rds: tcp: allow progress of rds_conn_shutdown if the rds_connection is marked ERROR...
[linux-2.6/btrfs-unstable.git] / drivers / iommu / arm-smmu.c
blobabf6496843a617070289377ffad3fd1e119b0aa6
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 * - Extended Stream ID (16 bit)
30 #define pr_fmt(fmt) "arm-smmu: " fmt
32 #include <linux/acpi.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/atomic.h>
35 #include <linux/delay.h>
36 #include <linux/dma-iommu.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/err.h>
39 #include <linux/interrupt.h>
40 #include <linux/io.h>
41 #include <linux/io-64-nonatomic-hi-lo.h>
42 #include <linux/iommu.h>
43 #include <linux/iopoll.h>
44 #include <linux/module.h>
45 #include <linux/of.h>
46 #include <linux/of_address.h>
47 #include <linux/of_device.h>
48 #include <linux/of_iommu.h>
49 #include <linux/pci.h>
50 #include <linux/platform_device.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
54 #include <linux/amba/bus.h>
56 #include "io-pgtable.h"
58 /* Maximum number of context banks per SMMU */
59 #define ARM_SMMU_MAX_CBS 128
61 /* SMMU global address space */
62 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
63 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
66 * SMMU global address space with conditional offset to access secure
67 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
68 * nsGFSYNR0: 0x450)
70 #define ARM_SMMU_GR0_NS(smmu) \
71 ((smmu)->base + \
72 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
73 ? 0x400 : 0))
76 * Some 64-bit registers only make sense to write atomically, but in such
77 * cases all the data relevant to AArch32 formats lies within the lower word,
78 * therefore this actually makes more sense than it might first appear.
80 #ifdef CONFIG_64BIT
81 #define smmu_write_atomic_lq writeq_relaxed
82 #else
83 #define smmu_write_atomic_lq writel_relaxed
84 #endif
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0 0x0
88 #define sCR0_CLIENTPD (1 << 0)
89 #define sCR0_GFRE (1 << 1)
90 #define sCR0_GFIE (1 << 2)
91 #define sCR0_EXIDENABLE (1 << 3)
92 #define sCR0_GCFGFRE (1 << 4)
93 #define sCR0_GCFGFIE (1 << 5)
94 #define sCR0_USFCFG (1 << 10)
95 #define sCR0_VMIDPNE (1 << 11)
96 #define sCR0_PTM (1 << 12)
97 #define sCR0_FB (1 << 13)
98 #define sCR0_VMID16EN (1 << 31)
99 #define sCR0_BSU_SHIFT 14
100 #define sCR0_BSU_MASK 0x3
102 /* Auxiliary Configuration register */
103 #define ARM_SMMU_GR0_sACR 0x10
105 /* Identification registers */
106 #define ARM_SMMU_GR0_ID0 0x20
107 #define ARM_SMMU_GR0_ID1 0x24
108 #define ARM_SMMU_GR0_ID2 0x28
109 #define ARM_SMMU_GR0_ID3 0x2c
110 #define ARM_SMMU_GR0_ID4 0x30
111 #define ARM_SMMU_GR0_ID5 0x34
112 #define ARM_SMMU_GR0_ID6 0x38
113 #define ARM_SMMU_GR0_ID7 0x3c
114 #define ARM_SMMU_GR0_sGFSR 0x48
115 #define ARM_SMMU_GR0_sGFSYNR0 0x50
116 #define ARM_SMMU_GR0_sGFSYNR1 0x54
117 #define ARM_SMMU_GR0_sGFSYNR2 0x58
119 #define ID0_S1TS (1 << 30)
120 #define ID0_S2TS (1 << 29)
121 #define ID0_NTS (1 << 28)
122 #define ID0_SMS (1 << 27)
123 #define ID0_ATOSNS (1 << 26)
124 #define ID0_PTFS_NO_AARCH32 (1 << 25)
125 #define ID0_PTFS_NO_AARCH32S (1 << 24)
126 #define ID0_CTTW (1 << 14)
127 #define ID0_NUMIRPT_SHIFT 16
128 #define ID0_NUMIRPT_MASK 0xff
129 #define ID0_NUMSIDB_SHIFT 9
130 #define ID0_NUMSIDB_MASK 0xf
131 #define ID0_EXIDS (1 << 8)
132 #define ID0_NUMSMRG_SHIFT 0
133 #define ID0_NUMSMRG_MASK 0xff
135 #define ID1_PAGESIZE (1 << 31)
136 #define ID1_NUMPAGENDXB_SHIFT 28
137 #define ID1_NUMPAGENDXB_MASK 7
138 #define ID1_NUMS2CB_SHIFT 16
139 #define ID1_NUMS2CB_MASK 0xff
140 #define ID1_NUMCB_SHIFT 0
141 #define ID1_NUMCB_MASK 0xff
143 #define ID2_OAS_SHIFT 4
144 #define ID2_OAS_MASK 0xf
145 #define ID2_IAS_SHIFT 0
146 #define ID2_IAS_MASK 0xf
147 #define ID2_UBS_SHIFT 8
148 #define ID2_UBS_MASK 0xf
149 #define ID2_PTFS_4K (1 << 12)
150 #define ID2_PTFS_16K (1 << 13)
151 #define ID2_PTFS_64K (1 << 14)
152 #define ID2_VMID16 (1 << 15)
154 #define ID7_MAJOR_SHIFT 4
155 #define ID7_MAJOR_MASK 0xf
157 /* Global TLB invalidation */
158 #define ARM_SMMU_GR0_TLBIVMID 0x64
159 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
160 #define ARM_SMMU_GR0_TLBIALLH 0x6c
161 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
162 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
163 #define sTLBGSTATUS_GSACTIVE (1 << 0)
164 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
166 /* Stream mapping registers */
167 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
168 #define SMR_VALID (1 << 31)
169 #define SMR_MASK_SHIFT 16
170 #define SMR_ID_SHIFT 0
172 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
173 #define S2CR_CBNDX_SHIFT 0
174 #define S2CR_CBNDX_MASK 0xff
175 #define S2CR_EXIDVALID (1 << 10)
176 #define S2CR_TYPE_SHIFT 16
177 #define S2CR_TYPE_MASK 0x3
178 enum arm_smmu_s2cr_type {
179 S2CR_TYPE_TRANS,
180 S2CR_TYPE_BYPASS,
181 S2CR_TYPE_FAULT,
184 #define S2CR_PRIVCFG_SHIFT 24
185 #define S2CR_PRIVCFG_MASK 0x3
186 enum arm_smmu_s2cr_privcfg {
187 S2CR_PRIVCFG_DEFAULT,
188 S2CR_PRIVCFG_DIPAN,
189 S2CR_PRIVCFG_UNPRIV,
190 S2CR_PRIVCFG_PRIV,
193 /* Context bank attribute registers */
194 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
195 #define CBAR_VMID_SHIFT 0
196 #define CBAR_VMID_MASK 0xff
197 #define CBAR_S1_BPSHCFG_SHIFT 8
198 #define CBAR_S1_BPSHCFG_MASK 3
199 #define CBAR_S1_BPSHCFG_NSH 3
200 #define CBAR_S1_MEMATTR_SHIFT 12
201 #define CBAR_S1_MEMATTR_MASK 0xf
202 #define CBAR_S1_MEMATTR_WB 0xf
203 #define CBAR_TYPE_SHIFT 16
204 #define CBAR_TYPE_MASK 0x3
205 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
206 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
207 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
208 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
209 #define CBAR_IRPTNDX_SHIFT 24
210 #define CBAR_IRPTNDX_MASK 0xff
212 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
213 #define CBA2R_RW64_32BIT (0 << 0)
214 #define CBA2R_RW64_64BIT (1 << 0)
215 #define CBA2R_VMID_SHIFT 16
216 #define CBA2R_VMID_MASK 0xffff
218 /* Translation context bank */
219 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
220 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
222 #define ARM_SMMU_CB_SCTLR 0x0
223 #define ARM_SMMU_CB_ACTLR 0x4
224 #define ARM_SMMU_CB_RESUME 0x8
225 #define ARM_SMMU_CB_TTBCR2 0x10
226 #define ARM_SMMU_CB_TTBR0 0x20
227 #define ARM_SMMU_CB_TTBR1 0x28
228 #define ARM_SMMU_CB_TTBCR 0x30
229 #define ARM_SMMU_CB_CONTEXTIDR 0x34
230 #define ARM_SMMU_CB_S1_MAIR0 0x38
231 #define ARM_SMMU_CB_S1_MAIR1 0x3c
232 #define ARM_SMMU_CB_PAR 0x50
233 #define ARM_SMMU_CB_FSR 0x58
234 #define ARM_SMMU_CB_FAR 0x60
235 #define ARM_SMMU_CB_FSYNR0 0x68
236 #define ARM_SMMU_CB_S1_TLBIVA 0x600
237 #define ARM_SMMU_CB_S1_TLBIASID 0x610
238 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
239 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
240 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
241 #define ARM_SMMU_CB_ATS1PR 0x800
242 #define ARM_SMMU_CB_ATSR 0x8f0
244 #define SCTLR_S1_ASIDPNE (1 << 12)
245 #define SCTLR_CFCFG (1 << 7)
246 #define SCTLR_CFIE (1 << 6)
247 #define SCTLR_CFRE (1 << 5)
248 #define SCTLR_E (1 << 4)
249 #define SCTLR_AFE (1 << 2)
250 #define SCTLR_TRE (1 << 1)
251 #define SCTLR_M (1 << 0)
253 #define ARM_MMU500_ACTLR_CPRE (1 << 1)
255 #define ARM_MMU500_ACR_CACHE_LOCK (1 << 26)
256 #define ARM_MMU500_ACR_SMTNMB_TLBEN (1 << 8)
258 #define CB_PAR_F (1 << 0)
260 #define ATSR_ACTIVE (1 << 0)
262 #define RESUME_RETRY (0 << 0)
263 #define RESUME_TERMINATE (1 << 0)
265 #define TTBCR2_SEP_SHIFT 15
266 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
267 #define TTBCR2_AS (1 << 4)
269 #define TTBRn_ASID_SHIFT 48
271 #define FSR_MULTI (1 << 31)
272 #define FSR_SS (1 << 30)
273 #define FSR_UUT (1 << 8)
274 #define FSR_ASF (1 << 7)
275 #define FSR_TLBLKF (1 << 6)
276 #define FSR_TLBMCF (1 << 5)
277 #define FSR_EF (1 << 4)
278 #define FSR_PF (1 << 3)
279 #define FSR_AFF (1 << 2)
280 #define FSR_TF (1 << 1)
282 #define FSR_IGN (FSR_AFF | FSR_ASF | \
283 FSR_TLBMCF | FSR_TLBLKF)
284 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
285 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
287 #define FSYNR0_WNR (1 << 4)
289 #define MSI_IOVA_BASE 0x8000000
290 #define MSI_IOVA_LENGTH 0x100000
292 static int force_stage;
293 module_param(force_stage, int, S_IRUGO);
294 MODULE_PARM_DESC(force_stage,
295 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
296 static bool disable_bypass;
297 module_param(disable_bypass, bool, S_IRUGO);
298 MODULE_PARM_DESC(disable_bypass,
299 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
301 enum arm_smmu_arch_version {
302 ARM_SMMU_V1,
303 ARM_SMMU_V1_64K,
304 ARM_SMMU_V2,
307 enum arm_smmu_implementation {
308 GENERIC_SMMU,
309 ARM_MMU500,
310 CAVIUM_SMMUV2,
313 struct arm_smmu_s2cr {
314 struct iommu_group *group;
315 int count;
316 enum arm_smmu_s2cr_type type;
317 enum arm_smmu_s2cr_privcfg privcfg;
318 u8 cbndx;
321 #define s2cr_init_val (struct arm_smmu_s2cr){ \
322 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \
325 struct arm_smmu_smr {
326 u16 mask;
327 u16 id;
328 bool valid;
331 struct arm_smmu_master_cfg {
332 struct arm_smmu_device *smmu;
333 s16 smendx[];
335 #define INVALID_SMENDX -1
336 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
337 #define fwspec_smmu(fw) (__fwspec_cfg(fw)->smmu)
338 #define fwspec_smendx(fw, i) \
339 (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
340 #define for_each_cfg_sme(fw, i, idx) \
341 for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
343 struct arm_smmu_device {
344 struct device *dev;
346 void __iomem *base;
347 unsigned long size;
348 unsigned long pgshift;
350 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
351 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
352 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
353 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
354 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
355 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
356 #define ARM_SMMU_FEAT_VMID16 (1 << 6)
357 #define ARM_SMMU_FEAT_FMT_AARCH64_4K (1 << 7)
358 #define ARM_SMMU_FEAT_FMT_AARCH64_16K (1 << 8)
359 #define ARM_SMMU_FEAT_FMT_AARCH64_64K (1 << 9)
360 #define ARM_SMMU_FEAT_FMT_AARCH32_L (1 << 10)
361 #define ARM_SMMU_FEAT_FMT_AARCH32_S (1 << 11)
362 #define ARM_SMMU_FEAT_EXIDS (1 << 12)
363 u32 features;
365 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
366 u32 options;
367 enum arm_smmu_arch_version version;
368 enum arm_smmu_implementation model;
370 u32 num_context_banks;
371 u32 num_s2_context_banks;
372 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
373 atomic_t irptndx;
375 u32 num_mapping_groups;
376 u16 streamid_mask;
377 u16 smr_mask_mask;
378 struct arm_smmu_smr *smrs;
379 struct arm_smmu_s2cr *s2crs;
380 struct mutex stream_map_mutex;
382 unsigned long va_size;
383 unsigned long ipa_size;
384 unsigned long pa_size;
385 unsigned long pgsize_bitmap;
387 u32 num_global_irqs;
388 u32 num_context_irqs;
389 unsigned int *irqs;
391 u32 cavium_id_base; /* Specific to Cavium */
393 /* IOMMU core code handle */
394 struct iommu_device iommu;
397 enum arm_smmu_context_fmt {
398 ARM_SMMU_CTX_FMT_NONE,
399 ARM_SMMU_CTX_FMT_AARCH64,
400 ARM_SMMU_CTX_FMT_AARCH32_L,
401 ARM_SMMU_CTX_FMT_AARCH32_S,
404 struct arm_smmu_cfg {
405 u8 cbndx;
406 u8 irptndx;
407 u32 cbar;
408 enum arm_smmu_context_fmt fmt;
410 #define INVALID_IRPTNDX 0xff
412 #define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
413 #define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
415 enum arm_smmu_domain_stage {
416 ARM_SMMU_DOMAIN_S1 = 0,
417 ARM_SMMU_DOMAIN_S2,
418 ARM_SMMU_DOMAIN_NESTED,
421 struct arm_smmu_domain {
422 struct arm_smmu_device *smmu;
423 struct io_pgtable_ops *pgtbl_ops;
424 spinlock_t pgtbl_lock;
425 struct arm_smmu_cfg cfg;
426 enum arm_smmu_domain_stage stage;
427 struct mutex init_mutex; /* Protects smmu pointer */
428 struct iommu_domain domain;
431 struct arm_smmu_option_prop {
432 u32 opt;
433 const char *prop;
436 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
438 static bool using_legacy_binding, using_generic_binding;
440 static struct arm_smmu_option_prop arm_smmu_options[] = {
441 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
442 { 0, NULL},
445 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
447 return container_of(dom, struct arm_smmu_domain, domain);
450 static void parse_driver_options(struct arm_smmu_device *smmu)
452 int i = 0;
454 do {
455 if (of_property_read_bool(smmu->dev->of_node,
456 arm_smmu_options[i].prop)) {
457 smmu->options |= arm_smmu_options[i].opt;
458 dev_notice(smmu->dev, "option %s\n",
459 arm_smmu_options[i].prop);
461 } while (arm_smmu_options[++i].opt);
464 static struct device_node *dev_get_dev_node(struct device *dev)
466 if (dev_is_pci(dev)) {
467 struct pci_bus *bus = to_pci_dev(dev)->bus;
469 while (!pci_is_root_bus(bus))
470 bus = bus->parent;
471 return of_node_get(bus->bridge->parent->of_node);
474 return of_node_get(dev->of_node);
477 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
479 *((__be32 *)data) = cpu_to_be32(alias);
480 return 0; /* Continue walking */
483 static int __find_legacy_master_phandle(struct device *dev, void *data)
485 struct of_phandle_iterator *it = *(void **)data;
486 struct device_node *np = it->node;
487 int err;
489 of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
490 "#stream-id-cells", 0)
491 if (it->node == np) {
492 *(void **)data = dev;
493 return 1;
495 it->node = np;
496 return err == -ENOENT ? 0 : err;
499 static struct platform_driver arm_smmu_driver;
500 static struct iommu_ops arm_smmu_ops;
502 static int arm_smmu_register_legacy_master(struct device *dev,
503 struct arm_smmu_device **smmu)
505 struct device *smmu_dev;
506 struct device_node *np;
507 struct of_phandle_iterator it;
508 void *data = &it;
509 u32 *sids;
510 __be32 pci_sid;
511 int err;
513 np = dev_get_dev_node(dev);
514 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
515 of_node_put(np);
516 return -ENODEV;
519 it.node = np;
520 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
521 __find_legacy_master_phandle);
522 smmu_dev = data;
523 of_node_put(np);
524 if (err == 0)
525 return -ENODEV;
526 if (err < 0)
527 return err;
529 if (dev_is_pci(dev)) {
530 /* "mmu-masters" assumes Stream ID == Requester ID */
531 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
532 &pci_sid);
533 it.cur = &pci_sid;
534 it.cur_count = 1;
537 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
538 &arm_smmu_ops);
539 if (err)
540 return err;
542 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
543 if (!sids)
544 return -ENOMEM;
546 *smmu = dev_get_drvdata(smmu_dev);
547 of_phandle_iterator_args(&it, sids, it.cur_count);
548 err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
549 kfree(sids);
550 return err;
553 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
555 int idx;
557 do {
558 idx = find_next_zero_bit(map, end, start);
559 if (idx == end)
560 return -ENOSPC;
561 } while (test_and_set_bit(idx, map));
563 return idx;
566 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
568 clear_bit(idx, map);
571 /* Wait for any pending TLB invalidations to complete */
572 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
574 int count = 0;
575 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
577 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
578 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
579 & sTLBGSTATUS_GSACTIVE) {
580 cpu_relax();
581 if (++count == TLB_LOOP_TIMEOUT) {
582 dev_err_ratelimited(smmu->dev,
583 "TLB sync timed out -- SMMU may be deadlocked\n");
584 return;
586 udelay(1);
590 static void arm_smmu_tlb_sync(void *cookie)
592 struct arm_smmu_domain *smmu_domain = cookie;
593 __arm_smmu_tlb_sync(smmu_domain->smmu);
596 static void arm_smmu_tlb_inv_context(void *cookie)
598 struct arm_smmu_domain *smmu_domain = cookie;
599 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
600 struct arm_smmu_device *smmu = smmu_domain->smmu;
601 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
602 void __iomem *base;
604 if (stage1) {
605 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
606 writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
607 base + ARM_SMMU_CB_S1_TLBIASID);
608 } else {
609 base = ARM_SMMU_GR0(smmu);
610 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
611 base + ARM_SMMU_GR0_TLBIVMID);
614 __arm_smmu_tlb_sync(smmu);
617 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
618 size_t granule, bool leaf, void *cookie)
620 struct arm_smmu_domain *smmu_domain = cookie;
621 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
622 struct arm_smmu_device *smmu = smmu_domain->smmu;
623 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
624 void __iomem *reg;
626 if (stage1) {
627 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
628 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
630 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
631 iova &= ~12UL;
632 iova |= ARM_SMMU_CB_ASID(smmu, cfg);
633 do {
634 writel_relaxed(iova, reg);
635 iova += granule;
636 } while (size -= granule);
637 } else {
638 iova >>= 12;
639 iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
640 do {
641 writeq_relaxed(iova, reg);
642 iova += granule >> 12;
643 } while (size -= granule);
645 } else if (smmu->version == ARM_SMMU_V2) {
646 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
647 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
648 ARM_SMMU_CB_S2_TLBIIPAS2;
649 iova >>= 12;
650 do {
651 smmu_write_atomic_lq(iova, reg);
652 iova += granule >> 12;
653 } while (size -= granule);
654 } else {
655 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
656 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
660 static const struct iommu_gather_ops arm_smmu_gather_ops = {
661 .tlb_flush_all = arm_smmu_tlb_inv_context,
662 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
663 .tlb_sync = arm_smmu_tlb_sync,
666 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
668 u32 fsr, fsynr;
669 unsigned long iova;
670 struct iommu_domain *domain = dev;
671 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
672 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
673 struct arm_smmu_device *smmu = smmu_domain->smmu;
674 void __iomem *cb_base;
676 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
677 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
679 if (!(fsr & FSR_FAULT))
680 return IRQ_NONE;
682 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
683 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
685 dev_err_ratelimited(smmu->dev,
686 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
687 fsr, iova, fsynr, cfg->cbndx);
689 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
690 return IRQ_HANDLED;
693 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
695 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
696 struct arm_smmu_device *smmu = dev;
697 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
699 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
700 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
701 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
702 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
704 if (!gfsr)
705 return IRQ_NONE;
707 dev_err_ratelimited(smmu->dev,
708 "Unexpected global fault, this could be serious\n");
709 dev_err_ratelimited(smmu->dev,
710 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
711 gfsr, gfsynr0, gfsynr1, gfsynr2);
713 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
714 return IRQ_HANDLED;
717 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
718 struct io_pgtable_cfg *pgtbl_cfg)
720 u32 reg, reg2;
721 u64 reg64;
722 bool stage1;
723 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
724 struct arm_smmu_device *smmu = smmu_domain->smmu;
725 void __iomem *cb_base, *gr1_base;
727 gr1_base = ARM_SMMU_GR1(smmu);
728 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
729 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
731 if (smmu->version > ARM_SMMU_V1) {
732 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
733 reg = CBA2R_RW64_64BIT;
734 else
735 reg = CBA2R_RW64_32BIT;
736 /* 16-bit VMIDs live in CBA2R */
737 if (smmu->features & ARM_SMMU_FEAT_VMID16)
738 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
740 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
743 /* CBAR */
744 reg = cfg->cbar;
745 if (smmu->version < ARM_SMMU_V2)
746 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
749 * Use the weakest shareability/memory types, so they are
750 * overridden by the ttbcr/pte.
752 if (stage1) {
753 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
754 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
755 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
756 /* 8-bit VMIDs live in CBAR */
757 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
759 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
761 /* TTBRs */
762 if (stage1) {
763 u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);
765 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
766 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
767 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
768 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
769 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
770 writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
771 } else {
772 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
773 reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
774 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
775 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
776 reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
777 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
779 } else {
780 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
781 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
784 /* TTBCR */
785 if (stage1) {
786 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
787 reg = pgtbl_cfg->arm_v7s_cfg.tcr;
788 reg2 = 0;
789 } else {
790 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
791 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
792 reg2 |= TTBCR2_SEP_UPSTREAM;
793 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
794 reg2 |= TTBCR2_AS;
796 if (smmu->version > ARM_SMMU_V1)
797 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
798 } else {
799 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
801 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
803 /* MAIRs (stage-1 only) */
804 if (stage1) {
805 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
806 reg = pgtbl_cfg->arm_v7s_cfg.prrr;
807 reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
808 } else {
809 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
810 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
812 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
813 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
816 /* SCTLR */
817 reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
818 if (stage1)
819 reg |= SCTLR_S1_ASIDPNE;
820 #ifdef __BIG_ENDIAN
821 reg |= SCTLR_E;
822 #endif
823 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
826 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
827 struct arm_smmu_device *smmu)
829 int irq, start, ret = 0;
830 unsigned long ias, oas;
831 struct io_pgtable_ops *pgtbl_ops;
832 struct io_pgtable_cfg pgtbl_cfg;
833 enum io_pgtable_fmt fmt;
834 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
835 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
837 mutex_lock(&smmu_domain->init_mutex);
838 if (smmu_domain->smmu)
839 goto out_unlock;
842 * Mapping the requested stage onto what we support is surprisingly
843 * complicated, mainly because the spec allows S1+S2 SMMUs without
844 * support for nested translation. That means we end up with the
845 * following table:
847 * Requested Supported Actual
848 * S1 N S1
849 * S1 S1+S2 S1
850 * S1 S2 S2
851 * S1 S1 S1
852 * N N N
853 * N S1+S2 S2
854 * N S2 S2
855 * N S1 S1
857 * Note that you can't actually request stage-2 mappings.
859 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
860 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
861 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
862 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
865 * Choosing a suitable context format is even more fiddly. Until we
866 * grow some way for the caller to express a preference, and/or move
867 * the decision into the io-pgtable code where it arguably belongs,
868 * just aim for the closest thing to the rest of the system, and hope
869 * that the hardware isn't esoteric enough that we can't assume AArch64
870 * support to be a superset of AArch32 support...
872 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
873 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
874 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
875 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
876 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
877 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
878 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
879 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
880 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
881 ARM_SMMU_FEAT_FMT_AARCH64_16K |
882 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
883 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
885 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
886 ret = -EINVAL;
887 goto out_unlock;
890 switch (smmu_domain->stage) {
891 case ARM_SMMU_DOMAIN_S1:
892 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
893 start = smmu->num_s2_context_banks;
894 ias = smmu->va_size;
895 oas = smmu->ipa_size;
896 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
897 fmt = ARM_64_LPAE_S1;
898 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
899 fmt = ARM_32_LPAE_S1;
900 ias = min(ias, 32UL);
901 oas = min(oas, 40UL);
902 } else {
903 fmt = ARM_V7S;
904 ias = min(ias, 32UL);
905 oas = min(oas, 32UL);
907 break;
908 case ARM_SMMU_DOMAIN_NESTED:
910 * We will likely want to change this if/when KVM gets
911 * involved.
913 case ARM_SMMU_DOMAIN_S2:
914 cfg->cbar = CBAR_TYPE_S2_TRANS;
915 start = 0;
916 ias = smmu->ipa_size;
917 oas = smmu->pa_size;
918 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
919 fmt = ARM_64_LPAE_S2;
920 } else {
921 fmt = ARM_32_LPAE_S2;
922 ias = min(ias, 40UL);
923 oas = min(oas, 40UL);
925 break;
926 default:
927 ret = -EINVAL;
928 goto out_unlock;
931 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
932 smmu->num_context_banks);
933 if (ret < 0)
934 goto out_unlock;
936 cfg->cbndx = ret;
937 if (smmu->version < ARM_SMMU_V2) {
938 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
939 cfg->irptndx %= smmu->num_context_irqs;
940 } else {
941 cfg->irptndx = cfg->cbndx;
944 pgtbl_cfg = (struct io_pgtable_cfg) {
945 .pgsize_bitmap = smmu->pgsize_bitmap,
946 .ias = ias,
947 .oas = oas,
948 .tlb = &arm_smmu_gather_ops,
949 .iommu_dev = smmu->dev,
952 smmu_domain->smmu = smmu;
953 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
954 if (!pgtbl_ops) {
955 ret = -ENOMEM;
956 goto out_clear_smmu;
959 /* Update the domain's page sizes to reflect the page table format */
960 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
961 domain->geometry.aperture_end = (1UL << ias) - 1;
962 domain->geometry.force_aperture = true;
964 /* Initialise the context bank with our page table cfg */
965 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
968 * Request context fault interrupt. Do this last to avoid the
969 * handler seeing a half-initialised domain state.
971 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
972 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
973 IRQF_SHARED, "arm-smmu-context-fault", domain);
974 if (ret < 0) {
975 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
976 cfg->irptndx, irq);
977 cfg->irptndx = INVALID_IRPTNDX;
980 mutex_unlock(&smmu_domain->init_mutex);
982 /* Publish page table ops for map/unmap */
983 smmu_domain->pgtbl_ops = pgtbl_ops;
984 return 0;
986 out_clear_smmu:
987 smmu_domain->smmu = NULL;
988 out_unlock:
989 mutex_unlock(&smmu_domain->init_mutex);
990 return ret;
993 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
995 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
996 struct arm_smmu_device *smmu = smmu_domain->smmu;
997 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
998 void __iomem *cb_base;
999 int irq;
1001 if (!smmu)
1002 return;
1005 * Disable the context bank and free the page tables before freeing
1006 * it.
1008 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1009 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1011 if (cfg->irptndx != INVALID_IRPTNDX) {
1012 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1013 devm_free_irq(smmu->dev, irq, domain);
1016 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1017 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1020 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1022 struct arm_smmu_domain *smmu_domain;
1024 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1025 return NULL;
1027 * Allocate the domain and initialise some of its data structures.
1028 * We can't really do anything meaningful until we've added a
1029 * master.
1031 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1032 if (!smmu_domain)
1033 return NULL;
1035 if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
1036 iommu_get_dma_cookie(&smmu_domain->domain))) {
1037 kfree(smmu_domain);
1038 return NULL;
1041 mutex_init(&smmu_domain->init_mutex);
1042 spin_lock_init(&smmu_domain->pgtbl_lock);
1044 return &smmu_domain->domain;
1047 static void arm_smmu_domain_free(struct iommu_domain *domain)
1049 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1052 * Free the domain resources. We assume that all devices have
1053 * already been detached.
1055 iommu_put_dma_cookie(domain);
1056 arm_smmu_destroy_domain_context(domain);
1057 kfree(smmu_domain);
1060 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
1062 struct arm_smmu_smr *smr = smmu->smrs + idx;
1063 u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1065 if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
1066 reg |= SMR_VALID;
1067 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
1070 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
1072 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
1073 u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
1074 (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
1075 (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;
1077 if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
1078 smmu->smrs[idx].valid)
1079 reg |= S2CR_EXIDVALID;
1080 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
1083 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
1085 arm_smmu_write_s2cr(smmu, idx);
1086 if (smmu->smrs)
1087 arm_smmu_write_smr(smmu, idx);
1091 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
1092 * should be called after sCR0 is written.
1094 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
1096 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1097 u32 smr;
1099 if (!smmu->smrs)
1100 return;
1103 * SMR.ID bits may not be preserved if the corresponding MASK
1104 * bits are set, so check each one separately. We can reject
1105 * masters later if they try to claim IDs outside these masks.
1107 smr = smmu->streamid_mask << SMR_ID_SHIFT;
1108 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1109 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1110 smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1112 smr = smmu->streamid_mask << SMR_MASK_SHIFT;
1113 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1114 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1115 smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1118 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1120 struct arm_smmu_smr *smrs = smmu->smrs;
1121 int i, free_idx = -ENOSPC;
1123 /* Stream indexing is blissfully easy */
1124 if (!smrs)
1125 return id;
1127 /* Validating SMRs is... less so */
1128 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1129 if (!smrs[i].valid) {
1131 * Note the first free entry we come across, which
1132 * we'll claim in the end if nothing else matches.
1134 if (free_idx < 0)
1135 free_idx = i;
1136 continue;
1139 * If the new entry is _entirely_ matched by an existing entry,
1140 * then reuse that, with the guarantee that there also cannot
1141 * be any subsequent conflicting entries. In normal use we'd
1142 * expect simply identical entries for this case, but there's
1143 * no harm in accommodating the generalisation.
1145 if ((mask & smrs[i].mask) == mask &&
1146 !((id ^ smrs[i].id) & ~smrs[i].mask))
1147 return i;
1149 * If the new entry has any other overlap with an existing one,
1150 * though, then there always exists at least one stream ID
1151 * which would cause a conflict, and we can't allow that risk.
1153 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
1154 return -EINVAL;
1157 return free_idx;
1160 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
1162 if (--smmu->s2crs[idx].count)
1163 return false;
1165 smmu->s2crs[idx] = s2cr_init_val;
1166 if (smmu->smrs)
1167 smmu->smrs[idx].valid = false;
1169 return true;
1172 static int arm_smmu_master_alloc_smes(struct device *dev)
1174 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1175 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1176 struct arm_smmu_device *smmu = cfg->smmu;
1177 struct arm_smmu_smr *smrs = smmu->smrs;
1178 struct iommu_group *group;
1179 int i, idx, ret;
1181 mutex_lock(&smmu->stream_map_mutex);
1182 /* Figure out a viable stream map entry allocation */
1183 for_each_cfg_sme(fwspec, i, idx) {
1184 u16 sid = fwspec->ids[i];
1185 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1187 if (idx != INVALID_SMENDX) {
1188 ret = -EEXIST;
1189 goto out_err;
1192 ret = arm_smmu_find_sme(smmu, sid, mask);
1193 if (ret < 0)
1194 goto out_err;
1196 idx = ret;
1197 if (smrs && smmu->s2crs[idx].count == 0) {
1198 smrs[idx].id = sid;
1199 smrs[idx].mask = mask;
1200 smrs[idx].valid = true;
1202 smmu->s2crs[idx].count++;
1203 cfg->smendx[i] = (s16)idx;
1206 group = iommu_group_get_for_dev(dev);
1207 if (!group)
1208 group = ERR_PTR(-ENOMEM);
1209 if (IS_ERR(group)) {
1210 ret = PTR_ERR(group);
1211 goto out_err;
1213 iommu_group_put(group);
1215 /* It worked! Now, poke the actual hardware */
1216 for_each_cfg_sme(fwspec, i, idx) {
1217 arm_smmu_write_sme(smmu, idx);
1218 smmu->s2crs[idx].group = group;
1221 mutex_unlock(&smmu->stream_map_mutex);
1222 return 0;
1224 out_err:
1225 while (i--) {
1226 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1227 cfg->smendx[i] = INVALID_SMENDX;
1229 mutex_unlock(&smmu->stream_map_mutex);
1230 return ret;
1233 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1235 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1236 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1237 int i, idx;
1239 mutex_lock(&smmu->stream_map_mutex);
1240 for_each_cfg_sme(fwspec, i, idx) {
1241 if (arm_smmu_free_sme(smmu, idx))
1242 arm_smmu_write_sme(smmu, idx);
1243 cfg->smendx[i] = INVALID_SMENDX;
1245 mutex_unlock(&smmu->stream_map_mutex);
1248 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1249 struct iommu_fwspec *fwspec)
1251 struct arm_smmu_device *smmu = smmu_domain->smmu;
1252 struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1253 enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
1254 u8 cbndx = smmu_domain->cfg.cbndx;
1255 int i, idx;
1257 for_each_cfg_sme(fwspec, i, idx) {
1258 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1259 continue;
1261 s2cr[idx].type = type;
1262 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1263 s2cr[idx].cbndx = cbndx;
1264 arm_smmu_write_s2cr(smmu, idx);
1266 return 0;
1269 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1271 int ret;
1272 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1273 struct arm_smmu_device *smmu;
1274 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1276 if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1277 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1278 return -ENXIO;
1282 * FIXME: The arch/arm DMA API code tries to attach devices to its own
1283 * domains between of_xlate() and add_device() - we have no way to cope
1284 * with that, so until ARM gets converted to rely on groups and default
1285 * domains, just say no (but more politely than by dereferencing NULL).
1286 * This should be at least a WARN_ON once that's sorted.
1288 if (!fwspec->iommu_priv)
1289 return -ENODEV;
1291 smmu = fwspec_smmu(fwspec);
1292 /* Ensure that the domain is finalised */
1293 ret = arm_smmu_init_domain_context(domain, smmu);
1294 if (ret < 0)
1295 return ret;
1298 * Sanity check the domain. We don't support domains across
1299 * different SMMUs.
1301 if (smmu_domain->smmu != smmu) {
1302 dev_err(dev,
1303 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1304 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1305 return -EINVAL;
1308 /* Looks ok, so add the device to the domain */
1309 return arm_smmu_domain_add_master(smmu_domain, fwspec);
1312 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1313 phys_addr_t paddr, size_t size, int prot)
1315 int ret;
1316 unsigned long flags;
1317 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1318 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1320 if (!ops)
1321 return -ENODEV;
1323 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1324 ret = ops->map(ops, iova, paddr, size, prot);
1325 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1326 return ret;
1329 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1330 size_t size)
1332 size_t ret;
1333 unsigned long flags;
1334 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1335 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1337 if (!ops)
1338 return 0;
1340 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1341 ret = ops->unmap(ops, iova, size);
1342 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1343 return ret;
1346 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1347 dma_addr_t iova)
1349 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1350 struct arm_smmu_device *smmu = smmu_domain->smmu;
1351 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1352 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1353 struct device *dev = smmu->dev;
1354 void __iomem *cb_base;
1355 u32 tmp;
1356 u64 phys;
1357 unsigned long va;
1359 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1361 /* ATS1 registers can only be written atomically */
1362 va = iova & ~0xfffUL;
1363 if (smmu->version == ARM_SMMU_V2)
1364 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1365 else /* Register is only 32-bit in v1 */
1366 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1368 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1369 !(tmp & ATSR_ACTIVE), 5, 50)) {
1370 dev_err(dev,
1371 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1372 &iova);
1373 return ops->iova_to_phys(ops, iova);
1376 phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1377 if (phys & CB_PAR_F) {
1378 dev_err(dev, "translation fault!\n");
1379 dev_err(dev, "PAR = 0x%llx\n", phys);
1380 return 0;
1383 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1386 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1387 dma_addr_t iova)
1389 phys_addr_t ret;
1390 unsigned long flags;
1391 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1392 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1394 if (!ops)
1395 return 0;
1397 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1398 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1399 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1400 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1401 } else {
1402 ret = ops->iova_to_phys(ops, iova);
1405 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1407 return ret;
1410 static bool arm_smmu_capable(enum iommu_cap cap)
1412 switch (cap) {
1413 case IOMMU_CAP_CACHE_COHERENCY:
1415 * Return true here as the SMMU can always send out coherent
1416 * requests.
1418 return true;
1419 case IOMMU_CAP_NOEXEC:
1420 return true;
1421 default:
1422 return false;
1426 static int arm_smmu_match_node(struct device *dev, void *data)
1428 return dev->fwnode == data;
1431 static
1432 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1434 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1435 fwnode, arm_smmu_match_node);
1436 put_device(dev);
1437 return dev ? dev_get_drvdata(dev) : NULL;
1440 static int arm_smmu_add_device(struct device *dev)
1442 struct arm_smmu_device *smmu;
1443 struct arm_smmu_master_cfg *cfg;
1444 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1445 int i, ret;
1447 if (using_legacy_binding) {
1448 ret = arm_smmu_register_legacy_master(dev, &smmu);
1449 fwspec = dev->iommu_fwspec;
1450 if (ret)
1451 goto out_free;
1452 } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1453 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1454 } else {
1455 return -ENODEV;
1458 ret = -EINVAL;
1459 for (i = 0; i < fwspec->num_ids; i++) {
1460 u16 sid = fwspec->ids[i];
1461 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1463 if (sid & ~smmu->streamid_mask) {
1464 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1465 sid, smmu->streamid_mask);
1466 goto out_free;
1468 if (mask & ~smmu->smr_mask_mask) {
1469 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1470 sid, smmu->smr_mask_mask);
1471 goto out_free;
1475 ret = -ENOMEM;
1476 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1477 GFP_KERNEL);
1478 if (!cfg)
1479 goto out_free;
1481 cfg->smmu = smmu;
1482 fwspec->iommu_priv = cfg;
1483 while (i--)
1484 cfg->smendx[i] = INVALID_SMENDX;
1486 ret = arm_smmu_master_alloc_smes(dev);
1487 if (ret)
1488 goto out_free;
1490 iommu_device_link(&smmu->iommu, dev);
1492 return 0;
1494 out_free:
1495 if (fwspec)
1496 kfree(fwspec->iommu_priv);
1497 iommu_fwspec_free(dev);
1498 return ret;
1501 static void arm_smmu_remove_device(struct device *dev)
1503 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1504 struct arm_smmu_master_cfg *cfg;
1505 struct arm_smmu_device *smmu;
1508 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1509 return;
1511 cfg = fwspec->iommu_priv;
1512 smmu = cfg->smmu;
1514 iommu_device_unlink(&smmu->iommu, dev);
1515 arm_smmu_master_free_smes(fwspec);
1516 iommu_group_remove_device(dev);
1517 kfree(fwspec->iommu_priv);
1518 iommu_fwspec_free(dev);
1521 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1523 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1524 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1525 struct iommu_group *group = NULL;
1526 int i, idx;
1528 for_each_cfg_sme(fwspec, i, idx) {
1529 if (group && smmu->s2crs[idx].group &&
1530 group != smmu->s2crs[idx].group)
1531 return ERR_PTR(-EINVAL);
1533 group = smmu->s2crs[idx].group;
1536 if (group)
1537 return iommu_group_ref_get(group);
1539 if (dev_is_pci(dev))
1540 group = pci_device_group(dev);
1541 else
1542 group = generic_device_group(dev);
1544 return group;
1547 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1548 enum iommu_attr attr, void *data)
1550 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1552 switch (attr) {
1553 case DOMAIN_ATTR_NESTING:
1554 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1555 return 0;
1556 default:
1557 return -ENODEV;
1561 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1562 enum iommu_attr attr, void *data)
1564 int ret = 0;
1565 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1567 mutex_lock(&smmu_domain->init_mutex);
1569 switch (attr) {
1570 case DOMAIN_ATTR_NESTING:
1571 if (smmu_domain->smmu) {
1572 ret = -EPERM;
1573 goto out_unlock;
1576 if (*(int *)data)
1577 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1578 else
1579 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1581 break;
1582 default:
1583 ret = -ENODEV;
1586 out_unlock:
1587 mutex_unlock(&smmu_domain->init_mutex);
1588 return ret;
1591 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1593 u32 fwid = 0;
1595 if (args->args_count > 0)
1596 fwid |= (u16)args->args[0];
1598 if (args->args_count > 1)
1599 fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1601 return iommu_fwspec_add_ids(dev, &fwid, 1);
1604 static void arm_smmu_get_resv_regions(struct device *dev,
1605 struct list_head *head)
1607 struct iommu_resv_region *region;
1608 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1610 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1611 prot, IOMMU_RESV_MSI);
1612 if (!region)
1613 return;
1615 list_add_tail(&region->list, head);
1618 static void arm_smmu_put_resv_regions(struct device *dev,
1619 struct list_head *head)
1621 struct iommu_resv_region *entry, *next;
1623 list_for_each_entry_safe(entry, next, head, list)
1624 kfree(entry);
1627 static struct iommu_ops arm_smmu_ops = {
1628 .capable = arm_smmu_capable,
1629 .domain_alloc = arm_smmu_domain_alloc,
1630 .domain_free = arm_smmu_domain_free,
1631 .attach_dev = arm_smmu_attach_dev,
1632 .map = arm_smmu_map,
1633 .unmap = arm_smmu_unmap,
1634 .map_sg = default_iommu_map_sg,
1635 .iova_to_phys = arm_smmu_iova_to_phys,
1636 .add_device = arm_smmu_add_device,
1637 .remove_device = arm_smmu_remove_device,
1638 .device_group = arm_smmu_device_group,
1639 .domain_get_attr = arm_smmu_domain_get_attr,
1640 .domain_set_attr = arm_smmu_domain_set_attr,
1641 .of_xlate = arm_smmu_of_xlate,
1642 .get_resv_regions = arm_smmu_get_resv_regions,
1643 .put_resv_regions = arm_smmu_put_resv_regions,
1644 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1647 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1649 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1650 void __iomem *cb_base;
1651 int i;
1652 u32 reg, major;
1654 /* clear global FSR */
1655 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1656 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1659 * Reset stream mapping groups: Initial values mark all SMRn as
1660 * invalid and all S2CRn as bypass unless overridden.
1662 for (i = 0; i < smmu->num_mapping_groups; ++i)
1663 arm_smmu_write_sme(smmu, i);
1665 if (smmu->model == ARM_MMU500) {
1667 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1668 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1669 * bit is only present in MMU-500r2 onwards.
1671 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1672 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1673 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1674 if (major >= 2)
1675 reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1677 * Allow unmatched Stream IDs to allocate bypass
1678 * TLB entries for reduced latency.
1680 reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1681 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1684 /* Make sure all context banks are disabled and clear CB_FSR */
1685 for (i = 0; i < smmu->num_context_banks; ++i) {
1686 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1687 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1688 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1690 * Disable MMU-500's not-particularly-beneficial next-page
1691 * prefetcher for the sake of errata #841119 and #826419.
1693 if (smmu->model == ARM_MMU500) {
1694 reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1695 reg &= ~ARM_MMU500_ACTLR_CPRE;
1696 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1700 /* Invalidate the TLB, just in case */
1701 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1702 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1704 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1706 /* Enable fault reporting */
1707 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1709 /* Disable TLB broadcasting. */
1710 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1712 /* Enable client access, handling unmatched streams as appropriate */
1713 reg &= ~sCR0_CLIENTPD;
1714 if (disable_bypass)
1715 reg |= sCR0_USFCFG;
1716 else
1717 reg &= ~sCR0_USFCFG;
1719 /* Disable forced broadcasting */
1720 reg &= ~sCR0_FB;
1722 /* Don't upgrade barriers */
1723 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1725 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1726 reg |= sCR0_VMID16EN;
1728 if (smmu->features & ARM_SMMU_FEAT_EXIDS)
1729 reg |= sCR0_EXIDENABLE;
1731 /* Push the button */
1732 __arm_smmu_tlb_sync(smmu);
1733 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1736 static int arm_smmu_id_size_to_bits(int size)
1738 switch (size) {
1739 case 0:
1740 return 32;
1741 case 1:
1742 return 36;
1743 case 2:
1744 return 40;
1745 case 3:
1746 return 42;
1747 case 4:
1748 return 44;
1749 case 5:
1750 default:
1751 return 48;
1755 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1757 unsigned long size;
1758 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1759 u32 id;
1760 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1761 int i;
1763 dev_notice(smmu->dev, "probing hardware configuration...\n");
1764 dev_notice(smmu->dev, "SMMUv%d with:\n",
1765 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1767 /* ID0 */
1768 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1770 /* Restrict available stages based on module parameter */
1771 if (force_stage == 1)
1772 id &= ~(ID0_S2TS | ID0_NTS);
1773 else if (force_stage == 2)
1774 id &= ~(ID0_S1TS | ID0_NTS);
1776 if (id & ID0_S1TS) {
1777 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1778 dev_notice(smmu->dev, "\tstage 1 translation\n");
1781 if (id & ID0_S2TS) {
1782 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1783 dev_notice(smmu->dev, "\tstage 2 translation\n");
1786 if (id & ID0_NTS) {
1787 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1788 dev_notice(smmu->dev, "\tnested translation\n");
1791 if (!(smmu->features &
1792 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1793 dev_err(smmu->dev, "\tno translation support!\n");
1794 return -ENODEV;
1797 if ((id & ID0_S1TS) &&
1798 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1799 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1800 dev_notice(smmu->dev, "\taddress translation ops\n");
1804 * In order for DMA API calls to work properly, we must defer to what
1805 * the FW says about coherency, regardless of what the hardware claims.
1806 * Fortunately, this also opens up a workaround for systems where the
1807 * ID register value has ended up configured incorrectly.
1809 cttw_reg = !!(id & ID0_CTTW);
1810 if (cttw_fw || cttw_reg)
1811 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1812 cttw_fw ? "" : "non-");
1813 if (cttw_fw != cttw_reg)
1814 dev_notice(smmu->dev,
1815 "\t(IDR0.CTTW overridden by FW configuration)\n");
1817 /* Max. number of entries we have for stream matching/indexing */
1818 if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
1819 smmu->features |= ARM_SMMU_FEAT_EXIDS;
1820 size = 1 << 16;
1821 } else {
1822 size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
1824 smmu->streamid_mask = size - 1;
1825 if (id & ID0_SMS) {
1826 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1827 size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
1828 if (size == 0) {
1829 dev_err(smmu->dev,
1830 "stream-matching supported, but no SMRs present!\n");
1831 return -ENODEV;
1834 /* Zero-initialised to mark as invalid */
1835 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1836 GFP_KERNEL);
1837 if (!smmu->smrs)
1838 return -ENOMEM;
1840 dev_notice(smmu->dev,
1841 "\tstream matching with %lu register groups", size);
1843 /* s2cr->type == 0 means translation, so initialise explicitly */
1844 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1845 GFP_KERNEL);
1846 if (!smmu->s2crs)
1847 return -ENOMEM;
1848 for (i = 0; i < size; i++)
1849 smmu->s2crs[i] = s2cr_init_val;
1851 smmu->num_mapping_groups = size;
1852 mutex_init(&smmu->stream_map_mutex);
1854 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1855 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1856 if (!(id & ID0_PTFS_NO_AARCH32S))
1857 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1860 /* ID1 */
1861 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1862 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1864 /* Check for size mismatch of SMMU address space from mapped region */
1865 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1866 size *= 2 << smmu->pgshift;
1867 if (smmu->size != size)
1868 dev_warn(smmu->dev,
1869 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1870 size, smmu->size);
1872 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1873 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1874 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1875 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1876 return -ENODEV;
1878 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1879 smmu->num_context_banks, smmu->num_s2_context_banks);
1881 * Cavium CN88xx erratum #27704.
1882 * Ensure ASID and VMID allocation is unique across all SMMUs in
1883 * the system.
1885 if (smmu->model == CAVIUM_SMMUV2) {
1886 smmu->cavium_id_base =
1887 atomic_add_return(smmu->num_context_banks,
1888 &cavium_smmu_context_count);
1889 smmu->cavium_id_base -= smmu->num_context_banks;
1892 /* ID2 */
1893 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1894 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1895 smmu->ipa_size = size;
1897 /* The output mask is also applied for bypass */
1898 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1899 smmu->pa_size = size;
1901 if (id & ID2_VMID16)
1902 smmu->features |= ARM_SMMU_FEAT_VMID16;
1905 * What the page table walker can address actually depends on which
1906 * descriptor format is in use, but since a) we don't know that yet,
1907 * and b) it can vary per context bank, this will have to do...
1909 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1910 dev_warn(smmu->dev,
1911 "failed to set DMA mask for table walker\n");
1913 if (smmu->version < ARM_SMMU_V2) {
1914 smmu->va_size = smmu->ipa_size;
1915 if (smmu->version == ARM_SMMU_V1_64K)
1916 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1917 } else {
1918 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1919 smmu->va_size = arm_smmu_id_size_to_bits(size);
1920 if (id & ID2_PTFS_4K)
1921 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1922 if (id & ID2_PTFS_16K)
1923 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1924 if (id & ID2_PTFS_64K)
1925 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1928 /* Now we've corralled the various formats, what'll it do? */
1929 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1930 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1931 if (smmu->features &
1932 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1933 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1934 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1935 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1936 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1937 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1939 if (arm_smmu_ops.pgsize_bitmap == -1UL)
1940 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1941 else
1942 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1943 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1944 smmu->pgsize_bitmap);
1947 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1948 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1949 smmu->va_size, smmu->ipa_size);
1951 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1952 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1953 smmu->ipa_size, smmu->pa_size);
1955 return 0;
1958 struct arm_smmu_match_data {
1959 enum arm_smmu_arch_version version;
1960 enum arm_smmu_implementation model;
1963 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
1964 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
1966 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1967 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1968 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1969 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1970 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1972 static const struct of_device_id arm_smmu_of_match[] = {
1973 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1974 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1975 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1976 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1977 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1978 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1979 { },
1981 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1983 #ifdef CONFIG_ACPI
1984 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
1986 int ret = 0;
1988 switch (model) {
1989 case ACPI_IORT_SMMU_V1:
1990 case ACPI_IORT_SMMU_CORELINK_MMU400:
1991 smmu->version = ARM_SMMU_V1;
1992 smmu->model = GENERIC_SMMU;
1993 break;
1994 case ACPI_IORT_SMMU_V2:
1995 smmu->version = ARM_SMMU_V2;
1996 smmu->model = GENERIC_SMMU;
1997 break;
1998 case ACPI_IORT_SMMU_CORELINK_MMU500:
1999 smmu->version = ARM_SMMU_V2;
2000 smmu->model = ARM_MMU500;
2001 break;
2002 default:
2003 ret = -ENODEV;
2006 return ret;
2009 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2010 struct arm_smmu_device *smmu)
2012 struct device *dev = smmu->dev;
2013 struct acpi_iort_node *node =
2014 *(struct acpi_iort_node **)dev_get_platdata(dev);
2015 struct acpi_iort_smmu *iort_smmu;
2016 int ret;
2018 /* Retrieve SMMU1/2 specific data */
2019 iort_smmu = (struct acpi_iort_smmu *)node->node_data;
2021 ret = acpi_smmu_get_data(iort_smmu->model, smmu);
2022 if (ret < 0)
2023 return ret;
2025 /* Ignore the configuration access interrupt */
2026 smmu->num_global_irqs = 1;
2028 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
2029 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2031 return 0;
2033 #else
2034 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2035 struct arm_smmu_device *smmu)
2037 return -ENODEV;
2039 #endif
2041 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2042 struct arm_smmu_device *smmu)
2044 const struct arm_smmu_match_data *data;
2045 struct device *dev = &pdev->dev;
2046 bool legacy_binding;
2048 if (of_property_read_u32(dev->of_node, "#global-interrupts",
2049 &smmu->num_global_irqs)) {
2050 dev_err(dev, "missing #global-interrupts property\n");
2051 return -ENODEV;
2054 data = of_device_get_match_data(dev);
2055 smmu->version = data->version;
2056 smmu->model = data->model;
2058 parse_driver_options(smmu);
2060 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
2061 if (legacy_binding && !using_generic_binding) {
2062 if (!using_legacy_binding)
2063 pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
2064 using_legacy_binding = true;
2065 } else if (!legacy_binding && !using_legacy_binding) {
2066 using_generic_binding = true;
2067 } else {
2068 dev_err(dev, "not probing due to mismatched DT properties\n");
2069 return -ENODEV;
2072 if (of_dma_is_coherent(dev->of_node))
2073 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2075 return 0;
2078 static int arm_smmu_device_probe(struct platform_device *pdev)
2080 struct resource *res;
2081 resource_size_t ioaddr;
2082 struct arm_smmu_device *smmu;
2083 struct device *dev = &pdev->dev;
2084 int num_irqs, i, err;
2086 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2087 if (!smmu) {
2088 dev_err(dev, "failed to allocate arm_smmu_device\n");
2089 return -ENOMEM;
2091 smmu->dev = dev;
2093 if (dev->of_node)
2094 err = arm_smmu_device_dt_probe(pdev, smmu);
2095 else
2096 err = arm_smmu_device_acpi_probe(pdev, smmu);
2098 if (err)
2099 return err;
2101 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2102 ioaddr = res->start;
2103 smmu->base = devm_ioremap_resource(dev, res);
2104 if (IS_ERR(smmu->base))
2105 return PTR_ERR(smmu->base);
2106 smmu->size = resource_size(res);
2108 num_irqs = 0;
2109 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2110 num_irqs++;
2111 if (num_irqs > smmu->num_global_irqs)
2112 smmu->num_context_irqs++;
2115 if (!smmu->num_context_irqs) {
2116 dev_err(dev, "found %d interrupts but expected at least %d\n",
2117 num_irqs, smmu->num_global_irqs + 1);
2118 return -ENODEV;
2121 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2122 GFP_KERNEL);
2123 if (!smmu->irqs) {
2124 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2125 return -ENOMEM;
2128 for (i = 0; i < num_irqs; ++i) {
2129 int irq = platform_get_irq(pdev, i);
2131 if (irq < 0) {
2132 dev_err(dev, "failed to get irq index %d\n", i);
2133 return -ENODEV;
2135 smmu->irqs[i] = irq;
2138 err = arm_smmu_device_cfg_probe(smmu);
2139 if (err)
2140 return err;
2142 if (smmu->version == ARM_SMMU_V2 &&
2143 smmu->num_context_banks != smmu->num_context_irqs) {
2144 dev_err(dev,
2145 "found only %d context interrupt(s) but %d required\n",
2146 smmu->num_context_irqs, smmu->num_context_banks);
2147 return -ENODEV;
2150 for (i = 0; i < smmu->num_global_irqs; ++i) {
2151 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2152 arm_smmu_global_fault,
2153 IRQF_SHARED,
2154 "arm-smmu global fault",
2155 smmu);
2156 if (err) {
2157 dev_err(dev, "failed to request global IRQ %d (%u)\n",
2158 i, smmu->irqs[i]);
2159 return err;
2163 err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
2164 "smmu.%pa", &ioaddr);
2165 if (err) {
2166 dev_err(dev, "Failed to register iommu in sysfs\n");
2167 return err;
2170 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2171 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2173 err = iommu_device_register(&smmu->iommu);
2174 if (err) {
2175 dev_err(dev, "Failed to register iommu\n");
2176 return err;
2179 platform_set_drvdata(pdev, smmu);
2180 arm_smmu_device_reset(smmu);
2181 arm_smmu_test_smr_masks(smmu);
2183 /* Oh, for a proper bus abstraction */
2184 if (!iommu_present(&platform_bus_type))
2185 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2186 #ifdef CONFIG_ARM_AMBA
2187 if (!iommu_present(&amba_bustype))
2188 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2189 #endif
2190 #ifdef CONFIG_PCI
2191 if (!iommu_present(&pci_bus_type)) {
2192 pci_request_acs();
2193 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2195 #endif
2196 return 0;
2199 static int arm_smmu_device_remove(struct platform_device *pdev)
2201 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2203 if (!smmu)
2204 return -ENODEV;
2206 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2207 dev_err(&pdev->dev, "removing device with active domains!\n");
2209 /* Turn the thing off */
2210 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2211 return 0;
2214 static struct platform_driver arm_smmu_driver = {
2215 .driver = {
2216 .name = "arm-smmu",
2217 .of_match_table = of_match_ptr(arm_smmu_of_match),
2219 .probe = arm_smmu_device_probe,
2220 .remove = arm_smmu_device_remove,
2223 static int __init arm_smmu_init(void)
2225 static bool registered;
2226 int ret = 0;
2228 if (!registered) {
2229 ret = platform_driver_register(&arm_smmu_driver);
2230 registered = !ret;
2232 return ret;
2235 static void __exit arm_smmu_exit(void)
2237 return platform_driver_unregister(&arm_smmu_driver);
2240 subsys_initcall(arm_smmu_init);
2241 module_exit(arm_smmu_exit);
2243 static int __init arm_smmu_of_init(struct device_node *np)
2245 int ret = arm_smmu_init();
2247 if (ret)
2248 return ret;
2250 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2251 return -ENODEV;
2253 return 0;
2255 IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
2256 IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
2257 IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
2258 IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
2259 IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
2260 IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);
2262 #ifdef CONFIG_ACPI
2263 static int __init arm_smmu_acpi_init(struct acpi_table_header *table)
2265 if (iort_node_match(ACPI_IORT_NODE_SMMU))
2266 return arm_smmu_init();
2268 return 0;
2270 IORT_ACPI_DECLARE(arm_smmu, ACPI_SIG_IORT, arm_smmu_acpi_init);
2271 #endif
2273 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2274 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2275 MODULE_LICENSE("GPL v2");