e1000: Remove spaces after casts and function names
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000 / e1000_ethtool.c
blobf9ac9a87ffabdad68735f3a1084cd3fb12130c97
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
32 #include <asm/uaccess.h>
34 struct e1000_stats {
35 char stat_string[ETH_GSTRING_LEN];
36 int sizeof_stat;
37 int stat_offset;
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41 offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats[] = {
43 { "rx_packets", E1000_STAT(stats.gprc) },
44 { "tx_packets", E1000_STAT(stats.gptc) },
45 { "rx_bytes", E1000_STAT(stats.gorcl) },
46 { "tx_bytes", E1000_STAT(stats.gotcl) },
47 { "rx_broadcast", E1000_STAT(stats.bprc) },
48 { "tx_broadcast", E1000_STAT(stats.bptc) },
49 { "rx_multicast", E1000_STAT(stats.mprc) },
50 { "tx_multicast", E1000_STAT(stats.mptc) },
51 { "rx_errors", E1000_STAT(stats.rxerrc) },
52 { "tx_errors", E1000_STAT(stats.txerrc) },
53 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
54 { "multicast", E1000_STAT(stats.mprc) },
55 { "collisions", E1000_STAT(stats.colc) },
56 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
57 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
58 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
59 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
60 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
61 { "rx_missed_errors", E1000_STAT(stats.mpc) },
62 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
63 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
64 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
65 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
66 { "tx_window_errors", E1000_STAT(stats.latecol) },
67 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
68 { "tx_deferred_ok", E1000_STAT(stats.dc) },
69 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
70 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
71 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
72 { "tx_restart_queue", E1000_STAT(restart_queue) },
73 { "rx_long_length_errors", E1000_STAT(stats.roc) },
74 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
75 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
76 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
77 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
78 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
79 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
80 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
81 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
82 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
83 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
84 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
85 { "rx_header_split", E1000_STAT(rx_hdr_split) },
86 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
87 { "tx_smbus", E1000_STAT(stats.mgptc) },
88 { "rx_smbus", E1000_STAT(stats.mgprc) },
89 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
92 #define E1000_QUEUE_STATS_LEN 0
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
100 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
102 static int e1000_get_settings(struct net_device *netdev,
103 struct ethtool_cmd *ecmd)
105 struct e1000_adapter *adapter = netdev_priv(netdev);
106 struct e1000_hw *hw = &adapter->hw;
108 if (hw->media_type == e1000_media_type_copper) {
110 ecmd->supported = (SUPPORTED_10baseT_Half |
111 SUPPORTED_10baseT_Full |
112 SUPPORTED_100baseT_Half |
113 SUPPORTED_100baseT_Full |
114 SUPPORTED_1000baseT_Full|
115 SUPPORTED_Autoneg |
116 SUPPORTED_TP);
117 if (hw->phy_type == e1000_phy_ife)
118 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
119 ecmd->advertising = ADVERTISED_TP;
121 if (hw->autoneg == 1) {
122 ecmd->advertising |= ADVERTISED_Autoneg;
123 /* the e1000 autoneg seems to match ethtool nicely */
124 ecmd->advertising |= hw->autoneg_advertised;
127 ecmd->port = PORT_TP;
128 ecmd->phy_address = hw->phy_addr;
130 if (hw->mac_type == e1000_82543)
131 ecmd->transceiver = XCVR_EXTERNAL;
132 else
133 ecmd->transceiver = XCVR_INTERNAL;
135 } else {
136 ecmd->supported = (SUPPORTED_1000baseT_Full |
137 SUPPORTED_FIBRE |
138 SUPPORTED_Autoneg);
140 ecmd->advertising = (ADVERTISED_1000baseT_Full |
141 ADVERTISED_FIBRE |
142 ADVERTISED_Autoneg);
144 ecmd->port = PORT_FIBRE;
146 if (hw->mac_type >= e1000_82545)
147 ecmd->transceiver = XCVR_INTERNAL;
148 else
149 ecmd->transceiver = XCVR_EXTERNAL;
152 if (er32(STATUS) & E1000_STATUS_LU) {
154 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155 &adapter->link_duplex);
156 ecmd->speed = adapter->link_speed;
158 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
159 * and HALF_DUPLEX != DUPLEX_HALF */
161 if (adapter->link_duplex == FULL_DUPLEX)
162 ecmd->duplex = DUPLEX_FULL;
163 else
164 ecmd->duplex = DUPLEX_HALF;
165 } else {
166 ecmd->speed = -1;
167 ecmd->duplex = -1;
170 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172 return 0;
175 static int e1000_set_settings(struct net_device *netdev,
176 struct ethtool_cmd *ecmd)
178 struct e1000_adapter *adapter = netdev_priv(netdev);
179 struct e1000_hw *hw = &adapter->hw;
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (e1000_check_phy_reset_block(hw)) {
184 DPRINTK(DRV, ERR, "Cannot change link characteristics "
185 "when SoL/IDER is active.\n");
186 return -EINVAL;
189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190 msleep(1);
192 if (ecmd->autoneg == AUTONEG_ENABLE) {
193 hw->autoneg = 1;
194 if (hw->media_type == e1000_media_type_fiber)
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->autoneg_advertised = ecmd->advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 ecmd->advertising = hw->autoneg_advertised;
203 } else
204 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__E1000_RESETTING, &adapter->flags);
206 return -EINVAL;
209 /* reset the link */
211 if (netif_running(adapter->netdev)) {
212 e1000_down(adapter);
213 e1000_up(adapter);
214 } else
215 e1000_reset(adapter);
217 clear_bit(__E1000_RESETTING, &adapter->flags);
218 return 0;
221 static void e1000_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
224 struct e1000_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
230 if (hw->fc == E1000_FC_RX_PAUSE)
231 pause->rx_pause = 1;
232 else if (hw->fc == E1000_FC_TX_PAUSE)
233 pause->tx_pause = 1;
234 else if (hw->fc == E1000_FC_FULL) {
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
240 static int e1000_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
243 struct e1000_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
247 adapter->fc_autoneg = pause->autoneg;
249 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
250 msleep(1);
252 if (pause->rx_pause && pause->tx_pause)
253 hw->fc = E1000_FC_FULL;
254 else if (pause->rx_pause && !pause->tx_pause)
255 hw->fc = E1000_FC_RX_PAUSE;
256 else if (!pause->rx_pause && pause->tx_pause)
257 hw->fc = E1000_FC_TX_PAUSE;
258 else if (!pause->rx_pause && !pause->tx_pause)
259 hw->fc = E1000_FC_NONE;
261 hw->original_fc = hw->fc;
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264 if (netif_running(adapter->netdev)) {
265 e1000_down(adapter);
266 e1000_up(adapter);
267 } else
268 e1000_reset(adapter);
269 } else
270 retval = ((hw->media_type == e1000_media_type_fiber) ?
271 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
273 clear_bit(__E1000_RESETTING, &adapter->flags);
274 return retval;
277 static u32 e1000_get_rx_csum(struct net_device *netdev)
279 struct e1000_adapter *adapter = netdev_priv(netdev);
280 return adapter->rx_csum;
283 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
285 struct e1000_adapter *adapter = netdev_priv(netdev);
286 adapter->rx_csum = data;
288 if (netif_running(netdev))
289 e1000_reinit_locked(adapter);
290 else
291 e1000_reset(adapter);
292 return 0;
295 static u32 e1000_get_tx_csum(struct net_device *netdev)
297 return (netdev->features & NETIF_F_HW_CSUM) != 0;
300 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
302 struct e1000_adapter *adapter = netdev_priv(netdev);
303 struct e1000_hw *hw = &adapter->hw;
305 if (hw->mac_type < e1000_82543) {
306 if (!data)
307 return -EINVAL;
308 return 0;
311 if (data)
312 netdev->features |= NETIF_F_HW_CSUM;
313 else
314 netdev->features &= ~NETIF_F_HW_CSUM;
316 return 0;
319 static int e1000_set_tso(struct net_device *netdev, u32 data)
321 struct e1000_adapter *adapter = netdev_priv(netdev);
322 struct e1000_hw *hw = &adapter->hw;
324 if ((hw->mac_type < e1000_82544) ||
325 (hw->mac_type == e1000_82547))
326 return data ? -EINVAL : 0;
328 if (data)
329 netdev->features |= NETIF_F_TSO;
330 else
331 netdev->features &= ~NETIF_F_TSO;
333 if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
334 netdev->features |= NETIF_F_TSO6;
335 else
336 netdev->features &= ~NETIF_F_TSO6;
338 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
339 adapter->tso_force = true;
340 return 0;
343 static u32 e1000_get_msglevel(struct net_device *netdev)
345 struct e1000_adapter *adapter = netdev_priv(netdev);
346 return adapter->msg_enable;
349 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
351 struct e1000_adapter *adapter = netdev_priv(netdev);
352 adapter->msg_enable = data;
355 static int e1000_get_regs_len(struct net_device *netdev)
357 #define E1000_REGS_LEN 32
358 return E1000_REGS_LEN * sizeof(u32);
361 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
362 void *p)
364 struct e1000_adapter *adapter = netdev_priv(netdev);
365 struct e1000_hw *hw = &adapter->hw;
366 u32 *regs_buff = p;
367 u16 phy_data;
369 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
371 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
373 regs_buff[0] = er32(CTRL);
374 regs_buff[1] = er32(STATUS);
376 regs_buff[2] = er32(RCTL);
377 regs_buff[3] = er32(RDLEN);
378 regs_buff[4] = er32(RDH);
379 regs_buff[5] = er32(RDT);
380 regs_buff[6] = er32(RDTR);
382 regs_buff[7] = er32(TCTL);
383 regs_buff[8] = er32(TDLEN);
384 regs_buff[9] = er32(TDH);
385 regs_buff[10] = er32(TDT);
386 regs_buff[11] = er32(TIDV);
388 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
389 if (hw->phy_type == e1000_phy_igp) {
390 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391 IGP01E1000_PHY_AGC_A);
392 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
393 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394 regs_buff[13] = (u32)phy_data; /* cable length */
395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396 IGP01E1000_PHY_AGC_B);
397 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
398 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399 regs_buff[14] = (u32)phy_data; /* cable length */
400 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401 IGP01E1000_PHY_AGC_C);
402 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
403 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404 regs_buff[15] = (u32)phy_data; /* cable length */
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406 IGP01E1000_PHY_AGC_D);
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
408 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409 regs_buff[16] = (u32)phy_data; /* cable length */
410 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
412 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
413 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414 regs_buff[18] = (u32)phy_data; /* cable polarity */
415 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416 IGP01E1000_PHY_PCS_INIT_REG);
417 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
418 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419 regs_buff[19] = (u32)phy_data; /* cable polarity */
420 regs_buff[20] = 0; /* polarity correction enabled (always) */
421 regs_buff[22] = 0; /* phy receive errors (unavailable) */
422 regs_buff[23] = regs_buff[18]; /* mdix mode */
423 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
424 } else {
425 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
426 regs_buff[13] = (u32)phy_data; /* cable length */
427 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
430 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
431 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
432 regs_buff[18] = regs_buff[13]; /* cable polarity */
433 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
434 regs_buff[20] = regs_buff[17]; /* polarity correction */
435 /* phy receive errors */
436 regs_buff[22] = adapter->phy_stats.receive_errors;
437 regs_buff[23] = regs_buff[13]; /* mdix mode */
439 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
440 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
441 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
442 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
443 if (hw->mac_type >= e1000_82540 &&
444 hw->mac_type < e1000_82571 &&
445 hw->media_type == e1000_media_type_copper) {
446 regs_buff[26] = er32(MANC);
450 static int e1000_get_eeprom_len(struct net_device *netdev)
452 struct e1000_adapter *adapter = netdev_priv(netdev);
453 struct e1000_hw *hw = &adapter->hw;
455 return hw->eeprom.word_size * 2;
458 static int e1000_get_eeprom(struct net_device *netdev,
459 struct ethtool_eeprom *eeprom, u8 *bytes)
461 struct e1000_adapter *adapter = netdev_priv(netdev);
462 struct e1000_hw *hw = &adapter->hw;
463 u16 *eeprom_buff;
464 int first_word, last_word;
465 int ret_val = 0;
466 u16 i;
468 if (eeprom->len == 0)
469 return -EINVAL;
471 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
473 first_word = eeprom->offset >> 1;
474 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
476 eeprom_buff = kmalloc(sizeof(u16) *
477 (last_word - first_word + 1), GFP_KERNEL);
478 if (!eeprom_buff)
479 return -ENOMEM;
481 if (hw->eeprom.type == e1000_eeprom_spi)
482 ret_val = e1000_read_eeprom(hw, first_word,
483 last_word - first_word + 1,
484 eeprom_buff);
485 else {
486 for (i = 0; i < last_word - first_word + 1; i++)
487 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
488 &eeprom_buff[i])))
489 break;
492 /* Device's eeprom is always little-endian, word addressable */
493 for (i = 0; i < last_word - first_word + 1; i++)
494 le16_to_cpus(&eeprom_buff[i]);
496 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
497 eeprom->len);
498 kfree(eeprom_buff);
500 return ret_val;
503 static int e1000_set_eeprom(struct net_device *netdev,
504 struct ethtool_eeprom *eeprom, u8 *bytes)
506 struct e1000_adapter *adapter = netdev_priv(netdev);
507 struct e1000_hw *hw = &adapter->hw;
508 u16 *eeprom_buff;
509 void *ptr;
510 int max_len, first_word, last_word, ret_val = 0;
511 u16 i;
513 if (eeprom->len == 0)
514 return -EOPNOTSUPP;
516 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
517 return -EFAULT;
519 max_len = hw->eeprom.word_size * 2;
521 first_word = eeprom->offset >> 1;
522 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
523 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
524 if (!eeprom_buff)
525 return -ENOMEM;
527 ptr = (void *)eeprom_buff;
529 if (eeprom->offset & 1) {
530 /* need read/modify/write of first changed EEPROM word */
531 /* only the second byte of the word is being modified */
532 ret_val = e1000_read_eeprom(hw, first_word, 1,
533 &eeprom_buff[0]);
534 ptr++;
536 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
537 /* need read/modify/write of last changed EEPROM word */
538 /* only the first byte of the word is being modified */
539 ret_val = e1000_read_eeprom(hw, last_word, 1,
540 &eeprom_buff[last_word - first_word]);
543 /* Device's eeprom is always little-endian, word addressable */
544 for (i = 0; i < last_word - first_word + 1; i++)
545 le16_to_cpus(&eeprom_buff[i]);
547 memcpy(ptr, bytes, eeprom->len);
549 for (i = 0; i < last_word - first_word + 1; i++)
550 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
552 ret_val = e1000_write_eeprom(hw, first_word,
553 last_word - first_word + 1, eeprom_buff);
555 /* Update the checksum over the first part of the EEPROM if needed
556 * and flush shadow RAM for 82573 conrollers */
557 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
558 (hw->mac_type == e1000_82573)))
559 e1000_update_eeprom_checksum(hw);
561 kfree(eeprom_buff);
562 return ret_val;
565 static void e1000_get_drvinfo(struct net_device *netdev,
566 struct ethtool_drvinfo *drvinfo)
568 struct e1000_adapter *adapter = netdev_priv(netdev);
569 struct e1000_hw *hw = &adapter->hw;
570 char firmware_version[32];
571 u16 eeprom_data;
573 strncpy(drvinfo->driver, e1000_driver_name, 32);
574 strncpy(drvinfo->version, e1000_driver_version, 32);
576 /* EEPROM image version # is reported as firmware version # for
577 * 8257{1|2|3} controllers */
578 e1000_read_eeprom(hw, 5, 1, &eeprom_data);
579 switch (hw->mac_type) {
580 case e1000_82571:
581 case e1000_82572:
582 case e1000_82573:
583 case e1000_80003es2lan:
584 case e1000_ich8lan:
585 sprintf(firmware_version, "%d.%d-%d",
586 (eeprom_data & 0xF000) >> 12,
587 (eeprom_data & 0x0FF0) >> 4,
588 eeprom_data & 0x000F);
589 break;
590 default:
591 sprintf(firmware_version, "N/A");
594 strncpy(drvinfo->fw_version, firmware_version, 32);
595 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
596 drvinfo->regdump_len = e1000_get_regs_len(netdev);
597 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
600 static void e1000_get_ringparam(struct net_device *netdev,
601 struct ethtool_ringparam *ring)
603 struct e1000_adapter *adapter = netdev_priv(netdev);
604 struct e1000_hw *hw = &adapter->hw;
605 e1000_mac_type mac_type = hw->mac_type;
606 struct e1000_tx_ring *txdr = adapter->tx_ring;
607 struct e1000_rx_ring *rxdr = adapter->rx_ring;
609 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
610 E1000_MAX_82544_RXD;
611 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
612 E1000_MAX_82544_TXD;
613 ring->rx_mini_max_pending = 0;
614 ring->rx_jumbo_max_pending = 0;
615 ring->rx_pending = rxdr->count;
616 ring->tx_pending = txdr->count;
617 ring->rx_mini_pending = 0;
618 ring->rx_jumbo_pending = 0;
621 static int e1000_set_ringparam(struct net_device *netdev,
622 struct ethtool_ringparam *ring)
624 struct e1000_adapter *adapter = netdev_priv(netdev);
625 struct e1000_hw *hw = &adapter->hw;
626 e1000_mac_type mac_type = hw->mac_type;
627 struct e1000_tx_ring *txdr, *tx_old;
628 struct e1000_rx_ring *rxdr, *rx_old;
629 int i, err;
631 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
632 return -EINVAL;
634 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
635 msleep(1);
637 if (netif_running(adapter->netdev))
638 e1000_down(adapter);
640 tx_old = adapter->tx_ring;
641 rx_old = adapter->rx_ring;
643 err = -ENOMEM;
644 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
645 if (!txdr)
646 goto err_alloc_tx;
648 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
649 if (!rxdr)
650 goto err_alloc_rx;
652 adapter->tx_ring = txdr;
653 adapter->rx_ring = rxdr;
655 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
656 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
657 E1000_MAX_RXD : E1000_MAX_82544_RXD));
658 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
660 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
661 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
662 E1000_MAX_TXD : E1000_MAX_82544_TXD));
663 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
665 for (i = 0; i < adapter->num_tx_queues; i++)
666 txdr[i].count = txdr->count;
667 for (i = 0; i < adapter->num_rx_queues; i++)
668 rxdr[i].count = rxdr->count;
670 if (netif_running(adapter->netdev)) {
671 /* Try to get new resources before deleting old */
672 if ((err = e1000_setup_all_rx_resources(adapter)))
673 goto err_setup_rx;
674 if ((err = e1000_setup_all_tx_resources(adapter)))
675 goto err_setup_tx;
677 /* save the new, restore the old in order to free it,
678 * then restore the new back again */
680 adapter->rx_ring = rx_old;
681 adapter->tx_ring = tx_old;
682 e1000_free_all_rx_resources(adapter);
683 e1000_free_all_tx_resources(adapter);
684 kfree(tx_old);
685 kfree(rx_old);
686 adapter->rx_ring = rxdr;
687 adapter->tx_ring = txdr;
688 if ((err = e1000_up(adapter)))
689 goto err_setup;
692 clear_bit(__E1000_RESETTING, &adapter->flags);
693 return 0;
694 err_setup_tx:
695 e1000_free_all_rx_resources(adapter);
696 err_setup_rx:
697 adapter->rx_ring = rx_old;
698 adapter->tx_ring = tx_old;
699 kfree(rxdr);
700 err_alloc_rx:
701 kfree(txdr);
702 err_alloc_tx:
703 e1000_up(adapter);
704 err_setup:
705 clear_bit(__E1000_RESETTING, &adapter->flags);
706 return err;
709 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
710 u32 mask, u32 write)
712 struct e1000_hw *hw = &adapter->hw;
713 static const u32 test[] =
714 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
715 u8 __iomem *address = hw->hw_addr + reg;
716 u32 read;
717 int i;
719 for (i = 0; i < ARRAY_SIZE(test); i++) {
720 writel(write & test[i], address);
721 read = readl(address);
722 if (read != (write & test[i] & mask)) {
723 DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
724 "got 0x%08X expected 0x%08X\n",
725 reg, read, (write & test[i] & mask));
726 *data = reg;
727 return true;
730 return false;
733 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
734 u32 mask, u32 write)
736 struct e1000_hw *hw = &adapter->hw;
737 u8 __iomem *address = hw->hw_addr + reg;
738 u32 read;
740 writel(write & mask, address);
741 read = readl(address);
742 if ((read & mask) != (write & mask)) {
743 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
744 "got 0x%08X expected 0x%08X\n",
745 reg, (read & mask), (write & mask));
746 *data = reg;
747 return true;
749 return false;
752 #define REG_PATTERN_TEST(reg, mask, write) \
753 do { \
754 if (reg_pattern_test(adapter, data, \
755 (hw->mac_type >= e1000_82543) \
756 ? E1000_##reg : E1000_82542_##reg, \
757 mask, write)) \
758 return 1; \
759 } while (0)
761 #define REG_SET_AND_CHECK(reg, mask, write) \
762 do { \
763 if (reg_set_and_check(adapter, data, \
764 (hw->mac_type >= e1000_82543) \
765 ? E1000_##reg : E1000_82542_##reg, \
766 mask, write)) \
767 return 1; \
768 } while (0)
770 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
772 u32 value, before, after;
773 u32 i, toggle;
774 struct e1000_hw *hw = &adapter->hw;
776 /* The status register is Read Only, so a write should fail.
777 * Some bits that get toggled are ignored.
779 switch (hw->mac_type) {
780 /* there are several bits on newer hardware that are r/w */
781 case e1000_82571:
782 case e1000_82572:
783 case e1000_80003es2lan:
784 toggle = 0x7FFFF3FF;
785 break;
786 case e1000_82573:
787 case e1000_ich8lan:
788 toggle = 0x7FFFF033;
789 break;
790 default:
791 toggle = 0xFFFFF833;
792 break;
795 before = er32(STATUS);
796 value = (er32(STATUS) & toggle);
797 ew32(STATUS, toggle);
798 after = er32(STATUS) & toggle;
799 if (value != after) {
800 DPRINTK(DRV, ERR, "failed STATUS register test got: "
801 "0x%08X expected: 0x%08X\n", after, value);
802 *data = 1;
803 return 1;
805 /* restore previous status */
806 ew32(STATUS, before);
808 if (hw->mac_type != e1000_ich8lan) {
809 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
815 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
818 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
821 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
824 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
826 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
828 before = (hw->mac_type == e1000_ich8lan ?
829 0x06C3B33E : 0x06DFB3FE);
830 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
831 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
833 if (hw->mac_type >= e1000_82543) {
835 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
836 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837 if (hw->mac_type != e1000_ich8lan)
838 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
839 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
840 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
841 value = (hw->mac_type == e1000_ich8lan ?
842 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
843 for (i = 0; i < value; i++) {
844 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
845 0xFFFFFFFF);
848 } else {
850 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
851 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
852 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
853 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
857 value = (hw->mac_type == e1000_ich8lan ?
858 E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
859 for (i = 0; i < value; i++)
860 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
862 *data = 0;
863 return 0;
866 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
868 struct e1000_hw *hw = &adapter->hw;
869 u16 temp;
870 u16 checksum = 0;
871 u16 i;
873 *data = 0;
874 /* Read and add up the contents of the EEPROM */
875 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
876 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
877 *data = 1;
878 break;
880 checksum += temp;
883 /* If Checksum is not Correct return error else test passed */
884 if ((checksum != (u16)EEPROM_SUM) && !(*data))
885 *data = 2;
887 return *data;
890 static irqreturn_t e1000_test_intr(int irq, void *data)
892 struct net_device *netdev = (struct net_device *)data;
893 struct e1000_adapter *adapter = netdev_priv(netdev);
894 struct e1000_hw *hw = &adapter->hw;
896 adapter->test_icr |= er32(ICR);
898 return IRQ_HANDLED;
901 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
903 struct net_device *netdev = adapter->netdev;
904 u32 mask, i = 0;
905 bool shared_int = true;
906 u32 irq = adapter->pdev->irq;
907 struct e1000_hw *hw = &adapter->hw;
909 *data = 0;
911 /* NOTE: we don't test MSI interrupts here, yet */
912 /* Hook up test interrupt handler just for this test */
913 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
914 netdev))
915 shared_int = false;
916 else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
917 netdev->name, netdev)) {
918 *data = 1;
919 return -1;
921 DPRINTK(HW, INFO, "testing %s interrupt\n",
922 (shared_int ? "shared" : "unshared"));
924 /* Disable all the interrupts */
925 ew32(IMC, 0xFFFFFFFF);
926 msleep(10);
928 /* Test each interrupt */
929 for (; i < 10; i++) {
931 if (hw->mac_type == e1000_ich8lan && i == 8)
932 continue;
934 /* Interrupt to test */
935 mask = 1 << i;
937 if (!shared_int) {
938 /* Disable the interrupt to be reported in
939 * the cause register and then force the same
940 * interrupt and see if one gets posted. If
941 * an interrupt was posted to the bus, the
942 * test failed.
944 adapter->test_icr = 0;
945 ew32(IMC, mask);
946 ew32(ICS, mask);
947 msleep(10);
949 if (adapter->test_icr & mask) {
950 *data = 3;
951 break;
955 /* Enable the interrupt to be reported in
956 * the cause register and then force the same
957 * interrupt and see if one gets posted. If
958 * an interrupt was not posted to the bus, the
959 * test failed.
961 adapter->test_icr = 0;
962 ew32(IMS, mask);
963 ew32(ICS, mask);
964 msleep(10);
966 if (!(adapter->test_icr & mask)) {
967 *data = 4;
968 break;
971 if (!shared_int) {
972 /* Disable the other interrupts to be reported in
973 * the cause register and then force the other
974 * interrupts and see if any get posted. If
975 * an interrupt was posted to the bus, the
976 * test failed.
978 adapter->test_icr = 0;
979 ew32(IMC, ~mask & 0x00007FFF);
980 ew32(ICS, ~mask & 0x00007FFF);
981 msleep(10);
983 if (adapter->test_icr) {
984 *data = 5;
985 break;
990 /* Disable all the interrupts */
991 ew32(IMC, 0xFFFFFFFF);
992 msleep(10);
994 /* Unhook test interrupt handler */
995 free_irq(irq, netdev);
997 return *data;
1000 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1002 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004 struct pci_dev *pdev = adapter->pdev;
1005 int i;
1007 if (txdr->desc && txdr->buffer_info) {
1008 for (i = 0; i < txdr->count; i++) {
1009 if (txdr->buffer_info[i].dma)
1010 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1011 txdr->buffer_info[i].length,
1012 PCI_DMA_TODEVICE);
1013 if (txdr->buffer_info[i].skb)
1014 dev_kfree_skb(txdr->buffer_info[i].skb);
1018 if (rxdr->desc && rxdr->buffer_info) {
1019 for (i = 0; i < rxdr->count; i++) {
1020 if (rxdr->buffer_info[i].dma)
1021 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1022 rxdr->buffer_info[i].length,
1023 PCI_DMA_FROMDEVICE);
1024 if (rxdr->buffer_info[i].skb)
1025 dev_kfree_skb(rxdr->buffer_info[i].skb);
1029 if (txdr->desc) {
1030 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1031 txdr->desc = NULL;
1033 if (rxdr->desc) {
1034 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1035 rxdr->desc = NULL;
1038 kfree(txdr->buffer_info);
1039 txdr->buffer_info = NULL;
1040 kfree(rxdr->buffer_info);
1041 rxdr->buffer_info = NULL;
1043 return;
1046 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1048 struct e1000_hw *hw = &adapter->hw;
1049 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1050 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1051 struct pci_dev *pdev = adapter->pdev;
1052 u32 rctl;
1053 int i, ret_val;
1055 /* Setup Tx descriptor ring and Tx buffers */
1057 if (!txdr->count)
1058 txdr->count = E1000_DEFAULT_TXD;
1060 if (!(txdr->buffer_info = kcalloc(txdr->count,
1061 sizeof(struct e1000_buffer),
1062 GFP_KERNEL))) {
1063 ret_val = 1;
1064 goto err_nomem;
1067 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1068 txdr->size = ALIGN(txdr->size, 4096);
1069 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1070 &txdr->dma))) {
1071 ret_val = 2;
1072 goto err_nomem;
1074 memset(txdr->desc, 0, txdr->size);
1075 txdr->next_to_use = txdr->next_to_clean = 0;
1077 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1078 ew32(TDBAH, ((u64)txdr->dma >> 32));
1079 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1080 ew32(TDH, 0);
1081 ew32(TDT, 0);
1082 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1083 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1084 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1086 for (i = 0; i < txdr->count; i++) {
1087 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1088 struct sk_buff *skb;
1089 unsigned int size = 1024;
1091 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1092 ret_val = 3;
1093 goto err_nomem;
1095 skb_put(skb, size);
1096 txdr->buffer_info[i].skb = skb;
1097 txdr->buffer_info[i].length = skb->len;
1098 txdr->buffer_info[i].dma =
1099 pci_map_single(pdev, skb->data, skb->len,
1100 PCI_DMA_TODEVICE);
1101 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1102 tx_desc->lower.data = cpu_to_le32(skb->len);
1103 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1104 E1000_TXD_CMD_IFCS |
1105 E1000_TXD_CMD_RPS);
1106 tx_desc->upper.data = 0;
1109 /* Setup Rx descriptor ring and Rx buffers */
1111 if (!rxdr->count)
1112 rxdr->count = E1000_DEFAULT_RXD;
1114 if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1115 sizeof(struct e1000_buffer),
1116 GFP_KERNEL))) {
1117 ret_val = 4;
1118 goto err_nomem;
1121 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1122 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1123 ret_val = 5;
1124 goto err_nomem;
1126 memset(rxdr->desc, 0, rxdr->size);
1127 rxdr->next_to_use = rxdr->next_to_clean = 0;
1129 rctl = er32(RCTL);
1130 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1131 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1132 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1133 ew32(RDLEN, rxdr->size);
1134 ew32(RDH, 0);
1135 ew32(RDT, 0);
1136 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1137 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1138 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1139 ew32(RCTL, rctl);
1141 for (i = 0; i < rxdr->count; i++) {
1142 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1143 struct sk_buff *skb;
1145 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1146 GFP_KERNEL))) {
1147 ret_val = 6;
1148 goto err_nomem;
1150 skb_reserve(skb, NET_IP_ALIGN);
1151 rxdr->buffer_info[i].skb = skb;
1152 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1153 rxdr->buffer_info[i].dma =
1154 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1155 PCI_DMA_FROMDEVICE);
1156 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1157 memset(skb->data, 0x00, skb->len);
1160 return 0;
1162 err_nomem:
1163 e1000_free_desc_rings(adapter);
1164 return ret_val;
1167 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1169 struct e1000_hw *hw = &adapter->hw;
1171 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172 e1000_write_phy_reg(hw, 29, 0x001F);
1173 e1000_write_phy_reg(hw, 30, 0x8FFC);
1174 e1000_write_phy_reg(hw, 29, 0x001A);
1175 e1000_write_phy_reg(hw, 30, 0x8FF0);
1178 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1180 struct e1000_hw *hw = &adapter->hw;
1181 u16 phy_reg;
1183 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1184 * Extended PHY Specific Control Register to 25MHz clock. This
1185 * value defaults back to a 2.5MHz clock when the PHY is reset.
1187 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1188 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1189 e1000_write_phy_reg(hw,
1190 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1192 /* In addition, because of the s/w reset above, we need to enable
1193 * CRS on TX. This must be set for both full and half duplex
1194 * operation.
1196 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1197 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1198 e1000_write_phy_reg(hw,
1199 M88E1000_PHY_SPEC_CTRL, phy_reg);
1202 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1204 struct e1000_hw *hw = &adapter->hw;
1205 u32 ctrl_reg;
1206 u16 phy_reg;
1208 /* Setup the Device Control Register for PHY loopback test. */
1210 ctrl_reg = er32(CTRL);
1211 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1212 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1213 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1214 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1215 E1000_CTRL_FD); /* Force Duplex to FULL */
1217 ew32(CTRL, ctrl_reg);
1219 /* Read the PHY Specific Control Register (0x10) */
1220 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1222 /* Clear Auto-Crossover bits in PHY Specific Control Register
1223 * (bits 6:5).
1225 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1226 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1228 /* Perform software reset on the PHY */
1229 e1000_phy_reset(hw);
1231 /* Have to setup TX_CLK and TX_CRS after software reset */
1232 e1000_phy_reset_clk_and_crs(adapter);
1234 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1236 /* Wait for reset to complete. */
1237 udelay(500);
1239 /* Have to setup TX_CLK and TX_CRS after software reset */
1240 e1000_phy_reset_clk_and_crs(adapter);
1242 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1243 e1000_phy_disable_receiver(adapter);
1245 /* Set the loopback bit in the PHY control register. */
1246 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1247 phy_reg |= MII_CR_LOOPBACK;
1248 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1250 /* Setup TX_CLK and TX_CRS one more time. */
1251 e1000_phy_reset_clk_and_crs(adapter);
1253 /* Check Phy Configuration */
1254 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1255 if (phy_reg != 0x4100)
1256 return 9;
1258 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1259 if (phy_reg != 0x0070)
1260 return 10;
1262 e1000_read_phy_reg(hw, 29, &phy_reg);
1263 if (phy_reg != 0x001A)
1264 return 11;
1266 return 0;
1269 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1271 struct e1000_hw *hw = &adapter->hw;
1272 u32 ctrl_reg = 0;
1273 u32 stat_reg = 0;
1275 hw->autoneg = false;
1277 if (hw->phy_type == e1000_phy_m88) {
1278 /* Auto-MDI/MDIX Off */
1279 e1000_write_phy_reg(hw,
1280 M88E1000_PHY_SPEC_CTRL, 0x0808);
1281 /* reset to update Auto-MDI/MDIX */
1282 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1283 /* autoneg off */
1284 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1285 } else if (hw->phy_type == e1000_phy_gg82563)
1286 e1000_write_phy_reg(hw,
1287 GG82563_PHY_KMRN_MODE_CTRL,
1288 0x1CC);
1290 ctrl_reg = er32(CTRL);
1292 if (hw->phy_type == e1000_phy_ife) {
1293 /* force 100, set loopback */
1294 e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
1296 /* Now set up the MAC to the same speed/duplex as the PHY. */
1297 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1298 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1299 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1300 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1301 E1000_CTRL_FD); /* Force Duplex to FULL */
1302 } else {
1303 /* force 1000, set loopback */
1304 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1306 /* Now set up the MAC to the same speed/duplex as the PHY. */
1307 ctrl_reg = er32(CTRL);
1308 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1309 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1310 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1311 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1312 E1000_CTRL_FD); /* Force Duplex to FULL */
1315 if (hw->media_type == e1000_media_type_copper &&
1316 hw->phy_type == e1000_phy_m88)
1317 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1318 else {
1319 /* Set the ILOS bit on the fiber Nic is half
1320 * duplex link is detected. */
1321 stat_reg = er32(STATUS);
1322 if ((stat_reg & E1000_STATUS_FD) == 0)
1323 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1326 ew32(CTRL, ctrl_reg);
1328 /* Disable the receiver on the PHY so when a cable is plugged in, the
1329 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1331 if (hw->phy_type == e1000_phy_m88)
1332 e1000_phy_disable_receiver(adapter);
1334 udelay(500);
1336 return 0;
1339 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1341 struct e1000_hw *hw = &adapter->hw;
1342 u16 phy_reg = 0;
1343 u16 count = 0;
1345 switch (hw->mac_type) {
1346 case e1000_82543:
1347 if (hw->media_type == e1000_media_type_copper) {
1348 /* Attempt to setup Loopback mode on Non-integrated PHY.
1349 * Some PHY registers get corrupted at random, so
1350 * attempt this 10 times.
1352 while (e1000_nonintegrated_phy_loopback(adapter) &&
1353 count++ < 10);
1354 if (count < 11)
1355 return 0;
1357 break;
1359 case e1000_82544:
1360 case e1000_82540:
1361 case e1000_82545:
1362 case e1000_82545_rev_3:
1363 case e1000_82546:
1364 case e1000_82546_rev_3:
1365 case e1000_82541:
1366 case e1000_82541_rev_2:
1367 case e1000_82547:
1368 case e1000_82547_rev_2:
1369 case e1000_82571:
1370 case e1000_82572:
1371 case e1000_82573:
1372 case e1000_80003es2lan:
1373 case e1000_ich8lan:
1374 return e1000_integrated_phy_loopback(adapter);
1375 break;
1377 default:
1378 /* Default PHY loopback work is to read the MII
1379 * control register and assert bit 14 (loopback mode).
1381 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1382 phy_reg |= MII_CR_LOOPBACK;
1383 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1384 return 0;
1385 break;
1388 return 8;
1391 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1393 struct e1000_hw *hw = &adapter->hw;
1394 u32 rctl;
1396 if (hw->media_type == e1000_media_type_fiber ||
1397 hw->media_type == e1000_media_type_internal_serdes) {
1398 switch (hw->mac_type) {
1399 case e1000_82545:
1400 case e1000_82546:
1401 case e1000_82545_rev_3:
1402 case e1000_82546_rev_3:
1403 return e1000_set_phy_loopback(adapter);
1404 break;
1405 case e1000_82571:
1406 case e1000_82572:
1407 #define E1000_SERDES_LB_ON 0x410
1408 e1000_set_phy_loopback(adapter);
1409 ew32(SCTL, E1000_SERDES_LB_ON);
1410 msleep(10);
1411 return 0;
1412 break;
1413 default:
1414 rctl = er32(RCTL);
1415 rctl |= E1000_RCTL_LBM_TCVR;
1416 ew32(RCTL, rctl);
1417 return 0;
1419 } else if (hw->media_type == e1000_media_type_copper)
1420 return e1000_set_phy_loopback(adapter);
1422 return 7;
1425 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1427 struct e1000_hw *hw = &adapter->hw;
1428 u32 rctl;
1429 u16 phy_reg;
1431 rctl = er32(RCTL);
1432 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1433 ew32(RCTL, rctl);
1435 switch (hw->mac_type) {
1436 case e1000_82571:
1437 case e1000_82572:
1438 if (hw->media_type == e1000_media_type_fiber ||
1439 hw->media_type == e1000_media_type_internal_serdes) {
1440 #define E1000_SERDES_LB_OFF 0x400
1441 ew32(SCTL, E1000_SERDES_LB_OFF);
1442 msleep(10);
1443 break;
1445 /* Fall Through */
1446 case e1000_82545:
1447 case e1000_82546:
1448 case e1000_82545_rev_3:
1449 case e1000_82546_rev_3:
1450 default:
1451 hw->autoneg = true;
1452 if (hw->phy_type == e1000_phy_gg82563)
1453 e1000_write_phy_reg(hw,
1454 GG82563_PHY_KMRN_MODE_CTRL,
1455 0x180);
1456 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1457 if (phy_reg & MII_CR_LOOPBACK) {
1458 phy_reg &= ~MII_CR_LOOPBACK;
1459 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1460 e1000_phy_reset(hw);
1462 break;
1466 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1467 unsigned int frame_size)
1469 memset(skb->data, 0xFF, frame_size);
1470 frame_size &= ~1;
1471 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1472 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1473 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1476 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1477 unsigned int frame_size)
1479 frame_size &= ~1;
1480 if (*(skb->data + 3) == 0xFF) {
1481 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1482 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1483 return 0;
1486 return 13;
1489 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1491 struct e1000_hw *hw = &adapter->hw;
1492 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1493 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1494 struct pci_dev *pdev = adapter->pdev;
1495 int i, j, k, l, lc, good_cnt, ret_val=0;
1496 unsigned long time;
1498 ew32(RDT, rxdr->count - 1);
1500 /* Calculate the loop count based on the largest descriptor ring
1501 * The idea is to wrap the largest ring a number of times using 64
1502 * send/receive pairs during each loop
1505 if (rxdr->count <= txdr->count)
1506 lc = ((txdr->count / 64) * 2) + 1;
1507 else
1508 lc = ((rxdr->count / 64) * 2) + 1;
1510 k = l = 0;
1511 for (j = 0; j <= lc; j++) { /* loop count loop */
1512 for (i = 0; i < 64; i++) { /* send the packets */
1513 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1514 1024);
1515 pci_dma_sync_single_for_device(pdev,
1516 txdr->buffer_info[k].dma,
1517 txdr->buffer_info[k].length,
1518 PCI_DMA_TODEVICE);
1519 if (unlikely(++k == txdr->count)) k = 0;
1521 ew32(TDT, k);
1522 msleep(200);
1523 time = jiffies; /* set the start time for the receive */
1524 good_cnt = 0;
1525 do { /* receive the sent packets */
1526 pci_dma_sync_single_for_cpu(pdev,
1527 rxdr->buffer_info[l].dma,
1528 rxdr->buffer_info[l].length,
1529 PCI_DMA_FROMDEVICE);
1531 ret_val = e1000_check_lbtest_frame(
1532 rxdr->buffer_info[l].skb,
1533 1024);
1534 if (!ret_val)
1535 good_cnt++;
1536 if (unlikely(++l == rxdr->count)) l = 0;
1537 /* time + 20 msecs (200 msecs on 2.4) is more than
1538 * enough time to complete the receives, if it's
1539 * exceeded, break and error off
1541 } while (good_cnt < 64 && jiffies < (time + 20));
1542 if (good_cnt != 64) {
1543 ret_val = 13; /* ret_val is the same as mis-compare */
1544 break;
1546 if (jiffies >= (time + 2)) {
1547 ret_val = 14; /* error code for time out error */
1548 break;
1550 } /* end loop count loop */
1551 return ret_val;
1554 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1556 struct e1000_hw *hw = &adapter->hw;
1558 /* PHY loopback cannot be performed if SoL/IDER
1559 * sessions are active */
1560 if (e1000_check_phy_reset_block(hw)) {
1561 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1562 "when SoL/IDER is active.\n");
1563 *data = 0;
1564 goto out;
1567 if ((*data = e1000_setup_desc_rings(adapter)))
1568 goto out;
1569 if ((*data = e1000_setup_loopback_test(adapter)))
1570 goto err_loopback;
1571 *data = e1000_run_loopback_test(adapter);
1572 e1000_loopback_cleanup(adapter);
1574 err_loopback:
1575 e1000_free_desc_rings(adapter);
1576 out:
1577 return *data;
1580 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1582 struct e1000_hw *hw = &adapter->hw;
1583 *data = 0;
1584 if (hw->media_type == e1000_media_type_internal_serdes) {
1585 int i = 0;
1586 hw->serdes_link_down = true;
1588 /* On some blade server designs, link establishment
1589 * could take as long as 2-3 minutes */
1590 do {
1591 e1000_check_for_link(hw);
1592 if (!hw->serdes_link_down)
1593 return *data;
1594 msleep(20);
1595 } while (i++ < 3750);
1597 *data = 1;
1598 } else {
1599 e1000_check_for_link(hw);
1600 if (hw->autoneg) /* if auto_neg is set wait for it */
1601 msleep(4000);
1603 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1604 *data = 1;
1607 return *data;
1610 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1612 switch (sset) {
1613 case ETH_SS_TEST:
1614 return E1000_TEST_LEN;
1615 case ETH_SS_STATS:
1616 return E1000_STATS_LEN;
1617 default:
1618 return -EOPNOTSUPP;
1622 static void e1000_diag_test(struct net_device *netdev,
1623 struct ethtool_test *eth_test, u64 *data)
1625 struct e1000_adapter *adapter = netdev_priv(netdev);
1626 struct e1000_hw *hw = &adapter->hw;
1627 bool if_running = netif_running(netdev);
1629 set_bit(__E1000_TESTING, &adapter->flags);
1630 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1631 /* Offline tests */
1633 /* save speed, duplex, autoneg settings */
1634 u16 autoneg_advertised = hw->autoneg_advertised;
1635 u8 forced_speed_duplex = hw->forced_speed_duplex;
1636 u8 autoneg = hw->autoneg;
1638 DPRINTK(HW, INFO, "offline testing starting\n");
1640 /* Link test performed before hardware reset so autoneg doesn't
1641 * interfere with test result */
1642 if (e1000_link_test(adapter, &data[4]))
1643 eth_test->flags |= ETH_TEST_FL_FAILED;
1645 if (if_running)
1646 /* indicate we're in test mode */
1647 dev_close(netdev);
1648 else
1649 e1000_reset(adapter);
1651 if (e1000_reg_test(adapter, &data[0]))
1652 eth_test->flags |= ETH_TEST_FL_FAILED;
1654 e1000_reset(adapter);
1655 if (e1000_eeprom_test(adapter, &data[1]))
1656 eth_test->flags |= ETH_TEST_FL_FAILED;
1658 e1000_reset(adapter);
1659 if (e1000_intr_test(adapter, &data[2]))
1660 eth_test->flags |= ETH_TEST_FL_FAILED;
1662 e1000_reset(adapter);
1663 /* make sure the phy is powered up */
1664 e1000_power_up_phy(adapter);
1665 if (e1000_loopback_test(adapter, &data[3]))
1666 eth_test->flags |= ETH_TEST_FL_FAILED;
1668 /* restore speed, duplex, autoneg settings */
1669 hw->autoneg_advertised = autoneg_advertised;
1670 hw->forced_speed_duplex = forced_speed_duplex;
1671 hw->autoneg = autoneg;
1673 e1000_reset(adapter);
1674 clear_bit(__E1000_TESTING, &adapter->flags);
1675 if (if_running)
1676 dev_open(netdev);
1677 } else {
1678 DPRINTK(HW, INFO, "online testing starting\n");
1679 /* Online tests */
1680 if (e1000_link_test(adapter, &data[4]))
1681 eth_test->flags |= ETH_TEST_FL_FAILED;
1683 /* Online tests aren't run; pass by default */
1684 data[0] = 0;
1685 data[1] = 0;
1686 data[2] = 0;
1687 data[3] = 0;
1689 clear_bit(__E1000_TESTING, &adapter->flags);
1691 msleep_interruptible(4 * 1000);
1694 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1695 struct ethtool_wolinfo *wol)
1697 struct e1000_hw *hw = &adapter->hw;
1698 int retval = 1; /* fail by default */
1700 switch (hw->device_id) {
1701 case E1000_DEV_ID_82542:
1702 case E1000_DEV_ID_82543GC_FIBER:
1703 case E1000_DEV_ID_82543GC_COPPER:
1704 case E1000_DEV_ID_82544EI_FIBER:
1705 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1706 case E1000_DEV_ID_82545EM_FIBER:
1707 case E1000_DEV_ID_82545EM_COPPER:
1708 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1709 case E1000_DEV_ID_82546GB_PCIE:
1710 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1711 /* these don't support WoL at all */
1712 wol->supported = 0;
1713 break;
1714 case E1000_DEV_ID_82546EB_FIBER:
1715 case E1000_DEV_ID_82546GB_FIBER:
1716 case E1000_DEV_ID_82571EB_FIBER:
1717 case E1000_DEV_ID_82571EB_SERDES:
1718 case E1000_DEV_ID_82571EB_COPPER:
1719 /* Wake events not supported on port B */
1720 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1721 wol->supported = 0;
1722 break;
1724 /* return success for non excluded adapter ports */
1725 retval = 0;
1726 break;
1727 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1728 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1729 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1730 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1731 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1732 /* quad port adapters only support WoL on port A */
1733 if (!adapter->quad_port_a) {
1734 wol->supported = 0;
1735 break;
1737 /* return success for non excluded adapter ports */
1738 retval = 0;
1739 break;
1740 default:
1741 /* dual port cards only support WoL on port A from now on
1742 * unless it was enabled in the eeprom for port B
1743 * so exclude FUNC_1 ports from having WoL enabled */
1744 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1745 !adapter->eeprom_wol) {
1746 wol->supported = 0;
1747 break;
1750 retval = 0;
1753 return retval;
1756 static void e1000_get_wol(struct net_device *netdev,
1757 struct ethtool_wolinfo *wol)
1759 struct e1000_adapter *adapter = netdev_priv(netdev);
1760 struct e1000_hw *hw = &adapter->hw;
1762 wol->supported = WAKE_UCAST | WAKE_MCAST |
1763 WAKE_BCAST | WAKE_MAGIC;
1764 wol->wolopts = 0;
1766 /* this function will set ->supported = 0 and return 1 if wol is not
1767 * supported by this hardware */
1768 if (e1000_wol_exclusion(adapter, wol))
1769 return;
1771 /* apply any specific unsupported masks here */
1772 switch (hw->device_id) {
1773 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1774 /* KSP3 does not suppport UCAST wake-ups */
1775 wol->supported &= ~WAKE_UCAST;
1777 if (adapter->wol & E1000_WUFC_EX)
1778 DPRINTK(DRV, ERR, "Interface does not support "
1779 "directed (unicast) frame wake-up packets\n");
1780 break;
1781 default:
1782 break;
1785 if (adapter->wol & E1000_WUFC_EX)
1786 wol->wolopts |= WAKE_UCAST;
1787 if (adapter->wol & E1000_WUFC_MC)
1788 wol->wolopts |= WAKE_MCAST;
1789 if (adapter->wol & E1000_WUFC_BC)
1790 wol->wolopts |= WAKE_BCAST;
1791 if (adapter->wol & E1000_WUFC_MAG)
1792 wol->wolopts |= WAKE_MAGIC;
1794 return;
1797 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1799 struct e1000_adapter *adapter = netdev_priv(netdev);
1800 struct e1000_hw *hw = &adapter->hw;
1802 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1803 return -EOPNOTSUPP;
1805 if (e1000_wol_exclusion(adapter, wol))
1806 return wol->wolopts ? -EOPNOTSUPP : 0;
1808 switch (hw->device_id) {
1809 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1810 if (wol->wolopts & WAKE_UCAST) {
1811 DPRINTK(DRV, ERR, "Interface does not support "
1812 "directed (unicast) frame wake-up packets\n");
1813 return -EOPNOTSUPP;
1815 break;
1816 default:
1817 break;
1820 /* these settings will always override what we currently have */
1821 adapter->wol = 0;
1823 if (wol->wolopts & WAKE_UCAST)
1824 adapter->wol |= E1000_WUFC_EX;
1825 if (wol->wolopts & WAKE_MCAST)
1826 adapter->wol |= E1000_WUFC_MC;
1827 if (wol->wolopts & WAKE_BCAST)
1828 adapter->wol |= E1000_WUFC_BC;
1829 if (wol->wolopts & WAKE_MAGIC)
1830 adapter->wol |= E1000_WUFC_MAG;
1832 return 0;
1835 /* toggle LED 4 times per second = 2 "blinks" per second */
1836 #define E1000_ID_INTERVAL (HZ/4)
1838 /* bit defines for adapter->led_status */
1839 #define E1000_LED_ON 0
1841 static void e1000_led_blink_callback(unsigned long data)
1843 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1844 struct e1000_hw *hw = &adapter->hw;
1846 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1847 e1000_led_off(hw);
1848 else
1849 e1000_led_on(hw);
1851 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1854 static int e1000_phys_id(struct net_device *netdev, u32 data)
1856 struct e1000_adapter *adapter = netdev_priv(netdev);
1857 struct e1000_hw *hw = &adapter->hw;
1859 if (!data)
1860 data = INT_MAX;
1862 if (hw->mac_type < e1000_82571) {
1863 if (!adapter->blink_timer.function) {
1864 init_timer(&adapter->blink_timer);
1865 adapter->blink_timer.function = e1000_led_blink_callback;
1866 adapter->blink_timer.data = (unsigned long)adapter;
1868 e1000_setup_led(hw);
1869 mod_timer(&adapter->blink_timer, jiffies);
1870 msleep_interruptible(data * 1000);
1871 del_timer_sync(&adapter->blink_timer);
1872 } else if (hw->phy_type == e1000_phy_ife) {
1873 if (!adapter->blink_timer.function) {
1874 init_timer(&adapter->blink_timer);
1875 adapter->blink_timer.function = e1000_led_blink_callback;
1876 adapter->blink_timer.data = (unsigned long)adapter;
1878 mod_timer(&adapter->blink_timer, jiffies);
1879 msleep_interruptible(data * 1000);
1880 del_timer_sync(&adapter->blink_timer);
1881 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1882 } else {
1883 e1000_blink_led_start(hw);
1884 msleep_interruptible(data * 1000);
1887 e1000_led_off(hw);
1888 clear_bit(E1000_LED_ON, &adapter->led_status);
1889 e1000_cleanup_led(hw);
1891 return 0;
1894 static int e1000_nway_reset(struct net_device *netdev)
1896 struct e1000_adapter *adapter = netdev_priv(netdev);
1897 if (netif_running(netdev))
1898 e1000_reinit_locked(adapter);
1899 return 0;
1902 static void e1000_get_ethtool_stats(struct net_device *netdev,
1903 struct ethtool_stats *stats, u64 *data)
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906 int i;
1908 e1000_update_stats(adapter);
1909 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1911 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1912 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1914 /* BUG_ON(i != E1000_STATS_LEN); */
1917 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1918 u8 *data)
1920 u8 *p = data;
1921 int i;
1923 switch (stringset) {
1924 case ETH_SS_TEST:
1925 memcpy(data, *e1000_gstrings_test,
1926 sizeof(e1000_gstrings_test));
1927 break;
1928 case ETH_SS_STATS:
1929 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1930 memcpy(p, e1000_gstrings_stats[i].stat_string,
1931 ETH_GSTRING_LEN);
1932 p += ETH_GSTRING_LEN;
1934 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1935 break;
1939 static const struct ethtool_ops e1000_ethtool_ops = {
1940 .get_settings = e1000_get_settings,
1941 .set_settings = e1000_set_settings,
1942 .get_drvinfo = e1000_get_drvinfo,
1943 .get_regs_len = e1000_get_regs_len,
1944 .get_regs = e1000_get_regs,
1945 .get_wol = e1000_get_wol,
1946 .set_wol = e1000_set_wol,
1947 .get_msglevel = e1000_get_msglevel,
1948 .set_msglevel = e1000_set_msglevel,
1949 .nway_reset = e1000_nway_reset,
1950 .get_link = ethtool_op_get_link,
1951 .get_eeprom_len = e1000_get_eeprom_len,
1952 .get_eeprom = e1000_get_eeprom,
1953 .set_eeprom = e1000_set_eeprom,
1954 .get_ringparam = e1000_get_ringparam,
1955 .set_ringparam = e1000_set_ringparam,
1956 .get_pauseparam = e1000_get_pauseparam,
1957 .set_pauseparam = e1000_set_pauseparam,
1958 .get_rx_csum = e1000_get_rx_csum,
1959 .set_rx_csum = e1000_set_rx_csum,
1960 .get_tx_csum = e1000_get_tx_csum,
1961 .set_tx_csum = e1000_set_tx_csum,
1962 .set_sg = ethtool_op_set_sg,
1963 .set_tso = e1000_set_tso,
1964 .self_test = e1000_diag_test,
1965 .get_strings = e1000_get_strings,
1966 .phys_id = e1000_phys_id,
1967 .get_ethtool_stats = e1000_get_ethtool_stats,
1968 .get_sset_count = e1000_get_sset_count,
1971 void e1000_set_ethtool_ops(struct net_device *netdev)
1973 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);