xFF};
81 module_param_array(bw_percentage, uint, NULL, 0);
83 static struct vxge_drv_config *driver_config;
85 static inline int is_vxge_card_up(struct vxgedev *vdev)
87 return test_bit(__VXGE_STATE_CARD_UP, &vdev->state);
90 static inline void VXGE_COMPLETE_VPATH_TX(struct vxge_fifo *fifo)
92 struct sk_buff **skb_ptr = NULL;
93 struct sk_buff **temp;
94 #define NR_SKB_COMPLETED 128
95 struct sk_buff *completed[NR_SKB_COMPLETED];
96 int more;
98 do {
99 more = 0;
100 skb_ptr = completed;
102 if (__netif_tx_trylock(fifo->txq)) {
103 vxge_hw_vpath_poll_tx(fifo->handle, &skb_ptr,
104 NR_SKB_COMPLETED, &more);
105 __netif_tx_unlock(fifo->txq);
108 /* free SKBs */
109 for (temp = completed; temp != skb_ptr; temp++)
110 dev_kfree_skb_irq(*temp);
111 } while (more);
114 static inline void VXGE_COMPLETE_ALL_TX(struct vxgedev *vdev)
116 int i;
118 /* Complete all transmits */
119 for (i = 0; i < vdev->no_of_vpath; i++)
120 VXGE_COMPLETE_VPATH_TX(&vdev->vpaths[i].fifo);
123 static inline void VXGE_COMPLETE_ALL_RX(struct vxgedev *vdev)
125 int i;
126 struct vxge_ring *ring;
128 /* Complete all receives*/
129 for (i = 0; i < vdev->no_of_vpath; i++) {
130 ring = &vdev->vpaths[i].ring;
131 vxge_hw_vpath_poll_rx(ring->handle);
136 * vxge_callback_link_up
138 * This function is called during interrupt context to notify link up state
139 * change.
141 void
142 vxge_callback_link_up(struct __vxge_hw_device *hldev)
144 struct net_device *dev = hldev->ndev;
145 struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
147 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
148 vdev->ndev->name, __func__, __LINE__);
149 netdev_notice(vdev->ndev, "Link Up\n");
150 vdev->stats.link_up++;
152 netif_carrier_on(vdev->ndev);
153 netif_tx_wake_all_queues(vdev->ndev);
155 vxge_debug_entryexit(VXGE_TRACE,
156 "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
160 * vxge_callback_link_down
162 * This function is called during interrupt context to notify link down state
163 * change.
165 void
166 vxge_callback_link_down(struct __vxge_hw_device *hldev)
168 struct net_device *dev = hldev->ndev;
169 struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
171 vxge_debug_entryexit(VXGE_TRACE,
172 "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
173 netdev_notice(vdev->ndev, "Link Down\n");
175 vdev->stats.link_down++;
176 netif_carrier_off(vdev->ndev);
177 netif_tx_stop_all_queues(vdev->ndev);
179 vxge_debug_entryexit(VXGE_TRACE,
180 "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
184 * vxge_rx_alloc
186 * Allocate SKB.
188 static struct sk_buff*
189 vxge_rx_alloc(void *dtrh, struct vxge_ring *ring, const int skb_size)
191 struct net_device *dev;
192 struct sk_buff *skb;
193 struct vxge_rx_priv *rx_priv;
195 dev = ring->ndev;
196 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
197 ring->ndev->name, __func__, __LINE__);
199 rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
201 /* try to allocate skb first. this one may fail */
202 skb = netdev_alloc_skb(dev, skb_size +
203 VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
204 if (skb == NULL) {
205 vxge_debug_mem(VXGE_ERR,
206 "%s: out of memory to allocate SKB", dev->name);
207 ring->stats.skb_alloc_fail++;
208 return NULL;
211 vxge_debug_mem(VXGE_TRACE,
212 "%s: %s:%d Skb : 0x%p", ring->ndev->name,
213 __func__, __LINE__, skb);
215 skb_reserve(skb, VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
217 rx_priv->skb = skb;
218 rx_priv->skb_data = NULL;
219 rx_priv->data_size = skb_size;
220 vxge_debug_entryexit(VXGE_TRACE,
221 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
223 return skb;
227 * vxge_rx_map
229 static int vxge_rx_map(void *dtrh, struct vxge_ring *ring)
231 struct vxge_rx_priv *rx_priv;
232 dma_addr_t dma_addr;
234 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
235 ring->ndev->name, __func__, __LINE__);
236 rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
238 rx_priv->skb_data = rx_priv->skb->data;
239 dma_addr = pci_map_single(ring->pdev, rx_priv->skb_data,
240 rx_priv->data_size, PCI_DMA_FROMDEVICE);
242 if (unlikely(pci_dma_mapping_error(ring->pdev, dma_addr))) {
243 ring->stats.pci_map_fail++;
244 return -EIO;
246 vxge_debug_mem(VXGE_TRACE,
247 "%s: %s:%d 1 buffer mode dma_addr = 0x%llx",
248 ring->ndev->name, __func__, __LINE__,
249 (unsigned long long)dma_addr);
250 vxge_hw_ring_rxd_1b_set(dtrh, dma_addr, rx_priv->data_size);
252 rx_priv->data_dma = dma_addr;
253 vxge_debug_entryexit(VXGE_TRACE,
254 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
256 return 0;
260 * vxge_rx_initial_replenish
261 * Allocation of RxD as an initial replenish procedure.
263 static enum vxge_hw_status
264 vxge_rx_initial_replenish(void *dtrh, void *userdata)
266 struct vxge_ring *ring = (struct vxge_ring *)userdata;
267 struct vxge_rx_priv *rx_priv;
269 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
270 ring->ndev->name, __func__, __LINE__);
271 if (vxge_rx_alloc(dtrh, ring,
272 VXGE_LL_MAX_FRAME_SIZE(ring->ndev)) == NULL)
273 return VXGE_HW_FAIL;
275 if (vxge_rx_map(dtrh, ring)) {
276 rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
277 dev_kfree_skb(rx_priv->skb);
279 return VXGE_HW_FAIL;
281 vxge_debug_entryexit(VXGE_TRACE,
282 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
284 return VXGE_HW_OK;
287 static inline void
288 vxge_rx_complete(struct vxge_ring *ring, struct sk_buff *skb, u16 vlan,
289 int pkt_length, struct vxge_hw_ring_rxd_info *ext_info)
292 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
293 ring->ndev->name, __func__, __LINE__);
294 skb_record_rx_queue(skb, ring->driver_id);
295 skb->protocol = eth_type_trans(skb, ring->ndev);
297 ring->stats.rx_frms++;
298 ring->stats.rx_bytes += pkt_length;
300 if (skb->pkt_type == PACKET_MULTICAST)
301 ring->stats.rx_mcast++;
303 vxge_debug_rx(VXGE_TRACE,
304 "%s: %s:%d skb protocol = %d",
305 ring->ndev->name, __func__, __LINE__, skb->protocol);
307 if (ring->gro_enable) {
308 if (ring->vlgrp && ext_info->vlan &&
309 (ring->vlan_tag_strip ==
310 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE))
311 vlan_gro_receive(ring->napi_p, ring->vlgrp,
312 ext_info->vlan, skb);
313 else
314 napi_gro_receive(ring->napi_p, skb);
315 } else {
316 if (ring->vlgrp && vlan &&
317 (ring->vlan_tag_strip ==
318 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE))
319 vlan_hwaccel_receive_skb(skb, ring->vlgrp, vlan);
320 else
321 netif_receive_skb(skb);
323 vxge_debug_entryexit(VXGE_TRACE,
324 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
327 static inline void vxge_re_pre_post(void *dtr, struct vxge_ring *ring,
328 struct vxge_rx_priv *rx_priv)
330 pci_dma_sync_single_for_device(ring->pdev,
331 rx_priv->data_dma, rx_priv->data_size, PCI_DMA_FROMDEVICE);
333 vxge_hw_ring_rxd_1b_set(dtr, rx_priv->data_dma, rx_priv->data_size);
334 vxge_hw_ring_rxd_pre_post(ring->handle, dtr);
337 static inline void vxge_post(int *dtr_cnt, void **first_dtr,
338 void *post_dtr, struct __vxge_hw_ring *ringh)
340 int dtr_count = *dtr_cnt;
341 if ((*dtr_cnt % VXGE_HW_RXSYNC_FREQ_CNT) == 0) {
342 if (*first_dtr)
343 vxge_hw_ring_rxd_post_post_wmb(ringh, *first_dtr);
344 *first_dtr = post_dtr;
345 } else
346 vxge_hw_ring_rxd_post_post(ringh, post_dtr);
347 dtr_count++;
348 *dtr_cnt = dtr_count;
352 * vxge_rx_1b_compl
354 * If the interrupt is because of a received frame or if the receive ring
355 * contains fresh as yet un-processed frames, this function is called.
357 enum vxge_hw_status
358 vxge_rx_1b_compl(struct __vxge_hw_ring *ringh, void *dtr,
359 u8 t_code, void *userdata)
361 struct vxge_ring *ring = (struct vxge_ring *)userdata;
362 struct net_device *dev = ring->ndev;
363 unsigned int dma_sizes;
364 void *first_dtr = NULL;
365 int dtr_cnt = 0;
366 int data_size;
367 dma_addr_t data_dma;
368 int pkt_length;
369 struct sk_buff *skb;
370 struct vxge_rx_priv *rx_priv;
371 struct vxge_hw_ring_rxd_info ext_info;
372 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
373 ring->ndev->name, __func__, __LINE__);
374 ring->pkts_processed = 0;
376 vxge_hw_ring_replenish(ringh);
378 do {
379 prefetch((char *)dtr + L1_CACHE_BYTES);
380 rx_priv = vxge_hw_ring_rxd_private_get(dtr);
381 skb = rx_priv->skb;
382 data_size = rx_priv->data_size;
383 data_dma = rx_priv->data_dma;
384 prefetch(rx_priv->skb_data);
386 vxge_debug_rx(VXGE_TRACE,
387 "%s: %s:%d skb = 0x%p",
388 ring->ndev->name, __func__, __LINE__, skb);
390 vxge_hw_ring_rxd_1b_get(ringh, dtr, &dma_sizes);
391 pkt_length = dma_sizes;
393 pkt_length -= ETH_FCS_LEN;
395 vxge_debug_rx(VXGE_TRACE,
396 "%s: %s:%d Packet Length = %d",
397 ring->ndev->name, __func__, __LINE__, pkt_length);
399 vxge_hw_ring_rxd_1b_info_get(ringh, dtr, &ext_info);
401 /* check skb validity */
402 vxge_assert(skb);
404 prefetch((char *)skb + L1_CACHE_BYTES);
405 if (unlikely(t_code)) {
407 if (vxge_hw_ring_handle_tcode(ringh, dtr, t_code) !=
408 VXGE_HW_OK) {
410 ring->stats.rx_errors++;
411 vxge_debug_rx(VXGE_TRACE,
412 "%s: %s :%d Rx T_code is %d",
413 ring->ndev->name, __func__,
414 __LINE__, t_code);
416 /* If the t_code is not supported and if the
417 * t_code is other than 0x5 (unparseable packet
418 * such as unknown UPV6 header), Drop it !!!
420 vxge_re_pre_post(dtr, ring, rx_priv);
422 vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
423 ring->stats.rx_dropped++;
424 continue;
428 if (pkt_length > VXGE_LL_RX_COPY_THRESHOLD) {
430 if (vxge_rx_alloc(dtr, ring, data_size) != NULL) {
432 if (!vxge_rx_map(dtr, ring)) {
433 skb_put(skb, pkt_length);
435 pci_unmap_single(ring->pdev, data_dma,
436 data_size, PCI_DMA_FROMDEVICE);
438 vxge_hw_ring_rxd_pre_post(ringh, dtr);
439 vxge_post(&dtr_cnt, &first_dtr, dtr,
440 ringh);
441 } else {
442 dev_kfree_skb(rx_priv->skb);
443 rx_priv->skb = skb;
444 rx_priv->data_size = data_size;
445 vxge_re_pre_post(dtr, ring, rx_priv);
447 vxge_post(&dtr_cnt, &first_dtr, dtr,
448 ringh);
449 ring->stats.rx_dropped++;
450 break;
452 } else {
453 vxge_re_pre_post(dtr, ring, rx_priv);
455 vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
456 ring->stats.rx_dropped++;
457 break;
459 } else {
460 struct sk_buff *skb_up;
462 skb_up = netdev_alloc_skb(dev, pkt_length +
463 VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
464 if (skb_up != NULL) {
465 skb_reserve(skb_up,
466 VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
468 pci_dma_sync_single_for_cpu(ring->pdev,
469 data_dma, data_size,
470 PCI_DMA_FROMDEVICE);
472 vxge_debug_mem(VXGE_TRACE,
473 "%s: %s:%d skb_up = %p",
474 ring->ndev->name, __func__,
475 __LINE__, skb);
476 memcpy(skb_up->data, skb->data, pkt_length);
478 vxge_re_pre_post(dtr, ring, rx_priv);
480 vxge_post(&dtr_cnt, &first_dtr, dtr,
481 ringh);
482 /* will netif_rx small SKB instead */
483 skb = skb_up;
484 skb_put(skb, pkt_length);
485 } else {
486 vxge_re_pre_post(dtr, ring, rx_priv);
488 vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
489 vxge_debug_rx(VXGE_ERR,
490 "%s: vxge_rx_1b_compl: out of "
491 "memory", dev->name);
492 ring->stats.skb_alloc_fail++;
493 break;
497 if ((ext_info.proto & VXGE_HW_FRAME_PROTO_TCP_OR_UDP) &&
498 !(ext_info.proto & VXGE_HW_FRAME_PROTO_IP_FRAG) &&
499 ring->rx_csum && /* Offload Rx side CSUM */
500 ext_info.l3_cksum == VXGE_HW_L3_CKSUM_OK &&
501 ext_info.l4_cksum == VXGE_HW_L4_CKSUM_OK)
502 skb->ip_summed = CHECKSUM_UNNECESSARY;
503 else
504 skb_checksum_none_assert(skb);
506 vxge_rx_complete(ring, skb, ext_info.vlan,
507 pkt_length, &ext_info);
509 ring->budget--;
510 ring->pkts_processed++;
511 if (!ring->budget)
512 break;
514 } while (vxge_hw_ring_rxd_next_completed(ringh, &dtr,
515 &t_code) == VXGE_HW_OK);
517 if (first_dtr)
518 vxge_hw_ring_rxd_post_post_wmb(ringh, first_dtr);
520 vxge_debug_entryexit(VXGE_TRACE,
521 "%s:%d Exiting...",
522 __func__, __LINE__);
523 return VXGE_HW_OK;
527 * vxge_xmit_compl
529 * If an interrupt was raised to indicate DMA complete of the Tx packet,
530 * this function is called. It identifies the last TxD whose buffer was
531 * freed and frees all skbs whose data have already DMA'ed into the NICs
532 * internal memory.
534 enum vxge_hw_status
535 vxge_xmit_compl(struct __vxge_hw_fifo *fifo_hw, void *dtr,
536 enum vxge_hw_fifo_tcode t_code, void *userdata,
537 struct sk_buff ***skb_ptr, int nr_skb, int *more)
539 struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
540 struct sk_buff *skb, **done_skb = *skb_ptr;
541 int pkt_cnt = 0;
543 vxge_debug_entryexit(VXGE_TRACE,
544 "%s:%d Entered....", __func__, __LINE__);
546 do {
547 int frg_cnt;
548 skb_frag_t *frag;
549 int i = 0, j;
550 struct vxge_tx_priv *txd_priv =
551 vxge_hw_fifo_txdl_private_get(dtr);
553 skb = txd_priv->skb;
554 frg_cnt = skb_shinfo(skb)->nr_frags;
555 frag = &skb_shinfo(skb)->frags[0];
557 vxge_debug_tx(VXGE_TRACE,
558 "%s: %s:%d fifo_hw = %p dtr = %p "
559 "tcode = 0x%x", fifo->ndev->name, __func__,
560 __LINE__, fifo_hw, dtr, t_code);
561 /* check skb validity */
562 vxge_assert(skb);
563 vxge_debug_tx(VXGE_TRACE,
564 "%s: %s:%d skb = %p itxd_priv = %p frg_cnt = %d",
565 fifo->ndev->name, __func__, __LINE__,
566 skb, txd_priv, frg_cnt);
567 if (unlikely(t_code)) {
568 fifo->stats.tx_errors++;
569 vxge_debug_tx(VXGE_ERR,
570 "%s: tx: dtr %p completed due to "
571 "error t_code %01x", fifo->ndev->name,
572 dtr, t_code);
573 vxge_hw_fifo_handle_tcode(fifo_hw, dtr, t_code);
576 /* for unfragmented skb */
577 pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
578 skb_headlen(skb), PCI_DMA_TODEVICE);
580 for (j = 0; j < frg_cnt; j++) {
581 pci_unmap_page(fifo->pdev,
582 txd_priv->dma_buffers[i++],
583 frag->size, PCI_DMA_TODEVICE);
584 frag += 1;
587 vxge_hw_fifo_txdl_free(fifo_hw, dtr);
589 /* Updating the statistics block */
590 fifo->stats.tx_frms++;
591 fifo->stats.tx_bytes += skb->len;
593 *done_skb++ = skb;
595 if (--nr_skb <= 0) {
596 *more = 1;
597 break;
600 pkt_cnt++;
601 if (pkt_cnt > fifo->indicate_max_pkts)
602 break;
604 } while (vxge_hw_fifo_txdl_next_completed(fifo_hw,
605 &dtr, &t_code) == VXGE_HW_OK);
607 *skb_ptr = done_skb;
608 if (netif_tx_queue_stopped(fifo->txq))
609 netif_tx_wake_queue(fifo->txq);
611 vxge_debug_entryexit(VXGE_TRACE,
612 "%s: %s:%d Exiting...",
613 fifo->ndev->name, __func__, __LINE__);
614 return VXGE_HW_OK;
617 /* select a vpath to transmit the packet */
618 static u32 vxge_get_vpath_no(struct vxgedev *vdev, struct sk_buff *skb)
620 u16 queue_len, counter = 0;
621 if (skb->protocol == htons(ETH_P_IP)) {
622 struct iphdr *ip;
623 struct tcphdr *th;
625 ip = ip_hdr(skb);
627 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
628 th = (struct tcphdr *)(((unsigned char *)ip) +
629 ip->ihl*4);
631 queue_len = vdev->no_of_vpath;
632 counter = (ntohs(th->source) +
633 ntohs(th->dest)) &
634 vdev->vpath_selector[queue_len - 1];
635 if (counter >= queue_len)
636 counter = queue_len - 1;
639 return counter;
642 static enum vxge_hw_status vxge_search_mac_addr_in_list(
643 struct vxge_vpath *vpath, u64 del_mac)
645 struct list_head *entry, *next;
646 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
647 if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac)
648 return TRUE;
650 return FALSE;
653 static int vxge_learn_mac(struct vxgedev *vdev, u8 *mac_header)
655 struct macInfo mac_info;
656 u8 *mac_address = NULL;
657 u64 mac_addr = 0, vpath_vector = 0;
658 int vpath_idx = 0;
659 enum vxge_hw_status status = VXGE_HW_OK;
660 struct vxge_vpath *vpath = NULL;
661 struct __vxge_hw_device *hldev;
663 hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
665 mac_address = (u8 *)&mac_addr;
666 memcpy(mac_address, mac_header, ETH_ALEN);
668 /* Is this mac address already in the list? */
669 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
670 vpath = &vdev->vpaths[vpath_idx];
671 if (vxge_search_mac_addr_in_list(vpath, mac_addr))
672 return vpath_idx;
675 memset(&mac_info, 0, sizeof(struct macInfo));
676 memcpy(mac_info.macaddr, mac_header, ETH_ALEN);
678 /* Any vpath has room to add mac address to its da table? */
679 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
680 vpath = &vdev->vpaths[vpath_idx];
681 if (vpath->mac_addr_cnt < vpath->max_mac_addr_cnt) {
682 /* Add this mac address to this vpath */
683 mac_info.vpath_no = vpath_idx;
684 mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
685 status = vxge_add_mac_addr(vdev, &mac_info);
686 if (status != VXGE_HW_OK)
687 return -EPERM;
688 return vpath_idx;
692 mac_info.state = VXGE_LL_MAC_ADDR_IN_LIST;
693 vpath_idx = 0;
694 mac_info.vpath_no = vpath_idx;
695 /* Is the first vpath already selected as catch-basin ? */
696 vpath = &vdev->vpaths[vpath_idx];
697 if (vpath->mac_addr_cnt > vpath->max_mac_addr_cnt) {
698 /* Add this mac address to this vpath */
699 if (FALSE == vxge_mac_list_add(vpath, &mac_info))
700 return -EPERM;
701 return vpath_idx;
704 /* Select first vpath as catch-basin */
705 vpath_vector = vxge_mBIT(vpath->device_id);
706 status = vxge_hw_mgmt_reg_write(vpath->vdev->devh,
707 vxge_hw_mgmt_reg_type_mrpcim,
709 (ulong)offsetof(
710 struct vxge_hw_mrpcim_reg,
711 rts_mgr_cbasin_cfg),
712 vpath_vector);
713 if (status != VXGE_HW_OK) {
714 vxge_debug_tx(VXGE_ERR,
715 "%s: Unable to set the vpath-%d in catch-basin mode",
716 VXGE_DRIVER_NAME, vpath->device_id);
717 return -EPERM;
720 if (FALSE == vxge_mac_list_add(vpath, &mac_info))
721 return -EPERM;
723 return vpath_idx;
727 * vxge_xmit
728 * @skb : the socket buffer containing the Tx data.
729 * @dev : device pointer.
731 * This function is the Tx entry point of the driver. Neterion NIC supports
732 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
734 static netdev_tx_t
735 vxge_xmit(struct sk_buff *skb, struct net_device *dev)
737 struct vxge_fifo *fifo = NULL;
738 void *dtr_priv;
739 void *dtr = NULL;
740 struct vxgedev *vdev = NULL;
741 enum vxge_hw_status status;
742 int frg_cnt, first_frg_len;
743 skb_frag_t *frag;
744 int i = 0, j = 0, avail;
745 u64 dma_pointer;
746 struct vxge_tx_priv *txdl_priv = NULL;
747 struct __vxge_hw_fifo *fifo_hw;
748 int offload_type;
749 int vpath_no = 0;
751 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
752 dev->name, __func__, __LINE__);
754 /* A buffer with no data will be dropped */
755 if (unlikely(skb->len <= 0)) {
756 vxge_debug_tx(VXGE_ERR,
757 "%s: Buffer has no data..", dev->name);
758 dev_kfree_skb(skb);
759 return NETDEV_TX_OK;
762 vdev = (struct vxgedev *)netdev_priv(dev);
764 if (unlikely(!is_vxge_card_up(vdev))) {
765 vxge_debug_tx(VXGE_ERR,
766 "%s: vdev not initialized", dev->name);
767 dev_kfree_skb(skb);
768 return NETDEV_TX_OK;
771 if (vdev->config.addr_learn_en) {
772 vpath_no = vxge_learn_mac(vdev, skb->data + ETH_ALEN);
773 if (vpath_no == -EPERM) {
774 vxge_debug_tx(VXGE_ERR,
775 "%s: Failed to store the mac address",
776 dev->name);
777 dev_kfree_skb(skb);
778 return NETDEV_TX_OK;
782 if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING)
783 vpath_no = skb_get_queue_mapping(skb);
784 else if (vdev->config.tx_steering_type == TX_PORT_STEERING)
785 vpath_no = vxge_get_vpath_no(vdev, skb);
787 vxge_debug_tx(VXGE_TRACE, "%s: vpath_no= %d", dev->name, vpath_no);
789 if (vpath_no >= vdev->no_of_vpath)
790 vpath_no = 0;
792 fifo = &vdev->vpaths[vpath_no].fifo;
793 fifo_hw = fifo->handle;
795 if (netif_tx_queue_stopped(fifo->txq))
796 return NETDEV_TX_BUSY;
798 avail = vxge_hw_fifo_free_txdl_count_get(fifo_hw);
799 if (avail == 0) {
800 vxge_debug_tx(VXGE_ERR,
801 "%s: No free TXDs available", dev->name);
802 fifo->stats.txd_not_free++;
803 goto _exit0;
806 /* Last TXD? Stop tx queue to avoid dropping packets. TX
807 * completion will resume the queue.
809 if (avail == 1)
810 netif_tx_stop_queue(fifo->txq);
812 status = vxge_hw_fifo_txdl_reserve(fifo_hw, &dtr, &dtr_priv);
813 if (unlikely(status != VXGE_HW_OK)) {
814 vxge_debug_tx(VXGE_ERR,
815 "%s: Out of descriptors .", dev->name);
816 fifo->stats.txd_out_of_desc++;
817 goto _exit0;
820 vxge_debug_tx(VXGE_TRACE,
821 "%s: %s:%d fifo_hw = %p dtr = %p dtr_priv = %p",
822 dev->name, __func__, __LINE__,
823 fifo_hw, dtr, dtr_priv);
825 if (vlan_tx_tag_present(skb)) {
826 u16 vlan_tag = vlan_tx_tag_get(skb);
827 vxge_hw_fifo_txdl_vlan_set(dtr, vlan_tag);
830 first_frg_len = skb_headlen(skb);
832 dma_pointer = pci_map_single(fifo->pdev, skb->data, first_frg_len,
833 PCI_DMA_TODEVICE);
835 if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer))) {
836 vxge_hw_fifo_txdl_free(fifo_hw, dtr);
837 fifo->stats.pci_map_fail++;
838 goto _exit0;
841 txdl_priv = vxge_hw_fifo_txdl_private_get(dtr);
842 txdl_priv->skb = skb;
843 txdl_priv->dma_buffers[j] = dma_pointer;
845 frg_cnt = skb_shinfo(skb)->nr_frags;
846 vxge_debug_tx(VXGE_TRACE,
847 "%s: %s:%d skb = %p txdl_priv = %p "
848 "frag_cnt = %d dma_pointer = 0x%llx", dev->name,
849 __func__, __LINE__, skb, txdl_priv,
850 frg_cnt, (unsigned long long)dma_pointer);
852 vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
853 first_frg_len);
855 frag = &skb_shinfo(skb)->frags[0];
856 for (i = 0; i < frg_cnt; i++) {
857 /* ignore 0 length fragment */
858 if (!frag->size)
859 continue;
861 dma_pointer = (u64) pci_map_page(fifo->pdev, frag->page,
862 frag->page_offset, frag->size,
863 PCI_DMA_TODEVICE);
865 if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer)))
866 goto _exit2;
867 vxge_debug_tx(VXGE_TRACE,
868 "%s: %s:%d frag = %d dma_pointer = 0x%llx",
869 dev->name, __func__, __LINE__, i,
870 (unsigned long long)dma_pointer);
872 txdl_priv->dma_buffers[j] = dma_pointer;
873 vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
874 frag->size);
875 frag += 1;
878 offload_type = vxge_offload_type(skb);
880 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
881 int mss = vxge_tcp_mss(skb);
882 if (mss) {
883 vxge_debug_tx(VXGE_TRACE, "%s: %s:%d mss = %d",
884 dev->name, __func__, __LINE__, mss);
885 vxge_hw_fifo_txdl_mss_set(dtr, mss);
886 } else {
887 vxge_assert(skb->len <=
888 dev->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE);
889 vxge_assert(0);
890 goto _exit1;
894 if (skb->ip_summed == CHECKSUM_PARTIAL)
895 vxge_hw_fifo_txdl_cksum_set_bits(dtr,
896 VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN |
897 VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN |
898 VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN);
900 vxge_hw_fifo_txdl_post(fifo_hw, dtr);
902 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...",
903 dev->name, __func__, __LINE__);
904 return NETDEV_TX_OK;
906 _exit2:
907 vxge_debug_tx(VXGE_TRACE, "%s: pci_map_page failed", dev->name);
908 _exit1:
909 j = 0;
910 frag = &skb_shinfo(skb)->frags[0];
912 pci_unmap_single(fifo->pdev, txdl_priv->dma_buffers[j++],
913 skb_headlen(skb), PCI_DMA_TODEVICE);
915 for (; j < i; j++) {
916 pci_unmap_page(fifo->pdev, txdl_priv->dma_buffers[j],
917 frag->size, PCI_DMA_TODEVICE);
918 frag += 1;
921 vxge_hw_fifo_txdl_free(fifo_hw, dtr);
922 _exit0:
923 netif_tx_stop_queue(fifo->txq);
924 dev_kfree_skb(skb);
926 return NETDEV_TX_OK;
930 * vxge_rx_term
932 * Function will be called by hw function to abort all outstanding receive
933 * descriptors.
935 static void
936 vxge_rx_term(void *dtrh, enum vxge_hw_rxd_state state, void *userdata)
938 struct vxge_ring *ring = (struct vxge_ring *)userdata;
939 struct vxge_rx_priv *rx_priv =
940 vxge_hw_ring_rxd_private_get(dtrh);
942 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
943 ring->ndev->name, __func__, __LINE__);
944 if (state != VXGE_HW_RXD_STATE_POSTED)
945 return;
947 pci_unmap_single(ring->pdev, rx_priv->data_dma,
948 rx_priv->data_size, PCI_DMA_FROMDEVICE);
950 dev_kfree_skb(rx_priv->skb);
951 rx_priv->skb_data = NULL;
953 vxge_debug_entryexit(VXGE_TRACE,
954 "%s: %s:%d Exiting...",
955 ring->ndev->name, __func__, __LINE__);
959 * vxge_tx_term
961 * Function will be called to abort all outstanding tx descriptors
963 static void
964 vxge_tx_term(void *dtrh, enum vxge_hw_txdl_state state, void *userdata)
966 struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
967 skb_frag_t *frag;
968 int i = 0, j, frg_cnt;
969 struct vxge_tx_priv *txd_priv = vxge_hw_fifo_txdl_private_get(dtrh);
970 struct sk_buff *skb = txd_priv->skb;
972 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
974 if (state != VXGE_HW_TXDL_STATE_POSTED)
975 return;
977 /* check skb validity */
978 vxge_assert(skb);
979 frg_cnt = skb_shinfo(skb)->nr_frags;
980 frag = &skb_shinfo(skb)->frags[0];
982 /* for unfragmented skb */
983 pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
984 skb_headlen(skb), PCI_DMA_TODEVICE);
986 for (j = 0; j < frg_cnt; j++) {
987 pci_unmap_page(fifo->pdev, txd_priv->dma_buffers[i++],
988 frag->size, PCI_DMA_TODEVICE);
989 frag += 1;
992 dev_kfree_skb(skb);
994 vxge_debug_entryexit(VXGE_TRACE,
995 "%s:%d Exiting...", __func__, __LINE__);
999 * vxge_set_multicast
1000 * @dev: pointer to the device structure
1002 * Entry point for multicast address enable/disable
1003 * This function is a driver entry point which gets called by the kernel
1004 * whenever multicast addresses must be enabled/disabled. This also gets
1005 * called to set/reset promiscuous mode. Depending on the deivce flag, we
1006 * determine, if multicast address must be enabled or if promiscuous mode
1007 * is to be disabled etc.
1009 static void vxge_set_multicast(struct net_device *dev)
1011 struct netdev_hw_addr *ha;
1012 struct vxgedev *vdev;
1013 int i, mcast_cnt = 0;
1014 struct __vxge_hw_device *hldev;
1015 struct vxge_vpath *vpath;
1016 enum vxge_hw_status status = VXGE_HW_OK;
1017 struct macInfo mac_info;
1018 int vpath_idx = 0;
1019 struct vxge_mac_addrs *mac_entry;
1020 struct list_head *list_head;
1021 struct list_head *entry, *next;
1022 u8 *mac_address = NULL;
1024 vxge_debug_entryexit(VXGE_TRACE,
1025 "%s:%d", __func__, __LINE__);
1027 vdev = (struct vxgedev *)netdev_priv(dev);
1028 hldev = (struct __vxge_hw_device *)vdev->devh;
1030 if (unlikely(!is_vxge_card_up(vdev)))
1031 return;
1033 if ((dev->flags & IFF_ALLMULTI) && (!vdev->all_multi_flg)) {
1034 for (i = 0; i < vdev->no_of_vpath; i++) {
1035 vpath = &vdev->vpaths[i];
1036 vxge_assert(vpath->is_open);
1037 status = vxge_hw_vpath_mcast_enable(vpath->handle);
1038 if (status != VXGE_HW_OK)
1039 vxge_debug_init(VXGE_ERR, "failed to enable "
1040 "multicast, status %d", status);
1041 vdev->all_multi_flg = 1;
1043 } else if (!(dev->flags & IFF_ALLMULTI) && (vdev->all_multi_flg)) {
1044 for (i = 0; i < vdev->no_of_vpath; i++) {
1045 vpath = &vdev->vpaths[i];
1046 vxge_assert(vpath->is_open);
1047 status = vxge_hw_vpath_mcast_disable(vpath->handle);
1048 if (status != VXGE_HW_OK)
1049 vxge_debug_init(VXGE_ERR, "failed to disable "
1050 "multicast, status %d", status);
1051 vdev->all_multi_flg = 0;
1056 if (!vdev->config.addr_learn_en) {
1057 for (i = 0; i < vdev->no_of_vpath; i++) {
1058 vpath = &vdev->vpaths[i];
1059 vxge_assert(vpath->is_open);
1061 if (dev->flags & IFF_PROMISC)
1062 status = vxge_hw_vpath_promisc_enable(
1063 vpath->handle);
1064 else
1065 status = vxge_hw_vpath_promisc_disable(
1066 vpath->handle);
1067 if (status != VXGE_HW_OK)
1068 vxge_debug_init(VXGE_ERR, "failed to %s promisc"
1069 ", status %d", dev->flags&IFF_PROMISC ?
1070 "enable" : "disable", status);
1074 memset(&mac_info, 0, sizeof(struct macInfo));
1075 /* Update individual M_CAST address list */
1076 if ((!vdev->all_multi_flg) && netdev_mc_count(dev)) {
1077 mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
1078 list_head = &vdev->vpaths[0].mac_addr_list;
1079 if ((netdev_mc_count(dev) +
1080 (vdev->vpaths[0].mac_addr_cnt - mcast_cnt)) >
1081 vdev->vpaths[0].max_mac_addr_cnt)
1082 goto _set_all_mcast;
1084 /* Delete previous MC's */
1085 for (i = 0; i < mcast_cnt; i++) {
1086 list_for_each_safe(entry, next, list_head) {
1087 mac_entry = (struct vxge_mac_addrs *) entry;
1088 /* Copy the mac address to delete */
1089 mac_address = (u8 *)&mac_entry->macaddr;
1090 memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
1092 /* Is this a multicast address */
1093 if (0x01 & mac_info.macaddr[0]) {
1094 for (vpath_idx = 0; vpath_idx <
1095 vdev->no_of_vpath;
1096 vpath_idx++) {
1097 mac_info.vpath_no = vpath_idx;
1098 status = vxge_del_mac_addr(
1099 vdev,
1100 &mac_info);
1106 /* Add new ones */
1107 netdev_for_each_mc_addr(ha, dev) {
1108 memcpy(mac_info.macaddr, ha->addr, ETH_ALEN);
1109 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
1110 vpath_idx++) {
1111 mac_info.vpath_no = vpath_idx;
1112 mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
1113 status = vxge_add_mac_addr(vdev, &mac_info);
1114 if (status != VXGE_HW_OK) {
1115 vxge_debug_init(VXGE_ERR,
1116 "%s:%d Setting individual"
1117 "multicast address failed",
1118 __func__, __LINE__);
1119 goto _set_all_mcast;
1124 return;
1125 _set_all_mcast:
1126 mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
1127 /* Delete previous MC's */
1128 for (i = 0; i < mcast_cnt; i++) {
1129 list_for_each_safe(entry, next, list_head) {
1130 mac_entry = (struct vxge_mac_addrs *) entry;
1131 /* Copy the mac address to delete */
1132 mac_address = (u8 *)&mac_entry->macaddr;
1133 memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
1135 /* Is this a multicast address */
1136 if (0x01 & mac_info.macaddr[0])
1137 break;
1140 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
1141 vpath_idx++) {
1142 mac_info.vpath_no = vpath_idx;
1143 status = vxge_del_mac_addr(vdev, &mac_info);
1147 /* Enable all multicast */
1148 for (i = 0; i < vdev->no_of_vpath; i++) {
1149 vpath = &vdev->vpaths[i];
1150 vxge_assert(vpath->is_open);
1152 status = vxge_hw_vpath_mcast_enable(vpath->handle);
1153 if (status != VXGE_HW_OK) {
1154 vxge_debug_init(VXGE_ERR,
1155 "%s:%d Enabling all multicasts failed",
1156 __func__, __LINE__);
1158 vdev->all_multi_flg = 1;
1160 dev->flags |= IFF_ALLMULTI;
1163 vxge_debug_entryexit(VXGE_TRACE,
1164 "%s:%d Exiting...", __func__, __LINE__);
1168 * vxge_set_mac_addr
1169 * @dev: pointer to the device structure
1171 * Update entry "0" (default MAC addr)
1173 static int vxge_set_mac_addr(struct net_device *dev, void *p)
1175 struct sockaddr *addr = p;
1176 struct vxgedev *vdev;
1177 struct __vxge_hw_device *hldev;
1178 enum vxge_hw_status status = VXGE_HW_OK;
1179 struct macInfo mac_info_new, mac_info_old;
1180 int vpath_idx = 0;
1182 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1184 vdev = (struct vxgedev *)netdev_priv(dev);
1185 hldev = vdev->devh;
1187 if (!is_valid_ether_addr(addr->sa_data))
1188 return -EINVAL;
1190 memset(&mac_info_new, 0, sizeof(struct macInfo));
1191 memset(&mac_info_old, 0, sizeof(struct macInfo));
1193 vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...",
1194 __func__, __LINE__);
1196 /* Get the old address */
1197 memcpy(mac_info_old.macaddr, dev->dev_addr, dev->addr_len);
1199 /* Copy the new address */
1200 memcpy(mac_info_new.macaddr, addr->sa_data, dev->addr_len);
1202 /* First delete the old mac address from all the vpaths
1203 as we can't specify the index while adding new mac address */
1204 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
1205 struct vxge_vpath *vpath = &vdev->vpaths[vpath_idx];
1206 if (!vpath->is_open) {
1207 /* This can happen when this interface is added/removed
1208 to the bonding interface. Delete this station address
1209 from the linked list */
1210 vxge_mac_list_del(vpath, &mac_info_old);
1212 /* Add this new address to the linked list
1213 for later restoring */
1214 vxge_mac_list_add(vpath, &mac_info_new);
1216 continue;
1218 /* Delete the station address */
1219 mac_info_old.vpath_no = vpath_idx;
1220 status = vxge_del_mac_addr(vdev, &mac_info_old);
1223 if (unlikely(!is_vxge_card_up(vdev))) {
1224 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1225 return VXGE_HW_OK;
1228 /* Set this mac address to all the vpaths */
1229 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
1230 mac_info_new.vpath_no = vpath_idx;
1231 mac_info_new.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
1232 status = vxge_add_mac_addr(vdev, &mac_info_new);
1233 if (status != VXGE_HW_OK)
1234 return -EINVAL;
1237 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1239 return status;
1243 * vxge_vpath_intr_enable
1244 * @vdev: pointer to vdev
1245 * @vp_id: vpath for which to enable the interrupts
1247 * Enables the interrupts for the vpath
1249 void vxge_vpath_intr_enable(struct vxgedev *vdev, int vp_id)
1251 struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
1252 int msix_id = 0;
1253 int tim_msix_id[4] = {0, 1, 0, 0};
1254 int alarm_msix_id = VXGE_ALARM_MSIX_ID;
1256 vxge_hw_vpath_intr_enable(vpath->handle);
1258 if (vdev->config.intr_type == INTA)
1259 vxge_hw_vpath_inta_unmask_tx_rx(vpath->handle);
1260 else {
1261 vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id,
1262 alarm_msix_id);
1264 msix_id = vpath->device_id * VXGE_HW_VPATH_MSIX_ACTIVE;
1265 vxge_hw_vpath_msix_unmask(vpath->handle, msix_id);
1266 vxge_hw_vpath_msix_unmask(vpath->handle, msix_id + 1);
1268 /* enable the alarm vector */
1269 msix_id = (vpath->handle->vpath->hldev->first_vp_id *
1270 VXGE_HW_VPATH_MSIX_ACTIVE) + alarm_msix_id;
1271 vxge_hw_vpath_msix_unmask(vpath->handle, msix_id);
1276 * vxge_vpath_intr_disable
1277 * @vdev: pointer to vdev
1278 * @vp_id: vpath for which to disable the interrupts
1280 * Disables the interrupts for the vpath
1282 void vxge_vpath_intr_disable(struct vxgedev *vdev, int vp_id)
1284 struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
1285 int msix_id;
1287 vxge_hw_vpath_intr_disable(vpath->handle);
1289 if (vdev->config.intr_type == INTA)
1290 vxge_hw_vpath_inta_mask_tx_rx(vpath->handle);
1291 else {
1292 msix_id = vpath->device_id * VXGE_HW_VPATH_MSIX_ACTIVE;
1293 vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
1294 vxge_hw_vpath_msix_mask(vpath->handle, msix_id + 1);
1296 /* disable the alarm vector */
1297 msix_id = (vpath->handle->vpath->hldev->first_vp_id *
1298 VXGE_HW_VPATH_MSIX_ACTIVE) + VXGE_ALARM_MSIX_ID;
1299 vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
1304 * vxge_reset_vpath
1305 * @vdev: pointer to vdev
1306 * @vp_id: vpath to reset
1308 * Resets the vpath
1310 static int vxge_reset_vpath(struct vxgedev *vdev, int vp_id)
1312 enum vxge_hw_status status = VXGE_HW_OK;
1313 struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
1314 int ret = 0;
1316 /* check if device is down already */
1317 if (unlikely(!is_vxge_card_up(vdev)))
1318 return 0;
1320 /* is device reset already scheduled */
1321 if (test_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
1322 return 0;
1324 if (vpath->handle) {
1325 if (vxge_hw_vpath_reset(vpath->handle) == VXGE_HW_OK) {
1326 if (is_vxge_card_up(vdev) &&
1327 vxge_hw_vpath_recover_from_reset(vpath->handle)
1328 != VXGE_HW_OK) {
1329 vxge_debug_init(VXGE_ERR,
1330 "vxge_hw_vpath_recover_from_reset"
1331 "failed for vpath:%d", vp_id);
1332 return status;
1334 } else {
1335 vxge_debug_init(VXGE_ERR,
1336 "vxge_hw_vpath_reset failed for"
1337 "vpath:%d", vp_id);
1338 return status;
1340 } else
1341 return VXGE_HW_FAIL;
1343 vxge_restore_vpath_mac_addr(vpath);
1344 vxge_restore_vpath_vid_table(vpath);
1346 /* Enable all broadcast */
1347 vxge_hw_vpath_bcast_enable(vpath->handle);
1349 /* Enable all multicast */
1350 if (vdev->all_multi_flg) {
1351 status = vxge_hw_vpath_mcast_enable(vpath->handle);
1352 if (status != VXGE_HW_OK)
1353 vxge_debug_init(VXGE_ERR,
1354 "%s:%d Enabling multicast failed",
1355 __func__, __LINE__);
1358 /* Enable the interrupts */
1359 vxge_vpath_intr_enable(vdev, vp_id);
1361 smp_wmb();
1363 /* Enable the flow of traffic through the vpath */
1364 vxge_hw_vpath_enable(vpath->handle);
1366 smp_wmb();
1367 vxge_hw_vpath_rx_doorbell_init(vpath->handle);
1368 vpath->ring.last_status = VXGE_HW_OK;
1370 /* Vpath reset done */
1371 clear_bit(vp_id, &vdev->vp_reset);
1373 /* Start the vpath queue */
1374 if (netif_tx_queue_stopped(vpath->fifo.txq))
1375 netif_tx_wake_queue(vpath->fifo.txq);
1377 return ret;
1380 static int do_vxge_reset(struct vxgedev *vdev, int event)
1382 enum vxge_hw_status status;
1383 int ret = 0, vp_id, i;
1385 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1387 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET)) {
1388 /* check if device is down already */
1389 if (unlikely(!is_vxge_card_up(vdev)))
1390 return 0;
1392 /* is reset already scheduled */
1393 if (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
1394 return 0;
1397 if (event == VXGE_LL_FULL_RESET) {
1398 /* wait for all the vpath reset to complete */
1399 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
1400 while (test_bit(vp_id, &vdev->vp_reset))
1401 msleep(50);
1404 /* if execution mode is set to debug, don't reset the adapter */
1405 if (unlikely(vdev->exec_mode)) {
1406 vxge_debug_init(VXGE_ERR,
1407 "%s: execution mode is debug, returning..",
1408 vdev->ndev->name);
1409 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
1410 netif_tx_stop_all_queues(vdev->ndev);
1411 return 0;
1415 if (event == VXGE_LL_FULL_RESET) {
1416 vxge_hw_device_intr_disable(vdev->devh);
1418 switch (vdev->cric_err_event) {
1419 case VXGE_HW_EVENT_UNKNOWN:
1420 netif_tx_stop_all_queues(vdev->ndev);
1421 vxge_debug_init(VXGE_ERR,
1422 "fatal: %s: Disabling device due to"
1423 "unknown error",
1424 vdev->ndev->name);
1425 ret = -EPERM;
1426 goto out;
1427 case VXGE_HW_EVENT_RESET_START:
1428 break;
1429 case VXGE_HW_EVENT_RESET_COMPLETE:
1430 case VXGE_HW_EVENT_LINK_DOWN:
1431 case VXGE_HW_EVENT_LINK_UP:
1432 case VXGE_HW_EVENT_ALARM_CLEARED:
1433 case VXGE_HW_EVENT_ECCERR:
1434 case VXGE_HW_EVENT_MRPCIM_ECCERR:
1435 ret = -EPERM;
1436 goto out;
1437 case VXGE_HW_EVENT_FIFO_ERR:
1438 case VXGE_HW_EVENT_VPATH_ERR:
1439 break;
1440 case VXGE_HW_EVENT_CRITICAL_ERR:
1441 netif_tx_stop_all_queues(vdev->ndev);
1442 vxge_debug_init(VXGE_ERR,
1443 "fatal: %s: Disabling device due to"
1444 "serious error",
1445 vdev->ndev->name);
1446 /* SOP or device reset required */
1447 /* This event is not currently used */
1448 ret = -EPERM;
1449 goto out;
1450 case VXGE_HW_EVENT_SERR:
1451 netif_tx_stop_all_queues(vdev->ndev);
1452 vxge_debug_init(VXGE_ERR,
1453 "fatal: %s: Disabling device due to"
1454 "serious error",
1455 vdev->ndev->name);
1456 ret = -EPERM;
1457 goto out;
1458 case VXGE_HW_EVENT_SRPCIM_SERR:
1459 case VXGE_HW_EVENT_MRPCIM_SERR:
1460 ret = -EPERM;
1461 goto out;
1462 case VXGE_HW_EVENT_SLOT_FREEZE:
1463 netif_tx_stop_all_queues(vdev->ndev);
1464 vxge_debug_init(VXGE_ERR,
1465 "fatal: %s: Disabling device due to"
1466 "slot freeze",
1467 vdev->ndev->name);
1468 ret = -EPERM;
1469 goto out;
1470 default:
1471 break;
1476 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET))
1477 netif_tx_stop_all_queues(vdev->ndev);
1479 if (event == VXGE_LL_FULL_RESET) {
1480 status = vxge_reset_all_vpaths(vdev);
1481 if (status != VXGE_HW_OK) {
1482 vxge_debug_init(VXGE_ERR,
1483 "fatal: %s: can not reset vpaths",
1484 vdev->ndev->name);
1485 ret = -EPERM;
1486 goto out;
1490 if (event == VXGE_LL_COMPL_RESET) {
1491 for (i = 0; i < vdev->no_of_vpath; i++)
1492 if (vdev->vpaths[i].handle) {
1493 if (vxge_hw_vpath_recover_from_reset(
1494 vdev->vpaths[i].handle)
1495 != VXGE_HW_OK) {
1496 vxge_debug_init(VXGE_ERR,
1497 "vxge_hw_vpath_recover_"
1498 "from_reset failed for vpath: "
1499 "%d", i);
1500 ret = -EPERM;
1501 goto out;
1503 } else {
1504 vxge_debug_init(VXGE_ERR,
1505 "vxge_hw_vpath_reset failed for "
1506 "vpath:%d", i);
1507 ret = -EPERM;
1508 goto out;
1512 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET)) {
1513 /* Reprogram the DA table with populated mac addresses */
1514 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
1515 vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]);
1516 vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]);
1519 /* enable vpath interrupts */
1520 for (i = 0; i < vdev->no_of_vpath; i++)
1521 vxge_vpath_intr_enable(vdev, i);
1523 vxge_hw_device_intr_enable(vdev->devh);
1525 smp_wmb();
1527 /* Indicate card up */
1528 set_bit(__VXGE_STATE_CARD_UP, &vdev->state);
1530 /* Get the traffic to flow through the vpaths */
1531 for (i = 0; i < vdev->no_of_vpath; i++) {
1532 vxge_hw_vpath_enable(vdev->vpaths[i].handle);
1533 smp_wmb();
1534 vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle);
1537 netif_tx_wake_all_queues(vdev->ndev);
1540 out:
1541 vxge_debug_entryexit(VXGE_TRACE,
1542 "%s:%d Exiting...", __func__, __LINE__);
1544 /* Indicate reset done */
1545 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET))
1546 clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
1547 return ret;
1551 * vxge_reset
1552 * @vdev: pointer to ll device
1554 * driver may reset the chip on events of serr, eccerr, etc
1556 int vxge_reset(struct vxgedev *vdev)
1558 return do_vxge_reset(vdev, VXGE_LL_FULL_RESET);
1562 * vxge_poll - Receive handler when Receive Polling is used.
1563 * @dev: pointer to the device structure.
1564 * @budget: Number of packets budgeted to be processed in this iteration.
1566 * This function comes into picture only if Receive side is being handled
1567 * through polling (called NAPI in linux). It mostly does what the normal
1568 * Rx interrupt handler does in terms of descriptor and packet processing
1569 * but not in an interrupt context. Also it will process a specified number
1570 * of packets at most in one iteration. This value is passed down by the
1571 * kernel as the function argument 'budget'.
1573 static int vxge_poll_msix(struct napi_struct *napi, int budget)
1575 struct vxge_ring *ring =
1576 container_of(napi, struct vxge_ring, napi);
1577 int budget_org = budget;
1578 ring->budget = budget;
1580 vxge_hw_vpath_poll_rx(ring->handle);
1582 if (ring->pkts_processed < budget_org) {
1583 napi_complete(napi);
1584 /* Re enable the Rx interrupts for the vpath */
1585 vxge_hw_channel_msix_unmask(
1586 (struct __vxge_hw_channel *)ring->handle,
1587 ring->rx_vector_no);
1590 return ring->pkts_processed;
1593 static int vxge_poll_inta(struct napi_struct *napi, int budget)
1595 struct vxgedev *vdev = container_of(napi, struct vxgedev, napi);
1596 int pkts_processed = 0;
1597 int i;
1598 int budget_org = budget;
1599 struct vxge_ring *ring;
1601 struct __vxge_hw_device *hldev = (struct __vxge_hw_device *)
1602 pci_get_drvdata(vdev->pdev);
1604 for (i = 0; i < vdev->no_of_vpath; i++) {
1605 ring = &vdev->vpaths[i].ring;
1606 ring->budget = budget;
1607 vxge_hw_vpath_poll_rx(ring->handle);
1608 pkts_processed += ring->pkts_processed;
1609 budget -= ring->pkts_processed;
1610 if (budget <= 0)
1611 break;
1614 VXGE_COMPLETE_ALL_TX(vdev);
1616 if (pkts_processed < budget_org) {
1617 napi_complete(napi);
1618 /* Re enable the Rx interrupts for the ring */
1619 vxge_hw_device_unmask_all(hldev);
1620 vxge_hw_device_flush_io(hldev);
1623 return pkts_processed;
1626 #ifdef CONFIG_NET_POLL_CONTROLLER
1628 * vxge_netpoll - netpoll event handler entry point
1629 * @dev : pointer to the device structure.
1630 * Description:
1631 * This function will be called by upper layer to check for events on the
1632 * interface in situations where interrupts are disabled. It is used for
1633 * specific in-kernel networking tasks, such as remote consoles and kernel
1634 * debugging over the network (example netdump in RedHat).
1636 static void vxge_netpoll(struct net_device *dev)
1638 struct __vxge_hw_device *hldev;
1639 struct vxgedev *vdev;
1641 vdev = (struct vxgedev *)netdev_priv(dev);
1642 hldev = (struct __vxge_hw_device *)pci_get_drvdata(vdev->pdev);
1644 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1646 if (pci_channel_offline(vdev->pdev))
1647 return;
1649 disable_irq(dev->irq);
1650 vxge_hw_device_clear_tx_rx(hldev);
1652 vxge_hw_device_clear_tx_rx(hldev);
1653 VXGE_COMPLETE_ALL_RX(vdev);
1654 VXGE_COMPLETE_ALL_TX(vdev);
1656 enable_irq(dev->irq);
1658 vxge_debug_entryexit(VXGE_TRACE,
1659 "%s:%d Exiting...", __func__, __LINE__);
1661 #endif
1663 /* RTH configuration */
1664 static enum vxge_hw_status vxge_rth_configure(struct vxgedev *vdev)
1666 enum vxge_hw_status status = VXGE_HW_OK;
1667 struct vxge_hw_rth_hash_types hash_types;
1668 u8 itable[256] = {0}; /* indirection table */
1669 u8 mtable[256] = {0}; /* CPU to vpath mapping */
1670 int index;
1673 * Filling
1674 * - itable with bucket numbers
1675 * - mtable with bucket-to-vpath mapping
1677 for (index = 0; index < (1 << vdev->config.rth_bkt_sz); index++) {
1678 itable[index] = index;
1679 mtable[index] = index % vdev->no_of_vpath;
1682 /* Fill RTH hash types */
1683 hash_types.hash_type_tcpipv4_en = vdev->config.rth_hash_type_tcpipv4;
1684 hash_types.hash_type_ipv4_en = vdev->config.rth_hash_type_ipv4;
1685 hash_types.hash_type_tcpipv6_en = vdev->config.rth_hash_type_tcpipv6;
1686 hash_types.hash_type_ipv6_en = vdev->config.rth_hash_type_ipv6;
1687 hash_types.hash_type_tcpipv6ex_en =
1688 vdev->config.rth_hash_type_tcpipv6ex;
1689 hash_types.hash_type_ipv6ex_en = vdev->config.rth_hash_type_ipv6ex;
1691 /* set indirection table, bucket-to-vpath mapping */
1692 status = vxge_hw_vpath_rts_rth_itable_set(vdev->vp_handles,
1693 vdev->no_of_vpath,
1694 mtable, itable,
1695 vdev->config.rth_bkt_sz);
1696 if (status != VXGE_HW_OK) {
1697 vxge_debug_init(VXGE_ERR,
1698 "RTH indirection table configuration failed "
1699 "for vpath:%d", vdev->vpaths[0].device_id);
1700 return status;
1704 * Because the itable_set() method uses the active_table field
1705 * for the target virtual path the RTH config should be updated
1706 * for all VPATHs. The h/w only uses the lowest numbered VPATH
1707 * when steering frames.
1709 for (index = 0; index < vdev->no_of_vpath; index++) {
1710 status = vxge_hw_vpath_rts_rth_set(
1711 vdev->vpaths[index].handle,
1712 vdev->config.rth_algorithm,
1713 &hash_types,
1714 vdev->config.rth_bkt_sz);
1716 if (status != VXGE_HW_OK) {
1717 vxge_debug_init(VXGE_ERR,
1718 "RTH configuration failed for vpath:%d",
1719 vdev->vpaths[index].device_id);
1720 return status;
1724 return status;
1727 int vxge_mac_list_add(struct vxge_vpath *vpath, struct macInfo *mac)
1729 struct vxge_mac_addrs *new_mac_entry;
1730 u8 *mac_address = NULL;
1732 if (vpath->mac_addr_cnt >= VXGE_MAX_LEARN_MAC_ADDR_CNT)
1733 return TRUE;
1735 new_mac_entry = kzalloc(sizeof(struct vxge_mac_addrs), GFP_ATOMIC);
1736 if (!new_mac_entry) {
1737 vxge_debug_mem(VXGE_ERR,
1738 "%s: memory allocation failed",
1739 VXGE_DRIVER_NAME);
1740 return FALSE;
1743 list_add(&new_mac_entry->item, &vpath->mac_addr_list);
1745 /* Copy the new mac address to the list */
1746 mac_address = (u8 *)&new_mac_entry->macaddr;
1747 memcpy(mac_address, mac->macaddr, ETH_ALEN);
1749 new_mac_entry->state = mac->state;
1750 vpath->mac_addr_cnt++;
1752 /* Is this a multicast address */
1753 if (0x01 & mac->macaddr[0])
1754 vpath->mcast_addr_cnt++;
1756 return TRUE;
1759 /* Add a mac address to DA table */
1760 enum vxge_hw_status vxge_add_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
1762 enum vxge_hw_status status = VXGE_HW_OK;
1763 struct vxge_vpath *vpath;
1764 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode;
1766 if (0x01 & mac->macaddr[0]) /* multicast address */
1767 duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE;
1768 else
1769 duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE;
1771 vpath = &vdev->vpaths[mac->vpath_no];
1772 status = vxge_hw_vpath_mac_addr_add(vpath->handle, mac->macaddr,
1773 mac->macmask, duplicate_mode);
1774 if (status != VXGE_HW_OK) {
1775 vxge_debug_init(VXGE_ERR,
1776 "DA config add entry failed for vpath:%d",
1777 vpath->device_id);
1778 } else
1779 if (FALSE == vxge_mac_list_add(vpath, mac))
1780 status = -EPERM;
1782 return status;
1785 int vxge_mac_list_del(struct vxge_vpath *vpath, struct macInfo *mac)
1787 struct list_head *entry, *next;
1788 u64 del_mac = 0;
1789 u8 *mac_address = (u8 *) (&del_mac);
1791 /* Copy the mac address to delete from the list */
1792 memcpy(mac_address, mac->macaddr, ETH_ALEN);
1794 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
1795 if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac) {
1796 list_del(entry);
1797 kfree((struct vxge_mac_addrs *)entry);
1798 vpath->mac_addr_cnt--;
1800 /* Is this a multicast address */
1801 if (0x01 & mac->macaddr[0])
1802 vpath->mcast_addr_cnt--;
1803 return TRUE;
1807 return FALSE;
1809 /* delete a mac address from DA table */
1810 enum vxge_hw_status vxge_del_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
1812 enum vxge_hw_status status = VXGE_HW_OK;
1813 struct vxge_vpath *vpath;
1815 vpath = &vdev->vpaths[mac->vpath_no];
1816 status = vxge_hw_vpath_mac_addr_delete(vpath->handle, mac->macaddr,
1817 mac->macmask);
1818 if (status != VXGE_HW_OK) {
1819 vxge_debug_init(VXGE_ERR,
1820 "DA config delete entry failed for vpath:%d",
1821 vpath->device_id);
1822 } else
1823 vxge_mac_list_del(vpath, mac);
1824 return status;
1827 /* list all mac addresses from DA table */
1828 enum vxge_hw_status
1829 static vxge_search_mac_addr_in_da_table(struct vxge_vpath *vpath,
1830 struct macInfo *mac)
1832 enum vxge_hw_status status = VXGE_HW_OK;
1833 unsigned char macmask[ETH_ALEN];
1834 unsigned char macaddr[ETH_ALEN];
1836 status = vxge_hw_vpath_mac_addr_get(vpath->handle,
1837 macaddr, macmask);
1838 if (status != VXGE_HW_OK) {
1839 vxge_debug_init(VXGE_ERR,
1840 "DA config list entry failed for vpath:%d",
1841 vpath->device_id);
1842 return status;
1845 while (memcmp(mac->macaddr, macaddr, ETH_ALEN)) {
1847 status = vxge_hw_vpath_mac_addr_get_next(vpath->handle,
1848 macaddr, macmask);
1849 if (status != VXGE_HW_OK)
1850 break;
1853 return status;
1856 /* Store all vlan ids from the list to the vid table */
1857 enum vxge_hw_status vxge_restore_vpath_vid_table(struct vxge_vpath *vpath)
1859 enum vxge_hw_status status = VXGE_HW_OK;
1860 struct vxgedev *vdev = vpath->vdev;
1861 u16 vid;
1863 if (vdev->vlgrp && vpath->is_open) {
1865 for (vid = 0; vid < VLAN_N_VID; vid++) {
1866 if (!vlan_group_get_device(vdev->vlgrp, vid))
1867 continue;
1868 /* Add these vlan to the vid table */
1869 status = vxge_hw_vpath_vid_add(vpath->handle, vid);
1873 return status;
1876 /* Store all mac addresses from the list to the DA table */
1877 enum vxge_hw_status vxge_restore_vpath_mac_addr(struct vxge_vpath *vpath)
1879 enum vxge_hw_status status = VXGE_HW_OK;
1880 struct macInfo mac_info;
1881 u8 *mac_address = NULL;
1882 struct list_head *entry, *next;
1884 memset(&mac_info, 0, sizeof(struct macInfo));
1886 if (vpath->is_open) {
1888 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
1889 mac_address =
1890 (u8 *)&
1891 ((struct vxge_mac_addrs *)entry)->macaddr;
1892 memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
1893 ((struct vxge_mac_addrs *)entry)->state =
1894 VXGE_LL_MAC_ADDR_IN_DA_TABLE;
1895 /* does this mac address already exist in da table? */
1896 status = vxge_search_mac_addr_in_da_table(vpath,
1897 &mac_info);
1898 if (status != VXGE_HW_OK) {
1899 /* Add this mac address to the DA table */
1900 status = vxge_hw_vpath_mac_addr_add(
1901 vpath->handle, mac_info.macaddr,
1902 mac_info.macmask,
1903 VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE);
1904 if (status != VXGE_HW_OK) {
1905 vxge_debug_init(VXGE_ERR,
1906 "DA add entry failed for vpath:%d",
1907 vpath->device_id);
1908 ((struct vxge_mac_addrs *)entry)->state
1909 = VXGE_LL_MAC_ADDR_IN_LIST;
1915 return status;
1918 /* reset vpaths */
1919 enum vxge_hw_status vxge_reset_all_vpaths(struct vxgedev *vdev)
1921 enum vxge_hw_status status = VXGE_HW_OK;
1922 struct vxge_vpath *vpath;
1923 int i;
1925 for (i = 0; i < vdev->no_of_vpath; i++) {
1926 vpath = &vdev->vpaths[i];
1927 if (vpath->handle) {
1928 if (vxge_hw_vpath_reset(vpath->handle) == VXGE_HW_OK) {
1929 if (is_vxge_card_up(vdev) &&
1930 vxge_hw_vpath_recover_from_reset(
1931 vpath->handle) != VXGE_HW_OK) {
1932 vxge_debug_init(VXGE_ERR,
1933 "vxge_hw_vpath_recover_"
1934 "from_reset failed for vpath: "
1935 "%d", i);
1936 return status;
1938 } else {
1939 vxge_debug_init(VXGE_ERR,
1940 "vxge_hw_vpath_reset failed for "
1941 "vpath:%d", i);
1942 return status;
1947 return status;
1950 /* close vpaths */
1951 void vxge_close_vpaths(struct vxgedev *vdev, int index)
1953 struct vxge_vpath *vpath;
1954 int i;
1956 for (i = index; i < vdev->no_of_vpath; i++) {
1957 vpath = &vdev->vpaths[i];
1959 if (vpath->handle && vpath->is_open) {
1960 vxge_hw_vpath_close(vpath->handle);
1961 vdev->stats.vpaths_open--;
1963 vpath->is_open = 0;
1964 vpath->handle = NULL;
1968 /* open vpaths */
1969 int vxge_open_vpaths(struct vxgedev *vdev)
1971 struct vxge_hw_vpath_attr attr;
1972 enum vxge_hw_status status;
1973 struct vxge_vpath *vpath;
1974 u32 vp_id = 0;
1975 int i;
1977 for (i = 0; i < vdev->no_of_vpath; i++) {
1978 vpath = &vdev->vpaths[i];
1980 vxge_assert(vpath->is_configured);
1981 attr.vp_id = vpath->device_id;
1982 attr.fifo_attr.callback = vxge_xmit_compl;
1983 attr.fifo_attr.txdl_term = vxge_tx_term;
1984 attr.fifo_attr.per_txdl_space = sizeof(struct vxge_tx_priv);
1985 attr.fifo_attr.userdata = &vpath->fifo;
1987 attr.ring_attr.callback = vxge_rx_1b_compl;
1988 attr.ring_attr.rxd_init = vxge_rx_initial_replenish;
1989 attr.ring_attr.rxd_term = vxge_rx_term;
1990 attr.ring_attr.per_rxd_space = sizeof(struct vxge_rx_priv);
1991 attr.ring_attr.userdata = &vpath->ring;
1993 vpath->ring.ndev = vdev->ndev;
1994 vpath->ring.pdev = vdev->pdev;
1995 status = vxge_hw_vpath_open(vdev->devh, &attr, &vpath->handle);
1996 if (status == VXGE_HW_OK) {
1997 vpath->fifo.handle =
1998 (struct __vxge_hw_fifo *)attr.fifo_attr.userdata;
1999 vpath->ring.handle =
2000 (struct __vxge_hw_ring *)attr.ring_attr.userdata;
2001 vpath->fifo.tx_steering_type =
2002 vdev->config.tx_steering_type;
2003 vpath->fifo.ndev = vdev->ndev;
2004 vpath->fifo.pdev = vdev->pdev;
2005 if (vdev->config.tx_steering_type)
2006 vpath->fifo.txq =
2007 netdev_get_tx_queue(vdev->ndev, i);
2008 else
2009 vpath->fifo.txq =
2010 netdev_get_tx_queue(vdev->ndev, 0);
2011 vpath->fifo.indicate_max_pkts =
2012 vdev->config.fifo_indicate_max_pkts;
2013 vpath->ring.rx_vector_no = 0;
2014 vpath->ring.rx_csum = vdev->rx_csum;
2015 vpath->is_open = 1;
2016 vdev->vp_handles[i] = vpath->handle;
2017 vpath->ring.gro_enable = vdev->config.gro_enable;
2018 vpath->ring.vlan_tag_strip = vdev->vlan_tag_strip;
2019 vdev->stats.vpaths_open++;
2020 } else {
2021 vdev->stats.vpath_open_fail++;
2022 vxge_debug_init(VXGE_ERR,
2023 "%s: vpath: %d failed to open "
2024 "with status: %d",
2025 vdev->ndev->name, vpath->device_id,
2026 status);
2027 vxge_close_vpaths(vdev, 0);
2028 return -EPERM;
2031 vp_id = vpath->handle->vpath->vp_id;
2032 vdev->vpaths_deployed |= vxge_mBIT(vp_id);
2034 return VXGE_HW_OK;
2038 * vxge_isr_napi
2039 * @irq: the irq of the device.
2040 * @dev_id: a void pointer to the hldev structure of the Titan device
2041 * @ptregs: pointer to the registers pushed on the stack.
2043 * This function is the ISR handler of the device when napi is enabled. It
2044 * identifies the reason for the interrupt and calls the relevant service
2045 * routines.
2047 static irqreturn_t vxge_isr_napi(int irq, void *dev_id)
2049 struct net_device *dev;
2050 struct __vxge_hw_device *hldev;
2051 u64 reason;
2052 enum vxge_hw_status status;
2053 struct vxgedev *vdev = (struct vxgedev *) dev_id;;
2055 vxge_debug_intr(VXGE_TRACE, "%s:%d", __func__, __LINE__);
2057 dev = vdev->ndev;
2058 hldev = (struct __vxge_hw_device *)pci_get_drvdata(vdev->pdev);
2060 if (pci_channel_offline(vdev->pdev))
2061 return IRQ_NONE;
2063 if (unlikely(!is_vxge_card_up(vdev)))
2064 return IRQ_NONE;
2066 status = vxge_hw_device_begin_irq(hldev, vdev->exec_mode,
2067 &reason);
2068 if (status == VXGE_HW_OK) {
2069 vxge_hw_device_mask_all(hldev);
2071 if (reason &
2072 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(
2073 vdev->vpaths_deployed >>
2074 (64 - VXGE_HW_MAX_VIRTUAL_PATHS))) {
2076 vxge_hw_device_clear_tx_rx(hldev);
2077 napi_schedule(&vdev->napi);
2078 vxge_debug_intr(VXGE_TRACE,
2079 "%s:%d Exiting...", __func__, __LINE__);
2080 return IRQ_HANDLED;
2081 } else
2082 vxge_hw_device_unmask_all(hldev);
2083 } else if (unlikely((status == VXGE_HW_ERR_VPATH) ||
2084 (status == VXGE_HW_ERR_CRITICAL) ||
2085 (status == VXGE_HW_ERR_FIFO))) {
2086 vxge_hw_device_mask_all(hldev);
2087 vxge_hw_device_flush_io(hldev);
2088 return IRQ_HANDLED;
2089 } else if (unlikely(status == VXGE_HW_ERR_SLOT_FREEZE))
2090 return IRQ_HANDLED;
2092 vxge_debug_intr(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__);
2093 return IRQ_NONE;
2096 #ifdef CONFIG_PCI_MSI
2098 static irqreturn_t
2099 vxge_tx_msix_handle(int irq, void *dev_id)
2101 struct vxge_fifo *fifo = (struct vxge_fifo *)dev_id;
2103 VXGE_COMPLETE_VPATH_TX(fifo);
2105 return IRQ_HANDLED;
2108 static irqreturn_t
2109 vxge_rx_msix_napi_handle(int irq, void *dev_id)
2111 struct vxge_ring *ring = (struct vxge_ring *)dev_id;
2113 /* MSIX_IDX for Rx is 1 */
2114 vxge_hw_channel_msix_mask((struct __vxge_hw_channel *)ring->handle,
2115 ring->rx_vector_no);
2117 napi_schedule(&ring->napi);
2118 return IRQ_HANDLED;
2121 static irqreturn_t
2122 vxge_alarm_msix_handle(int irq, void *dev_id)
2124 int i;
2125 enum vxge_hw_status status;
2126 struct vxge_vpath *vpath = (struct vxge_vpath *)dev_id;
2127 struct vxgedev *vdev = vpath->vdev;
2128 int msix_id = (vpath->handle->vpath->vp_id *
2129 VXGE_HW_VPATH_MSIX_ACTIVE) + VXGE_ALARM_MSIX_ID;
2131 for (i = 0; i < vdev->no_of_vpath; i++) {
2132 vxge_hw_vpath_msix_mask(vdev->vpaths[i].handle, msix_id);
2134 status = vxge_hw_vpath_alarm_process(vdev->vpaths[i].handle,
2135 vdev->exec_mode);
2136 if (status == VXGE_HW_OK) {
2138 vxge_hw_vpath_msix_unmask(vdev->vpaths[i].handle,
2139 msix_id);
2140 continue;
2142 vxge_debug_intr(VXGE_ERR,
2143 "%s: vxge_hw_vpath_alarm_process failed %x ",
2144 VXGE_DRIVER_NAME, status);
2146 return IRQ_HANDLED;
2149 static int vxge_alloc_msix(struct vxgedev *vdev)
2151 int j, i, ret = 0;
2152 int msix_intr_vect = 0, temp;
2153 vdev->intr_cnt = 0;
2155 start:
2156 /* Tx/Rx MSIX Vectors count */
2157 vdev->intr_cnt = vdev->no_of_vpath * 2;
2159 /* Alarm MSIX Vectors count */
2160 vdev->intr_cnt++;
2162 vdev->entries = kcalloc(vdev->intr_cnt, sizeof(struct msix_entry),
2163 GFP_KERNEL);
2164 if (!vdev->entries) {
2165 vxge_debug_init(VXGE_ERR,
2166 "%s: memory allocation failed",
2167 VXGE_DRIVER_NAME);
2168 ret = -ENOMEM;
2169 goto alloc_entries_failed;
2172 vdev->vxge_entries = kcalloc(vdev->intr_cnt,
2173 sizeof(struct vxge_msix_entry),
2174 GFP_KERNEL);
2175 if (!vdev->vxge_entries) {
2176 vxge_debug_init(VXGE_ERR, "%s: memory allocation failed",
2177 VXGE_DRIVER_NAME);
2178 ret = -ENOMEM;
2179 goto alloc_vxge_entries_failed;
2182 for (i = 0, j = 0; i < vdev->no_of_vpath; i++) {
2184 msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE;
2186 /* Initialize the fifo vector */
2187 vdev->entries[j].entry = msix_intr_vect;
2188 vdev->vxge_entries[j].entry = msix_intr_vect;
2189 vdev->vxge_entries[j].in_use = 0;
2190 j++;
2192 /* Initialize the ring vector */
2193 vdev->entries[j].entry = msix_intr_vect + 1;
2194 vdev->vxge_entries[j].entry = msix_intr_vect + 1;
2195 vdev->vxge_entries[j].in_use = 0;
2196 j++;
2199 /* Initialize the alarm vector */
2200 vdev->entries[j].entry = VXGE_ALARM_MSIX_ID;
2201 vdev->vxge_entries[j].entry = VXGE_ALARM_MSIX_ID;
2202 vdev->vxge_entries[j].in_use = 0;
2204 ret = pci_enable_msix(vdev->pdev, vdev->entries, vdev->intr_cnt);
2205 if (ret > 0) {
2206 vxge_debug_init(VXGE_ERR,
2207 "%s: MSI-X enable failed for %d vectors, ret: %d",
2208 VXGE_DRIVER_NAME, vdev->intr_cnt, ret);
2209 if ((max_config_vpath != VXGE_USE_DEFAULT) || (ret < 3)) {
2210 ret = -ENODEV;
2211 goto enable_msix_failed;
2214 kfree(vdev->entries);
2215 kfree(vdev->vxge_entries);
2216 vdev->entries = NULL;
2217 vdev->vxge_entries = NULL;
2218 /* Try with less no of vector by reducing no of vpaths count */
2219 temp = (ret - 1)/2;
2220 vxge_close_vpaths(vdev, temp);
2221 vdev->no_of_vpath = temp;
2222 goto start;
2223 } else if (ret < 0) {
2224 ret = -ENODEV;
2225 goto enable_msix_failed;
2227 return 0;
2229 enable_msix_failed:
2230 kfree(vdev->vxge_entries);
2231 alloc_vxge_entries_failed:
2232 kfree(vdev->entries);
2233 alloc_entries_failed:
2234 return ret;
2237 static int vxge_enable_msix(struct vxgedev *vdev)
2240 int i, ret = 0;
2241 /* 0 - Tx, 1 - Rx */
2242 int tim_msix_id[4] = {0, 1, 0, 0};
2244 vdev->intr_cnt = 0;
2246 /* allocate msix vectors */
2247 ret = vxge_alloc_msix(vdev);
2248 if (!ret) {
2249 for (i = 0; i < vdev->no_of_vpath; i++) {
2250 struct vxge_vpath *vpath = &vdev->vpaths[i];
2252 /* If fifo or ring are not enabled, the MSIX vector for
2253 * it should be set to 0.
2255 vpath->ring.rx_vector_no = (vpath->device_id *
2256 VXGE_HW_VPATH_MSIX_ACTIVE) + 1;
2258 vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id,
2259 VXGE_ALARM_MSIX_ID);
2263 return ret;
2266 static void vxge_rem_msix_isr(struct vxgedev *vdev)
2268 int intr_cnt;
2270 for (intr_cnt = 0; intr_cnt < (vdev->no_of_vpath * 2 + 1);
2271 intr_cnt++) {
2272 if (vdev->vxge_entries[intr_cnt].in_use) {
2273 synchronize_irq(vdev->entries[intr_cnt].vector);
2274 free_irq(vdev->entries[intr_cnt].vector,
2275 vdev->vxge_entries[intr_cnt].arg);
2276 vdev->vxge_entries[intr_cnt].in_use = 0;
2280 kfree(vdev->entries);
2281 kfree(vdev->vxge_entries);
2282 vdev->entries = NULL;
2283 vdev->vxge_entries = NULL;
2285 if (vdev->config.intr_type == MSI_X)
2286 pci_disable_msix(vdev->pdev);
2288 #endif
2290 static void vxge_rem_isr(struct vxgedev *vdev)
2292 struct __vxge_hw_device *hldev;
2293 hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
2295 #ifdef CONFIG_PCI_MSI
2296 if (vdev->config.intr_type == MSI_X) {
2297 vxge_rem_msix_isr(vdev);
2298 } else
2299 #endif
2300 if (vdev->config.intr_type == INTA) {
2301 synchronize_irq(vdev->pdev->irq);
2302 free_irq(vdev->pdev->irq, vdev);
2306 static int vxge_add_isr(struct vxgedev *vdev)
2308 int ret = 0;
2309 #ifdef CONFIG_PCI_MSI
2310 int vp_idx = 0, intr_idx = 0, intr_cnt = 0, msix_idx = 0, irq_req = 0;
2311 int pci_fun = PCI_FUNC(vdev->pdev->devfn);
2313 if (vdev->config.intr_type == MSI_X)
2314 ret = vxge_enable_msix(vdev);
2316 if (ret) {
2317 vxge_debug_init(VXGE_ERR,
2318 "%s: Enabling MSI-X Failed", VXGE_DRIVER_NAME);
2319 vxge_debug_init(VXGE_ERR,
2320 "%s: Defaulting to INTA", VXGE_DRIVER_NAME);
2321 vdev->config.intr_type = INTA;
2324 if (vdev->config.intr_type == MSI_X) {
2325 for (intr_idx = 0;
2326 intr_idx < (vdev->no_of_vpath *
2327 VXGE_HW_VPATH_MSIX_ACTIVE); intr_idx++) {
2329 msix_idx = intr_idx % VXGE_HW_VPATH_MSIX_ACTIVE;
2330 irq_req = 0;
2332 switch (msix_idx) {
2333 case 0:
2334 snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
2335 "%s:vxge:MSI-X %d - Tx - fn:%d vpath:%d",
2336 vdev->ndev->name,
2337 vdev->entries[intr_cnt].entry,
2338 pci_fun, vp_idx);
2339 ret = request_irq(
2340 vdev->entries[intr_cnt].vector,
2341 vxge_tx_msix_handle, 0,
2342 vdev->desc[intr_cnt],
2343 &vdev->vpaths[vp_idx].fifo);
2344 vdev->vxge_entries[intr_cnt].arg =
2345 &vdev->vpaths[vp_idx].fifo;
2346 irq_req = 1;
2347 break;
2348 case 1:
2349 snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
2350 "%s:vxge:MSI-X %d - Rx - fn:%d vpath:%d",
2351 vdev->ndev->name,
2352 vdev->entries[intr_cnt].entry,
2353 pci_fun, vp_idx);
2354 ret = request_irq(
2355 vdev->entries[intr_cnt].vector,
2356 vxge_rx_msix_napi_handle,
2358 vdev->desc[intr_cnt],
2359 &vdev->vpaths[vp_idx].ring);
2360 vdev->vxge_entries[intr_cnt].arg =
2361 &vdev->vpaths[vp_idx].ring;
2362 irq_req = 1;
2363 break;
2366 if (ret) {
2367 vxge_debug_init(VXGE_ERR,
2368 "%s: MSIX - %d Registration failed",
2369 vdev->ndev->name, intr_cnt);
2370 vxge_rem_msix_isr(vdev);
2371 vdev->config.intr_type = INTA;
2372 vxge_debug_init(VXGE_ERR,
2373 "%s: Defaulting to INTA"
2374 , vdev->ndev->name);
2375 goto INTA_MODE;
2378 if (irq_req) {
2379 /* We requested for this msix interrupt */
2380 vdev->vxge_entries[intr_cnt].in_use = 1;
2381 msix_idx += vdev->vpaths[vp_idx].device_id *
2382 VXGE_HW_VPATH_MSIX_ACTIVE;
2383 vxge_hw_vpath_msix_unmask(
2384 vdev->vpaths[vp_idx].handle,
2385 msix_idx);
2386 intr_cnt++;
2389 /* Point to next vpath handler */
2390 if (((intr_idx + 1) % VXGE_HW_VPATH_MSIX_ACTIVE == 0) &&
2391 (vp_idx < (vdev->no_of_vpath - 1)))
2392 vp_idx++;
2395 intr_cnt = vdev->no_of_vpath * 2;
2396 snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
2397 "%s:vxge:MSI-X %d - Alarm - fn:%d",
2398 vdev->ndev->name,
2399 vdev->entries[intr_cnt].entry,
2400 pci_fun);
2401 /* For Alarm interrupts */
2402 ret = request_irq(vdev->entries[intr_cnt].vector,
2403 vxge_alarm_msix_handle, 0,
2404 vdev->desc[intr_cnt],
2405 &vdev->vpaths[0]);
2406 if (ret) {
2407 vxge_debug_init(VXGE_ERR,
2408 "%s: MSIX - %d Registration failed",
2409 vdev->ndev->name, intr_cnt);
2410 vxge_rem_msix_isr(vdev);
2411 vdev->config.intr_type = INTA;
2412 vxge_debug_init(VXGE_ERR,
2413 "%s: Defaulting to INTA",
2414 vdev->ndev->name);
2415 goto INTA_MODE;
2418 msix_idx = (vdev->vpaths[0].handle->vpath->vp_id *
2419 VXGE_HW_VPATH_MSIX_ACTIVE) + VXGE_ALARM_MSIX_ID;
2420 vxge_hw_vpath_msix_unmask(vdev->vpaths[vp_idx].handle,
2421 msix_idx);
2422 vdev->vxge_entries[intr_cnt].in_use = 1;
2423 vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[0];
2425 INTA_MODE:
2426 #endif
2428 if (vdev->config.intr_type == INTA) {
2429 snprintf(vdev->desc[0], VXGE_INTR_STRLEN,
2430 "%s:vxge:INTA", vdev->ndev->name);
2431 vxge_hw_device_set_intr_type(vdev->devh,
2432 VXGE_HW_INTR_MODE_IRQLINE);
2433 vxge_hw_vpath_tti_ci_set(vdev->devh,
2434 vdev->vpaths[0].device_id);
2435 ret = request_irq((int) vdev->pdev->irq,
2436 vxge_isr_napi,
2437 IRQF_SHARED, vdev->desc[0], vdev);
2438 if (ret) {
2439 vxge_debug_init(VXGE_ERR,
2440 "%s %s-%d: ISR registration failed",
2441 VXGE_DRIVER_NAME, "IRQ", vdev->pdev->irq);
2442 return -ENODEV;
2444 vxge_debug_init(VXGE_TRACE,
2445 "new %s-%d line allocated",
2446 "IRQ", vdev->pdev->irq);
2449 return VXGE_HW_OK;
2452 static void vxge_poll_vp_reset(unsigned long data)
2454 struct vxgedev *vdev = (struct vxgedev *)data;
2455 int i, j = 0;
2457 for (i = 0; i < vdev->no_of_vpath; i++) {
2458 if (test_bit(i, &vdev->vp_reset)) {
2459 vxge_reset_vpath(vdev, i);
2460 j++;
2463 if (j && (vdev->config.intr_type != MSI_X)) {
2464 vxge_hw_device_unmask_all(vdev->devh);
2465 vxge_hw_device_flush_io(vdev->devh);
2468 mod_timer(&vdev->vp_reset_timer, jiffies + HZ / 2);
2471 static void vxge_poll_vp_lockup(unsigned long data)
2473 struct vxgedev *vdev = (struct vxgedev *)data;
2474 enum vxge_hw_status status = VXGE_HW_OK;
2475 struct vxge_vpath *vpath;
2476 struct vxge_ring *ring;
2477 int i;
2479 for (i = 0; i < vdev->no_of_vpath; i++) {
2480 ring = &vdev->vpaths[i].ring;
2481 /* Did this vpath received any packets */
2482 if (ring->stats.prev_rx_frms == ring->stats.rx_frms) {
2483 status = vxge_hw_vpath_check_leak(ring->handle);
2485 /* Did it received any packets last time */
2486 if ((VXGE_HW_FAIL == status) &&
2487 (VXGE_HW_FAIL == ring->last_status)) {
2489 /* schedule vpath reset */
2490 if (!test_and_set_bit(i, &vdev->vp_reset)) {
2491 vpath = &vdev->vpaths[i];
2493 /* disable interrupts for this vpath */
2494 vxge_vpath_intr_disable(vdev, i);
2496 /* stop the queue for this vpath */
2497 netif_tx_stop_queue(vpath->fifo.txq);
2498 continue;
2502 ring->stats.prev_rx_frms = ring->stats.rx_frms;
2503 ring->last_status = status;
2506 /* Check every 1 milli second */
2507 mod_timer(&vdev->vp_lockup_timer, jiffies + HZ / 1000);
2511 * vxge_open
2512 * @dev: pointer to the device structure.
2514 * This function is the open entry point of the driver. It mainly calls a
2515 * function to allocate Rx buffers and inserts them into the buffer
2516 * descriptors and then enables the Rx part of the NIC.
2517 * Return value: '0' on success and an appropriate (-)ve integer as
2518 * defined in errno.h file on failure.
2521 vxge_open(struct net_device *dev)
2523 enum vxge_hw_status status;
2524 struct vxgedev *vdev;
2525 struct __vxge_hw_device *hldev;
2526 struct vxge_vpath *vpath;
2527 int ret = 0;
2528 int i;
2529 u64 val64, function_mode;
2530 vxge_debug_entryexit(VXGE_TRACE,
2531 "%s: %s:%d", dev->name, __func__, __LINE__);
2533 vdev = (struct vxgedev *)netdev_priv(dev);
2534 hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
2535 function_mode = vdev->config.device_hw_info.function_mode;
2537 /* make sure you have link off by default every time Nic is
2538 * initialized */
2539 netif_carrier_off(dev);
2541 /* Open VPATHs */
2542 status = vxge_open_vpaths(vdev);
2543 if (status != VXGE_HW_OK) {
2544 vxge_debug_init(VXGE_ERR,
2545 "%s: fatal: Vpath open failed", vdev->ndev->name);
2546 ret = -EPERM;
2547 goto out0;
2550 vdev->mtu = dev->mtu;
2552 status = vxge_add_isr(vdev);
2553 if (status != VXGE_HW_OK) {
2554 vxge_debug_init(VXGE_ERR,
2555 "%s: fatal: ISR add failed", dev->name);
2556 ret = -EPERM;
2557 goto out1;
2560 if (vdev->config.intr_type != MSI_X) {
2561 netif_napi_add(dev, &vdev->napi, vxge_poll_inta,
2562 vdev->config.napi_weight);
2563 napi_enable(&vdev->napi);
2564 for (i = 0; i < vdev->no_of_vpath; i++) {
2565 vpath = &vdev->vpaths[i];
2566 vpath->ring.napi_p = &vdev->napi;
2568 } else {
2569 for (i = 0; i < vdev->no_of_vpath; i++) {
2570 vpath = &vdev->vpaths[i];
2571 netif_napi_add(dev, &vpath->ring.napi,
2572 vxge_poll_msix, vdev->config.napi_weight);
2573 napi_enable(&vpath->ring.napi);
2574 vpath->ring.napi_p = &vpath->ring.napi;
2578 /* configure RTH */
2579 if (vdev->config.rth_steering) {
2580 status = vxge_rth_configure(vdev);
2581 if (status != VXGE_HW_OK) {
2582 vxge_debug_init(VXGE_ERR,
2583 "%s: fatal: RTH configuration failed",
2584 dev->name);
2585 ret = -EPERM;
2586 goto out2;
2590 for (i = 0; i < vdev->no_of_vpath; i++) {
2591 vpath = &vdev->vpaths[i];
2593 /* set initial mtu before enabling the device */
2594 status = vxge_hw_vpath_mtu_set(vpath->handle, vdev->mtu);
2595 if (status != VXGE_HW_OK) {
2596 vxge_debug_init(VXGE_ERR,
2597 "%s: fatal: can not set new MTU", dev->name);
2598 ret = -EPERM;
2599 goto out2;
2603 VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_TRACE, VXGE_COMPONENT_LL, vdev);
2604 vxge_debug_init(vdev->level_trace,
2605 "%s: MTU is %d", vdev->ndev->name, vdev->mtu);
2606 VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_ERR, VXGE_COMPONENT_LL, vdev);
2608 /* Restore the DA, VID table and also multicast and promiscuous mode
2609 * states
2611 if (vdev->all_multi_flg) {
2612 for (i = 0; i < vdev->no_of_vpath; i++) {
2613 vpath = &vdev->vpaths[i];
2614 vxge_restore_vpath_mac_addr(vpath);
2615 vxge_restore_vpath_vid_table(vpath);
2617 status = vxge_hw_vpath_mcast_enable(vpath->handle);
2618 if (status != VXGE_HW_OK)
2619 vxge_debug_init(VXGE_ERR,
2620 "%s:%d Enabling multicast failed",
2621 __func__, __LINE__);
2625 /* Enable vpath to sniff all unicast/multicast traffic that not
2626 * addressed to them. We allow promiscous mode for PF only
2629 val64 = 0;
2630 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
2631 val64 |= VXGE_HW_RXMAC_AUTHORIZE_ALL_ADDR_VP(i);
2633 vxge_hw_mgmt_reg_write(vdev->devh,
2634 vxge_hw_mgmt_reg_type_mrpcim,
2636 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2637 rxmac_authorize_all_addr),
2638 val64);
2640 vxge_hw_mgmt_reg_write(vdev->devh,
2641 vxge_hw_mgmt_reg_type_mrpcim,
2643 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2644 rxmac_authorize_all_vid),
2645 val64);
2647 vxge_set_multicast(dev);
2649 /* Enabling Bcast and mcast for all vpath */
2650 for (i = 0; i < vdev->no_of_vpath; i++) {
2651 vpath = &vdev->vpaths[i];
2652 status = vxge_hw_vpath_bcast_enable(vpath->handle);
2653 if (status != VXGE_HW_OK)
2654 vxge_debug_init(VXGE_ERR,
2655 "%s : Can not enable bcast for vpath "
2656 "id %d", dev->name, i);
2657 if (vdev->config.addr_learn_en) {
2658 status = vxge_hw_vpath_mcast_enable(vpath->handle);
2659 if (status != VXGE_HW_OK)
2660 vxge_debug_init(VXGE_ERR,
2661 "%s : Can not enable mcast for vpath "
2662 "id %d", dev->name, i);
2666 vxge_hw_device_setpause_data(vdev->devh, 0,
2667 vdev->config.tx_pause_enable,
2668 vdev->config.rx_pause_enable);
2670 if (vdev->vp_reset_timer.function == NULL)
2671 vxge_os_timer(vdev->vp_reset_timer,
2672 vxge_poll_vp_reset, vdev, (HZ/2));
2674 if (vdev->vp_lockup_timer.function == NULL)
2675 vxge_os_timer(vdev->vp_lockup_timer,
2676 vxge_poll_vp_lockup, vdev, (HZ/2));
2678 set_bit(__VXGE_STATE_CARD_UP, &vdev->state);
2680 smp_wmb();
2682 if (vxge_hw_device_link_state_get(vdev->devh) == VXGE_HW_LINK_UP) {
2683 netif_carrier_on(vdev->ndev);
2684 netdev_notice(vdev->ndev, "Link Up\n");
2685 vdev->stats.link_up++;
2688 vxge_hw_device_intr_enable(vdev->devh);
2690 smp_wmb();
2692 for (i = 0; i < vdev->no_of_vpath; i++) {
2693 vpath = &vdev->vpaths[i];
2695 vxge_hw_vpath_enable(vpath->handle);
2696 smp_wmb();
2697 vxge_hw_vpath_rx_doorbell_init(vpath->handle);
2700 netif_tx_start_all_queues(vdev->ndev);
2701 goto out0;
2703 out2:
2704 vxge_rem_isr(vdev);
2706 /* Disable napi */
2707 if (vdev->config.intr_type != MSI_X)
2708 napi_disable(&vdev->napi);
2709 else {
2710 for (i = 0; i < vdev->no_of_vpath; i++)
2711 napi_disable(&vdev->vpaths[i].ring.napi);
2714 out1:
2715 vxge_close_vpaths(vdev, 0);
2716 out0:
2717 vxge_debug_entryexit(VXGE_TRACE,
2718 "%s: %s:%d Exiting...",
2719 dev->name, __func__, __LINE__);
2720 return ret;
2723 /* Loop throught the mac address list and delete all the entries */
2724 void vxge_free_mac_add_list(struct vxge_vpath *vpath)
2727 struct list_head *entry, *next;
2728 if (list_empty(&vpath->mac_addr_list))
2729 return;
2731 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
2732 list_del(entry);
2733 kfree((struct vxge_mac_addrs *)entry);
2737 static void vxge_napi_del_all(struct vxgedev *vdev)
2739 int i;
2740 if (vdev->config.intr_type != MSI_X)
2741 netif_napi_del(&vdev->napi);
2742 else {
2743 for (i = 0; i < vdev->no_of_vpath; i++)
2744 netif_napi_del(&vdev->vpaths[i].ring.napi);
2748 int do_vxge_close(struct net_device *dev, int do_io)
2750 enum vxge_hw_status status;
2751 struct vxgedev *vdev;
2752 struct __vxge_hw_device *hldev;
2753 int i;
2754 u64 val64, vpath_vector;
2755 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
2756 dev->name, __func__, __LINE__);
2758 vdev = (struct vxgedev *)netdev_priv(dev);
2759 hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
2761 if (unlikely(!is_vxge_card_up(vdev)))
2762 return 0;
2764 /* If vxge_handle_crit_err task is executing,
2765 * wait till it completes. */
2766 while (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
2767 msleep(50);
2769 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
2770 if (do_io) {
2771 /* Put the vpath back in normal mode */
2772 vpath_vector = vxge_mBIT(vdev->vpaths[0].device_id);
2773 status = vxge_hw_mgmt_reg_read(vdev->devh,
2774 vxge_hw_mgmt_reg_type_mrpcim,
2776 (ulong)offsetof(
2777 struct vxge_hw_mrpcim_reg,
2778 rts_mgr_cbasin_cfg),
2779 &val64);
2781 if (status == VXGE_HW_OK) {
2782 val64 &= ~vpath_vector;
2783 status = vxge_hw_mgmt_reg_write(vdev->devh,
2784 vxge_hw_mgmt_reg_type_mrpcim,
2786 (ulong)offsetof(
2787 struct vxge_hw_mrpcim_reg,
2788 rts_mgr_cbasin_cfg),
2789 val64);
2792 /* Remove the function 0 from promiscous mode */
2793 vxge_hw_mgmt_reg_write(vdev->devh,
2794 vxge_hw_mgmt_reg_type_mrpcim,
2796 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2797 rxmac_authorize_all_addr),
2800 vxge_hw_mgmt_reg_write(vdev->devh,
2801 vxge_hw_mgmt_reg_type_mrpcim,
2803 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2804 rxmac_authorize_all_vid),
2807 smp_wmb();
2809 del_timer_sync(&vdev->vp_lockup_timer);
2811 del_timer_sync(&vdev->vp_reset_timer);
2813 /* Disable napi */
2814 if (vdev->config.intr_type != MSI_X)
2815 napi_disable(&vdev->napi);
2816 else {
2817 for (i = 0; i < vdev->no_of_vpath; i++)
2818 napi_disable(&vdev->vpaths[i].ring.napi);
2821 netif_carrier_off(vdev->ndev);
2822 netdev_notice(vdev->ndev, "Link Down\n");
2823 netif_tx_stop_all_queues(vdev->ndev);
2825 /* Note that at this point xmit() is stopped by upper layer */
2826 if (do_io)
2827 vxge_hw_device_intr_disable(vdev->devh);
2829 mdelay(1000);
2831 vxge_rem_isr(vdev);
2833 vxge_napi_del_all(vdev);
2835 if (do_io)
2836 vxge_reset_all_vpaths(vdev);
2838 vxge_close_vpaths(vdev, 0);
2840 vxge_debug_entryexit(VXGE_TRACE,
2841 "%s: %s:%d Exiting...", dev->name, __func__, __LINE__);
2843 clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
2845 return 0;
2849 * vxge_close
2850 * @dev: device pointer.
2852 * This is the stop entry point of the driver. It needs to undo exactly
2853 * whatever was done by the open entry point, thus it's usually referred to
2854 * as the close function.Among other things this function mainly stops the
2855 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
2856 * Return value: '0' on success and an appropriate (-)ve integer as
2857 * defined in errno.h file on failure.
2860 vxge_close(struct net_device *dev)
2862 do_vxge_close(dev, 1);
2863 return 0;
2867 * vxge_change_mtu
2868 * @dev: net device pointer.
2869 * @new_mtu :the new MTU size for the device.
2871 * A driver entry point to change MTU size for the device. Before changing
2872 * the MTU the device must be stopped.
2874 static int vxge_change_mtu(struct net_device *dev, int new_mtu)
2876 struct vxgedev *vdev = netdev_priv(dev);
2878 vxge_debug_entryexit(vdev->level_trace,
2879 "%s:%d", __func__, __LINE__);
2880 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > VXGE_HW_MAX_MTU)) {
2881 vxge_debug_init(vdev->level_err,
2882 "%s: mtu size is invalid", dev->name);
2883 return -EPERM;
2886 /* check if device is down already */
2887 if (unlikely(!is_vxge_card_up(vdev))) {
2888 /* just store new value, will use later on open() */
2889 dev->mtu = new_mtu;
2890 vxge_debug_init(vdev->level_err,
2891 "%s", "device is down on MTU change");
2892 return 0;
2895 vxge_debug_init(vdev->level_trace,
2896 "trying to apply new MTU %d", new_mtu);
2898 if (vxge_close(dev))
2899 return -EIO;
2901 dev->mtu = new_mtu;
2902 vdev->mtu = new_mtu;
2904 if (vxge_open(dev))
2905 return -EIO;
2907 vxge_debug_init(vdev->level_trace,
2908 "%s: MTU changed to %d", vdev->ndev->name, new_mtu);
2910 vxge_debug_entryexit(vdev->level_trace,
2911 "%s:%d Exiting...", __func__, __LINE__);
2913 return 0;
2917 * vxge_get_stats64
2918 * @dev: pointer to the device structure
2919 * @stats: pointer to struct rtnl_link_stats64
2922 static struct rtnl_link_stats64 *
2923 vxge_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
2925 struct vxgedev *vdev = netdev_priv(dev);
2926 int k;
2928 /* net_stats already zeroed by caller */
2929 for (k = 0; k < vdev->no_of_vpath; k++) {
2930 net_stats->rx_packets += vdev->vpaths[k].ring.stats.rx_frms;
2931 net_stats->rx_bytes += vdev->vpaths[k].ring.stats.rx_bytes;
2932 net_stats->rx_errors += vdev->vpaths[k].ring.stats.rx_errors;
2933 net_stats->multicast += vdev->vpaths[k].ring.stats.rx_mcast;
2934 net_stats->rx_dropped +=
2935 vdev->vpaths[k].ring.stats.rx_dropped;
2937 net_stats->tx_packets += vdev->vpaths[k].fifo.stats.tx_frms;
2938 net_stats->tx_bytes += vdev->vpaths[k].fifo.stats.tx_bytes;
2939 net_stats->tx_errors += vdev->vpaths[k].fifo.stats.tx_errors;
2942 return net_stats;
2946 * vxge_ioctl
2947 * @dev: Device pointer.
2948 * @ifr: An IOCTL specific structure, that can contain a pointer to
2949 * a proprietary structure used to pass information to the driver.
2950 * @cmd: This is used to distinguish between the different commands that
2951 * can be passed to the IOCTL functions.
2953 * Entry point for the Ioctl.
2955 static int vxge_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2957 return -EOPNOTSUPP;
2961 * vxge_tx_watchdog
2962 * @dev: pointer to net device structure
2964 * Watchdog for transmit side.
2965 * This function is triggered if the Tx Queue is stopped
2966 * for a pre-defined amount of time when the Interface is still up.
2968 static void
2969 vxge_tx_watchdog(struct net_device *dev)
2971 struct vxgedev *vdev;
2973 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
2975 vdev = (struct vxgedev *)netdev_priv(dev);
2977 vdev->cric_err_event = VXGE_HW_EVENT_RESET_START;
2979 vxge_reset(vdev);
2980 vxge_debug_entryexit(VXGE_TRACE,
2981 "%s:%d Exiting...", __func__, __LINE__);
2985 * vxge_vlan_rx_register
2986 * @dev: net device pointer.
2987 * @grp: vlan group
2989 * Vlan group registration
2991 static void
2992 vxge_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2994 struct vxgedev *vdev;
2995 struct vxge_vpath *vpath;
2996 int vp;
2997 u64 vid;
2998 enum vxge_hw_status status;
2999 int i;
3001 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
3003 vdev = (struct vxgedev *)netdev_priv(dev);
3005 vpath = &vdev->vpaths[0];
3006 if ((NULL == grp) && (vpath->is_open)) {
3007 /* Get the first vlan */
3008 status = vxge_hw_vpath_vid_get(vpath->handle, &vid);
3010 while (status == VXGE_HW_OK) {
3012 /* Delete this vlan from the vid table */
3013 for (vp = 0; vp < vdev->no_of_vpath; vp++) {
3014 vpath = &vdev->vpaths[vp];
3015 if (!vpath->is_open)
3016 continue;
3018 vxge_hw_vpath_vid_delete(vpath->handle, vid);
3021 /* Get the next vlan to be deleted */
3022 vpath = &vdev->vpaths[0];
3023 status = vxge_hw_vpath_vid_get(vpath->handle, &vid);
3027 vdev->vlgrp = grp;
3029 for (i = 0; i < vdev->no_of_vpath; i++) {
3030 if (vdev->vpaths[i].is_configured)
3031 vdev->vpaths[i].ring.vlgrp = grp;
3034 vxge_debug_entryexit(VXGE_TRACE,
3035 "%s:%d Exiting...", __func__, __LINE__);
3039 * vxge_vlan_rx_add_vid
3040 * @dev: net device pointer.
3041 * @vid: vid
3043 * Add the vlan id to the devices vlan id table
3045 static void
3046 vxge_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
3048 struct vxgedev *vdev;
3049 struct vxge_vpath *vpath;
3050 int vp_id;
3052 vdev = (struct vxgedev *)netdev_priv(dev);
3054 /* Add these vlan to the vid table */
3055 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
3056 vpath = &vdev->vpaths[vp_id];
3057 if (!vpath->is_open)
3058 continue;
3059 vxge_hw_vpath_vid_add(vpath->handle, vid);
3064 * vxge_vlan_rx_add_vid
3065 * @dev: net device pointer.
3066 * @vid: vid
3068 * Remove the vlan id from the device's vlan id table
3070 static void
3071 vxge_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3073 struct vxgedev *vdev;
3074 struct vxge_vpath *vpath;
3075 int vp_id;
3077 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
3079 vdev = (struct vxgedev *)netdev_priv(dev);
3081 vlan_group_set_device(vdev->vlgrp, vid, NULL);
3083 /* Delete this vlan from the vid table */
3084 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
3085 vpath = &vdev->vpaths[vp_id];
3086 if (!vpath->is_open)
3087 continue;
3088 vxge_hw_vpath_vid_delete(vpath->handle, vid);
3090 vxge_debug_entryexit(VXGE_TRACE,
3091 "%s:%d Exiting...", __func__, __LINE__);
3094 static const struct net_device_ops vxge_netdev_ops = {
3095 .ndo_open = vxge_open,
3096 .ndo_stop = vxge_close,
3097 .ndo_get_stats64 = vxge_get_stats64,
3098 .ndo_start_xmit = vxge_xmit,
3099 .ndo_validate_addr = eth_validate_addr,
3100 .ndo_set_multicast_list = vxge_set_multicast,
3102 .ndo_do_ioctl = vxge_ioctl,
3104 .ndo_set_mac_address = vxge_set_mac_addr,
3105 .ndo_change_mtu = vxge_change_mtu,
3106 .ndo_vlan_rx_register = vxge_vlan_rx_register,
3107 .ndo_vlan_rx_kill_vid = vxge_vlan_rx_kill_vid,
3108 .ndo_vlan_rx_add_vid = vxge_vlan_rx_add_vid,
3110 .ndo_tx_timeout = vxge_tx_watchdog,
3111 #ifdef CONFIG_NET_POLL_CONTROLLER
3112 .ndo_poll_controller = vxge_netpoll,
3113 #endif
3116 int __devinit vxge_device_register(struct __vxge_hw_device *hldev,
3117 struct vxge_config *config,
3118 int high_dma, int no_of_vpath,
3119 struct vxgedev **vdev_out)
3121 struct net_device *ndev;
3122 enum vxge_hw_status status = VXGE_HW_OK;
3123 struct vxgedev *vdev;
3124 int ret = 0, no_of_queue = 1;
3125 u64 stat;
3127 *vdev_out = NULL;
3128 if (config->tx_steering_type)
3129 no_of_queue = no_of_vpath;
3131 ndev = alloc_etherdev_mq(sizeof(struct vxgedev),
3132 no_of_queue);
3133 if (ndev == NULL) {
3134 vxge_debug_init(
3135 vxge_hw_device_trace_level_get(hldev),
3136 "%s : device allocation failed", __func__);
3137 ret = -ENODEV;
3138 goto _out0;
3141 vxge_debug_entryexit(
3142 vxge_hw_device_trace_level_get(hldev),
3143 "%s: %s:%d Entering...",
3144 ndev->name, __func__, __LINE__);
3146 vdev = netdev_priv(ndev);
3147 memset(vdev, 0, sizeof(struct vxgedev));
3149 vdev->ndev = ndev;
3150 vdev->devh = hldev;
3151 vdev->pdev = hldev->pdev;
3152 memcpy(&vdev->config, config, sizeof(struct vxge_config));
3153 vdev->rx_csum = 1; /* Enable Rx CSUM by default. */
3155 SET_NETDEV_DEV(ndev, &vdev->pdev->dev);
3157 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
3158 NETIF_F_HW_VLAN_FILTER;
3159 /* Driver entry points */
3160 ndev->irq = vdev->pdev->irq;
3161 ndev->base_addr = (unsigned long) hldev->bar0;
3163 ndev->netdev_ops = &vxge_netdev_ops;
3165 ndev->watchdog_timeo = VXGE_LL_WATCH_DOG_TIMEOUT;
3167 initialize_ethtool_ops(ndev);
3169 /* Allocate memory for vpath */
3170 vdev->vpaths = kzalloc((sizeof(struct vxge_vpath)) *
3171 no_of_vpath, GFP_KERNEL);
3172 if (!vdev->vpaths) {
3173 vxge_debug_init(VXGE_ERR,
3174 "%s: vpath memory allocation failed",
3175 vdev->ndev->name);
3176 ret = -ENODEV;
3177 goto _out1;
3180 ndev->features |= NETIF_F_SG;
3182 ndev->features |= NETIF_F_HW_CSUM;
3183 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3184 "%s : checksuming enabled", __func__);
3186 if (high_dma) {
3187 ndev->features |= NETIF_F_HIGHDMA;
3188 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3189 "%s : using High DMA", __func__);
3192 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
3194 if (vdev->config.gro_enable)
3195 ndev->features |= NETIF_F_GRO;
3197 if (register_netdev(ndev)) {
3198 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3199 "%s: %s : device registration failed!",
3200 ndev->name, __func__);
3201 ret = -ENODEV;
3202 goto _out2;
3205 /* Set the factory defined MAC address initially */
3206 ndev->addr_len = ETH_ALEN;
3208 /* Make Link state as off at this point, when the Link change
3209 * interrupt comes the state will be automatically changed to
3210 * the right state.
3212 netif_carrier_off(ndev);
3214 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3215 "%s: Ethernet device registered",
3216 ndev->name);
3218 *vdev_out = vdev;
3220 /* Resetting the Device stats */
3221 status = vxge_hw_mrpcim_stats_access(
3222 hldev,
3223 VXGE_HW_STATS_OP_CLEAR_ALL_STATS,
3226 &stat);
3228 if (status == VXGE_HW_ERR_PRIVILAGED_OPEARATION)
3229 vxge_debug_init(
3230 vxge_hw_device_trace_level_get(hldev),
3231 "%s: device stats clear returns"
3232 "VXGE_HW_ERR_PRIVILAGED_OPEARATION", ndev->name);
3234 vxge_debug_entryexit(vxge_hw_device_trace_level_get(hldev),
3235 "%s: %s:%d Exiting...",
3236 ndev->name, __func__, __LINE__);
3238 return ret;
3239 _out2:
3240 kfree(vdev->vpaths);
3241 _out1:
3242 free_netdev(ndev);
3243 _out0:
3244 return ret;
3248 * vxge_device_unregister
3250 * This function will unregister and free network device
3252 void
3253 vxge_device_unregister(struct __vxge_hw_device *hldev)
3255 struct vxgedev *vdev;
3256 struct net_device *dev;
3257 char buf[IFNAMSIZ];
3258 #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
3259 (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
3260 u32 level_trace;
3261 #endif
3263 dev = hldev->ndev;
3264 vdev = netdev_priv(dev);
3265 #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
3266 (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
3267 level_trace = vdev->level_trace;
3268 #endif
3269 vxge_debug_entryexit(level_trace,
3270 "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
3272 memcpy(buf, vdev->ndev->name, IFNAMSIZ);
3274 /* in 2.6 will call stop() if device is up */
3275 unregister_netdev(dev);
3277 flush_scheduled_work();
3279 vxge_debug_init(level_trace, "%s: ethernet device unregistered", buf);
3280 vxge_debug_entryexit(level_trace,
3281 "%s: %s:%d Exiting...", buf, __func__, __LINE__);
3285 * vxge_callback_crit_err
3287 * This function is called by the alarm handler in interrupt context.
3288 * Driver must analyze it based on the event type.
3290 static void
3291 vxge_callback_crit_err(struct __vxge_hw_device *hldev,
3292 enum vxge_hw_event type, u64 vp_id)
3294 struct net_device *dev = hldev->ndev;
3295 struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
3296 struct vxge_vpath *vpath = NULL;
3297 int vpath_idx;
3299 vxge_debug_entryexit(vdev->level_trace,
3300 "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
3302 /* Note: This event type should be used for device wide
3303 * indications only - Serious errors, Slot freeze and critical errors
3305 vdev->cric_err_event = type;
3307 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
3308 vpath = &vdev->vpaths[vpath_idx];
3309 if (vpath->device_id == vp_id)
3310 break;
3313 if (!test_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) {
3314 if (type == VXGE_HW_EVENT_SLOT_FREEZE) {
3315 vxge_debug_init(VXGE_ERR,
3316 "%s: Slot is frozen", vdev->ndev->name);
3317 } else if (type == VXGE_HW_EVENT_SERR) {
3318 vxge_debug_init(VXGE_ERR,
3319 "%s: Encountered Serious Error",
3320 vdev->ndev->name);
3321 } else if (type == VXGE_HW_EVENT_CRITICAL_ERR)
3322 vxge_debug_init(VXGE_ERR,
3323 "%s: Encountered Critical Error",
3324 vdev->ndev->name);
3327 if ((type == VXGE_HW_EVENT_SERR) ||
3328 (type == VXGE_HW_EVENT_SLOT_FREEZE)) {
3329 if (unlikely(vdev->exec_mode))
3330 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3331 } else if (type == VXGE_HW_EVENT_CRITICAL_ERR) {
3332 vxge_hw_device_mask_all(hldev);
3333 if (unlikely(vdev->exec_mode))
3334 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3335 } else if ((type == VXGE_HW_EVENT_FIFO_ERR) ||
3336 (type == VXGE_HW_EVENT_VPATH_ERR)) {
3338 if (unlikely(vdev->exec_mode))
3339 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3340 else {
3341 /* check if this vpath is already set for reset */
3342 if (!test_and_set_bit(vpath_idx, &vdev->vp_reset)) {
3344 /* disable interrupts for this vpath */
3345 vxge_vpath_intr_disable(vdev, vpath_idx);
3347 /* stop the queue for this vpath */
3348 netif_tx_stop_queue(vpath->fifo.txq);
3353 vxge_debug_entryexit(vdev->level_trace,
3354 "%s: %s:%d Exiting...",
3355 vdev->ndev->name, __func__, __LINE__);
3358 static void verify_bandwidth(void)
3360 int i, band_width, total = 0, equal_priority = 0;
3362 /* 1. If user enters 0 for some fifo, give equal priority to all */
3363 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3364 if (bw_percentage[i] == 0) {
3365 equal_priority = 1;
3366 break;
3370 if (!equal_priority) {
3371 /* 2. If sum exceeds 100, give equal priority to all */
3372 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3373 if (bw_percentage[i] == 0xFF)
3374 break;
3376 total += bw_percentage[i];
3377 if (total > VXGE_HW_VPATH_BANDWIDTH_MAX) {
3378 equal_priority = 1;
3379 break;
3384 if (!equal_priority) {
3385 /* Is all the bandwidth consumed? */
3386 if (total < VXGE_HW_VPATH_BANDWIDTH_MAX) {
3387 if (i < VXGE_HW_MAX_VIRTUAL_PATHS) {
3388 /* Split rest of bw equally among next VPs*/
3389 band_width =
3390 (VXGE_HW_VPATH_BANDWIDTH_MAX - total) /
3391 (VXGE_HW_MAX_VIRTUAL_PATHS - i);
3392 if (band_width < 2) /* min of 2% */
3393 equal_priority = 1;
3394 else {
3395 for (; i < VXGE_HW_MAX_VIRTUAL_PATHS;
3396 i++)
3397 bw_percentage[i] =
3398 band_width;
3401 } else if (i < VXGE_HW_MAX_VIRTUAL_PATHS)
3402 equal_priority = 1;
3405 if (equal_priority) {
3406 vxge_debug_init(VXGE_ERR,
3407 "%s: Assigning equal bandwidth to all the vpaths",
3408 VXGE_DRIVER_NAME);
3409 bw_percentage[0] = VXGE_HW_VPATH_BANDWIDTH_MAX /
3410 VXGE_HW_MAX_VIRTUAL_PATHS;
3411 for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
3412 bw_percentage[i] = bw_percentage[0];
3417 * Vpath configuration
3419 static int __devinit vxge_config_vpaths(
3420 struct vxge_hw_device_config *device_config,
3421 u64 vpath_mask, struct vxge_config *config_param)
3423 int i, no_of_vpaths = 0, default_no_vpath = 0, temp;
3424 u32 txdl_size, txdl_per_memblock;
3426 temp = driver_config->vpath_per_dev;
3427 if ((driver_config->vpath_per_dev == VXGE_USE_DEFAULT) &&
3428 (max_config_dev == VXGE_MAX_CONFIG_DEV)) {
3429 /* No more CPU. Return vpath number as zero.*/
3430 if (driver_config->g_no_cpus == -1)
3431 return 0;
3433 if (!driver_config->g_no_cpus)
3434 driver_config->g_no_cpus = num_online_cpus();
3436 driver_config->vpath_per_dev = driver_config->g_no_cpus >> 1;
3437 if (!driver_config->vpath_per_dev)
3438 driver_config->vpath_per_dev = 1;
3440 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
3441 if (!vxge_bVALn(vpath_mask, i, 1))
3442 continue;
3443 else
3444 default_no_vpath++;
3445 if (default_no_vpath < driver_config->vpath_per_dev)
3446 driver_config->vpath_per_dev = default_no_vpath;
3448 driver_config->g_no_cpus = driver_config->g_no_cpus -
3449 (driver_config->vpath_per_dev * 2);
3450 if (driver_config->g_no_cpus <= 0)
3451 driver_config->g_no_cpus = -1;
3454 if (driver_config->vpath_per_dev == 1) {
3455 vxge_debug_ll_config(VXGE_TRACE,
3456 "%s: Disable tx and rx steering, "
3457 "as single vpath is configured", VXGE_DRIVER_NAME);
3458 config_param->rth_steering = NO_STEERING;
3459 config_param->tx_steering_type = NO_STEERING;
3460 device_config->rth_en = 0;
3463 /* configure bandwidth */
3464 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
3465 device_config->vp_config[i].min_bandwidth = bw_percentage[i];
3467 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3468 device_config->vp_config[i].vp_id = i;
3469 device_config->vp_config[i].mtu = VXGE_HW_DEFAULT_MTU;
3470 if (no_of_vpaths < driver_config->vpath_per_dev) {
3471 if (!vxge_bVALn(vpath_mask, i, 1)) {
3472 vxge_debug_ll_config(VXGE_TRACE,
3473 "%s: vpath: %d is not available",
3474 VXGE_DRIVER_NAME, i);
3475 continue;
3476 } else {
3477 vxge_debug_ll_config(VXGE_TRACE,
3478 "%s: vpath: %d available",
3479 VXGE_DRIVER_NAME, i);
3480 no_of_vpaths++;
3482 } else {
3483 vxge_debug_ll_config(VXGE_TRACE,
3484 "%s: vpath: %d is not configured, "
3485 "max_config_vpath exceeded",
3486 VXGE_DRIVER_NAME, i);
3487 break;
3490 /* Configure Tx fifo's */
3491 device_config->vp_config[i].fifo.enable =
3492 VXGE_HW_FIFO_ENABLE;
3493 device_config->vp_config[i].fifo.max_frags =
3494 MAX_SKB_FRAGS + 1;
3495 device_config->vp_config[i].fifo.memblock_size =
3496 VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE;
3498 txdl_size = device_config->vp_config[i].fifo.max_frags *
3499 sizeof(struct vxge_hw_fifo_txd);
3500 txdl_per_memblock = VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE / txdl_size;
3502 device_config->vp_config[i].fifo.fifo_blocks =
3503 ((VXGE_DEF_FIFO_LENGTH - 1) / txdl_per_memblock) + 1;
3505 device_config->vp_config[i].fifo.intr =
3506 VXGE_HW_FIFO_QUEUE_INTR_DISABLE;
3508 /* Configure tti properties */
3509 device_config->vp_config[i].tti.intr_enable =
3510 VXGE_HW_TIM_INTR_ENABLE;
3512 device_config->vp_config[i].tti.btimer_val =
3513 (VXGE_TTI_BTIMER_VAL * 1000) / 272;
3515 device_config->vp_config[i].tti.timer_ac_en =
3516 VXGE_HW_TIM_TIMER_AC_ENABLE;
3518 /* For msi-x with napi (each vector
3519 has a handler of its own) -
3520 Set CI to OFF for all vpaths */
3521 device_config->vp_config[i].tti.timer_ci_en =
3522 VXGE_HW_TIM_TIMER_CI_DISABLE;
3524 device_config->vp_config[i].tti.timer_ri_en =
3525 VXGE_HW_TIM_TIMER_RI_DISABLE;
3527 device_config->vp_config[i].tti.util_sel =
3528 VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL;
3530 device_config->vp_config[i].tti.ltimer_val =
3531 (VXGE_TTI_LTIMER_VAL * 1000) / 272;
3533 device_config->vp_config[i].tti.rtimer_val =
3534 (VXGE_TTI_RTIMER_VAL * 1000) / 272;
3536 device_config->vp_config[i].tti.urange_a = TTI_TX_URANGE_A;
3537 device_config->vp_config[i].tti.urange_b = TTI_TX_URANGE_B;
3538 device_config->vp_config[i].tti.urange_c = TTI_TX_URANGE_C;
3539 device_config->vp_config[i].tti.uec_a = TTI_TX_UFC_A;
3540 device_config->vp_config[i].tti.uec_b = TTI_TX_UFC_B;
3541 device_config->vp_config[i].tti.uec_c = TTI_TX_UFC_C;
3542 device_config->vp_config[i].tti.uec_d = TTI_TX_UFC_D;
3544 /* Configure Rx rings */
3545 device_config->vp_config[i].ring.enable =
3546 VXGE_HW_RING_ENABLE;
3548 device_config->vp_config[i].ring.ring_blocks =
3549 VXGE_HW_DEF_RING_BLOCKS;
3550 device_config->vp_config[i].ring.buffer_mode =
3551 VXGE_HW_RING_RXD_BUFFER_MODE_1;
3552 device_config->vp_config[i].ring.rxds_limit =
3553 VXGE_HW_DEF_RING_RXDS_LIMIT;
3554 device_config->vp_config[i].ring.scatter_mode =
3555 VXGE_HW_RING_SCATTER_MODE_A;
3557 /* Configure rti properties */
3558 device_config->vp_config[i].rti.intr_enable =
3559 VXGE_HW_TIM_INTR_ENABLE;
3561 device_config->vp_config[i].rti.btimer_val =
3562 (VXGE_RTI_BTIMER_VAL * 1000)/272;
3564 device_config->vp_config[i].rti.timer_ac_en =
3565 VXGE_HW_TIM_TIMER_AC_ENABLE;
3567 device_config->vp_config[i].rti.timer_ci_en =
3568 VXGE_HW_TIM_TIMER_CI_DISABLE;
3570 device_config->vp_config[i].rti.timer_ri_en =
3571 VXGE_HW_TIM_TIMER_RI_DISABLE;
3573 device_config->vp_config[i].rti.util_sel =
3574 VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL;
3576 device_config->vp_config[i].rti.urange_a =
3577 RTI_RX_URANGE_A;
3578 device_config->vp_config[i].rti.urange_b =
3579 RTI_RX_URANGE_B;
3580 device_config->vp_config[i].rti.urange_c =
3581 RTI_RX_URANGE_C;
3582 device_config->vp_config[i].rti.uec_a = RTI_RX_UFC_A;
3583 device_config->vp_config[i].rti.uec_b = RTI_RX_UFC_B;
3584 device_config->vp_config[i].rti.uec_c = RTI_RX_UFC_C;
3585 device_config->vp_config[i].rti.uec_d = RTI_RX_UFC_D;
3587 device_config->vp_config[i].rti.rtimer_val =
3588 (VXGE_RTI_RTIMER_VAL * 1000) / 272;
3590 device_config->vp_config[i].rti.ltimer_val =
3591 (VXGE_RTI_LTIMER_VAL * 1000) / 272;
3593 device_config->vp_config[i].rpa_strip_vlan_tag =
3594 vlan_tag_strip;
3597 driver_config->vpath_per_dev = temp;
3598 return no_of_vpaths;
3601 /* initialize device configuratrions */
3602 static void __devinit vxge_device_config_init(
3603 struct vxge_hw_device_config *device_config,
3604 int *intr_type)
3606 /* Used for CQRQ/SRQ. */
3607 device_config->dma_blockpool_initial =
3608 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
3610 device_config->dma_blockpool_max =
3611 VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
3613 if (max_mac_vpath > VXGE_MAX_MAC_ADDR_COUNT)
3614 max_mac_vpath = VXGE_MAX_MAC_ADDR_COUNT;
3616 #ifndef CONFIG_PCI_MSI
3617 vxge_debug_init(VXGE_ERR,
3618 "%s: This Kernel does not support "
3619 "MSI-X. Defaulting to INTA", VXGE_DRIVER_NAME);
3620 *intr_type = INTA;
3621 #endif
3623 /* Configure whether MSI-X or IRQL. */
3624 switch (*intr_type) {
3625 case INTA:
3626 device_config->intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
3627 break;
3629 case MSI_X:
3630 device_config->intr_mode = VXGE_HW_INTR_MODE_MSIX;
3631 break;
3633 /* Timer period between device poll */
3634 device_config->device_poll_millis = VXGE_TIMER_DELAY;
3636 /* Configure mac based steering. */
3637 device_config->rts_mac_en = addr_learn_en;
3639 /* Configure Vpaths */
3640 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_MULTI_IT;
3642 vxge_debug_ll_config(VXGE_TRACE, "%s : Device Config Params ",
3643 __func__);
3644 vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_initial : %d",
3645 device_config->dma_blockpool_initial);
3646 vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_max : %d",
3647 device_config->dma_blockpool_max);
3648 vxge_debug_ll_config(VXGE_TRACE, "intr_mode : %d",
3649 device_config->intr_mode);
3650 vxge_debug_ll_config(VXGE_TRACE, "device_poll_millis : %d",
3651 device_config->device_poll_millis);
3652 vxge_debug_ll_config(VXGE_TRACE, "rts_mac_en : %d",
3653 device_config->rts_mac_en);
3654 vxge_debug_ll_config(VXGE_TRACE, "rth_en : %d",
3655 device_config->rth_en);
3656 vxge_debug_ll_config(VXGE_TRACE, "rth_it_type : %d",
3657 device_config->rth_it_type);
3660 static void __devinit vxge_print_parm(struct vxgedev *vdev, u64 vpath_mask)
3662 int i;
3664 vxge_debug_init(VXGE_TRACE,
3665 "%s: %d Vpath(s) opened",
3666 vdev->ndev->name, vdev->no_of_vpath);
3668 switch (vdev->config.intr_type) {
3669 case INTA:
3670 vxge_debug_init(VXGE_TRACE,
3671 "%s: Interrupt type INTA", vdev->ndev->name);
3672 break;
3674 case MSI_X:
3675 vxge_debug_init(VXGE_TRACE,
3676 "%s: Interrupt type MSI-X", vdev->ndev->name);
3677 break;
3680 if (vdev->config.rth_steering) {
3681 vxge_debug_init(VXGE_TRACE,
3682 "%s: RTH steering enabled for TCP_IPV4",
3683 vdev->ndev->name);
3684 } else {
3685 vxge_debug_init(VXGE_TRACE,
3686 "%s: RTH steering disabled", vdev->ndev->name);
3689 switch (vdev->config.tx_steering_type) {
3690 case NO_STEERING:
3691 vxge_debug_init(VXGE_TRACE,
3692 "%s: Tx steering disabled", vdev->ndev->name);
3693 break;
3694 case TX_PRIORITY_STEERING:
3695 vxge_debug_init(VXGE_TRACE,
3696 "%s: Unsupported tx steering option",
3697 vdev->ndev->name);
3698 vxge_debug_init(VXGE_TRACE,
3699 "%s: Tx steering disabled", vdev->ndev->name);
3700 vdev->config.tx_steering_type = 0;
3701 break;
3702 case TX_VLAN_STEERING:
3703 vxge_debug_init(VXGE_TRACE,
3704 "%s: Unsupported tx steering option",
3705 vdev->ndev->name);
3706 vxge_debug_init(VXGE_TRACE,
3707 "%s: Tx steering disabled", vdev->ndev->name);
3708 vdev->config.tx_steering_type = 0;
3709 break;
3710 case TX_MULTIQ_STEERING:
3711 vxge_debug_init(VXGE_TRACE,
3712 "%s: Tx multiqueue steering enabled",
3713 vdev->ndev->name);
3714 break;
3715 case TX_PORT_STEERING:
3716 vxge_debug_init(VXGE_TRACE,
3717 "%s: Tx port steering enabled",
3718 vdev->ndev->name);
3719 break;
3720 default:
3721 vxge_debug_init(VXGE_ERR,
3722 "%s: Unsupported tx steering type",
3723 vdev->ndev->name);
3724 vxge_debug_init(VXGE_TRACE,
3725 "%s: Tx steering disabled", vdev->ndev->name);
3726 vdev->config.tx_steering_type = 0;
3729 if (vdev->config.gro_enable) {
3730 vxge_debug_init(VXGE_ERR,
3731 "%s: Generic receive offload enabled",
3732 vdev->ndev->name);
3733 } else
3734 vxge_debug_init(VXGE_TRACE,
3735 "%s: Generic receive offload disabled",
3736 vdev->ndev->name);
3738 if (vdev->config.addr_learn_en)
3739 vxge_debug_init(VXGE_TRACE,
3740 "%s: MAC Address learning enabled", vdev->ndev->name);
3742 vxge_debug_init(VXGE_TRACE,
3743 "%s: Rx doorbell mode enabled", vdev->ndev->name);
3745 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3746 if (!vxge_bVALn(vpath_mask, i, 1))
3747 continue;
3748 vxge_debug_ll_config(VXGE_TRACE,
3749 "%s: MTU size - %d", vdev->ndev->name,
3750 ((struct __vxge_hw_device *)(vdev->devh))->
3751 config.vp_config[i].mtu);
3752 vxge_debug_init(VXGE_TRACE,
3753 "%s: VLAN tag stripping %s", vdev->ndev->name,
3754 ((struct __vxge_hw_device *)(vdev->devh))->
3755 config.vp_config[i].rpa_strip_vlan_tag
3756 ? "Enabled" : "Disabled");
3757 vxge_debug_init(VXGE_TRACE,
3758 "%s: Ring blocks : %d", vdev->ndev->name,
3759 ((struct __vxge_hw_device *)(vdev->devh))->
3760 config.vp_config[i].ring.ring_blocks);
3761 vxge_debug_init(VXGE_TRACE,
3762 "%s: Fifo blocks : %d", vdev->ndev->name,
3763 ((struct __vxge_hw_device *)(vdev->devh))->
3764 config.vp_config[i].fifo.fifo_blocks);
3765 vxge_debug_ll_config(VXGE_TRACE,
3766 "%s: Max frags : %d", vdev->ndev->name,
3767 ((struct __vxge_hw_device *)(vdev->devh))->
3768 config.vp_config[i].fifo.max_frags);
3769 break;
3773 #ifdef CONFIG_PM
3775 * vxge_pm_suspend - vxge power management suspend entry point
3778 static int vxge_pm_suspend(struct pci_dev *pdev, pm_message_t state)
3780 return -ENOSYS;
3783 * vxge_pm_resume - vxge power management resume entry point
3786 static int vxge_pm_resume(struct pci_dev *pdev)
3788 return -ENOSYS;
3791 #endif
3794 * vxge_io_error_detected - called when PCI error is detected
3795 * @pdev: Pointer to PCI device
3796 * @state: The current pci connection state
3798 * This function is called after a PCI bus error affecting
3799 * this device has been detected.
3801 static pci_ers_result_t vxge_io_error_detected(struct pci_dev *pdev,
3802 pci_channel_state_t state)
3804 struct __vxge_hw_device *hldev =
3805 (struct __vxge_hw_device *) pci_get_drvdata(pdev);
3806 struct net_device *netdev = hldev->ndev;
3808 netif_device_detach(netdev);
3810 if (state == pci_channel_io_perm_failure)
3811 return PCI_ERS_RESULT_DISCONNECT;
3813 if (netif_running(netdev)) {
3814 /* Bring down the card, while avoiding PCI I/O */
3815 do_vxge_close(netdev, 0);
3818 pci_disable_device(pdev);
3820 return PCI_ERS_RESULT_NEED_RESET;
3824 * vxge_io_slot_reset - called after the pci bus has been reset.
3825 * @pdev: Pointer to PCI device
3827 * Restart the card from scratch, as if from a cold-boot.
3828 * At this point, the card has exprienced a hard reset,
3829 * followed by fixups by BIOS, and has its config space
3830 * set up identically to what it was at cold boot.
3832 static pci_ers_result_t vxge_io_slot_reset(struct pci_dev *pdev)
3834 struct __vxge_hw_device *hldev =
3835 (struct __vxge_hw_device *) pci_get_drvdata(pdev);
3836 struct net_device *netdev = hldev->ndev;
3838 struct vxgedev *vdev = netdev_priv(netdev);
3840 if (pci_enable_device(pdev)) {
3841 netdev_err(netdev, "Cannot re-enable device after reset\n");
3842 return PCI_ERS_RESULT_DISCONNECT;
3845 pci_set_master(pdev);
3846 vxge_reset(vdev);
3848 return PCI_ERS_RESULT_RECOVERED;
3852 * vxge_io_resume - called when traffic can start flowing again.
3853 * @pdev: Pointer to PCI device
3855 * This callback is called when the error recovery driver tells
3856 * us that its OK to resume normal operation.
3858 static void vxge_io_resume(struct pci_dev *pdev)
3860 struct __vxge_hw_device *hldev =
3861 (struct __vxge_hw_device *) pci_get_drvdata(pdev);
3862 struct net_device *netdev = hldev->ndev;
3864 if (netif_running(netdev)) {
3865 if (vxge_open(netdev)) {
3866 netdev_err(netdev,
3867 "Can't bring device back up after reset\n");
3868 return;
3872 netif_device_attach(netdev);
3875 static inline u32 vxge_get_num_vfs(u64 function_mode)
3877 u32 num_functions = 0;
3879 switch (function_mode) {
3880 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION:
3881 case VXGE_HW_FUNCTION_MODE_SRIOV_8:
3882 num_functions = 8;
3883 break;
3884 case VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION:
3885 num_functions = 1;
3886 break;
3887 case VXGE_HW_FUNCTION_MODE_SRIOV:
3888 case VXGE_HW_FUNCTION_MODE_MRIOV:
3889 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_17:
3890 num_functions = 17;
3891 break;
3892 case VXGE_HW_FUNCTION_MODE_SRIOV_4:
3893 num_functions = 4;
3894 break;
3895 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_2:
3896 num_functions = 2;
3897 break;
3898 case VXGE_HW_FUNCTION_MODE_MRIOV_8:
3899 num_functions = 8; /* TODO */
3900 break;
3902 return num_functions;
3906 * vxge_probe
3907 * @pdev : structure containing the PCI related information of the device.
3908 * @pre: List of PCI devices supported by the driver listed in vxge_id_table.
3909 * Description:
3910 * This function is called when a new PCI device gets detected and initializes
3911 * it.
3912 * Return value:
3913 * returns 0 on success and negative on failure.
3916 static int __devinit
3917 vxge_probe(struct pci_dev *pdev, const struct pci_device_id *pre)
3919 struct __vxge_hw_device *hldev;
3920 enum vxge_hw_status status;
3921 int ret;
3922 int high_dma = 0;
3923 u64 vpath_mask = 0;
3924 struct vxgedev *vdev;
3925 struct vxge_config *ll_config = NULL;
3926 struct vxge_hw_device_config *device_config = NULL;
3927 struct vxge_hw_device_attr attr;
3928 int i, j, no_of_vpath = 0, max_vpath_supported = 0;
3929 u8 *macaddr;
3930 struct vxge_mac_addrs *entry;
3931 static int bus = -1, device = -1;
3932 u32 host_type;
3933 u8 new_device = 0;
3934 enum vxge_hw_status is_privileged;
3935 u32 function_mode;
3936 u32 num_vfs = 0;
3938 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
3939 attr.pdev = pdev;
3941 /* In SRIOV-17 mode, functions of the same adapter
3942 * can be deployed on different buses */
3943 if ((!pdev->is_virtfn) && ((bus != pdev->bus->number) ||
3944 (device != PCI_SLOT(pdev->devfn))))
3945 new_device = 1;
3947 bus = pdev->bus->number;
3948 device = PCI_SLOT(pdev->devfn);
3950 if (new_device) {
3951 if (driver_config->config_dev_cnt &&
3952 (driver_config->config_dev_cnt !=
3953 driver_config->total_dev_cnt))
3954 vxge_debug_init(VXGE_ERR,
3955 "%s: Configured %d of %d devices",
3956 VXGE_DRIVER_NAME,
3957 driver_config->config_dev_cnt,
3958 driver_config->total_dev_cnt);
3959 driver_config->config_dev_cnt = 0;
3960 driver_config->total_dev_cnt = 0;
3962 /* Now making the CPU based no of vpath calculation
3963 * applicable for individual functions as well.
3965 driver_config->g_no_cpus = 0;
3966 driver_config->vpath_per_dev = max_config_vpath;
3968 driver_config->total_dev_cnt++;
3969 if (++driver_config->config_dev_cnt > max_config_dev) {
3970 ret = 0;
3971 goto _exit0;
3974 device_config = kzalloc(sizeof(struct vxge_hw_device_config),
3975 GFP_KERNEL);
3976 if (!device_config) {
3977 ret = -ENOMEM;
3978 vxge_debug_init(VXGE_ERR,
3979 "device_config : malloc failed %s %d",
3980 __FILE__, __LINE__);
3981 goto _exit0;
3984 ll_config = kzalloc(sizeof(*ll_config), GFP_KERNEL);
3985 if (!ll_config) {
3986 ret = -ENOMEM;
3987 vxge_debug_init(VXGE_ERR,
3988 "ll_config : malloc failed %s %d",
3989 __FILE__, __LINE__);
3990 goto _exit0;
3992 ll_config->tx_steering_type = TX_MULTIQ_STEERING;
3993 ll_config->intr_type = MSI_X;
3994 ll_config->napi_weight = NEW_NAPI_WEIGHT;
3995 ll_config->rth_steering = RTH_STEERING;
3997 /* get the default configuration parameters */
3998 vxge_hw_device_config_default_get(device_config);
4000 /* initialize configuration parameters */
4001 vxge_device_config_init(device_config, &ll_config->intr_type);
4003 ret = pci_enable_device(pdev);
4004 if (ret) {
4005 vxge_debug_init(VXGE_ERR,
4006 "%s : can not enable PCI device", __func__);
4007 goto _exit0;
4010 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4011 vxge_debug_ll_config(VXGE_TRACE,
4012 "%s : using 64bit DMA", __func__);
4014 high_dma = 1;
4016 if (pci_set_consistent_dma_mask(pdev,
4017 DMA_BIT_MASK(64))) {
4018 vxge_debug_init(VXGE_ERR,
4019 "%s : unable to obtain 64bit DMA for "
4020 "consistent allocations", __func__);
4021 ret = -ENOMEM;
4022 goto _exit1;
4024 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
4025 vxge_debug_ll_config(VXGE_TRACE,
4026 "%s : using 32bit DMA", __func__);
4027 } else {
4028 ret = -ENOMEM;
4029 goto _exit1;
4032 if (pci_request_regions(pdev, VXGE_DRIVER_NAME)) {
4033 vxge_debug_init(VXGE_ERR,
4034 "%s : request regions failed", __func__);
4035 ret = -ENODEV;
4036 goto _exit1;
4039 pci_set_master(pdev);
4041 attr.bar0 = pci_ioremap_bar(pdev, 0);
4042 if (!attr.bar0) {
4043 vxge_debug_init(VXGE_ERR,
4044 "%s : cannot remap io memory bar0", __func__);
4045 ret = -ENODEV;
4046 goto _exit2;
4048 vxge_debug_ll_config(VXGE_TRACE,
4049 "pci ioremap bar0: %p:0x%llx",
4050 attr.bar0,
4051 (unsigned long long)pci_resource_start(pdev, 0));
4053 status = vxge_hw_device_hw_info_get(attr.bar0,
4054 &ll_config->device_hw_info);
4055 if (status != VXGE_HW_OK) {
4056 vxge_debug_init(VXGE_ERR,
4057 "%s: Reading of hardware info failed."
4058 "Please try upgrading the firmware.", VXGE_DRIVER_NAME);
4059 ret = -EINVAL;
4060 goto _exit3;
4063 if (ll_config->device_hw_info.fw_version.major !=
4064 VXGE_DRIVER_FW_VERSION_MAJOR) {
4065 vxge_debug_init(VXGE_ERR,
4066 "%s: Incorrect firmware version."
4067 "Please upgrade the firmware to version 1.x.x",
4068 VXGE_DRIVER_NAME);
4069 ret = -EINVAL;
4070 goto _exit3;
4073 vpath_mask = ll_config->device_hw_info.vpath_mask;
4074 if (vpath_mask == 0) {
4075 vxge_debug_ll_config(VXGE_TRACE,
4076 "%s: No vpaths available in device", VXGE_DRIVER_NAME);
4077 ret = -EINVAL;
4078 goto _exit3;
4081 vxge_debug_ll_config(VXGE_TRACE,
4082 "%s:%d Vpath mask = %llx", __func__, __LINE__,
4083 (unsigned long long)vpath_mask);
4085 function_mode = ll_config->device_hw_info.function_mode;
4086 host_type = ll_config->device_hw_info.host_type;
4087 is_privileged = __vxge_hw_device_is_privilaged(host_type,
4088 ll_config->device_hw_info.func_id);
4090 /* Check how many vpaths are available */
4091 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4092 if (!((vpath_mask) & vxge_mBIT(i)))
4093 continue;
4094 max_vpath_supported++;
4097 if (new_device)
4098 num_vfs = vxge_get_num_vfs(function_mode) - 1;
4100 /* Enable SRIOV mode, if firmware has SRIOV support and if it is a PF */
4101 if (is_sriov(function_mode) && (max_config_dev > 1) &&
4102 (ll_config->intr_type != INTA) &&
4103 (is_privileged == VXGE_HW_OK)) {
4104 ret = pci_enable_sriov(pdev, ((max_config_dev - 1) < num_vfs)
4105 ? (max_config_dev - 1) : num_vfs);
4106 if (ret)
4107 vxge_debug_ll_config(VXGE_ERR,
4108 "Failed in enabling SRIOV mode: %d\n", ret);
4112 * Configure vpaths and get driver configured number of vpaths
4113 * which is less than or equal to the maximum vpaths per function.
4115 no_of_vpath = vxge_config_vpaths(device_config, vpath_mask, ll_config);
4116 if (!no_of_vpath) {
4117 vxge_debug_ll_config(VXGE_ERR,
4118 "%s: No more vpaths to configure", VXGE_DRIVER_NAME);
4119 ret = 0;
4120 goto _exit3;
4123 /* Setting driver callbacks */
4124 attr.uld_callbacks.link_up = vxge_callback_link_up;
4125 attr.uld_callbacks.link_down = vxge_callback_link_down;
4126 attr.uld_callbacks.crit_err = vxge_callback_crit_err;
4128 status = vxge_hw_device_initialize(&hldev, &attr, device_config);
4129 if (status != VXGE_HW_OK) {
4130 vxge_debug_init(VXGE_ERR,
4131 "Failed to initialize device (%d)", status);
4132 ret = -EINVAL;
4133 goto _exit3;
4136 /* if FCS stripping is not disabled in MAC fail driver load */
4137 if (vxge_hw_vpath_strip_fcs_check(hldev, vpath_mask) != VXGE_HW_OK) {
4138 vxge_debug_init(VXGE_ERR,
4139 "%s: FCS stripping is not disabled in MAC"
4140 " failing driver load", VXGE_DRIVER_NAME);
4141 ret = -EINVAL;
4142 goto _exit4;
4145 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
4147 /* set private device info */
4148 pci_set_drvdata(pdev, hldev);
4150 ll_config->gro_enable = VXGE_GRO_ALWAYS_AGGREGATE;
4151 ll_config->fifo_indicate_max_pkts = VXGE_FIFO_INDICATE_MAX_PKTS;
4152 ll_config->addr_learn_en = addr_learn_en;
4153 ll_config->rth_algorithm = RTH_ALG_JENKINS;
4154 ll_config->rth_hash_type_tcpipv4 = VXGE_HW_RING_HASH_TYPE_TCP_IPV4;
4155 ll_config->rth_hash_type_ipv4 = VXGE_HW_RING_HASH_TYPE_NONE;
4156 ll_config->rth_hash_type_tcpipv6 = VXGE_HW_RING_HASH_TYPE_NONE;
4157 ll_config->rth_hash_type_ipv6 = VXGE_HW_RING_HASH_TYPE_NONE;
4158 ll_config->rth_hash_type_tcpipv6ex = VXGE_HW_RING_HASH_TYPE_NONE;
4159 ll_config->rth_hash_type_ipv6ex = VXGE_HW_RING_HASH_TYPE_NONE;
4160 ll_config->rth_bkt_sz = RTH_BUCKET_SIZE;
4161 ll_config->tx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
4162 ll_config->rx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
4164 if (vxge_device_register(hldev, ll_config, high_dma, no_of_vpath,
4165 &vdev)) {
4166 ret = -EINVAL;
4167 goto _exit4;
4170 vxge_hw_device_debug_set(hldev, VXGE_TRACE, VXGE_COMPONENT_LL);
4171 VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
4172 vxge_hw_device_trace_level_get(hldev));
4174 /* set private HW device info */
4175 hldev->ndev = vdev->ndev;
4176 vdev->mtu = VXGE_HW_DEFAULT_MTU;
4177 vdev->bar0 = attr.bar0;
4178 vdev->max_vpath_supported = max_vpath_supported;
4179 vdev->no_of_vpath = no_of_vpath;
4181 /* Virtual Path count */
4182 for (i = 0, j = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4183 if (!vxge_bVALn(vpath_mask, i, 1))
4184 continue;
4185 if (j >= vdev->no_of_vpath)
4186 break;
4188 vdev->vpaths[j].is_configured = 1;
4189 vdev->vpaths[j].device_id = i;
4190 vdev->vpaths[j].ring.driver_id = j;
4191 vdev->vpaths[j].vdev = vdev;
4192 vdev->vpaths[j].max_mac_addr_cnt = max_mac_vpath;
4193 memcpy((u8 *)vdev->vpaths[j].macaddr,
4194 ll_config->device_hw_info.mac_addrs[i],
4195 ETH_ALEN);
4197 /* Initialize the mac address list header */
4198 INIT_LIST_HEAD(&vdev->vpaths[j].mac_addr_list);
4200 vdev->vpaths[j].mac_addr_cnt = 0;
4201 vdev->vpaths[j].mcast_addr_cnt = 0;
4202 j++;
4204 vdev->exec_mode = VXGE_EXEC_MODE_DISABLE;
4205 vdev->max_config_port = max_config_port;
4207 vdev->vlan_tag_strip = vlan_tag_strip;
4209 /* map the hashing selector table to the configured vpaths */
4210 for (i = 0; i < vdev->no_of_vpath; i++)
4211 vdev->vpath_selector[i] = vpath_selector[i];
4213 macaddr = (u8 *)vdev->vpaths[0].macaddr;
4215 ll_config->device_hw_info.serial_number[VXGE_HW_INFO_LEN - 1] = '\0';
4216 ll_config->device_hw_info.product_desc[VXGE_HW_INFO_LEN - 1] = '\0';
4217 ll_config->device_hw_info.part_number[VXGE_HW_INFO_LEN - 1] = '\0';
4219 vxge_debug_init(VXGE_TRACE, "%s: SERIAL NUMBER: %s",
4220 vdev->ndev->name, ll_config->device_hw_info.serial_number);
4222 vxge_debug_init(VXGE_TRACE, "%s: PART NUMBER: %s",
4223 vdev->ndev->name, ll_config->device_hw_info.part_number);
4225 vxge_debug_init(VXGE_TRACE, "%s: Neterion %s Server Adapter",
4226 vdev->ndev->name, ll_config->device_hw_info.product_desc);
4228 vxge_debug_init(VXGE_TRACE, "%s: MAC ADDR: %pM",
4229 vdev->ndev->name, macaddr);
4231 vxge_debug_init(VXGE_TRACE, "%s: Link Width x%d",
4232 vdev->ndev->name, vxge_hw_device_link_width_get(hldev));
4234 vxge_debug_init(VXGE_TRACE,
4235 "%s: Firmware version : %s Date : %s", vdev->ndev->name,
4236 ll_config->device_hw_info.fw_version.version,
4237 ll_config->device_hw_info.fw_date.date);
4239 if (new_device) {
4240 switch (ll_config->device_hw_info.function_mode) {
4241 case VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION:
4242 vxge_debug_init(VXGE_TRACE,
4243 "%s: Single Function Mode Enabled", vdev->ndev->name);
4244 break;
4245 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION:
4246 vxge_debug_init(VXGE_TRACE,
4247 "%s: Multi Function Mode Enabled", vdev->ndev->name);
4248 break;
4249 case VXGE_HW_FUNCTION_MODE_SRIOV:
4250 vxge_debug_init(VXGE_TRACE,
4251 "%s: Single Root IOV Mode Enabled", vdev->ndev->name);
4252 break;
4253 case VXGE_HW_FUNCTION_MODE_MRIOV:
4254 vxge_debug_init(VXGE_TRACE,
4255 "%s: Multi Root IOV Mode Enabled", vdev->ndev->name);
4256 break;
4260 vxge_print_parm(vdev, vpath_mask);
4262 /* Store the fw version for ethttool option */
4263 strcpy(vdev->fw_version, ll_config->device_hw_info.fw_version.version);
4264 memcpy(vdev->ndev->dev_addr, (u8 *)vdev->vpaths[0].macaddr, ETH_ALEN);
4265 memcpy(vdev->ndev->perm_addr, vdev->ndev->dev_addr, ETH_ALEN);
4267 /* Copy the station mac address to the list */
4268 for (i = 0; i < vdev->no_of_vpath; i++) {
4269 entry = (struct vxge_mac_addrs *)
4270 kzalloc(sizeof(struct vxge_mac_addrs),
4271 GFP_KERNEL);
4272 if (NULL == entry) {
4273 vxge_debug_init(VXGE_ERR,
4274 "%s: mac_addr_list : memory allocation failed",
4275 vdev->ndev->name);
4276 ret = -EPERM;
4277 goto _exit5;
4279 macaddr = (u8 *)&entry->macaddr;
4280 memcpy(macaddr, vdev->ndev->dev_addr, ETH_ALEN);
4281 list_add(&entry->item, &vdev->vpaths[i].mac_addr_list);
4282 vdev->vpaths[i].mac_addr_cnt = 1;
4285 kfree(device_config);
4288 * INTA is shared in multi-function mode. This is unlike the INTA
4289 * implementation in MR mode, where each VH has its own INTA message.
4290 * - INTA is masked (disabled) as long as at least one function sets
4291 * its TITAN_MASK_ALL_INT.ALARM bit.
4292 * - INTA is unmasked (enabled) when all enabled functions have cleared
4293 * their own TITAN_MASK_ALL_INT.ALARM bit.
4294 * The TITAN_MASK_ALL_INT ALARM & TRAFFIC bits are cleared on power up.
4295 * Though this driver leaves the top level interrupts unmasked while
4296 * leaving the required module interrupt bits masked on exit, there
4297 * could be a rougue driver around that does not follow this procedure
4298 * resulting in a failure to generate interrupts. The following code is
4299 * present to prevent such a failure.
4302 if (ll_config->device_hw_info.function_mode ==
4303 VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION)
4304 if (vdev->config.intr_type == INTA)
4305 vxge_hw_device_unmask_all(hldev);
4307 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...",
4308 vdev->ndev->name, __func__, __LINE__);
4310 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
4311 VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
4312 vxge_hw_device_trace_level_get(hldev));
4314 kfree(ll_config);
4315 return 0;
4317 _exit5:
4318 for (i = 0; i < vdev->no_of_vpath; i++)
4319 vxge_free_mac_add_list(&vdev->vpaths[i]);
4321 vxge_device_unregister(hldev);
4322 _exit4:
4323 pci_disable_sriov(pdev);
4324 vxge_hw_device_terminate(hldev);
4325 _exit3:
4326 iounmap(attr.bar0);
4327 _exit2:
4328 pci_release_regions(pdev);
4329 _exit1:
4330 pci_disable_device(pdev);
4331 _exit0:
4332 kfree(ll_config);
4333 kfree(device_config);
4334 driver_config->config_dev_cnt--;
4335 pci_set_drvdata(pdev, NULL);
4336 return ret;
4340 * vxge_rem_nic - Free the PCI device
4341 * @pdev: structure containing the PCI related information of the device.
4342 * Description: This function is called by the Pci subsystem to release a
4343 * PCI device and free up all resource held up by the device.
4345 static void __devexit
4346 vxge_remove(struct pci_dev *pdev)
4348 struct __vxge_hw_device *hldev;
4349 struct vxgedev *vdev = NULL;
4350 struct net_device *dev;
4351 int i = 0;
4352 #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
4353 (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
4354 u32 level_trace;
4355 #endif
4357 hldev = (struct __vxge_hw_device *) pci_get_drvdata(pdev);
4359 if (hldev == NULL)
4360 return;
4361 dev = hldev->ndev;
4362 vdev = netdev_priv(dev);
4364 #if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
4365 (VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
4366 level_trace = vdev->level_trace;
4367 #endif
4368 vxge_debug_entryexit(level_trace,
4369 "%s:%d", __func__, __LINE__);
4371 vxge_debug_init(level_trace,
4372 "%s : removing PCI device...", __func__);
4373 vxge_device_unregister(hldev);
4375 for (i = 0; i < vdev->no_of_vpath; i++) {
4376 vxge_free_mac_add_list(&vdev->vpaths[i]);
4377 vdev->vpaths[i].mcast_addr_cnt = 0;
4378 vdev->vpaths[i].mac_addr_cnt = 0;
4381 kfree(vdev->vpaths);
4383 iounmap(vdev->bar0);
4385 pci_disable_sriov(pdev);
4387 /* we are safe to free it now */
4388 free_netdev(dev);
4390 vxge_debug_init(level_trace,
4391 "%s:%d Device unregistered", __func__, __LINE__);
4393 vxge_hw_device_terminate(hldev);
4395 pci_disable_device(pdev);
4396 pci_release_regions(pdev);
4397 pci_set_drvdata(pdev, NULL);
4398 vxge_debug_entryexit(level_trace,
4399 "%s:%d Exiting...", __func__, __LINE__);
4402 static struct pci_error_handlers vxge_err_handler = {
4403 .error_detected = vxge_io_error_detected,
4404 .slot_reset = vxge_io_slot_reset,
4405 .resume = vxge_io_resume,
4408 static struct pci_driver vxge_driver = {
4409 .name = VXGE_DRIVER_NAME,
4410 .id_table = vxge_id_table,
4411 .probe = vxge_probe,
4412 .remove = __devexit_p(vxge_remove),
4413 #ifdef CONFIG_PM
4414 .suspend = vxge_pm_suspend,
4415 .resume = vxge_pm_resume,
4416 #endif
4417 .err_handler = &vxge_err_handler,
4420 static int __init
4421 vxge_starter(void)
4423 int ret = 0;
4425 pr_info("Copyright(c) 2002-2010 Exar Corp.\n");
4426 pr_info("Driver version: %s\n", DRV_VERSION);
4428 verify_bandwidth();
4430 driver_config = kzalloc(sizeof(struct vxge_drv_config), GFP_KERNEL);
4431 if (!driver_config)
4432 return -ENOMEM;
4434 ret = pci_register_driver(&vxge_driver);
4436 if (driver_config->config_dev_cnt &&
4437 (driver_config->config_dev_cnt != driver_config->total_dev_cnt))
4438 vxge_debug_init(VXGE_ERR,
4439 "%s: Configured %d of %d devices",
4440 VXGE_DRIVER_NAME, driver_config->config_dev_cnt,
4441 driver_config->total_dev_cnt);
4443 if (ret)
4444 kfree(driver_config);
4446 return ret;
4449 static void __exit
4450 vxge_closer(void)
4452 pci_unregister_driver(&vxge_driver);
4453 kfree(driver_config);
4455 module_init(vxge_starter);
4456 module_exit(vxge_closer);