Merge branch 'pci/misc' into next
[linux-2.6/btrfs-unstable.git] / drivers / pci / pci.c
blobb127fbda6fc8610dad9c81ae7c6e13acc3aabd5d
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
33 EXPORT_SYMBOL_GPL(pci_power_names);
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
41 unsigned int pci_pm_d3_delay;
43 static void pci_pme_list_scan(struct work_struct *work);
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
58 unsigned int delay = dev->d3_delay;
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
63 msleep(delay);
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
97 unsigned int pcibios_max_latency = 255;
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
111 struct list_head *tmp;
112 unsigned char max, n;
114 max = bus->busn_res.end;
115 list_for_each(tmp, &bus->children) {
116 n = pci_bus_max_busnr(pci_bus_b(tmp));
117 if(n > max)
118 max = n;
120 return max;
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 * Make sure the BAR is actually a memory resource, not an IO resource
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
140 #define PCI_FIND_CAP_TTL 48
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
145 u8 id;
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
160 return 0;
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
166 int ttl = PCI_FIND_CAP_TTL;
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
181 u16 status;
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
197 return 0;
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
219 int pci_find_capability(struct pci_dev *dev, int cap)
221 int pos;
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
227 return pos;
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 int pos;
246 u8 hdr_type;
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
254 return pos;
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
280 if (start)
281 pos = start;
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
290 if (header == 0)
291 return 0;
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
305 return 0;
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
325 return pci_find_next_ext_capability(dev, 0, cap);
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
346 if ((cap & mask) == ht_cap)
347 return pos;
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
354 return 0;
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
388 int pos;
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
394 return pos;
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in or where
405 * it should be allocated from.
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
410 const struct pci_bus *bus = dev->bus;
411 int i;
412 struct resource *best = NULL, *r;
414 pci_bus_for_each_resource(bus, r, i) {
415 if (!r)
416 continue;
417 if (res->start && !(res->start >= r->start && res->end <= r->end))
418 continue; /* Not contained */
419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 continue; /* Wrong type */
421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 return r; /* Exact match */
423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 if (r->flags & IORESOURCE_PREFETCH)
425 continue;
426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 if (!best)
428 best = r;
430 return best;
434 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
435 * @dev: PCI device to have its BARs restored
437 * Restore the BAR values for a given device, so as to make it
438 * accessible by its driver.
440 static void
441 pci_restore_bars(struct pci_dev *dev)
443 int i;
445 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
446 pci_update_resource(dev, i);
449 static struct pci_platform_pm_ops *pci_platform_pm;
451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
453 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
454 || !ops->sleep_wake)
455 return -EINVAL;
456 pci_platform_pm = ops;
457 return 0;
460 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
462 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
465 static inline int platform_pci_set_power_state(struct pci_dev *dev,
466 pci_power_t t)
468 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
473 return pci_platform_pm ?
474 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
479 return pci_platform_pm ?
480 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
485 return pci_platform_pm ?
486 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
490 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
491 * given PCI device
492 * @dev: PCI device to handle.
493 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
495 * RETURN VALUE:
496 * -EINVAL if the requested state is invalid.
497 * -EIO if device does not support PCI PM or its PM capabilities register has a
498 * wrong version, or device doesn't support the requested state.
499 * 0 if device already is in the requested state.
500 * 0 if device's power state has been successfully changed.
502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
504 u16 pmcsr;
505 bool need_restore = false;
507 /* Check if we're already there */
508 if (dev->current_state == state)
509 return 0;
511 if (!dev->pm_cap)
512 return -EIO;
514 if (state < PCI_D0 || state > PCI_D3hot)
515 return -EINVAL;
517 /* Validate current state:
518 * Can enter D0 from any state, but if we can only go deeper
519 * to sleep if we're already in a low power state
521 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
522 && dev->current_state > state) {
523 dev_err(&dev->dev, "invalid power transition "
524 "(from state %d to %d)\n", dev->current_state, state);
525 return -EINVAL;
528 /* check if this device supports the desired state */
529 if ((state == PCI_D1 && !dev->d1_support)
530 || (state == PCI_D2 && !dev->d2_support))
531 return -EIO;
533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
535 /* If we're (effectively) in D3, force entire word to 0.
536 * This doesn't affect PME_Status, disables PME_En, and
537 * sets PowerState to 0.
539 switch (dev->current_state) {
540 case PCI_D0:
541 case PCI_D1:
542 case PCI_D2:
543 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
544 pmcsr |= state;
545 break;
546 case PCI_D3hot:
547 case PCI_D3cold:
548 case PCI_UNKNOWN: /* Boot-up */
549 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
550 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
551 need_restore = true;
552 /* Fall-through: force to D0 */
553 default:
554 pmcsr = 0;
555 break;
558 /* enter specified state */
559 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
561 /* Mandatory power management transition delays */
562 /* see PCI PM 1.1 5.6.1 table 18 */
563 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
564 pci_dev_d3_sleep(dev);
565 else if (state == PCI_D2 || dev->current_state == PCI_D2)
566 udelay(PCI_PM_D2_DELAY);
568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
570 if (dev->current_state != state && printk_ratelimit())
571 dev_info(&dev->dev, "Refused to change power state, "
572 "currently in D%d\n", dev->current_state);
575 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
576 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
577 * from D3hot to D0 _may_ perform an internal reset, thereby
578 * going to "D0 Uninitialized" rather than "D0 Initialized".
579 * For example, at least some versions of the 3c905B and the
580 * 3c556B exhibit this behaviour.
582 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
583 * devices in a D3hot state at boot. Consequently, we need to
584 * restore at least the BARs so that the device will be
585 * accessible to its driver.
587 if (need_restore)
588 pci_restore_bars(dev);
590 if (dev->bus->self)
591 pcie_aspm_pm_state_change(dev->bus->self);
593 return 0;
597 * pci_update_current_state - Read PCI power state of given device from its
598 * PCI PM registers and cache it
599 * @dev: PCI device to handle.
600 * @state: State to cache in case the device doesn't have the PM capability
602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
604 if (dev->pm_cap) {
605 u16 pmcsr;
608 * Configuration space is not accessible for device in
609 * D3cold, so just keep or set D3cold for safety
611 if (dev->current_state == PCI_D3cold)
612 return;
613 if (state == PCI_D3cold) {
614 dev->current_state = PCI_D3cold;
615 return;
617 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
618 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
619 } else {
620 dev->current_state = state;
625 * pci_power_up - Put the given device into D0 forcibly
626 * @dev: PCI device to power up
628 void pci_power_up(struct pci_dev *dev)
630 if (platform_pci_power_manageable(dev))
631 platform_pci_set_power_state(dev, PCI_D0);
633 pci_raw_set_power_state(dev, PCI_D0);
634 pci_update_current_state(dev, PCI_D0);
638 * pci_platform_power_transition - Use platform to change device power state
639 * @dev: PCI device to handle.
640 * @state: State to put the device into.
642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
644 int error;
646 if (platform_pci_power_manageable(dev)) {
647 error = platform_pci_set_power_state(dev, state);
648 if (!error)
649 pci_update_current_state(dev, state);
650 } else
651 error = -ENODEV;
653 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
654 dev->current_state = PCI_D0;
656 return error;
660 * __pci_start_power_transition - Start power transition of a PCI device
661 * @dev: PCI device to handle.
662 * @state: State to put the device into.
664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
666 if (state == PCI_D0) {
667 pci_platform_power_transition(dev, PCI_D0);
669 * Mandatory power management transition delays, see
670 * PCI Express Base Specification Revision 2.0 Section
671 * 6.6.1: Conventional Reset. Do not delay for
672 * devices powered on/off by corresponding bridge,
673 * because have already delayed for the bridge.
675 if (dev->runtime_d3cold) {
676 msleep(dev->d3cold_delay);
678 * When powering on a bridge from D3cold, the
679 * whole hierarchy may be powered on into
680 * D0uninitialized state, resume them to give
681 * them a chance to suspend again
683 pci_wakeup_bus(dev->subordinate);
689 * __pci_dev_set_current_state - Set current state of a PCI device
690 * @dev: Device to handle
691 * @data: pointer to state to be set
693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
695 pci_power_t state = *(pci_power_t *)data;
697 dev->current_state = state;
698 return 0;
702 * __pci_bus_set_current_state - Walk given bus and set current state of devices
703 * @bus: Top bus of the subtree to walk.
704 * @state: state to be set
706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
708 if (bus)
709 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
713 * __pci_complete_power_transition - Complete power transition of a PCI device
714 * @dev: PCI device to handle.
715 * @state: State to put the device into.
717 * This function should not be called directly by device drivers.
719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
721 int ret;
723 if (state <= PCI_D0)
724 return -EINVAL;
725 ret = pci_platform_power_transition(dev, state);
726 /* Power off the bridge may power off the whole hierarchy */
727 if (!ret && state == PCI_D3cold)
728 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
729 return ret;
731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
734 * pci_set_power_state - Set the power state of a PCI device
735 * @dev: PCI device to handle.
736 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
738 * Transition a device to a new power state, using the platform firmware and/or
739 * the device's PCI PM registers.
741 * RETURN VALUE:
742 * -EINVAL if the requested state is invalid.
743 * -EIO if device does not support PCI PM or its PM capabilities register has a
744 * wrong version, or device doesn't support the requested state.
745 * 0 if device already is in the requested state.
746 * 0 if device's power state has been successfully changed.
748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
750 int error;
752 /* bound the state we're entering */
753 if (state > PCI_D3cold)
754 state = PCI_D3cold;
755 else if (state < PCI_D0)
756 state = PCI_D0;
757 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
759 * If the device or the parent bridge do not support PCI PM,
760 * ignore the request if we're doing anything other than putting
761 * it into D0 (which would only happen on boot).
763 return 0;
765 /* Check if we're already there */
766 if (dev->current_state == state)
767 return 0;
769 __pci_start_power_transition(dev, state);
771 /* This device is quirked not to be put into D3, so
772 don't put it in D3 */
773 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
774 return 0;
777 * To put device in D3cold, we put device into D3hot in native
778 * way, then put device into D3cold with platform ops
780 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
781 PCI_D3hot : state);
783 if (!__pci_complete_power_transition(dev, state))
784 error = 0;
786 * When aspm_policy is "powersave" this call ensures
787 * that ASPM is configured.
789 if (!error && dev->bus->self)
790 pcie_aspm_powersave_config_link(dev->bus->self);
792 return error;
796 * pci_choose_state - Choose the power state of a PCI device
797 * @dev: PCI device to be suspended
798 * @state: target sleep state for the whole system. This is the value
799 * that is passed to suspend() function.
801 * Returns PCI power state suitable for given device and given system
802 * message.
805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
807 pci_power_t ret;
809 if (!dev->pm_cap)
810 return PCI_D0;
812 ret = platform_pci_choose_state(dev);
813 if (ret != PCI_POWER_ERROR)
814 return ret;
816 switch (state.event) {
817 case PM_EVENT_ON:
818 return PCI_D0;
819 case PM_EVENT_FREEZE:
820 case PM_EVENT_PRETHAW:
821 /* REVISIT both freeze and pre-thaw "should" use D0 */
822 case PM_EVENT_SUSPEND:
823 case PM_EVENT_HIBERNATE:
824 return PCI_D3hot;
825 default:
826 dev_info(&dev->dev, "unrecognized suspend event %d\n",
827 state.event);
828 BUG();
830 return PCI_D0;
833 EXPORT_SYMBOL(pci_choose_state);
835 #define PCI_EXP_SAVE_REGS 7
838 static struct pci_cap_saved_state *pci_find_saved_cap(
839 struct pci_dev *pci_dev, char cap)
841 struct pci_cap_saved_state *tmp;
843 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
844 if (tmp->cap.cap_nr == cap)
845 return tmp;
847 return NULL;
850 static int pci_save_pcie_state(struct pci_dev *dev)
852 int i = 0;
853 struct pci_cap_saved_state *save_state;
854 u16 *cap;
856 if (!pci_is_pcie(dev))
857 return 0;
859 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
860 if (!save_state) {
861 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
862 return -ENOMEM;
865 cap = (u16 *)&save_state->cap.data[0];
866 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
867 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
868 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
869 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
870 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
871 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
872 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
874 return 0;
877 static void pci_restore_pcie_state(struct pci_dev *dev)
879 int i = 0;
880 struct pci_cap_saved_state *save_state;
881 u16 *cap;
883 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
884 if (!save_state)
885 return;
887 cap = (u16 *)&save_state->cap.data[0];
888 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
889 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
890 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
891 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
892 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
893 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
894 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
898 static int pci_save_pcix_state(struct pci_dev *dev)
900 int pos;
901 struct pci_cap_saved_state *save_state;
903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 if (pos <= 0)
905 return 0;
907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 if (!save_state) {
909 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 return -ENOMEM;
913 pci_read_config_word(dev, pos + PCI_X_CMD,
914 (u16 *)save_state->cap.data);
916 return 0;
919 static void pci_restore_pcix_state(struct pci_dev *dev)
921 int i = 0, pos;
922 struct pci_cap_saved_state *save_state;
923 u16 *cap;
925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 if (!save_state || pos <= 0)
928 return;
929 cap = (u16 *)&save_state->cap.data[0];
931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
936 * pci_save_state - save the PCI configuration space of a device before suspending
937 * @dev: - PCI device that we're dealing with
940 pci_save_state(struct pci_dev *dev)
942 int i;
943 /* XXX: 100% dword access ok here? */
944 for (i = 0; i < 16; i++)
945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 dev->state_saved = true;
947 if ((i = pci_save_pcie_state(dev)) != 0)
948 return i;
949 if ((i = pci_save_pcix_state(dev)) != 0)
950 return i;
951 return 0;
954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
955 u32 saved_val, int retry)
957 u32 val;
959 pci_read_config_dword(pdev, offset, &val);
960 if (val == saved_val)
961 return;
963 for (;;) {
964 dev_dbg(&pdev->dev, "restoring config space at offset "
965 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
966 pci_write_config_dword(pdev, offset, saved_val);
967 if (retry-- <= 0)
968 return;
970 pci_read_config_dword(pdev, offset, &val);
971 if (val == saved_val)
972 return;
974 mdelay(1);
978 static void pci_restore_config_space_range(struct pci_dev *pdev,
979 int start, int end, int retry)
981 int index;
983 for (index = end; index >= start; index--)
984 pci_restore_config_dword(pdev, 4 * index,
985 pdev->saved_config_space[index],
986 retry);
989 static void pci_restore_config_space(struct pci_dev *pdev)
991 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
992 pci_restore_config_space_range(pdev, 10, 15, 0);
993 /* Restore BARs before the command register. */
994 pci_restore_config_space_range(pdev, 4, 9, 10);
995 pci_restore_config_space_range(pdev, 0, 3, 0);
996 } else {
997 pci_restore_config_space_range(pdev, 0, 15, 0);
1001 /**
1002 * pci_restore_state - Restore the saved state of a PCI device
1003 * @dev: - PCI device that we're dealing with
1005 void pci_restore_state(struct pci_dev *dev)
1007 if (!dev->state_saved)
1008 return;
1010 /* PCI Express register must be restored first */
1011 pci_restore_pcie_state(dev);
1012 pci_restore_ats_state(dev);
1014 pci_restore_config_space(dev);
1016 pci_restore_pcix_state(dev);
1017 pci_restore_msi_state(dev);
1018 pci_restore_iov_state(dev);
1020 dev->state_saved = false;
1023 struct pci_saved_state {
1024 u32 config_space[16];
1025 struct pci_cap_saved_data cap[0];
1029 * pci_store_saved_state - Allocate and return an opaque struct containing
1030 * the device saved state.
1031 * @dev: PCI device that we're dealing with
1033 * Rerturn NULL if no state or error.
1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1037 struct pci_saved_state *state;
1038 struct pci_cap_saved_state *tmp;
1039 struct pci_cap_saved_data *cap;
1040 size_t size;
1042 if (!dev->state_saved)
1043 return NULL;
1045 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1047 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1048 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1050 state = kzalloc(size, GFP_KERNEL);
1051 if (!state)
1052 return NULL;
1054 memcpy(state->config_space, dev->saved_config_space,
1055 sizeof(state->config_space));
1057 cap = state->cap;
1058 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1059 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1060 memcpy(cap, &tmp->cap, len);
1061 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1063 /* Empty cap_save terminates list */
1065 return state;
1067 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1070 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1071 * @dev: PCI device that we're dealing with
1072 * @state: Saved state returned from pci_store_saved_state()
1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1076 struct pci_cap_saved_data *cap;
1078 dev->state_saved = false;
1080 if (!state)
1081 return 0;
1083 memcpy(dev->saved_config_space, state->config_space,
1084 sizeof(state->config_space));
1086 cap = state->cap;
1087 while (cap->size) {
1088 struct pci_cap_saved_state *tmp;
1090 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1091 if (!tmp || tmp->cap.size != cap->size)
1092 return -EINVAL;
1094 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1095 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1096 sizeof(struct pci_cap_saved_data) + cap->size);
1099 dev->state_saved = true;
1100 return 0;
1102 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1105 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1106 * and free the memory allocated for it.
1107 * @dev: PCI device that we're dealing with
1108 * @state: Pointer to saved state returned from pci_store_saved_state()
1110 int pci_load_and_free_saved_state(struct pci_dev *dev,
1111 struct pci_saved_state **state)
1113 int ret = pci_load_saved_state(dev, *state);
1114 kfree(*state);
1115 *state = NULL;
1116 return ret;
1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1120 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1122 int err;
1124 err = pci_set_power_state(dev, PCI_D0);
1125 if (err < 0 && err != -EIO)
1126 return err;
1127 err = pcibios_enable_device(dev, bars);
1128 if (err < 0)
1129 return err;
1130 pci_fixup_device(pci_fixup_enable, dev);
1132 return 0;
1136 * pci_reenable_device - Resume abandoned device
1137 * @dev: PCI device to be resumed
1139 * Note this function is a backend of pci_default_resume and is not supposed
1140 * to be called by normal code, write proper resume handler and use it instead.
1142 int pci_reenable_device(struct pci_dev *dev)
1144 if (pci_is_enabled(dev))
1145 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1146 return 0;
1149 static void pci_enable_bridge(struct pci_dev *dev)
1151 struct pci_dev *bridge;
1152 int retval;
1154 bridge = pci_upstream_bridge(dev);
1155 if (bridge)
1156 pci_enable_bridge(bridge);
1158 if (pci_is_enabled(dev)) {
1159 if (!dev->is_busmaster)
1160 pci_set_master(dev);
1161 return;
1164 retval = pci_enable_device(dev);
1165 if (retval)
1166 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1167 retval);
1168 pci_set_master(dev);
1171 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1173 struct pci_dev *bridge;
1174 int err;
1175 int i, bars = 0;
1178 * Power state could be unknown at this point, either due to a fresh
1179 * boot or a device removal call. So get the current power state
1180 * so that things like MSI message writing will behave as expected
1181 * (e.g. if the device really is in D0 at enable time).
1183 if (dev->pm_cap) {
1184 u16 pmcsr;
1185 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1186 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1189 if (atomic_inc_return(&dev->enable_cnt) > 1)
1190 return 0; /* already enabled */
1192 bridge = pci_upstream_bridge(dev);
1193 if (bridge)
1194 pci_enable_bridge(bridge);
1196 /* only skip sriov related */
1197 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1198 if (dev->resource[i].flags & flags)
1199 bars |= (1 << i);
1200 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1201 if (dev->resource[i].flags & flags)
1202 bars |= (1 << i);
1204 err = do_pci_enable_device(dev, bars);
1205 if (err < 0)
1206 atomic_dec(&dev->enable_cnt);
1207 return err;
1211 * pci_enable_device_io - Initialize a device for use with IO space
1212 * @dev: PCI device to be initialized
1214 * Initialize device before it's used by a driver. Ask low-level code
1215 * to enable I/O resources. Wake up the device if it was suspended.
1216 * Beware, this function can fail.
1218 int pci_enable_device_io(struct pci_dev *dev)
1220 return pci_enable_device_flags(dev, IORESOURCE_IO);
1224 * pci_enable_device_mem - Initialize a device for use with Memory space
1225 * @dev: PCI device to be initialized
1227 * Initialize device before it's used by a driver. Ask low-level code
1228 * to enable Memory resources. Wake up the device if it was suspended.
1229 * Beware, this function can fail.
1231 int pci_enable_device_mem(struct pci_dev *dev)
1233 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1237 * pci_enable_device - Initialize device before it's used by a driver.
1238 * @dev: PCI device to be initialized
1240 * Initialize device before it's used by a driver. Ask low-level code
1241 * to enable I/O and memory. Wake up the device if it was suspended.
1242 * Beware, this function can fail.
1244 * Note we don't actually enable the device many times if we call
1245 * this function repeatedly (we just increment the count).
1247 int pci_enable_device(struct pci_dev *dev)
1249 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1253 * Managed PCI resources. This manages device on/off, intx/msi/msix
1254 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1255 * there's no need to track it separately. pci_devres is initialized
1256 * when a device is enabled using managed PCI device enable interface.
1258 struct pci_devres {
1259 unsigned int enabled:1;
1260 unsigned int pinned:1;
1261 unsigned int orig_intx:1;
1262 unsigned int restore_intx:1;
1263 u32 region_mask;
1266 static void pcim_release(struct device *gendev, void *res)
1268 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1269 struct pci_devres *this = res;
1270 int i;
1272 if (dev->msi_enabled)
1273 pci_disable_msi(dev);
1274 if (dev->msix_enabled)
1275 pci_disable_msix(dev);
1277 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1278 if (this->region_mask & (1 << i))
1279 pci_release_region(dev, i);
1281 if (this->restore_intx)
1282 pci_intx(dev, this->orig_intx);
1284 if (this->enabled && !this->pinned)
1285 pci_disable_device(dev);
1288 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1290 struct pci_devres *dr, *new_dr;
1292 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1293 if (dr)
1294 return dr;
1296 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1297 if (!new_dr)
1298 return NULL;
1299 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1302 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1304 if (pci_is_managed(pdev))
1305 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1306 return NULL;
1310 * pcim_enable_device - Managed pci_enable_device()
1311 * @pdev: PCI device to be initialized
1313 * Managed pci_enable_device().
1315 int pcim_enable_device(struct pci_dev *pdev)
1317 struct pci_devres *dr;
1318 int rc;
1320 dr = get_pci_dr(pdev);
1321 if (unlikely(!dr))
1322 return -ENOMEM;
1323 if (dr->enabled)
1324 return 0;
1326 rc = pci_enable_device(pdev);
1327 if (!rc) {
1328 pdev->is_managed = 1;
1329 dr->enabled = 1;
1331 return rc;
1335 * pcim_pin_device - Pin managed PCI device
1336 * @pdev: PCI device to pin
1338 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1339 * driver detach. @pdev must have been enabled with
1340 * pcim_enable_device().
1342 void pcim_pin_device(struct pci_dev *pdev)
1344 struct pci_devres *dr;
1346 dr = find_pci_dr(pdev);
1347 WARN_ON(!dr || !dr->enabled);
1348 if (dr)
1349 dr->pinned = 1;
1353 * pcibios_add_device - provide arch specific hooks when adding device dev
1354 * @dev: the PCI device being added
1356 * Permits the platform to provide architecture specific functionality when
1357 * devices are added. This is the default implementation. Architecture
1358 * implementations can override this.
1360 int __weak pcibios_add_device (struct pci_dev *dev)
1362 return 0;
1366 * pcibios_release_device - provide arch specific hooks when releasing device dev
1367 * @dev: the PCI device being released
1369 * Permits the platform to provide architecture specific functionality when
1370 * devices are released. This is the default implementation. Architecture
1371 * implementations can override this.
1373 void __weak pcibios_release_device(struct pci_dev *dev) {}
1376 * pcibios_disable_device - disable arch specific PCI resources for device dev
1377 * @dev: the PCI device to disable
1379 * Disables architecture specific PCI resources for the device. This
1380 * is the default implementation. Architecture implementations can
1381 * override this.
1383 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1385 static void do_pci_disable_device(struct pci_dev *dev)
1387 u16 pci_command;
1389 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1390 if (pci_command & PCI_COMMAND_MASTER) {
1391 pci_command &= ~PCI_COMMAND_MASTER;
1392 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1395 pcibios_disable_device(dev);
1399 * pci_disable_enabled_device - Disable device without updating enable_cnt
1400 * @dev: PCI device to disable
1402 * NOTE: This function is a backend of PCI power management routines and is
1403 * not supposed to be called drivers.
1405 void pci_disable_enabled_device(struct pci_dev *dev)
1407 if (pci_is_enabled(dev))
1408 do_pci_disable_device(dev);
1412 * pci_disable_device - Disable PCI device after use
1413 * @dev: PCI device to be disabled
1415 * Signal to the system that the PCI device is not in use by the system
1416 * anymore. This only involves disabling PCI bus-mastering, if active.
1418 * Note we don't actually disable the device until all callers of
1419 * pci_enable_device() have called pci_disable_device().
1421 void
1422 pci_disable_device(struct pci_dev *dev)
1424 struct pci_devres *dr;
1426 dr = find_pci_dr(dev);
1427 if (dr)
1428 dr->enabled = 0;
1430 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1431 "disabling already-disabled device");
1433 if (atomic_dec_return(&dev->enable_cnt) != 0)
1434 return;
1436 do_pci_disable_device(dev);
1438 dev->is_busmaster = 0;
1442 * pcibios_set_pcie_reset_state - set reset state for device dev
1443 * @dev: the PCIe device reset
1444 * @state: Reset state to enter into
1447 * Sets the PCIe reset state for the device. This is the default
1448 * implementation. Architecture implementations can override this.
1450 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1451 enum pcie_reset_state state)
1453 return -EINVAL;
1457 * pci_set_pcie_reset_state - set reset state for device dev
1458 * @dev: the PCIe device reset
1459 * @state: Reset state to enter into
1462 * Sets the PCI reset state for the device.
1464 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1466 return pcibios_set_pcie_reset_state(dev, state);
1470 * pci_check_pme_status - Check if given device has generated PME.
1471 * @dev: Device to check.
1473 * Check the PME status of the device and if set, clear it and clear PME enable
1474 * (if set). Return 'true' if PME status and PME enable were both set or
1475 * 'false' otherwise.
1477 bool pci_check_pme_status(struct pci_dev *dev)
1479 int pmcsr_pos;
1480 u16 pmcsr;
1481 bool ret = false;
1483 if (!dev->pm_cap)
1484 return false;
1486 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1487 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1488 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1489 return false;
1491 /* Clear PME status. */
1492 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1493 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1494 /* Disable PME to avoid interrupt flood. */
1495 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1496 ret = true;
1499 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1501 return ret;
1505 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1506 * @dev: Device to handle.
1507 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1509 * Check if @dev has generated PME and queue a resume request for it in that
1510 * case.
1512 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1514 if (pme_poll_reset && dev->pme_poll)
1515 dev->pme_poll = false;
1517 if (pci_check_pme_status(dev)) {
1518 pci_wakeup_event(dev);
1519 pm_request_resume(&dev->dev);
1521 return 0;
1525 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1526 * @bus: Top bus of the subtree to walk.
1528 void pci_pme_wakeup_bus(struct pci_bus *bus)
1530 if (bus)
1531 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1535 * pci_wakeup - Wake up a PCI device
1536 * @pci_dev: Device to handle.
1537 * @ign: ignored parameter
1539 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1541 pci_wakeup_event(pci_dev);
1542 pm_request_resume(&pci_dev->dev);
1543 return 0;
1547 * pci_wakeup_bus - Walk given bus and wake up devices on it
1548 * @bus: Top bus of the subtree to walk.
1550 void pci_wakeup_bus(struct pci_bus *bus)
1552 if (bus)
1553 pci_walk_bus(bus, pci_wakeup, NULL);
1557 * pci_pme_capable - check the capability of PCI device to generate PME#
1558 * @dev: PCI device to handle.
1559 * @state: PCI state from which device will issue PME#.
1561 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1563 if (!dev->pm_cap)
1564 return false;
1566 return !!(dev->pme_support & (1 << state));
1569 static void pci_pme_list_scan(struct work_struct *work)
1571 struct pci_pme_device *pme_dev, *n;
1573 mutex_lock(&pci_pme_list_mutex);
1574 if (!list_empty(&pci_pme_list)) {
1575 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1576 if (pme_dev->dev->pme_poll) {
1577 struct pci_dev *bridge;
1579 bridge = pme_dev->dev->bus->self;
1581 * If bridge is in low power state, the
1582 * configuration space of subordinate devices
1583 * may be not accessible
1585 if (bridge && bridge->current_state != PCI_D0)
1586 continue;
1587 pci_pme_wakeup(pme_dev->dev, NULL);
1588 } else {
1589 list_del(&pme_dev->list);
1590 kfree(pme_dev);
1593 if (!list_empty(&pci_pme_list))
1594 schedule_delayed_work(&pci_pme_work,
1595 msecs_to_jiffies(PME_TIMEOUT));
1597 mutex_unlock(&pci_pme_list_mutex);
1601 * pci_pme_active - enable or disable PCI device's PME# function
1602 * @dev: PCI device to handle.
1603 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1605 * The caller must verify that the device is capable of generating PME# before
1606 * calling this function with @enable equal to 'true'.
1608 void pci_pme_active(struct pci_dev *dev, bool enable)
1610 u16 pmcsr;
1612 if (!dev->pme_support)
1613 return;
1615 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1616 /* Clear PME_Status by writing 1 to it and enable PME# */
1617 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1618 if (!enable)
1619 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1621 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1624 * PCI (as opposed to PCIe) PME requires that the device have
1625 * its PME# line hooked up correctly. Not all hardware vendors
1626 * do this, so the PME never gets delivered and the device
1627 * remains asleep. The easiest way around this is to
1628 * periodically walk the list of suspended devices and check
1629 * whether any have their PME flag set. The assumption is that
1630 * we'll wake up often enough anyway that this won't be a huge
1631 * hit, and the power savings from the devices will still be a
1632 * win.
1634 * Although PCIe uses in-band PME message instead of PME# line
1635 * to report PME, PME does not work for some PCIe devices in
1636 * reality. For example, there are devices that set their PME
1637 * status bits, but don't really bother to send a PME message;
1638 * there are PCI Express Root Ports that don't bother to
1639 * trigger interrupts when they receive PME messages from the
1640 * devices below. So PME poll is used for PCIe devices too.
1643 if (dev->pme_poll) {
1644 struct pci_pme_device *pme_dev;
1645 if (enable) {
1646 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1647 GFP_KERNEL);
1648 if (!pme_dev) {
1649 dev_warn(&dev->dev, "can't enable PME#\n");
1650 return;
1652 pme_dev->dev = dev;
1653 mutex_lock(&pci_pme_list_mutex);
1654 list_add(&pme_dev->list, &pci_pme_list);
1655 if (list_is_singular(&pci_pme_list))
1656 schedule_delayed_work(&pci_pme_work,
1657 msecs_to_jiffies(PME_TIMEOUT));
1658 mutex_unlock(&pci_pme_list_mutex);
1659 } else {
1660 mutex_lock(&pci_pme_list_mutex);
1661 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1662 if (pme_dev->dev == dev) {
1663 list_del(&pme_dev->list);
1664 kfree(pme_dev);
1665 break;
1668 mutex_unlock(&pci_pme_list_mutex);
1672 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1676 * __pci_enable_wake - enable PCI device as wakeup event source
1677 * @dev: PCI device affected
1678 * @state: PCI state from which device will issue wakeup events
1679 * @runtime: True if the events are to be generated at run time
1680 * @enable: True to enable event generation; false to disable
1682 * This enables the device as a wakeup event source, or disables it.
1683 * When such events involves platform-specific hooks, those hooks are
1684 * called automatically by this routine.
1686 * Devices with legacy power management (no standard PCI PM capabilities)
1687 * always require such platform hooks.
1689 * RETURN VALUE:
1690 * 0 is returned on success
1691 * -EINVAL is returned if device is not supposed to wake up the system
1692 * Error code depending on the platform is returned if both the platform and
1693 * the native mechanism fail to enable the generation of wake-up events
1695 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1696 bool runtime, bool enable)
1698 int ret = 0;
1700 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1701 return -EINVAL;
1703 /* Don't do the same thing twice in a row for one device. */
1704 if (!!enable == !!dev->wakeup_prepared)
1705 return 0;
1708 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1709 * Anderson we should be doing PME# wake enable followed by ACPI wake
1710 * enable. To disable wake-up we call the platform first, for symmetry.
1713 if (enable) {
1714 int error;
1716 if (pci_pme_capable(dev, state))
1717 pci_pme_active(dev, true);
1718 else
1719 ret = 1;
1720 error = runtime ? platform_pci_run_wake(dev, true) :
1721 platform_pci_sleep_wake(dev, true);
1722 if (ret)
1723 ret = error;
1724 if (!ret)
1725 dev->wakeup_prepared = true;
1726 } else {
1727 if (runtime)
1728 platform_pci_run_wake(dev, false);
1729 else
1730 platform_pci_sleep_wake(dev, false);
1731 pci_pme_active(dev, false);
1732 dev->wakeup_prepared = false;
1735 return ret;
1737 EXPORT_SYMBOL(__pci_enable_wake);
1740 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1741 * @dev: PCI device to prepare
1742 * @enable: True to enable wake-up event generation; false to disable
1744 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1745 * and this function allows them to set that up cleanly - pci_enable_wake()
1746 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1747 * ordering constraints.
1749 * This function only returns error code if the device is not capable of
1750 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1751 * enable wake-up power for it.
1753 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1755 return pci_pme_capable(dev, PCI_D3cold) ?
1756 pci_enable_wake(dev, PCI_D3cold, enable) :
1757 pci_enable_wake(dev, PCI_D3hot, enable);
1761 * pci_target_state - find an appropriate low power state for a given PCI dev
1762 * @dev: PCI device
1764 * Use underlying platform code to find a supported low power state for @dev.
1765 * If the platform can't manage @dev, return the deepest state from which it
1766 * can generate wake events, based on any available PME info.
1768 pci_power_t pci_target_state(struct pci_dev *dev)
1770 pci_power_t target_state = PCI_D3hot;
1772 if (platform_pci_power_manageable(dev)) {
1774 * Call the platform to choose the target state of the device
1775 * and enable wake-up from this state if supported.
1777 pci_power_t state = platform_pci_choose_state(dev);
1779 switch (state) {
1780 case PCI_POWER_ERROR:
1781 case PCI_UNKNOWN:
1782 break;
1783 case PCI_D1:
1784 case PCI_D2:
1785 if (pci_no_d1d2(dev))
1786 break;
1787 default:
1788 target_state = state;
1790 } else if (!dev->pm_cap) {
1791 target_state = PCI_D0;
1792 } else if (device_may_wakeup(&dev->dev)) {
1794 * Find the deepest state from which the device can generate
1795 * wake-up events, make it the target state and enable device
1796 * to generate PME#.
1798 if (dev->pme_support) {
1799 while (target_state
1800 && !(dev->pme_support & (1 << target_state)))
1801 target_state--;
1805 return target_state;
1809 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1810 * @dev: Device to handle.
1812 * Choose the power state appropriate for the device depending on whether
1813 * it can wake up the system and/or is power manageable by the platform
1814 * (PCI_D3hot is the default) and put the device into that state.
1816 int pci_prepare_to_sleep(struct pci_dev *dev)
1818 pci_power_t target_state = pci_target_state(dev);
1819 int error;
1821 if (target_state == PCI_POWER_ERROR)
1822 return -EIO;
1824 /* D3cold during system suspend/hibernate is not supported */
1825 if (target_state > PCI_D3hot)
1826 target_state = PCI_D3hot;
1828 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1830 error = pci_set_power_state(dev, target_state);
1832 if (error)
1833 pci_enable_wake(dev, target_state, false);
1835 return error;
1839 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1840 * @dev: Device to handle.
1842 * Disable device's system wake-up capability and put it into D0.
1844 int pci_back_from_sleep(struct pci_dev *dev)
1846 pci_enable_wake(dev, PCI_D0, false);
1847 return pci_set_power_state(dev, PCI_D0);
1851 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1852 * @dev: PCI device being suspended.
1854 * Prepare @dev to generate wake-up events at run time and put it into a low
1855 * power state.
1857 int pci_finish_runtime_suspend(struct pci_dev *dev)
1859 pci_power_t target_state = pci_target_state(dev);
1860 int error;
1862 if (target_state == PCI_POWER_ERROR)
1863 return -EIO;
1865 dev->runtime_d3cold = target_state == PCI_D3cold;
1867 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1869 error = pci_set_power_state(dev, target_state);
1871 if (error) {
1872 __pci_enable_wake(dev, target_state, true, false);
1873 dev->runtime_d3cold = false;
1876 return error;
1880 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1881 * @dev: Device to check.
1883 * Return true if the device itself is cabable of generating wake-up events
1884 * (through the platform or using the native PCIe PME) or if the device supports
1885 * PME and one of its upstream bridges can generate wake-up events.
1887 bool pci_dev_run_wake(struct pci_dev *dev)
1889 struct pci_bus *bus = dev->bus;
1891 if (device_run_wake(&dev->dev))
1892 return true;
1894 if (!dev->pme_support)
1895 return false;
1897 while (bus->parent) {
1898 struct pci_dev *bridge = bus->self;
1900 if (device_run_wake(&bridge->dev))
1901 return true;
1903 bus = bus->parent;
1906 /* We have reached the root bus. */
1907 if (bus->bridge)
1908 return device_run_wake(bus->bridge);
1910 return false;
1912 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1914 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1916 struct device *dev = &pdev->dev;
1917 struct device *parent = dev->parent;
1919 if (parent)
1920 pm_runtime_get_sync(parent);
1921 pm_runtime_get_noresume(dev);
1923 * pdev->current_state is set to PCI_D3cold during suspending,
1924 * so wait until suspending completes
1926 pm_runtime_barrier(dev);
1928 * Only need to resume devices in D3cold, because config
1929 * registers are still accessible for devices suspended but
1930 * not in D3cold.
1932 if (pdev->current_state == PCI_D3cold)
1933 pm_runtime_resume(dev);
1936 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1938 struct device *dev = &pdev->dev;
1939 struct device *parent = dev->parent;
1941 pm_runtime_put(dev);
1942 if (parent)
1943 pm_runtime_put_sync(parent);
1947 * pci_pm_init - Initialize PM functions of given PCI device
1948 * @dev: PCI device to handle.
1950 void pci_pm_init(struct pci_dev *dev)
1952 int pm;
1953 u16 pmc;
1955 pm_runtime_forbid(&dev->dev);
1956 pm_runtime_set_active(&dev->dev);
1957 pm_runtime_enable(&dev->dev);
1958 device_enable_async_suspend(&dev->dev);
1959 dev->wakeup_prepared = false;
1961 dev->pm_cap = 0;
1962 dev->pme_support = 0;
1964 /* find PCI PM capability in list */
1965 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1966 if (!pm)
1967 return;
1968 /* Check device's ability to generate PME# */
1969 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1971 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1972 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1973 pmc & PCI_PM_CAP_VER_MASK);
1974 return;
1977 dev->pm_cap = pm;
1978 dev->d3_delay = PCI_PM_D3_WAIT;
1979 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1980 dev->d3cold_allowed = true;
1982 dev->d1_support = false;
1983 dev->d2_support = false;
1984 if (!pci_no_d1d2(dev)) {
1985 if (pmc & PCI_PM_CAP_D1)
1986 dev->d1_support = true;
1987 if (pmc & PCI_PM_CAP_D2)
1988 dev->d2_support = true;
1990 if (dev->d1_support || dev->d2_support)
1991 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1992 dev->d1_support ? " D1" : "",
1993 dev->d2_support ? " D2" : "");
1996 pmc &= PCI_PM_CAP_PME_MASK;
1997 if (pmc) {
1998 dev_printk(KERN_DEBUG, &dev->dev,
1999 "PME# supported from%s%s%s%s%s\n",
2000 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2001 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2002 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2003 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2004 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2005 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2006 dev->pme_poll = true;
2008 * Make device's PM flags reflect the wake-up capability, but
2009 * let the user space enable it to wake up the system as needed.
2011 device_set_wakeup_capable(&dev->dev, true);
2012 /* Disable the PME# generation functionality */
2013 pci_pme_active(dev, false);
2017 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2018 struct pci_cap_saved_state *new_cap)
2020 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2024 * pci_add_cap_save_buffer - allocate buffer for saving given capability registers
2025 * @dev: the PCI device
2026 * @cap: the capability to allocate the buffer for
2027 * @size: requested size of the buffer
2029 static int pci_add_cap_save_buffer(
2030 struct pci_dev *dev, char cap, unsigned int size)
2032 int pos;
2033 struct pci_cap_saved_state *save_state;
2035 pos = pci_find_capability(dev, cap);
2036 if (pos <= 0)
2037 return 0;
2039 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2040 if (!save_state)
2041 return -ENOMEM;
2043 save_state->cap.cap_nr = cap;
2044 save_state->cap.size = size;
2045 pci_add_saved_cap(dev, save_state);
2047 return 0;
2051 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2052 * @dev: the PCI device
2054 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2056 int error;
2058 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2059 PCI_EXP_SAVE_REGS * sizeof(u16));
2060 if (error)
2061 dev_err(&dev->dev,
2062 "unable to preallocate PCI Express save buffer\n");
2064 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2065 if (error)
2066 dev_err(&dev->dev,
2067 "unable to preallocate PCI-X save buffer\n");
2070 void pci_free_cap_save_buffers(struct pci_dev *dev)
2072 struct pci_cap_saved_state *tmp;
2073 struct hlist_node *n;
2075 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2076 kfree(tmp);
2080 * pci_configure_ari - enable or disable ARI forwarding
2081 * @dev: the PCI device
2083 * If @dev and its upstream bridge both support ARI, enable ARI in the
2084 * bridge. Otherwise, disable ARI in the bridge.
2086 void pci_configure_ari(struct pci_dev *dev)
2088 u32 cap;
2089 struct pci_dev *bridge;
2091 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2092 return;
2094 bridge = dev->bus->self;
2095 if (!bridge)
2096 return;
2098 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2099 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2100 return;
2102 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2103 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2104 PCI_EXP_DEVCTL2_ARI);
2105 bridge->ari_enabled = 1;
2106 } else {
2107 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2108 PCI_EXP_DEVCTL2_ARI);
2109 bridge->ari_enabled = 0;
2114 * pci_enable_ido - enable ID-based Ordering on a device
2115 * @dev: the PCI device
2116 * @type: which types of IDO to enable
2118 * Enable ID-based ordering on @dev. @type can contain the bits
2119 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2120 * which types of transactions are allowed to be re-ordered.
2122 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2124 u16 ctrl = 0;
2126 if (type & PCI_EXP_IDO_REQUEST)
2127 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2128 if (type & PCI_EXP_IDO_COMPLETION)
2129 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2130 if (ctrl)
2131 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2133 EXPORT_SYMBOL(pci_enable_ido);
2136 * pci_disable_ido - disable ID-based ordering on a device
2137 * @dev: the PCI device
2138 * @type: which types of IDO to disable
2140 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2142 u16 ctrl = 0;
2144 if (type & PCI_EXP_IDO_REQUEST)
2145 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2146 if (type & PCI_EXP_IDO_COMPLETION)
2147 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2148 if (ctrl)
2149 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2151 EXPORT_SYMBOL(pci_disable_ido);
2154 * pci_enable_obff - enable optimized buffer flush/fill
2155 * @dev: PCI device
2156 * @type: type of signaling to use
2158 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2159 * signaling if possible, falling back to message signaling only if
2160 * WAKE# isn't supported. @type should indicate whether the PCIe link
2161 * be brought out of L0s or L1 to send the message. It should be either
2162 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2164 * If your device can benefit from receiving all messages, even at the
2165 * power cost of bringing the link back up from a low power state, use
2166 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2167 * preferred type).
2169 * RETURNS:
2170 * Zero on success, appropriate error number on failure.
2172 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2174 u32 cap;
2175 u16 ctrl;
2176 int ret;
2178 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2179 if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK))
2180 return -ENOTSUPP; /* no OBFF support at all */
2182 /* Make sure the topology supports OBFF as well */
2183 if (dev->bus->self) {
2184 ret = pci_enable_obff(dev->bus->self, type);
2185 if (ret)
2186 return ret;
2189 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2190 if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE)
2191 ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2192 else {
2193 switch (type) {
2194 case PCI_EXP_OBFF_SIGNAL_L0:
2195 if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN))
2196 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN;
2197 break;
2198 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2199 ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2200 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN;
2201 break;
2202 default:
2203 WARN(1, "bad OBFF signal type\n");
2204 return -ENOTSUPP;
2207 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2209 return 0;
2211 EXPORT_SYMBOL(pci_enable_obff);
2214 * pci_disable_obff - disable optimized buffer flush/fill
2215 * @dev: PCI device
2217 * Disable OBFF on @dev.
2219 void pci_disable_obff(struct pci_dev *dev)
2221 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2222 PCI_EXP_DEVCTL2_OBFF_WAKE_EN);
2224 EXPORT_SYMBOL(pci_disable_obff);
2227 * pci_ltr_supported - check whether a device supports LTR
2228 * @dev: PCI device
2230 * RETURNS:
2231 * True if @dev supports latency tolerance reporting, false otherwise.
2233 static bool pci_ltr_supported(struct pci_dev *dev)
2235 u32 cap;
2237 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2239 return cap & PCI_EXP_DEVCAP2_LTR;
2243 * pci_enable_ltr - enable latency tolerance reporting
2244 * @dev: PCI device
2246 * Enable LTR on @dev if possible, which means enabling it first on
2247 * upstream ports.
2249 * RETURNS:
2250 * Zero on success, errno on failure.
2252 int pci_enable_ltr(struct pci_dev *dev)
2254 int ret;
2256 /* Only primary function can enable/disable LTR */
2257 if (PCI_FUNC(dev->devfn) != 0)
2258 return -EINVAL;
2260 if (!pci_ltr_supported(dev))
2261 return -ENOTSUPP;
2263 /* Enable upstream ports first */
2264 if (dev->bus->self) {
2265 ret = pci_enable_ltr(dev->bus->self);
2266 if (ret)
2267 return ret;
2270 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
2271 PCI_EXP_DEVCTL2_LTR_EN);
2273 EXPORT_SYMBOL(pci_enable_ltr);
2276 * pci_disable_ltr - disable latency tolerance reporting
2277 * @dev: PCI device
2279 void pci_disable_ltr(struct pci_dev *dev)
2281 /* Only primary function can enable/disable LTR */
2282 if (PCI_FUNC(dev->devfn) != 0)
2283 return;
2285 if (!pci_ltr_supported(dev))
2286 return;
2288 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2289 PCI_EXP_DEVCTL2_LTR_EN);
2291 EXPORT_SYMBOL(pci_disable_ltr);
2293 static int __pci_ltr_scale(int *val)
2295 int scale = 0;
2297 while (*val > 1023) {
2298 *val = (*val + 31) / 32;
2299 scale++;
2301 return scale;
2305 * pci_set_ltr - set LTR latency values
2306 * @dev: PCI device
2307 * @snoop_lat_ns: snoop latency in nanoseconds
2308 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2310 * Figure out the scale and set the LTR values accordingly.
2312 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2314 int pos, ret, snoop_scale, nosnoop_scale;
2315 u16 val;
2317 if (!pci_ltr_supported(dev))
2318 return -ENOTSUPP;
2320 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2321 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2323 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2324 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2325 return -EINVAL;
2327 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2328 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2329 return -EINVAL;
2331 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2332 if (!pos)
2333 return -ENOTSUPP;
2335 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2336 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2337 if (ret != 4)
2338 return -EIO;
2340 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2341 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2342 if (ret != 4)
2343 return -EIO;
2345 return 0;
2347 EXPORT_SYMBOL(pci_set_ltr);
2349 static int pci_acs_enable;
2352 * pci_request_acs - ask for ACS to be enabled if supported
2354 void pci_request_acs(void)
2356 pci_acs_enable = 1;
2360 * pci_enable_acs - enable ACS if hardware support it
2361 * @dev: the PCI device
2363 void pci_enable_acs(struct pci_dev *dev)
2365 int pos;
2366 u16 cap;
2367 u16 ctrl;
2369 if (!pci_acs_enable)
2370 return;
2372 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2373 if (!pos)
2374 return;
2376 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2377 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2379 /* Source Validation */
2380 ctrl |= (cap & PCI_ACS_SV);
2382 /* P2P Request Redirect */
2383 ctrl |= (cap & PCI_ACS_RR);
2385 /* P2P Completion Redirect */
2386 ctrl |= (cap & PCI_ACS_CR);
2388 /* Upstream Forwarding */
2389 ctrl |= (cap & PCI_ACS_UF);
2391 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2394 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2396 int pos;
2397 u16 cap, ctrl;
2399 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2400 if (!pos)
2401 return false;
2404 * Except for egress control, capabilities are either required
2405 * or only required if controllable. Features missing from the
2406 * capability field can therefore be assumed as hard-wired enabled.
2408 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2409 acs_flags &= (cap | PCI_ACS_EC);
2411 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2412 return (ctrl & acs_flags) == acs_flags;
2416 * pci_acs_enabled - test ACS against required flags for a given device
2417 * @pdev: device to test
2418 * @acs_flags: required PCI ACS flags
2420 * Return true if the device supports the provided flags. Automatically
2421 * filters out flags that are not implemented on multifunction devices.
2423 * Note that this interface checks the effective ACS capabilities of the
2424 * device rather than the actual capabilities. For instance, most single
2425 * function endpoints are not required to support ACS because they have no
2426 * opportunity for peer-to-peer access. We therefore return 'true'
2427 * regardless of whether the device exposes an ACS capability. This makes
2428 * it much easier for callers of this function to ignore the actual type
2429 * or topology of the device when testing ACS support.
2431 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2433 int ret;
2435 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2436 if (ret >= 0)
2437 return ret > 0;
2440 * Conventional PCI and PCI-X devices never support ACS, either
2441 * effectively or actually. The shared bus topology implies that
2442 * any device on the bus can receive or snoop DMA.
2444 if (!pci_is_pcie(pdev))
2445 return false;
2447 switch (pci_pcie_type(pdev)) {
2449 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2450 * but since their primary inteface is PCI/X, we conservatively
2451 * handle them as we would a non-PCIe device.
2453 case PCI_EXP_TYPE_PCIE_BRIDGE:
2455 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2456 * applicable... must never implement an ACS Extended Capability...".
2457 * This seems arbitrary, but we take a conservative interpretation
2458 * of this statement.
2460 case PCI_EXP_TYPE_PCI_BRIDGE:
2461 case PCI_EXP_TYPE_RC_EC:
2462 return false;
2464 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2465 * implement ACS in order to indicate their peer-to-peer capabilities,
2466 * regardless of whether they are single- or multi-function devices.
2468 case PCI_EXP_TYPE_DOWNSTREAM:
2469 case PCI_EXP_TYPE_ROOT_PORT:
2470 return pci_acs_flags_enabled(pdev, acs_flags);
2472 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2473 * implemented by the remaining PCIe types to indicate peer-to-peer
2474 * capabilities, but only when they are part of a multifunciton
2475 * device. The footnote for section 6.12 indicates the specific
2476 * PCIe types included here.
2478 case PCI_EXP_TYPE_ENDPOINT:
2479 case PCI_EXP_TYPE_UPSTREAM:
2480 case PCI_EXP_TYPE_LEG_END:
2481 case PCI_EXP_TYPE_RC_END:
2482 if (!pdev->multifunction)
2483 break;
2485 return pci_acs_flags_enabled(pdev, acs_flags);
2489 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilties are applicable
2490 * to single function devices with the exception of downstream ports.
2492 return true;
2496 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2497 * @start: starting downstream device
2498 * @end: ending upstream device or NULL to search to the root bus
2499 * @acs_flags: required flags
2501 * Walk up a device tree from start to end testing PCI ACS support. If
2502 * any step along the way does not support the required flags, return false.
2504 bool pci_acs_path_enabled(struct pci_dev *start,
2505 struct pci_dev *end, u16 acs_flags)
2507 struct pci_dev *pdev, *parent = start;
2509 do {
2510 pdev = parent;
2512 if (!pci_acs_enabled(pdev, acs_flags))
2513 return false;
2515 if (pci_is_root_bus(pdev->bus))
2516 return (end == NULL);
2518 parent = pdev->bus->self;
2519 } while (pdev != end);
2521 return true;
2525 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2526 * @dev: the PCI device
2527 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2529 * Perform INTx swizzling for a device behind one level of bridge. This is
2530 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2531 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2532 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2533 * the PCI Express Base Specification, Revision 2.1)
2535 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2537 int slot;
2539 if (pci_ari_enabled(dev->bus))
2540 slot = 0;
2541 else
2542 slot = PCI_SLOT(dev->devfn);
2544 return (((pin - 1) + slot) % 4) + 1;
2548 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2550 u8 pin;
2552 pin = dev->pin;
2553 if (!pin)
2554 return -1;
2556 while (!pci_is_root_bus(dev->bus)) {
2557 pin = pci_swizzle_interrupt_pin(dev, pin);
2558 dev = dev->bus->self;
2560 *bridge = dev;
2561 return pin;
2565 * pci_common_swizzle - swizzle INTx all the way to root bridge
2566 * @dev: the PCI device
2567 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2569 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2570 * bridges all the way up to a PCI root bus.
2572 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2574 u8 pin = *pinp;
2576 while (!pci_is_root_bus(dev->bus)) {
2577 pin = pci_swizzle_interrupt_pin(dev, pin);
2578 dev = dev->bus->self;
2580 *pinp = pin;
2581 return PCI_SLOT(dev->devfn);
2585 * pci_release_region - Release a PCI bar
2586 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2587 * @bar: BAR to release
2589 * Releases the PCI I/O and memory resources previously reserved by a
2590 * successful call to pci_request_region. Call this function only
2591 * after all use of the PCI regions has ceased.
2593 void pci_release_region(struct pci_dev *pdev, int bar)
2595 struct pci_devres *dr;
2597 if (pci_resource_len(pdev, bar) == 0)
2598 return;
2599 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2600 release_region(pci_resource_start(pdev, bar),
2601 pci_resource_len(pdev, bar));
2602 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2603 release_mem_region(pci_resource_start(pdev, bar),
2604 pci_resource_len(pdev, bar));
2606 dr = find_pci_dr(pdev);
2607 if (dr)
2608 dr->region_mask &= ~(1 << bar);
2612 * __pci_request_region - Reserved PCI I/O and memory resource
2613 * @pdev: PCI device whose resources are to be reserved
2614 * @bar: BAR to be reserved
2615 * @res_name: Name to be associated with resource.
2616 * @exclusive: whether the region access is exclusive or not
2618 * Mark the PCI region associated with PCI device @pdev BR @bar as
2619 * being reserved by owner @res_name. Do not access any
2620 * address inside the PCI regions unless this call returns
2621 * successfully.
2623 * If @exclusive is set, then the region is marked so that userspace
2624 * is explicitly not allowed to map the resource via /dev/mem or
2625 * sysfs MMIO access.
2627 * Returns 0 on success, or %EBUSY on error. A warning
2628 * message is also printed on failure.
2630 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2631 int exclusive)
2633 struct pci_devres *dr;
2635 if (pci_resource_len(pdev, bar) == 0)
2636 return 0;
2638 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2639 if (!request_region(pci_resource_start(pdev, bar),
2640 pci_resource_len(pdev, bar), res_name))
2641 goto err_out;
2643 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2644 if (!__request_mem_region(pci_resource_start(pdev, bar),
2645 pci_resource_len(pdev, bar), res_name,
2646 exclusive))
2647 goto err_out;
2650 dr = find_pci_dr(pdev);
2651 if (dr)
2652 dr->region_mask |= 1 << bar;
2654 return 0;
2656 err_out:
2657 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2658 &pdev->resource[bar]);
2659 return -EBUSY;
2663 * pci_request_region - Reserve PCI I/O and memory resource
2664 * @pdev: PCI device whose resources are to be reserved
2665 * @bar: BAR to be reserved
2666 * @res_name: Name to be associated with resource
2668 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2669 * being reserved by owner @res_name. Do not access any
2670 * address inside the PCI regions unless this call returns
2671 * successfully.
2673 * Returns 0 on success, or %EBUSY on error. A warning
2674 * message is also printed on failure.
2676 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2678 return __pci_request_region(pdev, bar, res_name, 0);
2682 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2683 * @pdev: PCI device whose resources are to be reserved
2684 * @bar: BAR to be reserved
2685 * @res_name: Name to be associated with resource.
2687 * Mark the PCI region associated with PCI device @pdev BR @bar as
2688 * being reserved by owner @res_name. Do not access any
2689 * address inside the PCI regions unless this call returns
2690 * successfully.
2692 * Returns 0 on success, or %EBUSY on error. A warning
2693 * message is also printed on failure.
2695 * The key difference that _exclusive makes it that userspace is
2696 * explicitly not allowed to map the resource via /dev/mem or
2697 * sysfs.
2699 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2701 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2704 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2705 * @pdev: PCI device whose resources were previously reserved
2706 * @bars: Bitmask of BARs to be released
2708 * Release selected PCI I/O and memory resources previously reserved.
2709 * Call this function only after all use of the PCI regions has ceased.
2711 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2713 int i;
2715 for (i = 0; i < 6; i++)
2716 if (bars & (1 << i))
2717 pci_release_region(pdev, i);
2720 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2721 const char *res_name, int excl)
2723 int i;
2725 for (i = 0; i < 6; i++)
2726 if (bars & (1 << i))
2727 if (__pci_request_region(pdev, i, res_name, excl))
2728 goto err_out;
2729 return 0;
2731 err_out:
2732 while(--i >= 0)
2733 if (bars & (1 << i))
2734 pci_release_region(pdev, i);
2736 return -EBUSY;
2741 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2742 * @pdev: PCI device whose resources are to be reserved
2743 * @bars: Bitmask of BARs to be requested
2744 * @res_name: Name to be associated with resource
2746 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2747 const char *res_name)
2749 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2752 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2753 int bars, const char *res_name)
2755 return __pci_request_selected_regions(pdev, bars, res_name,
2756 IORESOURCE_EXCLUSIVE);
2760 * pci_release_regions - Release reserved PCI I/O and memory resources
2761 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2763 * Releases all PCI I/O and memory resources previously reserved by a
2764 * successful call to pci_request_regions. Call this function only
2765 * after all use of the PCI regions has ceased.
2768 void pci_release_regions(struct pci_dev *pdev)
2770 pci_release_selected_regions(pdev, (1 << 6) - 1);
2774 * pci_request_regions - Reserved PCI I/O and memory resources
2775 * @pdev: PCI device whose resources are to be reserved
2776 * @res_name: Name to be associated with resource.
2778 * Mark all PCI regions associated with PCI device @pdev as
2779 * being reserved by owner @res_name. Do not access any
2780 * address inside the PCI regions unless this call returns
2781 * successfully.
2783 * Returns 0 on success, or %EBUSY on error. A warning
2784 * message is also printed on failure.
2786 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2788 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2792 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2793 * @pdev: PCI device whose resources are to be reserved
2794 * @res_name: Name to be associated with resource.
2796 * Mark all PCI regions associated with PCI device @pdev as
2797 * being reserved by owner @res_name. Do not access any
2798 * address inside the PCI regions unless this call returns
2799 * successfully.
2801 * pci_request_regions_exclusive() will mark the region so that
2802 * /dev/mem and the sysfs MMIO access will not be allowed.
2804 * Returns 0 on success, or %EBUSY on error. A warning
2805 * message is also printed on failure.
2807 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2809 return pci_request_selected_regions_exclusive(pdev,
2810 ((1 << 6) - 1), res_name);
2813 static void __pci_set_master(struct pci_dev *dev, bool enable)
2815 u16 old_cmd, cmd;
2817 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2818 if (enable)
2819 cmd = old_cmd | PCI_COMMAND_MASTER;
2820 else
2821 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2822 if (cmd != old_cmd) {
2823 dev_dbg(&dev->dev, "%s bus mastering\n",
2824 enable ? "enabling" : "disabling");
2825 pci_write_config_word(dev, PCI_COMMAND, cmd);
2827 dev->is_busmaster = enable;
2831 * pcibios_setup - process "pci=" kernel boot arguments
2832 * @str: string used to pass in "pci=" kernel boot arguments
2834 * Process kernel boot arguments. This is the default implementation.
2835 * Architecture specific implementations can override this as necessary.
2837 char * __weak __init pcibios_setup(char *str)
2839 return str;
2843 * pcibios_set_master - enable PCI bus-mastering for device dev
2844 * @dev: the PCI device to enable
2846 * Enables PCI bus-mastering for the device. This is the default
2847 * implementation. Architecture specific implementations can override
2848 * this if necessary.
2850 void __weak pcibios_set_master(struct pci_dev *dev)
2852 u8 lat;
2854 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2855 if (pci_is_pcie(dev))
2856 return;
2858 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2859 if (lat < 16)
2860 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2861 else if (lat > pcibios_max_latency)
2862 lat = pcibios_max_latency;
2863 else
2864 return;
2866 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2870 * pci_set_master - enables bus-mastering for device dev
2871 * @dev: the PCI device to enable
2873 * Enables bus-mastering on the device and calls pcibios_set_master()
2874 * to do the needed arch specific settings.
2876 void pci_set_master(struct pci_dev *dev)
2878 __pci_set_master(dev, true);
2879 pcibios_set_master(dev);
2883 * pci_clear_master - disables bus-mastering for device dev
2884 * @dev: the PCI device to disable
2886 void pci_clear_master(struct pci_dev *dev)
2888 __pci_set_master(dev, false);
2892 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2893 * @dev: the PCI device for which MWI is to be enabled
2895 * Helper function for pci_set_mwi.
2896 * Originally copied from drivers/net/acenic.c.
2897 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2899 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2901 int pci_set_cacheline_size(struct pci_dev *dev)
2903 u8 cacheline_size;
2905 if (!pci_cache_line_size)
2906 return -EINVAL;
2908 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2909 equal to or multiple of the right value. */
2910 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2911 if (cacheline_size >= pci_cache_line_size &&
2912 (cacheline_size % pci_cache_line_size) == 0)
2913 return 0;
2915 /* Write the correct value. */
2916 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2917 /* Read it back. */
2918 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2919 if (cacheline_size == pci_cache_line_size)
2920 return 0;
2922 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2923 "supported\n", pci_cache_line_size << 2);
2925 return -EINVAL;
2927 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2929 #ifdef PCI_DISABLE_MWI
2930 int pci_set_mwi(struct pci_dev *dev)
2932 return 0;
2935 int pci_try_set_mwi(struct pci_dev *dev)
2937 return 0;
2940 void pci_clear_mwi(struct pci_dev *dev)
2944 #else
2947 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2948 * @dev: the PCI device for which MWI is enabled
2950 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2952 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2955 pci_set_mwi(struct pci_dev *dev)
2957 int rc;
2958 u16 cmd;
2960 rc = pci_set_cacheline_size(dev);
2961 if (rc)
2962 return rc;
2964 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2965 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2966 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2967 cmd |= PCI_COMMAND_INVALIDATE;
2968 pci_write_config_word(dev, PCI_COMMAND, cmd);
2971 return 0;
2975 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2976 * @dev: the PCI device for which MWI is enabled
2978 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2979 * Callers are not required to check the return value.
2981 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2983 int pci_try_set_mwi(struct pci_dev *dev)
2985 int rc = pci_set_mwi(dev);
2986 return rc;
2990 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2991 * @dev: the PCI device to disable
2993 * Disables PCI Memory-Write-Invalidate transaction on the device
2995 void
2996 pci_clear_mwi(struct pci_dev *dev)
2998 u16 cmd;
3000 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3001 if (cmd & PCI_COMMAND_INVALIDATE) {
3002 cmd &= ~PCI_COMMAND_INVALIDATE;
3003 pci_write_config_word(dev, PCI_COMMAND, cmd);
3006 #endif /* ! PCI_DISABLE_MWI */
3009 * pci_intx - enables/disables PCI INTx for device dev
3010 * @pdev: the PCI device to operate on
3011 * @enable: boolean: whether to enable or disable PCI INTx
3013 * Enables/disables PCI INTx for device dev
3015 void
3016 pci_intx(struct pci_dev *pdev, int enable)
3018 u16 pci_command, new;
3020 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3022 if (enable) {
3023 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3024 } else {
3025 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3028 if (new != pci_command) {
3029 struct pci_devres *dr;
3031 pci_write_config_word(pdev, PCI_COMMAND, new);
3033 dr = find_pci_dr(pdev);
3034 if (dr && !dr->restore_intx) {
3035 dr->restore_intx = 1;
3036 dr->orig_intx = !enable;
3042 * pci_intx_mask_supported - probe for INTx masking support
3043 * @dev: the PCI device to operate on
3045 * Check if the device dev support INTx masking via the config space
3046 * command word.
3048 bool pci_intx_mask_supported(struct pci_dev *dev)
3050 bool mask_supported = false;
3051 u16 orig, new;
3053 if (dev->broken_intx_masking)
3054 return false;
3056 pci_cfg_access_lock(dev);
3058 pci_read_config_word(dev, PCI_COMMAND, &orig);
3059 pci_write_config_word(dev, PCI_COMMAND,
3060 orig ^ PCI_COMMAND_INTX_DISABLE);
3061 pci_read_config_word(dev, PCI_COMMAND, &new);
3064 * There's no way to protect against hardware bugs or detect them
3065 * reliably, but as long as we know what the value should be, let's
3066 * go ahead and check it.
3068 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3069 dev_err(&dev->dev, "Command register changed from "
3070 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
3071 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3072 mask_supported = true;
3073 pci_write_config_word(dev, PCI_COMMAND, orig);
3076 pci_cfg_access_unlock(dev);
3077 return mask_supported;
3079 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3081 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3083 struct pci_bus *bus = dev->bus;
3084 bool mask_updated = true;
3085 u32 cmd_status_dword;
3086 u16 origcmd, newcmd;
3087 unsigned long flags;
3088 bool irq_pending;
3091 * We do a single dword read to retrieve both command and status.
3092 * Document assumptions that make this possible.
3094 BUILD_BUG_ON(PCI_COMMAND % 4);
3095 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3097 raw_spin_lock_irqsave(&pci_lock, flags);
3099 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3101 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3104 * Check interrupt status register to see whether our device
3105 * triggered the interrupt (when masking) or the next IRQ is
3106 * already pending (when unmasking).
3108 if (mask != irq_pending) {
3109 mask_updated = false;
3110 goto done;
3113 origcmd = cmd_status_dword;
3114 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3115 if (mask)
3116 newcmd |= PCI_COMMAND_INTX_DISABLE;
3117 if (newcmd != origcmd)
3118 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3120 done:
3121 raw_spin_unlock_irqrestore(&pci_lock, flags);
3123 return mask_updated;
3127 * pci_check_and_mask_intx - mask INTx on pending interrupt
3128 * @dev: the PCI device to operate on
3130 * Check if the device dev has its INTx line asserted, mask it and
3131 * return true in that case. False is returned if not interrupt was
3132 * pending.
3134 bool pci_check_and_mask_intx(struct pci_dev *dev)
3136 return pci_check_and_set_intx_mask(dev, true);
3138 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3141 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3142 * @dev: the PCI device to operate on
3144 * Check if the device dev has its INTx line asserted, unmask it if not
3145 * and return true. False is returned and the mask remains active if
3146 * there was still an interrupt pending.
3148 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3150 return pci_check_and_set_intx_mask(dev, false);
3152 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3155 * pci_msi_off - disables any MSI or MSI-X capabilities
3156 * @dev: the PCI device to operate on
3158 * If you want to use MSI, see pci_enable_msi() and friends.
3159 * This is a lower-level primitive that allows us to disable
3160 * MSI operation at the device level.
3162 void pci_msi_off(struct pci_dev *dev)
3164 int pos;
3165 u16 control;
3168 * This looks like it could go in msi.c, but we need it even when
3169 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3170 * dev->msi_cap or dev->msix_cap here.
3172 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3173 if (pos) {
3174 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3175 control &= ~PCI_MSI_FLAGS_ENABLE;
3176 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3178 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3179 if (pos) {
3180 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3181 control &= ~PCI_MSIX_FLAGS_ENABLE;
3182 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3185 EXPORT_SYMBOL_GPL(pci_msi_off);
3187 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3189 return dma_set_max_seg_size(&dev->dev, size);
3191 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3193 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3195 return dma_set_seg_boundary(&dev->dev, mask);
3197 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3200 * pci_wait_for_pending_transaction - waits for pending transaction
3201 * @dev: the PCI device to operate on
3203 * Return 0 if transaction is pending 1 otherwise.
3205 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3207 int i;
3208 u16 status;
3210 /* Wait for Transaction Pending bit clean */
3211 for (i = 0; i < 4; i++) {
3212 if (i)
3213 msleep((1 << (i - 1)) * 100);
3215 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3216 if (!(status & PCI_EXP_DEVSTA_TRPND))
3217 return 1;
3220 return 0;
3222 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3224 static int pcie_flr(struct pci_dev *dev, int probe)
3226 u32 cap;
3228 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3229 if (!(cap & PCI_EXP_DEVCAP_FLR))
3230 return -ENOTTY;
3232 if (probe)
3233 return 0;
3235 if (!pci_wait_for_pending_transaction(dev))
3236 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3238 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3240 msleep(100);
3242 return 0;
3245 static int pci_af_flr(struct pci_dev *dev, int probe)
3247 int i;
3248 int pos;
3249 u8 cap;
3250 u8 status;
3252 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3253 if (!pos)
3254 return -ENOTTY;
3256 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3257 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3258 return -ENOTTY;
3260 if (probe)
3261 return 0;
3263 /* Wait for Transaction Pending bit clean */
3264 for (i = 0; i < 4; i++) {
3265 if (i)
3266 msleep((1 << (i - 1)) * 100);
3268 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3269 if (!(status & PCI_AF_STATUS_TP))
3270 goto clear;
3273 dev_err(&dev->dev, "transaction is not cleared; "
3274 "proceeding with reset anyway\n");
3276 clear:
3277 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3278 msleep(100);
3280 return 0;
3284 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3285 * @dev: Device to reset.
3286 * @probe: If set, only check if the device can be reset this way.
3288 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3289 * unset, it will be reinitialized internally when going from PCI_D3hot to
3290 * PCI_D0. If that's the case and the device is not in a low-power state
3291 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3293 * NOTE: This causes the caller to sleep for twice the device power transition
3294 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3295 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3296 * Moreover, only devices in D0 can be reset by this function.
3298 static int pci_pm_reset(struct pci_dev *dev, int probe)
3300 u16 csr;
3302 if (!dev->pm_cap)
3303 return -ENOTTY;
3305 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3306 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3307 return -ENOTTY;
3309 if (probe)
3310 return 0;
3312 if (dev->current_state != PCI_D0)
3313 return -EINVAL;
3315 csr &= ~PCI_PM_CTRL_STATE_MASK;
3316 csr |= PCI_D3hot;
3317 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3318 pci_dev_d3_sleep(dev);
3320 csr &= ~PCI_PM_CTRL_STATE_MASK;
3321 csr |= PCI_D0;
3322 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3323 pci_dev_d3_sleep(dev);
3325 return 0;
3329 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3330 * @dev: Bridge device
3332 * Use the bridge control register to assert reset on the secondary bus.
3333 * Devices on the secondary bus are left in power-on state.
3335 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3337 u16 ctrl;
3339 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3340 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3341 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3343 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3344 * this to 2ms to ensure that we meet the minium requirement.
3346 msleep(2);
3348 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3349 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3352 * Trhfa for conventional PCI is 2^25 clock cycles.
3353 * Assuming a minimum 33MHz clock this results in a 1s
3354 * delay before we can consider subordinate devices to
3355 * be re-initialized. PCIe has some ways to shorten this,
3356 * but we don't make use of them yet.
3358 ssleep(1);
3360 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3362 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3364 struct pci_dev *pdev;
3366 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3367 return -ENOTTY;
3369 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3370 if (pdev != dev)
3371 return -ENOTTY;
3373 if (probe)
3374 return 0;
3376 pci_reset_bridge_secondary_bus(dev->bus->self);
3378 return 0;
3381 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3383 int rc = -ENOTTY;
3385 if (!hotplug || !try_module_get(hotplug->ops->owner))
3386 return rc;
3388 if (hotplug->ops->reset_slot)
3389 rc = hotplug->ops->reset_slot(hotplug, probe);
3391 module_put(hotplug->ops->owner);
3393 return rc;
3396 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3398 struct pci_dev *pdev;
3400 if (dev->subordinate || !dev->slot)
3401 return -ENOTTY;
3403 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3404 if (pdev != dev && pdev->slot == dev->slot)
3405 return -ENOTTY;
3407 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3410 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3412 int rc;
3414 might_sleep();
3416 rc = pci_dev_specific_reset(dev, probe);
3417 if (rc != -ENOTTY)
3418 goto done;
3420 rc = pcie_flr(dev, probe);
3421 if (rc != -ENOTTY)
3422 goto done;
3424 rc = pci_af_flr(dev, probe);
3425 if (rc != -ENOTTY)
3426 goto done;
3428 rc = pci_pm_reset(dev, probe);
3429 if (rc != -ENOTTY)
3430 goto done;
3432 rc = pci_dev_reset_slot_function(dev, probe);
3433 if (rc != -ENOTTY)
3434 goto done;
3436 rc = pci_parent_bus_reset(dev, probe);
3437 done:
3438 return rc;
3441 static void pci_dev_lock(struct pci_dev *dev)
3443 pci_cfg_access_lock(dev);
3444 /* block PM suspend, driver probe, etc. */
3445 device_lock(&dev->dev);
3448 static void pci_dev_unlock(struct pci_dev *dev)
3450 device_unlock(&dev->dev);
3451 pci_cfg_access_unlock(dev);
3454 static void pci_dev_save_and_disable(struct pci_dev *dev)
3457 * Wake-up device prior to save. PM registers default to D0 after
3458 * reset and a simple register restore doesn't reliably return
3459 * to a non-D0 state anyway.
3461 pci_set_power_state(dev, PCI_D0);
3463 pci_save_state(dev);
3465 * Disable the device by clearing the Command register, except for
3466 * INTx-disable which is set. This not only disables MMIO and I/O port
3467 * BARs, but also prevents the device from being Bus Master, preventing
3468 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3469 * compliant devices, INTx-disable prevents legacy interrupts.
3471 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3474 static void pci_dev_restore(struct pci_dev *dev)
3476 pci_restore_state(dev);
3479 static int pci_dev_reset(struct pci_dev *dev, int probe)
3481 int rc;
3483 if (!probe)
3484 pci_dev_lock(dev);
3486 rc = __pci_dev_reset(dev, probe);
3488 if (!probe)
3489 pci_dev_unlock(dev);
3491 return rc;
3494 * __pci_reset_function - reset a PCI device function
3495 * @dev: PCI device to reset
3497 * Some devices allow an individual function to be reset without affecting
3498 * other functions in the same device. The PCI device must be responsive
3499 * to PCI config space in order to use this function.
3501 * The device function is presumed to be unused when this function is called.
3502 * Resetting the device will make the contents of PCI configuration space
3503 * random, so any caller of this must be prepared to reinitialise the
3504 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3505 * etc.
3507 * Returns 0 if the device function was successfully reset or negative if the
3508 * device doesn't support resetting a single function.
3510 int __pci_reset_function(struct pci_dev *dev)
3512 return pci_dev_reset(dev, 0);
3514 EXPORT_SYMBOL_GPL(__pci_reset_function);
3517 * __pci_reset_function_locked - reset a PCI device function while holding
3518 * the @dev mutex lock.
3519 * @dev: PCI device to reset
3521 * Some devices allow an individual function to be reset without affecting
3522 * other functions in the same device. The PCI device must be responsive
3523 * to PCI config space in order to use this function.
3525 * The device function is presumed to be unused and the caller is holding
3526 * the device mutex lock when this function is called.
3527 * Resetting the device will make the contents of PCI configuration space
3528 * random, so any caller of this must be prepared to reinitialise the
3529 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3530 * etc.
3532 * Returns 0 if the device function was successfully reset or negative if the
3533 * device doesn't support resetting a single function.
3535 int __pci_reset_function_locked(struct pci_dev *dev)
3537 return __pci_dev_reset(dev, 0);
3539 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3542 * pci_probe_reset_function - check whether the device can be safely reset
3543 * @dev: PCI device to reset
3545 * Some devices allow an individual function to be reset without affecting
3546 * other functions in the same device. The PCI device must be responsive
3547 * to PCI config space in order to use this function.
3549 * Returns 0 if the device function can be reset or negative if the
3550 * device doesn't support resetting a single function.
3552 int pci_probe_reset_function(struct pci_dev *dev)
3554 return pci_dev_reset(dev, 1);
3558 * pci_reset_function - quiesce and reset a PCI device function
3559 * @dev: PCI device to reset
3561 * Some devices allow an individual function to be reset without affecting
3562 * other functions in the same device. The PCI device must be responsive
3563 * to PCI config space in order to use this function.
3565 * This function does not just reset the PCI portion of a device, but
3566 * clears all the state associated with the device. This function differs
3567 * from __pci_reset_function in that it saves and restores device state
3568 * over the reset.
3570 * Returns 0 if the device function was successfully reset or negative if the
3571 * device doesn't support resetting a single function.
3573 int pci_reset_function(struct pci_dev *dev)
3575 int rc;
3577 rc = pci_dev_reset(dev, 1);
3578 if (rc)
3579 return rc;
3581 pci_dev_save_and_disable(dev);
3583 rc = pci_dev_reset(dev, 0);
3585 pci_dev_restore(dev);
3587 return rc;
3589 EXPORT_SYMBOL_GPL(pci_reset_function);
3591 /* Lock devices from the top of the tree down */
3592 static void pci_bus_lock(struct pci_bus *bus)
3594 struct pci_dev *dev;
3596 list_for_each_entry(dev, &bus->devices, bus_list) {
3597 pci_dev_lock(dev);
3598 if (dev->subordinate)
3599 pci_bus_lock(dev->subordinate);
3603 /* Unlock devices from the bottom of the tree up */
3604 static void pci_bus_unlock(struct pci_bus *bus)
3606 struct pci_dev *dev;
3608 list_for_each_entry(dev, &bus->devices, bus_list) {
3609 if (dev->subordinate)
3610 pci_bus_unlock(dev->subordinate);
3611 pci_dev_unlock(dev);
3615 /* Lock devices from the top of the tree down */
3616 static void pci_slot_lock(struct pci_slot *slot)
3618 struct pci_dev *dev;
3620 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3621 if (!dev->slot || dev->slot != slot)
3622 continue;
3623 pci_dev_lock(dev);
3624 if (dev->subordinate)
3625 pci_bus_lock(dev->subordinate);
3629 /* Unlock devices from the bottom of the tree up */
3630 static void pci_slot_unlock(struct pci_slot *slot)
3632 struct pci_dev *dev;
3634 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3635 if (!dev->slot || dev->slot != slot)
3636 continue;
3637 if (dev->subordinate)
3638 pci_bus_unlock(dev->subordinate);
3639 pci_dev_unlock(dev);
3643 /* Save and disable devices from the top of the tree down */
3644 static void pci_bus_save_and_disable(struct pci_bus *bus)
3646 struct pci_dev *dev;
3648 list_for_each_entry(dev, &bus->devices, bus_list) {
3649 pci_dev_save_and_disable(dev);
3650 if (dev->subordinate)
3651 pci_bus_save_and_disable(dev->subordinate);
3656 * Restore devices from top of the tree down - parent bridges need to be
3657 * restored before we can get to subordinate devices.
3659 static void pci_bus_restore(struct pci_bus *bus)
3661 struct pci_dev *dev;
3663 list_for_each_entry(dev, &bus->devices, bus_list) {
3664 pci_dev_restore(dev);
3665 if (dev->subordinate)
3666 pci_bus_restore(dev->subordinate);
3670 /* Save and disable devices from the top of the tree down */
3671 static void pci_slot_save_and_disable(struct pci_slot *slot)
3673 struct pci_dev *dev;
3675 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 if (!dev->slot || dev->slot != slot)
3677 continue;
3678 pci_dev_save_and_disable(dev);
3679 if (dev->subordinate)
3680 pci_bus_save_and_disable(dev->subordinate);
3685 * Restore devices from top of the tree down - parent bridges need to be
3686 * restored before we can get to subordinate devices.
3688 static void pci_slot_restore(struct pci_slot *slot)
3690 struct pci_dev *dev;
3692 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3693 if (!dev->slot || dev->slot != slot)
3694 continue;
3695 pci_dev_restore(dev);
3696 if (dev->subordinate)
3697 pci_bus_restore(dev->subordinate);
3701 static int pci_slot_reset(struct pci_slot *slot, int probe)
3703 int rc;
3705 if (!slot)
3706 return -ENOTTY;
3708 if (!probe)
3709 pci_slot_lock(slot);
3711 might_sleep();
3713 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3715 if (!probe)
3716 pci_slot_unlock(slot);
3718 return rc;
3722 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3723 * @slot: PCI slot to probe
3725 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3727 int pci_probe_reset_slot(struct pci_slot *slot)
3729 return pci_slot_reset(slot, 1);
3731 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3734 * pci_reset_slot - reset a PCI slot
3735 * @slot: PCI slot to reset
3737 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3738 * independent of other slots. For instance, some slots may support slot power
3739 * control. In the case of a 1:1 bus to slot architecture, this function may
3740 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3741 * Generally a slot reset should be attempted before a bus reset. All of the
3742 * function of the slot and any subordinate buses behind the slot are reset
3743 * through this function. PCI config space of all devices in the slot and
3744 * behind the slot is saved before and restored after reset.
3746 * Return 0 on success, non-zero on error.
3748 int pci_reset_slot(struct pci_slot *slot)
3750 int rc;
3752 rc = pci_slot_reset(slot, 1);
3753 if (rc)
3754 return rc;
3756 pci_slot_save_and_disable(slot);
3758 rc = pci_slot_reset(slot, 0);
3760 pci_slot_restore(slot);
3762 return rc;
3764 EXPORT_SYMBOL_GPL(pci_reset_slot);
3766 static int pci_bus_reset(struct pci_bus *bus, int probe)
3768 if (!bus->self)
3769 return -ENOTTY;
3771 if (probe)
3772 return 0;
3774 pci_bus_lock(bus);
3776 might_sleep();
3778 pci_reset_bridge_secondary_bus(bus->self);
3780 pci_bus_unlock(bus);
3782 return 0;
3786 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3787 * @bus: PCI bus to probe
3789 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3791 int pci_probe_reset_bus(struct pci_bus *bus)
3793 return pci_bus_reset(bus, 1);
3795 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3798 * pci_reset_bus - reset a PCI bus
3799 * @bus: top level PCI bus to reset
3801 * Do a bus reset on the given bus and any subordinate buses, saving
3802 * and restoring state of all devices.
3804 * Return 0 on success, non-zero on error.
3806 int pci_reset_bus(struct pci_bus *bus)
3808 int rc;
3810 rc = pci_bus_reset(bus, 1);
3811 if (rc)
3812 return rc;
3814 pci_bus_save_and_disable(bus);
3816 rc = pci_bus_reset(bus, 0);
3818 pci_bus_restore(bus);
3820 return rc;
3822 EXPORT_SYMBOL_GPL(pci_reset_bus);
3825 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3826 * @dev: PCI device to query
3828 * Returns mmrbc: maximum designed memory read count in bytes
3829 * or appropriate error value.
3831 int pcix_get_max_mmrbc(struct pci_dev *dev)
3833 int cap;
3834 u32 stat;
3836 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3837 if (!cap)
3838 return -EINVAL;
3840 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3841 return -EINVAL;
3843 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3845 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3848 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3849 * @dev: PCI device to query
3851 * Returns mmrbc: maximum memory read count in bytes
3852 * or appropriate error value.
3854 int pcix_get_mmrbc(struct pci_dev *dev)
3856 int cap;
3857 u16 cmd;
3859 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3860 if (!cap)
3861 return -EINVAL;
3863 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3864 return -EINVAL;
3866 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3868 EXPORT_SYMBOL(pcix_get_mmrbc);
3871 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3872 * @dev: PCI device to query
3873 * @mmrbc: maximum memory read count in bytes
3874 * valid values are 512, 1024, 2048, 4096
3876 * If possible sets maximum memory read byte count, some bridges have erratas
3877 * that prevent this.
3879 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3881 int cap;
3882 u32 stat, v, o;
3883 u16 cmd;
3885 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3886 return -EINVAL;
3888 v = ffs(mmrbc) - 10;
3890 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3891 if (!cap)
3892 return -EINVAL;
3894 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3895 return -EINVAL;
3897 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3898 return -E2BIG;
3900 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3901 return -EINVAL;
3903 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3904 if (o != v) {
3905 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3906 return -EIO;
3908 cmd &= ~PCI_X_CMD_MAX_READ;
3909 cmd |= v << 2;
3910 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3911 return -EIO;
3913 return 0;
3915 EXPORT_SYMBOL(pcix_set_mmrbc);
3918 * pcie_get_readrq - get PCI Express read request size
3919 * @dev: PCI device to query
3921 * Returns maximum memory read request in bytes
3922 * or appropriate error value.
3924 int pcie_get_readrq(struct pci_dev *dev)
3926 u16 ctl;
3928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3930 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3932 EXPORT_SYMBOL(pcie_get_readrq);
3935 * pcie_set_readrq - set PCI Express maximum memory read request
3936 * @dev: PCI device to query
3937 * @rq: maximum memory read count in bytes
3938 * valid values are 128, 256, 512, 1024, 2048, 4096
3940 * If possible sets maximum memory read request in bytes
3942 int pcie_set_readrq(struct pci_dev *dev, int rq)
3944 u16 v;
3946 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3947 return -EINVAL;
3950 * If using the "performance" PCIe config, we clamp the
3951 * read rq size to the max packet size to prevent the
3952 * host bridge generating requests larger than we can
3953 * cope with
3955 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3956 int mps = pcie_get_mps(dev);
3958 if (mps < rq)
3959 rq = mps;
3962 v = (ffs(rq) - 8) << 12;
3964 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3965 PCI_EXP_DEVCTL_READRQ, v);
3967 EXPORT_SYMBOL(pcie_set_readrq);
3970 * pcie_get_mps - get PCI Express maximum payload size
3971 * @dev: PCI device to query
3973 * Returns maximum payload size in bytes
3975 int pcie_get_mps(struct pci_dev *dev)
3977 u16 ctl;
3979 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3981 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3983 EXPORT_SYMBOL(pcie_get_mps);
3986 * pcie_set_mps - set PCI Express maximum payload size
3987 * @dev: PCI device to query
3988 * @mps: maximum payload size in bytes
3989 * valid values are 128, 256, 512, 1024, 2048, 4096
3991 * If possible sets maximum payload size
3993 int pcie_set_mps(struct pci_dev *dev, int mps)
3995 u16 v;
3997 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3998 return -EINVAL;
4000 v = ffs(mps) - 8;
4001 if (v > dev->pcie_mpss)
4002 return -EINVAL;
4003 v <<= 5;
4005 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4006 PCI_EXP_DEVCTL_PAYLOAD, v);
4008 EXPORT_SYMBOL(pcie_set_mps);
4011 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4012 * @dev: PCI device to query
4013 * @speed: storage for minimum speed
4014 * @width: storage for minimum width
4016 * This function will walk up the PCI device chain and determine the minimum
4017 * link width and speed of the device.
4019 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4020 enum pcie_link_width *width)
4022 int ret;
4024 *speed = PCI_SPEED_UNKNOWN;
4025 *width = PCIE_LNK_WIDTH_UNKNOWN;
4027 while (dev) {
4028 u16 lnksta;
4029 enum pci_bus_speed next_speed;
4030 enum pcie_link_width next_width;
4032 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4033 if (ret)
4034 return ret;
4036 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4037 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4038 PCI_EXP_LNKSTA_NLW_SHIFT;
4040 if (next_speed < *speed)
4041 *speed = next_speed;
4043 if (next_width < *width)
4044 *width = next_width;
4046 dev = dev->bus->self;
4049 return 0;
4051 EXPORT_SYMBOL(pcie_get_minimum_link);
4054 * pci_select_bars - Make BAR mask from the type of resource
4055 * @dev: the PCI device for which BAR mask is made
4056 * @flags: resource type mask to be selected
4058 * This helper routine makes bar mask from the type of resource.
4060 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4062 int i, bars = 0;
4063 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4064 if (pci_resource_flags(dev, i) & flags)
4065 bars |= (1 << i);
4066 return bars;
4070 * pci_resource_bar - get position of the BAR associated with a resource
4071 * @dev: the PCI device
4072 * @resno: the resource number
4073 * @type: the BAR type to be filled in
4075 * Returns BAR position in config space, or 0 if the BAR is invalid.
4077 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4079 int reg;
4081 if (resno < PCI_ROM_RESOURCE) {
4082 *type = pci_bar_unknown;
4083 return PCI_BASE_ADDRESS_0 + 4 * resno;
4084 } else if (resno == PCI_ROM_RESOURCE) {
4085 *type = pci_bar_mem32;
4086 return dev->rom_base_reg;
4087 } else if (resno < PCI_BRIDGE_RESOURCES) {
4088 /* device specific resource */
4089 reg = pci_iov_resource_bar(dev, resno, type);
4090 if (reg)
4091 return reg;
4094 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4095 return 0;
4098 /* Some architectures require additional programming to enable VGA */
4099 static arch_set_vga_state_t arch_set_vga_state;
4101 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4103 arch_set_vga_state = func; /* NULL disables */
4106 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4107 unsigned int command_bits, u32 flags)
4109 if (arch_set_vga_state)
4110 return arch_set_vga_state(dev, decode, command_bits,
4111 flags);
4112 return 0;
4116 * pci_set_vga_state - set VGA decode state on device and parents if requested
4117 * @dev: the PCI device
4118 * @decode: true = enable decoding, false = disable decoding
4119 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4120 * @flags: traverse ancestors and change bridges
4121 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4123 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4124 unsigned int command_bits, u32 flags)
4126 struct pci_bus *bus;
4127 struct pci_dev *bridge;
4128 u16 cmd;
4129 int rc;
4131 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4133 /* ARCH specific VGA enables */
4134 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4135 if (rc)
4136 return rc;
4138 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4139 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4140 if (decode == true)
4141 cmd |= command_bits;
4142 else
4143 cmd &= ~command_bits;
4144 pci_write_config_word(dev, PCI_COMMAND, cmd);
4147 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4148 return 0;
4150 bus = dev->bus;
4151 while (bus) {
4152 bridge = bus->self;
4153 if (bridge) {
4154 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4155 &cmd);
4156 if (decode == true)
4157 cmd |= PCI_BRIDGE_CTL_VGA;
4158 else
4159 cmd &= ~PCI_BRIDGE_CTL_VGA;
4160 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4161 cmd);
4163 bus = bus->parent;
4165 return 0;
4168 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4169 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4170 static DEFINE_SPINLOCK(resource_alignment_lock);
4173 * pci_specified_resource_alignment - get resource alignment specified by user.
4174 * @dev: the PCI device to get
4176 * RETURNS: Resource alignment if it is specified.
4177 * Zero if it is not specified.
4179 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4181 int seg, bus, slot, func, align_order, count;
4182 resource_size_t align = 0;
4183 char *p;
4185 spin_lock(&resource_alignment_lock);
4186 p = resource_alignment_param;
4187 while (*p) {
4188 count = 0;
4189 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4190 p[count] == '@') {
4191 p += count + 1;
4192 } else {
4193 align_order = -1;
4195 if (sscanf(p, "%x:%x:%x.%x%n",
4196 &seg, &bus, &slot, &func, &count) != 4) {
4197 seg = 0;
4198 if (sscanf(p, "%x:%x.%x%n",
4199 &bus, &slot, &func, &count) != 3) {
4200 /* Invalid format */
4201 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4203 break;
4206 p += count;
4207 if (seg == pci_domain_nr(dev->bus) &&
4208 bus == dev->bus->number &&
4209 slot == PCI_SLOT(dev->devfn) &&
4210 func == PCI_FUNC(dev->devfn)) {
4211 if (align_order == -1) {
4212 align = PAGE_SIZE;
4213 } else {
4214 align = 1 << align_order;
4216 /* Found */
4217 break;
4219 if (*p != ';' && *p != ',') {
4220 /* End of param or invalid format */
4221 break;
4223 p++;
4225 spin_unlock(&resource_alignment_lock);
4226 return align;
4230 * This function disables memory decoding and releases memory resources
4231 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4232 * It also rounds up size to specified alignment.
4233 * Later on, the kernel will assign page-aligned memory resource back
4234 * to the device.
4236 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4238 int i;
4239 struct resource *r;
4240 resource_size_t align, size;
4241 u16 command;
4243 /* check if specified PCI is target device to reassign */
4244 align = pci_specified_resource_alignment(dev);
4245 if (!align)
4246 return;
4248 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4249 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4250 dev_warn(&dev->dev,
4251 "Can't reassign resources to host bridge.\n");
4252 return;
4255 dev_info(&dev->dev,
4256 "Disabling memory decoding and releasing memory resources.\n");
4257 pci_read_config_word(dev, PCI_COMMAND, &command);
4258 command &= ~PCI_COMMAND_MEMORY;
4259 pci_write_config_word(dev, PCI_COMMAND, command);
4261 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4262 r = &dev->resource[i];
4263 if (!(r->flags & IORESOURCE_MEM))
4264 continue;
4265 size = resource_size(r);
4266 if (size < align) {
4267 size = align;
4268 dev_info(&dev->dev,
4269 "Rounding up size of resource #%d to %#llx.\n",
4270 i, (unsigned long long)size);
4272 r->end = size - 1;
4273 r->start = 0;
4275 /* Need to disable bridge's resource window,
4276 * to enable the kernel to reassign new resource
4277 * window later on.
4279 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4280 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4281 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4282 r = &dev->resource[i];
4283 if (!(r->flags & IORESOURCE_MEM))
4284 continue;
4285 r->end = resource_size(r) - 1;
4286 r->start = 0;
4288 pci_disable_bridge_window(dev);
4292 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4294 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4295 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4296 spin_lock(&resource_alignment_lock);
4297 strncpy(resource_alignment_param, buf, count);
4298 resource_alignment_param[count] = '\0';
4299 spin_unlock(&resource_alignment_lock);
4300 return count;
4303 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4305 size_t count;
4306 spin_lock(&resource_alignment_lock);
4307 count = snprintf(buf, size, "%s", resource_alignment_param);
4308 spin_unlock(&resource_alignment_lock);
4309 return count;
4312 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4314 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4317 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4318 const char *buf, size_t count)
4320 return pci_set_resource_alignment_param(buf, count);
4323 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4324 pci_resource_alignment_store);
4326 static int __init pci_resource_alignment_sysfs_init(void)
4328 return bus_create_file(&pci_bus_type,
4329 &bus_attr_resource_alignment);
4332 late_initcall(pci_resource_alignment_sysfs_init);
4334 static void pci_no_domains(void)
4336 #ifdef CONFIG_PCI_DOMAINS
4337 pci_domains_supported = 0;
4338 #endif
4342 * pci_ext_cfg_avail - can we access extended PCI config space?
4344 * Returns 1 if we can access PCI extended config space (offsets
4345 * greater than 0xff). This is the default implementation. Architecture
4346 * implementations can override this.
4348 int __weak pci_ext_cfg_avail(void)
4350 return 1;
4353 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4356 EXPORT_SYMBOL(pci_fixup_cardbus);
4358 static int __init pci_setup(char *str)
4360 while (str) {
4361 char *k = strchr(str, ',');
4362 if (k)
4363 *k++ = 0;
4364 if (*str && (str = pcibios_setup(str)) && *str) {
4365 if (!strcmp(str, "nomsi")) {
4366 pci_no_msi();
4367 } else if (!strcmp(str, "noaer")) {
4368 pci_no_aer();
4369 } else if (!strncmp(str, "realloc=", 8)) {
4370 pci_realloc_get_opt(str + 8);
4371 } else if (!strncmp(str, "realloc", 7)) {
4372 pci_realloc_get_opt("on");
4373 } else if (!strcmp(str, "nodomains")) {
4374 pci_no_domains();
4375 } else if (!strncmp(str, "noari", 5)) {
4376 pcie_ari_disabled = true;
4377 } else if (!strncmp(str, "cbiosize=", 9)) {
4378 pci_cardbus_io_size = memparse(str + 9, &str);
4379 } else if (!strncmp(str, "cbmemsize=", 10)) {
4380 pci_cardbus_mem_size = memparse(str + 10, &str);
4381 } else if (!strncmp(str, "resource_alignment=", 19)) {
4382 pci_set_resource_alignment_param(str + 19,
4383 strlen(str + 19));
4384 } else if (!strncmp(str, "ecrc=", 5)) {
4385 pcie_ecrc_get_policy(str + 5);
4386 } else if (!strncmp(str, "hpiosize=", 9)) {
4387 pci_hotplug_io_size = memparse(str + 9, &str);
4388 } else if (!strncmp(str, "hpmemsize=", 10)) {
4389 pci_hotplug_mem_size = memparse(str + 10, &str);
4390 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4391 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4392 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4393 pcie_bus_config = PCIE_BUS_SAFE;
4394 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4395 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4396 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4397 pcie_bus_config = PCIE_BUS_PEER2PEER;
4398 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4399 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4400 } else {
4401 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4402 str);
4405 str = k;
4407 return 0;
4409 early_param("pci", pci_setup);
4411 EXPORT_SYMBOL(pci_reenable_device);
4412 EXPORT_SYMBOL(pci_enable_device_io);
4413 EXPORT_SYMBOL(pci_enable_device_mem);
4414 EXPORT_SYMBOL(pci_enable_device);
4415 EXPORT_SYMBOL(pcim_enable_device);
4416 EXPORT_SYMBOL(pcim_pin_device);
4417 EXPORT_SYMBOL(pci_disable_device);
4418 EXPORT_SYMBOL(pci_find_capability);
4419 EXPORT_SYMBOL(pci_bus_find_capability);
4420 EXPORT_SYMBOL(pci_release_regions);
4421 EXPORT_SYMBOL(pci_request_regions);
4422 EXPORT_SYMBOL(pci_request_regions_exclusive);
4423 EXPORT_SYMBOL(pci_release_region);
4424 EXPORT_SYMBOL(pci_request_region);
4425 EXPORT_SYMBOL(pci_request_region_exclusive);
4426 EXPORT_SYMBOL(pci_release_selected_regions);
4427 EXPORT_SYMBOL(pci_request_selected_regions);
4428 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4429 EXPORT_SYMBOL(pci_set_master);
4430 EXPORT_SYMBOL(pci_clear_master);
4431 EXPORT_SYMBOL(pci_set_mwi);
4432 EXPORT_SYMBOL(pci_try_set_mwi);
4433 EXPORT_SYMBOL(pci_clear_mwi);
4434 EXPORT_SYMBOL_GPL(pci_intx);
4435 EXPORT_SYMBOL(pci_assign_resource);
4436 EXPORT_SYMBOL(pci_find_parent_resource);
4437 EXPORT_SYMBOL(pci_select_bars);
4439 EXPORT_SYMBOL(pci_set_power_state);
4440 EXPORT_SYMBOL(pci_save_state);
4441 EXPORT_SYMBOL(pci_restore_state);
4442 EXPORT_SYMBOL(pci_pme_capable);
4443 EXPORT_SYMBOL(pci_pme_active);
4444 EXPORT_SYMBOL(pci_wake_from_d3);
4445 EXPORT_SYMBOL(pci_target_state);
4446 EXPORT_SYMBOL(pci_prepare_to_sleep);
4447 EXPORT_SYMBOL(pci_back_from_sleep);
4448 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);