arm/arm64: KVM: use __GFP_ZERO not memset() to get zeroed pages
[linux-2.6/btrfs-unstable.git] / arch / arm / kvm / mmu.c
blob8f0c7a4c49fc88299b2a15068d836a76493c9104
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
32 #include "trace.h"
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
45 #define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
49 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
52 * This function also gets called when dealing with HYP page
53 * tables. As HYP doesn't have an associated struct kvm (and
54 * the HYP page tables are fairly static), we don't do
55 * anything there.
57 if (kvm)
58 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
61 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
62 int min, int max)
64 void *page;
66 BUG_ON(max > KVM_NR_MEM_OBJS);
67 if (cache->nobjs >= min)
68 return 0;
69 while (cache->nobjs < max) {
70 page = (void *)__get_free_page(PGALLOC_GFP);
71 if (!page)
72 return -ENOMEM;
73 cache->objects[cache->nobjs++] = page;
75 return 0;
78 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
80 while (mc->nobjs)
81 free_page((unsigned long)mc->objects[--mc->nobjs]);
84 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
86 void *p;
88 BUG_ON(!mc || !mc->nobjs);
89 p = mc->objects[--mc->nobjs];
90 return p;
93 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
95 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
96 pgd_clear(pgd);
97 kvm_tlb_flush_vmid_ipa(kvm, addr);
98 pud_free(NULL, pud_table);
99 put_page(virt_to_page(pgd));
102 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
104 pmd_t *pmd_table = pmd_offset(pud, 0);
105 VM_BUG_ON(pud_huge(*pud));
106 pud_clear(pud);
107 kvm_tlb_flush_vmid_ipa(kvm, addr);
108 pmd_free(NULL, pmd_table);
109 put_page(virt_to_page(pud));
112 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
114 pte_t *pte_table = pte_offset_kernel(pmd, 0);
115 VM_BUG_ON(kvm_pmd_huge(*pmd));
116 pmd_clear(pmd);
117 kvm_tlb_flush_vmid_ipa(kvm, addr);
118 pte_free_kernel(NULL, pte_table);
119 put_page(virt_to_page(pmd));
122 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
123 phys_addr_t addr, phys_addr_t end)
125 phys_addr_t start_addr = addr;
126 pte_t *pte, *start_pte;
128 start_pte = pte = pte_offset_kernel(pmd, addr);
129 do {
130 if (!pte_none(*pte)) {
131 kvm_set_pte(pte, __pte(0));
132 put_page(virt_to_page(pte));
133 kvm_tlb_flush_vmid_ipa(kvm, addr);
135 } while (pte++, addr += PAGE_SIZE, addr != end);
137 if (kvm_pte_table_empty(start_pte))
138 clear_pmd_entry(kvm, pmd, start_addr);
141 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
142 phys_addr_t addr, phys_addr_t end)
144 phys_addr_t next, start_addr = addr;
145 pmd_t *pmd, *start_pmd;
147 start_pmd = pmd = pmd_offset(pud, addr);
148 do {
149 next = kvm_pmd_addr_end(addr, end);
150 if (!pmd_none(*pmd)) {
151 if (kvm_pmd_huge(*pmd)) {
152 pmd_clear(pmd);
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 put_page(virt_to_page(pmd));
155 } else {
156 unmap_ptes(kvm, pmd, addr, next);
159 } while (pmd++, addr = next, addr != end);
161 if (kvm_pmd_table_empty(start_pmd))
162 clear_pud_entry(kvm, pud, start_addr);
165 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
166 phys_addr_t addr, phys_addr_t end)
168 phys_addr_t next, start_addr = addr;
169 pud_t *pud, *start_pud;
171 start_pud = pud = pud_offset(pgd, addr);
172 do {
173 next = kvm_pud_addr_end(addr, end);
174 if (!pud_none(*pud)) {
175 if (pud_huge(*pud)) {
176 pud_clear(pud);
177 kvm_tlb_flush_vmid_ipa(kvm, addr);
178 put_page(virt_to_page(pud));
179 } else {
180 unmap_pmds(kvm, pud, addr, next);
183 } while (pud++, addr = next, addr != end);
185 if (kvm_pud_table_empty(start_pud))
186 clear_pgd_entry(kvm, pgd, start_addr);
190 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
191 phys_addr_t start, u64 size)
193 pgd_t *pgd;
194 phys_addr_t addr = start, end = start + size;
195 phys_addr_t next;
197 pgd = pgdp + pgd_index(addr);
198 do {
199 next = kvm_pgd_addr_end(addr, end);
200 unmap_puds(kvm, pgd, addr, next);
201 } while (pgd++, addr = next, addr != end);
204 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
205 phys_addr_t addr, phys_addr_t end)
207 pte_t *pte;
209 pte = pte_offset_kernel(pmd, addr);
210 do {
211 if (!pte_none(*pte)) {
212 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
213 kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
215 } while (pte++, addr += PAGE_SIZE, addr != end);
218 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
219 phys_addr_t addr, phys_addr_t end)
221 pmd_t *pmd;
222 phys_addr_t next;
224 pmd = pmd_offset(pud, addr);
225 do {
226 next = kvm_pmd_addr_end(addr, end);
227 if (!pmd_none(*pmd)) {
228 if (kvm_pmd_huge(*pmd)) {
229 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
230 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
231 } else {
232 stage2_flush_ptes(kvm, pmd, addr, next);
235 } while (pmd++, addr = next, addr != end);
238 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
239 phys_addr_t addr, phys_addr_t end)
241 pud_t *pud;
242 phys_addr_t next;
244 pud = pud_offset(pgd, addr);
245 do {
246 next = kvm_pud_addr_end(addr, end);
247 if (!pud_none(*pud)) {
248 if (pud_huge(*pud)) {
249 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
250 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
251 } else {
252 stage2_flush_pmds(kvm, pud, addr, next);
255 } while (pud++, addr = next, addr != end);
258 static void stage2_flush_memslot(struct kvm *kvm,
259 struct kvm_memory_slot *memslot)
261 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
262 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
263 phys_addr_t next;
264 pgd_t *pgd;
266 pgd = kvm->arch.pgd + pgd_index(addr);
267 do {
268 next = kvm_pgd_addr_end(addr, end);
269 stage2_flush_puds(kvm, pgd, addr, next);
270 } while (pgd++, addr = next, addr != end);
274 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
275 * @kvm: The struct kvm pointer
277 * Go through the stage 2 page tables and invalidate any cache lines
278 * backing memory already mapped to the VM.
280 void stage2_flush_vm(struct kvm *kvm)
282 struct kvm_memslots *slots;
283 struct kvm_memory_slot *memslot;
284 int idx;
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
289 slots = kvm_memslots(kvm);
290 kvm_for_each_memslot(memslot, slots)
291 stage2_flush_memslot(kvm, memslot);
293 spin_unlock(&kvm->mmu_lock);
294 srcu_read_unlock(&kvm->srcu, idx);
298 * free_boot_hyp_pgd - free HYP boot page tables
300 * Free the HYP boot page tables. The bounce page is also freed.
302 void free_boot_hyp_pgd(void)
304 mutex_lock(&kvm_hyp_pgd_mutex);
306 if (boot_hyp_pgd) {
307 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
308 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
309 free_pages((unsigned long)boot_hyp_pgd, pgd_order);
310 boot_hyp_pgd = NULL;
313 if (hyp_pgd)
314 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
316 free_page((unsigned long)init_bounce_page);
317 init_bounce_page = NULL;
319 mutex_unlock(&kvm_hyp_pgd_mutex);
323 * free_hyp_pgds - free Hyp-mode page tables
325 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
326 * therefore contains either mappings in the kernel memory area (above
327 * PAGE_OFFSET), or device mappings in the vmalloc range (from
328 * VMALLOC_START to VMALLOC_END).
330 * boot_hyp_pgd should only map two pages for the init code.
332 void free_hyp_pgds(void)
334 unsigned long addr;
336 free_boot_hyp_pgd();
338 mutex_lock(&kvm_hyp_pgd_mutex);
340 if (hyp_pgd) {
341 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
342 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
343 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
344 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
346 free_pages((unsigned long)hyp_pgd, pgd_order);
347 hyp_pgd = NULL;
350 mutex_unlock(&kvm_hyp_pgd_mutex);
353 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
354 unsigned long end, unsigned long pfn,
355 pgprot_t prot)
357 pte_t *pte;
358 unsigned long addr;
360 addr = start;
361 do {
362 pte = pte_offset_kernel(pmd, addr);
363 kvm_set_pte(pte, pfn_pte(pfn, prot));
364 get_page(virt_to_page(pte));
365 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
366 pfn++;
367 } while (addr += PAGE_SIZE, addr != end);
370 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
371 unsigned long end, unsigned long pfn,
372 pgprot_t prot)
374 pmd_t *pmd;
375 pte_t *pte;
376 unsigned long addr, next;
378 addr = start;
379 do {
380 pmd = pmd_offset(pud, addr);
382 BUG_ON(pmd_sect(*pmd));
384 if (pmd_none(*pmd)) {
385 pte = pte_alloc_one_kernel(NULL, addr);
386 if (!pte) {
387 kvm_err("Cannot allocate Hyp pte\n");
388 return -ENOMEM;
390 pmd_populate_kernel(NULL, pmd, pte);
391 get_page(virt_to_page(pmd));
392 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
395 next = pmd_addr_end(addr, end);
397 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
398 pfn += (next - addr) >> PAGE_SHIFT;
399 } while (addr = next, addr != end);
401 return 0;
404 static int __create_hyp_mappings(pgd_t *pgdp,
405 unsigned long start, unsigned long end,
406 unsigned long pfn, pgprot_t prot)
408 pgd_t *pgd;
409 pud_t *pud;
410 pmd_t *pmd;
411 unsigned long addr, next;
412 int err = 0;
414 mutex_lock(&kvm_hyp_pgd_mutex);
415 addr = start & PAGE_MASK;
416 end = PAGE_ALIGN(end);
417 do {
418 pgd = pgdp + pgd_index(addr);
419 pud = pud_offset(pgd, addr);
421 if (pud_none_or_clear_bad(pud)) {
422 pmd = pmd_alloc_one(NULL, addr);
423 if (!pmd) {
424 kvm_err("Cannot allocate Hyp pmd\n");
425 err = -ENOMEM;
426 goto out;
428 pud_populate(NULL, pud, pmd);
429 get_page(virt_to_page(pud));
430 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
433 next = pgd_addr_end(addr, end);
434 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
435 if (err)
436 goto out;
437 pfn += (next - addr) >> PAGE_SHIFT;
438 } while (addr = next, addr != end);
439 out:
440 mutex_unlock(&kvm_hyp_pgd_mutex);
441 return err;
444 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
446 if (!is_vmalloc_addr(kaddr)) {
447 BUG_ON(!virt_addr_valid(kaddr));
448 return __pa(kaddr);
449 } else {
450 return page_to_phys(vmalloc_to_page(kaddr)) +
451 offset_in_page(kaddr);
456 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
457 * @from: The virtual kernel start address of the range
458 * @to: The virtual kernel end address of the range (exclusive)
460 * The same virtual address as the kernel virtual address is also used
461 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
462 * physical pages.
464 int create_hyp_mappings(void *from, void *to)
466 phys_addr_t phys_addr;
467 unsigned long virt_addr;
468 unsigned long start = KERN_TO_HYP((unsigned long)from);
469 unsigned long end = KERN_TO_HYP((unsigned long)to);
471 start = start & PAGE_MASK;
472 end = PAGE_ALIGN(end);
474 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
475 int err;
477 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
478 err = __create_hyp_mappings(hyp_pgd, virt_addr,
479 virt_addr + PAGE_SIZE,
480 __phys_to_pfn(phys_addr),
481 PAGE_HYP);
482 if (err)
483 return err;
486 return 0;
490 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
491 * @from: The kernel start VA of the range
492 * @to: The kernel end VA of the range (exclusive)
493 * @phys_addr: The physical start address which gets mapped
495 * The resulting HYP VA is the same as the kernel VA, modulo
496 * HYP_PAGE_OFFSET.
498 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
500 unsigned long start = KERN_TO_HYP((unsigned long)from);
501 unsigned long end = KERN_TO_HYP((unsigned long)to);
503 /* Check for a valid kernel IO mapping */
504 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
505 return -EINVAL;
507 return __create_hyp_mappings(hyp_pgd, start, end,
508 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
512 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
513 * @kvm: The KVM struct pointer for the VM.
515 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
516 * support either full 40-bit input addresses or limited to 32-bit input
517 * addresses). Clears the allocated pages.
519 * Note we don't need locking here as this is only called when the VM is
520 * created, which can only be done once.
522 int kvm_alloc_stage2_pgd(struct kvm *kvm)
524 pgd_t *pgd;
526 if (kvm->arch.pgd != NULL) {
527 kvm_err("kvm_arch already initialized?\n");
528 return -EINVAL;
531 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
532 if (!pgd)
533 return -ENOMEM;
535 kvm_clean_pgd(pgd);
536 kvm->arch.pgd = pgd;
538 return 0;
542 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
543 * @kvm: The VM pointer
544 * @start: The intermediate physical base address of the range to unmap
545 * @size: The size of the area to unmap
547 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
548 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
549 * destroying the VM), otherwise another faulting VCPU may come in and mess
550 * with things behind our backs.
552 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
554 unmap_range(kvm, kvm->arch.pgd, start, size);
558 * kvm_free_stage2_pgd - free all stage-2 tables
559 * @kvm: The KVM struct pointer for the VM.
561 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
562 * underlying level-2 and level-3 tables before freeing the actual level-1 table
563 * and setting the struct pointer to NULL.
565 * Note we don't need locking here as this is only called when the VM is
566 * destroyed, which can only be done once.
568 void kvm_free_stage2_pgd(struct kvm *kvm)
570 if (kvm->arch.pgd == NULL)
571 return;
573 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
574 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
575 kvm->arch.pgd = NULL;
578 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
579 phys_addr_t addr)
581 pgd_t *pgd;
582 pud_t *pud;
583 pmd_t *pmd;
585 pgd = kvm->arch.pgd + pgd_index(addr);
586 pud = pud_offset(pgd, addr);
587 if (pud_none(*pud)) {
588 if (!cache)
589 return NULL;
590 pmd = mmu_memory_cache_alloc(cache);
591 pud_populate(NULL, pud, pmd);
592 get_page(virt_to_page(pud));
595 return pmd_offset(pud, addr);
598 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
599 *cache, phys_addr_t addr, const pmd_t *new_pmd)
601 pmd_t *pmd, old_pmd;
603 pmd = stage2_get_pmd(kvm, cache, addr);
604 VM_BUG_ON(!pmd);
607 * Mapping in huge pages should only happen through a fault. If a
608 * page is merged into a transparent huge page, the individual
609 * subpages of that huge page should be unmapped through MMU
610 * notifiers before we get here.
612 * Merging of CompoundPages is not supported; they should become
613 * splitting first, unmapped, merged, and mapped back in on-demand.
615 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
617 old_pmd = *pmd;
618 kvm_set_pmd(pmd, *new_pmd);
619 if (pmd_present(old_pmd))
620 kvm_tlb_flush_vmid_ipa(kvm, addr);
621 else
622 get_page(virt_to_page(pmd));
623 return 0;
626 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
627 phys_addr_t addr, const pte_t *new_pte, bool iomap)
629 pmd_t *pmd;
630 pte_t *pte, old_pte;
632 /* Create stage-2 page table mapping - Level 1 */
633 pmd = stage2_get_pmd(kvm, cache, addr);
634 if (!pmd) {
636 * Ignore calls from kvm_set_spte_hva for unallocated
637 * address ranges.
639 return 0;
642 /* Create stage-2 page mappings - Level 2 */
643 if (pmd_none(*pmd)) {
644 if (!cache)
645 return 0; /* ignore calls from kvm_set_spte_hva */
646 pte = mmu_memory_cache_alloc(cache);
647 kvm_clean_pte(pte);
648 pmd_populate_kernel(NULL, pmd, pte);
649 get_page(virt_to_page(pmd));
652 pte = pte_offset_kernel(pmd, addr);
654 if (iomap && pte_present(*pte))
655 return -EFAULT;
657 /* Create 2nd stage page table mapping - Level 3 */
658 old_pte = *pte;
659 kvm_set_pte(pte, *new_pte);
660 if (pte_present(old_pte))
661 kvm_tlb_flush_vmid_ipa(kvm, addr);
662 else
663 get_page(virt_to_page(pte));
665 return 0;
669 * kvm_phys_addr_ioremap - map a device range to guest IPA
671 * @kvm: The KVM pointer
672 * @guest_ipa: The IPA at which to insert the mapping
673 * @pa: The physical address of the device
674 * @size: The size of the mapping
676 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
677 phys_addr_t pa, unsigned long size)
679 phys_addr_t addr, end;
680 int ret = 0;
681 unsigned long pfn;
682 struct kvm_mmu_memory_cache cache = { 0, };
684 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
685 pfn = __phys_to_pfn(pa);
687 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
688 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
690 ret = mmu_topup_memory_cache(&cache, 2, 2);
691 if (ret)
692 goto out;
693 spin_lock(&kvm->mmu_lock);
694 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
695 spin_unlock(&kvm->mmu_lock);
696 if (ret)
697 goto out;
699 pfn++;
702 out:
703 mmu_free_memory_cache(&cache);
704 return ret;
707 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
709 pfn_t pfn = *pfnp;
710 gfn_t gfn = *ipap >> PAGE_SHIFT;
712 if (PageTransCompound(pfn_to_page(pfn))) {
713 unsigned long mask;
715 * The address we faulted on is backed by a transparent huge
716 * page. However, because we map the compound huge page and
717 * not the individual tail page, we need to transfer the
718 * refcount to the head page. We have to be careful that the
719 * THP doesn't start to split while we are adjusting the
720 * refcounts.
722 * We are sure this doesn't happen, because mmu_notifier_retry
723 * was successful and we are holding the mmu_lock, so if this
724 * THP is trying to split, it will be blocked in the mmu
725 * notifier before touching any of the pages, specifically
726 * before being able to call __split_huge_page_refcount().
728 * We can therefore safely transfer the refcount from PG_tail
729 * to PG_head and switch the pfn from a tail page to the head
730 * page accordingly.
732 mask = PTRS_PER_PMD - 1;
733 VM_BUG_ON((gfn & mask) != (pfn & mask));
734 if (pfn & mask) {
735 *ipap &= PMD_MASK;
736 kvm_release_pfn_clean(pfn);
737 pfn &= ~mask;
738 kvm_get_pfn(pfn);
739 *pfnp = pfn;
742 return true;
745 return false;
748 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
750 if (kvm_vcpu_trap_is_iabt(vcpu))
751 return false;
753 return kvm_vcpu_dabt_iswrite(vcpu);
756 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
757 struct kvm_memory_slot *memslot, unsigned long hva,
758 unsigned long fault_status)
760 int ret;
761 bool write_fault, writable, hugetlb = false, force_pte = false;
762 unsigned long mmu_seq;
763 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
764 struct kvm *kvm = vcpu->kvm;
765 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
766 struct vm_area_struct *vma;
767 pfn_t pfn;
768 pgprot_t mem_type = PAGE_S2;
770 write_fault = kvm_is_write_fault(vcpu);
771 if (fault_status == FSC_PERM && !write_fault) {
772 kvm_err("Unexpected L2 read permission error\n");
773 return -EFAULT;
776 /* Let's check if we will get back a huge page backed by hugetlbfs */
777 down_read(&current->mm->mmap_sem);
778 vma = find_vma_intersection(current->mm, hva, hva + 1);
779 if (is_vm_hugetlb_page(vma)) {
780 hugetlb = true;
781 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
782 } else {
784 * Pages belonging to memslots that don't have the same
785 * alignment for userspace and IPA cannot be mapped using
786 * block descriptors even if the pages belong to a THP for
787 * the process, because the stage-2 block descriptor will
788 * cover more than a single THP and we loose atomicity for
789 * unmapping, updates, and splits of the THP or other pages
790 * in the stage-2 block range.
792 if ((memslot->userspace_addr & ~PMD_MASK) !=
793 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
794 force_pte = true;
796 up_read(&current->mm->mmap_sem);
798 /* We need minimum second+third level pages */
799 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
800 if (ret)
801 return ret;
803 mmu_seq = vcpu->kvm->mmu_notifier_seq;
805 * Ensure the read of mmu_notifier_seq happens before we call
806 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
807 * the page we just got a reference to gets unmapped before we have a
808 * chance to grab the mmu_lock, which ensure that if the page gets
809 * unmapped afterwards, the call to kvm_unmap_hva will take it away
810 * from us again properly. This smp_rmb() interacts with the smp_wmb()
811 * in kvm_mmu_notifier_invalidate_<page|range_end>.
813 smp_rmb();
815 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
816 if (is_error_pfn(pfn))
817 return -EFAULT;
819 if (kvm_is_mmio_pfn(pfn))
820 mem_type = PAGE_S2_DEVICE;
822 spin_lock(&kvm->mmu_lock);
823 if (mmu_notifier_retry(kvm, mmu_seq))
824 goto out_unlock;
825 if (!hugetlb && !force_pte)
826 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
828 if (hugetlb) {
829 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
830 new_pmd = pmd_mkhuge(new_pmd);
831 if (writable) {
832 kvm_set_s2pmd_writable(&new_pmd);
833 kvm_set_pfn_dirty(pfn);
835 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
836 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
837 } else {
838 pte_t new_pte = pfn_pte(pfn, mem_type);
839 if (writable) {
840 kvm_set_s2pte_writable(&new_pte);
841 kvm_set_pfn_dirty(pfn);
843 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
844 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
845 mem_type == PAGE_S2_DEVICE);
849 out_unlock:
850 spin_unlock(&kvm->mmu_lock);
851 kvm_release_pfn_clean(pfn);
852 return ret;
856 * kvm_handle_guest_abort - handles all 2nd stage aborts
857 * @vcpu: the VCPU pointer
858 * @run: the kvm_run structure
860 * Any abort that gets to the host is almost guaranteed to be caused by a
861 * missing second stage translation table entry, which can mean that either the
862 * guest simply needs more memory and we must allocate an appropriate page or it
863 * can mean that the guest tried to access I/O memory, which is emulated by user
864 * space. The distinction is based on the IPA causing the fault and whether this
865 * memory region has been registered as standard RAM by user space.
867 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
869 unsigned long fault_status;
870 phys_addr_t fault_ipa;
871 struct kvm_memory_slot *memslot;
872 unsigned long hva;
873 bool is_iabt, write_fault, writable;
874 gfn_t gfn;
875 int ret, idx;
877 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
878 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
880 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
881 kvm_vcpu_get_hfar(vcpu), fault_ipa);
883 /* Check the stage-2 fault is trans. fault or write fault */
884 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
885 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
886 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
887 kvm_vcpu_trap_get_class(vcpu),
888 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
889 (unsigned long)kvm_vcpu_get_hsr(vcpu));
890 return -EFAULT;
893 idx = srcu_read_lock(&vcpu->kvm->srcu);
895 gfn = fault_ipa >> PAGE_SHIFT;
896 memslot = gfn_to_memslot(vcpu->kvm, gfn);
897 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
898 write_fault = kvm_is_write_fault(vcpu);
899 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
900 if (is_iabt) {
901 /* Prefetch Abort on I/O address */
902 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
903 ret = 1;
904 goto out_unlock;
908 * The IPA is reported as [MAX:12], so we need to
909 * complement it with the bottom 12 bits from the
910 * faulting VA. This is always 12 bits, irrespective
911 * of the page size.
913 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
914 ret = io_mem_abort(vcpu, run, fault_ipa);
915 goto out_unlock;
918 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
919 if (ret == 0)
920 ret = 1;
921 out_unlock:
922 srcu_read_unlock(&vcpu->kvm->srcu, idx);
923 return ret;
926 static void handle_hva_to_gpa(struct kvm *kvm,
927 unsigned long start,
928 unsigned long end,
929 void (*handler)(struct kvm *kvm,
930 gpa_t gpa, void *data),
931 void *data)
933 struct kvm_memslots *slots;
934 struct kvm_memory_slot *memslot;
936 slots = kvm_memslots(kvm);
938 /* we only care about the pages that the guest sees */
939 kvm_for_each_memslot(memslot, slots) {
940 unsigned long hva_start, hva_end;
941 gfn_t gfn, gfn_end;
943 hva_start = max(start, memslot->userspace_addr);
944 hva_end = min(end, memslot->userspace_addr +
945 (memslot->npages << PAGE_SHIFT));
946 if (hva_start >= hva_end)
947 continue;
950 * {gfn(page) | page intersects with [hva_start, hva_end)} =
951 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
953 gfn = hva_to_gfn_memslot(hva_start, memslot);
954 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
956 for (; gfn < gfn_end; ++gfn) {
957 gpa_t gpa = gfn << PAGE_SHIFT;
958 handler(kvm, gpa, data);
963 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
965 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
968 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
970 unsigned long end = hva + PAGE_SIZE;
972 if (!kvm->arch.pgd)
973 return 0;
975 trace_kvm_unmap_hva(hva);
976 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
977 return 0;
980 int kvm_unmap_hva_range(struct kvm *kvm,
981 unsigned long start, unsigned long end)
983 if (!kvm->arch.pgd)
984 return 0;
986 trace_kvm_unmap_hva_range(start, end);
987 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
988 return 0;
991 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
993 pte_t *pte = (pte_t *)data;
995 stage2_set_pte(kvm, NULL, gpa, pte, false);
999 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1001 unsigned long end = hva + PAGE_SIZE;
1002 pte_t stage2_pte;
1004 if (!kvm->arch.pgd)
1005 return;
1007 trace_kvm_set_spte_hva(hva);
1008 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1009 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1012 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1014 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1017 phys_addr_t kvm_mmu_get_httbr(void)
1019 return virt_to_phys(hyp_pgd);
1022 phys_addr_t kvm_mmu_get_boot_httbr(void)
1024 return virt_to_phys(boot_hyp_pgd);
1027 phys_addr_t kvm_get_idmap_vector(void)
1029 return hyp_idmap_vector;
1032 int kvm_mmu_init(void)
1034 int err;
1036 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1037 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1038 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1040 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1042 * Our init code is crossing a page boundary. Allocate
1043 * a bounce page, copy the code over and use that.
1045 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1046 phys_addr_t phys_base;
1048 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1049 if (!init_bounce_page) {
1050 kvm_err("Couldn't allocate HYP init bounce page\n");
1051 err = -ENOMEM;
1052 goto out;
1055 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1057 * Warning: the code we just copied to the bounce page
1058 * must be flushed to the point of coherency.
1059 * Otherwise, the data may be sitting in L2, and HYP
1060 * mode won't be able to observe it as it runs with
1061 * caches off at that point.
1063 kvm_flush_dcache_to_poc(init_bounce_page, len);
1065 phys_base = kvm_virt_to_phys(init_bounce_page);
1066 hyp_idmap_vector += phys_base - hyp_idmap_start;
1067 hyp_idmap_start = phys_base;
1068 hyp_idmap_end = phys_base + len;
1070 kvm_info("Using HYP init bounce page @%lx\n",
1071 (unsigned long)phys_base);
1074 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1075 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1077 if (!hyp_pgd || !boot_hyp_pgd) {
1078 kvm_err("Hyp mode PGD not allocated\n");
1079 err = -ENOMEM;
1080 goto out;
1083 /* Create the idmap in the boot page tables */
1084 err = __create_hyp_mappings(boot_hyp_pgd,
1085 hyp_idmap_start, hyp_idmap_end,
1086 __phys_to_pfn(hyp_idmap_start),
1087 PAGE_HYP);
1089 if (err) {
1090 kvm_err("Failed to idmap %lx-%lx\n",
1091 hyp_idmap_start, hyp_idmap_end);
1092 goto out;
1095 /* Map the very same page at the trampoline VA */
1096 err = __create_hyp_mappings(boot_hyp_pgd,
1097 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1098 __phys_to_pfn(hyp_idmap_start),
1099 PAGE_HYP);
1100 if (err) {
1101 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1102 TRAMPOLINE_VA);
1103 goto out;
1106 /* Map the same page again into the runtime page tables */
1107 err = __create_hyp_mappings(hyp_pgd,
1108 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1109 __phys_to_pfn(hyp_idmap_start),
1110 PAGE_HYP);
1111 if (err) {
1112 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1113 TRAMPOLINE_VA);
1114 goto out;
1117 return 0;
1118 out:
1119 free_hyp_pgds();
1120 return err;
1123 void kvm_arch_commit_memory_region(struct kvm *kvm,
1124 struct kvm_userspace_memory_region *mem,
1125 const struct kvm_memory_slot *old,
1126 enum kvm_mr_change change)
1128 gpa_t gpa = old->base_gfn << PAGE_SHIFT;
1129 phys_addr_t size = old->npages << PAGE_SHIFT;
1130 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1131 spin_lock(&kvm->mmu_lock);
1132 unmap_stage2_range(kvm, gpa, size);
1133 spin_unlock(&kvm->mmu_lock);
1137 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1138 struct kvm_memory_slot *memslot,
1139 struct kvm_userspace_memory_region *mem,
1140 enum kvm_mr_change change)
1142 return 0;
1145 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1146 struct kvm_memory_slot *dont)
1150 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1151 unsigned long npages)
1153 return 0;
1156 void kvm_arch_memslots_updated(struct kvm *kvm)
1160 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1164 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1165 struct kvm_memory_slot *slot)