powerpc/iommu: Cleanup setting of DMA base/offset
[linux-2.6/btrfs-unstable.git] / arch / powerpc / mm / hugetlbpage.c
blobbb0bd7025cb88f893af04d3f98141860c038ee54
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
26 #ifdef CONFIG_HUGETLB_PAGE
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
32 unsigned int HPAGE_SHIFT;
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
54 #define hugepd_none(hpd) ((hpd).pd == 0)
56 #ifdef CONFIG_PPC_BOOK3S_64
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
69 int pmd_huge(pmd_t pmd)
72 * leaf pte for huge page, bottom two bits != 00
74 return ((pmd_val(pmd) & 0x3) != 0x0);
77 int pud_huge(pud_t pud)
80 * leaf pte for huge page, bottom two bits != 00
82 return ((pud_val(pud) & 0x3) != 0x0);
85 int pgd_huge(pgd_t pgd)
88 * leaf pte for huge page, bottom two bits != 00
90 return ((pgd_val(pgd) & 0x3) != 0x0);
92 #else
93 int pmd_huge(pmd_t pmd)
95 return 0;
98 int pud_huge(pud_t pud)
100 return 0;
103 int pgd_huge(pgd_t pgd)
105 return 0;
107 #endif
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
111 /* Only called for hugetlbfs pages, hence can ignore THP */
112 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 unsigned long address, unsigned pdshift, unsigned pshift)
118 struct kmem_cache *cachep;
119 pte_t *new;
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 int i;
123 int num_hugepd = 1 << (pshift - pdshift);
124 cachep = hugepte_cache;
125 #else
126 cachep = PGT_CACHE(pdshift - pshift);
127 #endif
129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
131 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
134 if (! new)
135 return -ENOMEM;
137 spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
140 * We have multiple higher-level entries that point to the same
141 * actual pte location. Fill in each as we go and backtrack on error.
142 * We need all of these so the DTLB pgtable walk code can find the
143 * right higher-level entry without knowing if it's a hugepage or not.
145 for (i = 0; i < num_hugepd; i++, hpdp++) {
146 if (unlikely(!hugepd_none(*hpdp)))
147 break;
148 else
149 /* We use the old format for PPC_FSL_BOOK3E */
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
158 #else
159 if (!hugepd_none(*hpdp))
160 kmem_cache_free(cachep, new);
161 else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 hpdp->pd = (unsigned long)new |
164 (shift_to_mmu_psize(pshift) << 2);
165 #else
166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
169 #endif
170 spin_unlock(&mm->page_table_lock);
171 return 0;
175 * These macros define how to determine which level of the page table holds
176 * the hpdp.
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
186 #ifdef CONFIG_PPC_BOOK3S_64
188 * At this point we do the placement change only for BOOK3S 64. This would
189 * possibly work on other subarchs.
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
193 pgd_t *pg;
194 pud_t *pu;
195 pmd_t *pm;
196 hugepd_t *hpdp = NULL;
197 unsigned pshift = __ffs(sz);
198 unsigned pdshift = PGDIR_SHIFT;
200 addr &= ~(sz-1);
201 pg = pgd_offset(mm, addr);
203 if (pshift == PGDIR_SHIFT)
204 /* 16GB huge page */
205 return (pte_t *) pg;
206 else if (pshift > PUD_SHIFT)
208 * We need to use hugepd table
210 hpdp = (hugepd_t *)pg;
211 else {
212 pdshift = PUD_SHIFT;
213 pu = pud_alloc(mm, pg, addr);
214 if (pshift == PUD_SHIFT)
215 return (pte_t *)pu;
216 else if (pshift > PMD_SHIFT)
217 hpdp = (hugepd_t *)pu;
218 else {
219 pdshift = PMD_SHIFT;
220 pm = pmd_alloc(mm, pu, addr);
221 if (pshift == PMD_SHIFT)
222 /* 16MB hugepage */
223 return (pte_t *)pm;
224 else
225 hpdp = (hugepd_t *)pm;
228 if (!hpdp)
229 return NULL;
231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 return NULL;
236 return hugepte_offset(*hpdp, addr, pdshift);
239 #else
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
243 pgd_t *pg;
244 pud_t *pu;
245 pmd_t *pm;
246 hugepd_t *hpdp = NULL;
247 unsigned pshift = __ffs(sz);
248 unsigned pdshift = PGDIR_SHIFT;
250 addr &= ~(sz-1);
252 pg = pgd_offset(mm, addr);
254 if (pshift >= HUGEPD_PGD_SHIFT) {
255 hpdp = (hugepd_t *)pg;
256 } else {
257 pdshift = PUD_SHIFT;
258 pu = pud_alloc(mm, pg, addr);
259 if (pshift >= HUGEPD_PUD_SHIFT) {
260 hpdp = (hugepd_t *)pu;
261 } else {
262 pdshift = PMD_SHIFT;
263 pm = pmd_alloc(mm, pu, addr);
264 hpdp = (hugepd_t *)pm;
268 if (!hpdp)
269 return NULL;
271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 return NULL;
276 return hugepte_offset(*hpdp, addr, pdshift);
278 #endif
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages. This function is used in early
282 * boot before the buddy allocator is setup.
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 int i;
289 if (addr == 0)
290 return;
292 gpage_freearray[idx].nr_gpages = number_of_pages;
294 for (i = 0; i < number_of_pages; i++) {
295 gpage_freearray[idx].gpage_list[i] = addr;
296 addr += page_size;
301 * Moves the gigantic page addresses from the temporary list to the
302 * huge_boot_pages list.
304 int alloc_bootmem_huge_page(struct hstate *hstate)
306 struct huge_bootmem_page *m;
307 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 int nr_gpages = gpage_freearray[idx].nr_gpages;
310 if (nr_gpages == 0)
311 return 0;
313 #ifdef CONFIG_HIGHMEM
315 * If gpages can be in highmem we can't use the trick of storing the
316 * data structure in the page; allocate space for this
318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
324 list_add(&m->list, &huge_boot_pages);
325 gpage_freearray[idx].nr_gpages = nr_gpages;
326 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 m->hstate = hstate;
329 return 1;
332 * Scan the command line hugepagesz= options for gigantic pages; store those in
333 * a list that we use to allocate the memory once all options are parsed.
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
338 static int __init do_gpage_early_setup(char *param, char *val,
339 const char *unused, void *arg)
341 static phys_addr_t size;
342 unsigned long npages;
345 * The hugepagesz and hugepages cmdline options are interleaved. We
346 * use the size variable to keep track of whether or not this was done
347 * properly and skip over instances where it is incorrect. Other
348 * command-line parsing code will issue warnings, so we don't need to.
351 if ((strcmp(param, "default_hugepagesz") == 0) ||
352 (strcmp(param, "hugepagesz") == 0)) {
353 size = memparse(val, NULL);
354 } else if (strcmp(param, "hugepages") == 0) {
355 if (size != 0) {
356 if (sscanf(val, "%lu", &npages) <= 0)
357 npages = 0;
358 if (npages > MAX_NUMBER_GPAGES) {
359 pr_warn("MMU: %lu pages requested for page "
360 "size %llu KB, limiting to "
361 __stringify(MAX_NUMBER_GPAGES) "\n",
362 npages, size / 1024);
363 npages = MAX_NUMBER_GPAGES;
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
369 return 0;
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
380 void __init reserve_hugetlb_gpages(void)
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 NULL, &do_gpage_early_setup);
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
409 #else /* !PPC_FSL_BOOK3E */
411 /* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy allocator is setup.
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
426 /* Moves the gigantic page addresses from the temporary list to the
427 * huge_boot_pages list.
429 int alloc_bootmem_huge_page(struct hstate *hstate)
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
437 m->hstate = hstate;
438 return 1;
440 #endif
442 #ifdef CONFIG_PPC_FSL_BOOK3E
443 #define HUGEPD_FREELIST_SIZE \
444 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
446 struct hugepd_freelist {
447 struct rcu_head rcu;
448 unsigned int index;
449 void *ptes[0];
452 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
454 static void hugepd_free_rcu_callback(struct rcu_head *head)
456 struct hugepd_freelist *batch =
457 container_of(head, struct hugepd_freelist, rcu);
458 unsigned int i;
460 for (i = 0; i < batch->index; i++)
461 kmem_cache_free(hugepte_cache, batch->ptes[i]);
463 free_page((unsigned long)batch);
466 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
468 struct hugepd_freelist **batchp;
470 batchp = this_cpu_ptr(&hugepd_freelist_cur);
472 if (atomic_read(&tlb->mm->mm_users) < 2 ||
473 cpumask_equal(mm_cpumask(tlb->mm),
474 cpumask_of(smp_processor_id()))) {
475 kmem_cache_free(hugepte_cache, hugepte);
476 put_cpu_var(hugepd_freelist_cur);
477 return;
480 if (*batchp == NULL) {
481 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
482 (*batchp)->index = 0;
485 (*batchp)->ptes[(*batchp)->index++] = hugepte;
486 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
487 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
488 *batchp = NULL;
490 put_cpu_var(hugepd_freelist_cur);
492 #endif
494 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
495 unsigned long start, unsigned long end,
496 unsigned long floor, unsigned long ceiling)
498 pte_t *hugepte = hugepd_page(*hpdp);
499 int i;
501 unsigned long pdmask = ~((1UL << pdshift) - 1);
502 unsigned int num_hugepd = 1;
504 #ifdef CONFIG_PPC_FSL_BOOK3E
505 /* Note: On fsl the hpdp may be the first of several */
506 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
507 #else
508 unsigned int shift = hugepd_shift(*hpdp);
509 #endif
511 start &= pdmask;
512 if (start < floor)
513 return;
514 if (ceiling) {
515 ceiling &= pdmask;
516 if (! ceiling)
517 return;
519 if (end - 1 > ceiling - 1)
520 return;
522 for (i = 0; i < num_hugepd; i++, hpdp++)
523 hpdp->pd = 0;
525 #ifdef CONFIG_PPC_FSL_BOOK3E
526 hugepd_free(tlb, hugepte);
527 #else
528 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
529 #endif
532 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
533 unsigned long addr, unsigned long end,
534 unsigned long floor, unsigned long ceiling)
536 pmd_t *pmd;
537 unsigned long next;
538 unsigned long start;
540 start = addr;
541 do {
542 pmd = pmd_offset(pud, addr);
543 next = pmd_addr_end(addr, end);
544 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
546 * if it is not hugepd pointer, we should already find
547 * it cleared.
549 WARN_ON(!pmd_none_or_clear_bad(pmd));
550 continue;
552 #ifdef CONFIG_PPC_FSL_BOOK3E
554 * Increment next by the size of the huge mapping since
555 * there may be more than one entry at this level for a
556 * single hugepage, but all of them point to
557 * the same kmem cache that holds the hugepte.
559 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
560 #endif
561 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
562 addr, next, floor, ceiling);
563 } while (addr = next, addr != end);
565 start &= PUD_MASK;
566 if (start < floor)
567 return;
568 if (ceiling) {
569 ceiling &= PUD_MASK;
570 if (!ceiling)
571 return;
573 if (end - 1 > ceiling - 1)
574 return;
576 pmd = pmd_offset(pud, start);
577 pud_clear(pud);
578 pmd_free_tlb(tlb, pmd, start);
579 mm_dec_nr_pmds(tlb->mm);
582 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
583 unsigned long addr, unsigned long end,
584 unsigned long floor, unsigned long ceiling)
586 pud_t *pud;
587 unsigned long next;
588 unsigned long start;
590 start = addr;
591 do {
592 pud = pud_offset(pgd, addr);
593 next = pud_addr_end(addr, end);
594 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
595 if (pud_none_or_clear_bad(pud))
596 continue;
597 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
598 ceiling);
599 } else {
600 #ifdef CONFIG_PPC_FSL_BOOK3E
602 * Increment next by the size of the huge mapping since
603 * there may be more than one entry at this level for a
604 * single hugepage, but all of them point to
605 * the same kmem cache that holds the hugepte.
607 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
608 #endif
609 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
610 addr, next, floor, ceiling);
612 } while (addr = next, addr != end);
614 start &= PGDIR_MASK;
615 if (start < floor)
616 return;
617 if (ceiling) {
618 ceiling &= PGDIR_MASK;
619 if (!ceiling)
620 return;
622 if (end - 1 > ceiling - 1)
623 return;
625 pud = pud_offset(pgd, start);
626 pgd_clear(pgd);
627 pud_free_tlb(tlb, pud, start);
631 * This function frees user-level page tables of a process.
633 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
634 unsigned long addr, unsigned long end,
635 unsigned long floor, unsigned long ceiling)
637 pgd_t *pgd;
638 unsigned long next;
641 * Because there are a number of different possible pagetable
642 * layouts for hugepage ranges, we limit knowledge of how
643 * things should be laid out to the allocation path
644 * (huge_pte_alloc(), above). Everything else works out the
645 * structure as it goes from information in the hugepd
646 * pointers. That means that we can't here use the
647 * optimization used in the normal page free_pgd_range(), of
648 * checking whether we're actually covering a large enough
649 * range to have to do anything at the top level of the walk
650 * instead of at the bottom.
652 * To make sense of this, you should probably go read the big
653 * block comment at the top of the normal free_pgd_range(),
654 * too.
657 do {
658 next = pgd_addr_end(addr, end);
659 pgd = pgd_offset(tlb->mm, addr);
660 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
661 if (pgd_none_or_clear_bad(pgd))
662 continue;
663 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
664 } else {
665 #ifdef CONFIG_PPC_FSL_BOOK3E
667 * Increment next by the size of the huge mapping since
668 * there may be more than one entry at the pgd level
669 * for a single hugepage, but all of them point to the
670 * same kmem cache that holds the hugepte.
672 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
673 #endif
674 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
675 addr, next, floor, ceiling);
677 } while (addr = next, addr != end);
681 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
682 * To prevent hugepage split, disable irq.
684 struct page *
685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
687 pte_t *ptep, pte;
688 unsigned shift;
689 unsigned long mask, flags;
690 struct page *page = ERR_PTR(-EINVAL);
692 local_irq_save(flags);
693 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
694 if (!ptep)
695 goto no_page;
696 pte = READ_ONCE(*ptep);
698 * Verify it is a huge page else bail.
699 * Transparent hugepages are handled by generic code. We can skip them
700 * here.
702 if (!shift || pmd_trans_huge(__pmd(pte_val(pte))))
703 goto no_page;
705 if (!pte_present(pte)) {
706 page = NULL;
707 goto no_page;
709 mask = (1UL << shift) - 1;
710 page = pte_page(pte);
711 if (page)
712 page += (address & mask) / PAGE_SIZE;
714 no_page:
715 local_irq_restore(flags);
716 return page;
719 struct page *
720 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
721 pmd_t *pmd, int write)
723 BUG();
724 return NULL;
727 struct page *
728 follow_huge_pud(struct mm_struct *mm, unsigned long address,
729 pud_t *pud, int write)
731 BUG();
732 return NULL;
735 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
736 unsigned long sz)
738 unsigned long __boundary = (addr + sz) & ~(sz-1);
739 return (__boundary - 1 < end - 1) ? __boundary : end;
742 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
743 unsigned long end, int write, struct page **pages, int *nr)
745 pte_t *ptep;
746 unsigned long sz = 1UL << hugepd_shift(hugepd);
747 unsigned long next;
749 ptep = hugepte_offset(hugepd, addr, pdshift);
750 do {
751 next = hugepte_addr_end(addr, end, sz);
752 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
753 return 0;
754 } while (ptep++, addr = next, addr != end);
756 return 1;
759 #ifdef CONFIG_PPC_MM_SLICES
760 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
761 unsigned long len, unsigned long pgoff,
762 unsigned long flags)
764 struct hstate *hstate = hstate_file(file);
765 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
767 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
769 #endif
771 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
773 #ifdef CONFIG_PPC_MM_SLICES
774 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
776 return 1UL << mmu_psize_to_shift(psize);
777 #else
778 if (!is_vm_hugetlb_page(vma))
779 return PAGE_SIZE;
781 return huge_page_size(hstate_vma(vma));
782 #endif
785 static inline bool is_power_of_4(unsigned long x)
787 if (is_power_of_2(x))
788 return (__ilog2(x) % 2) ? false : true;
789 return false;
792 static int __init add_huge_page_size(unsigned long long size)
794 int shift = __ffs(size);
795 int mmu_psize;
797 /* Check that it is a page size supported by the hardware and
798 * that it fits within pagetable and slice limits. */
799 #ifdef CONFIG_PPC_FSL_BOOK3E
800 if ((size < PAGE_SIZE) || !is_power_of_4(size))
801 return -EINVAL;
802 #else
803 if (!is_power_of_2(size)
804 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
805 return -EINVAL;
806 #endif
808 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
809 return -EINVAL;
811 #ifdef CONFIG_SPU_FS_64K_LS
812 /* Disable support for 64K huge pages when 64K SPU local store
813 * support is enabled as the current implementation conflicts.
815 if (shift == PAGE_SHIFT_64K)
816 return -EINVAL;
817 #endif /* CONFIG_SPU_FS_64K_LS */
819 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
821 /* Return if huge page size has already been setup */
822 if (size_to_hstate(size))
823 return 0;
825 hugetlb_add_hstate(shift - PAGE_SHIFT);
827 return 0;
830 static int __init hugepage_setup_sz(char *str)
832 unsigned long long size;
834 size = memparse(str, &str);
836 if (add_huge_page_size(size) != 0)
837 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
839 return 1;
841 __setup("hugepagesz=", hugepage_setup_sz);
843 #ifdef CONFIG_PPC_FSL_BOOK3E
844 struct kmem_cache *hugepte_cache;
845 static int __init hugetlbpage_init(void)
847 int psize;
849 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
850 unsigned shift;
852 if (!mmu_psize_defs[psize].shift)
853 continue;
855 shift = mmu_psize_to_shift(psize);
857 /* Don't treat normal page sizes as huge... */
858 if (shift != PAGE_SHIFT)
859 if (add_huge_page_size(1ULL << shift) < 0)
860 continue;
864 * Create a kmem cache for hugeptes. The bottom bits in the pte have
865 * size information encoded in them, so align them to allow this
867 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
868 HUGEPD_SHIFT_MASK + 1, 0, NULL);
869 if (hugepte_cache == NULL)
870 panic("%s: Unable to create kmem cache for hugeptes\n",
871 __func__);
873 /* Default hpage size = 4M */
874 if (mmu_psize_defs[MMU_PAGE_4M].shift)
875 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
876 else
877 panic("%s: Unable to set default huge page size\n", __func__);
880 return 0;
882 #else
883 static int __init hugetlbpage_init(void)
885 int psize;
887 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
888 return -ENODEV;
890 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
891 unsigned shift;
892 unsigned pdshift;
894 if (!mmu_psize_defs[psize].shift)
895 continue;
897 shift = mmu_psize_to_shift(psize);
899 if (add_huge_page_size(1ULL << shift) < 0)
900 continue;
902 if (shift < PMD_SHIFT)
903 pdshift = PMD_SHIFT;
904 else if (shift < PUD_SHIFT)
905 pdshift = PUD_SHIFT;
906 else
907 pdshift = PGDIR_SHIFT;
909 * if we have pdshift and shift value same, we don't
910 * use pgt cache for hugepd.
912 if (pdshift != shift) {
913 pgtable_cache_add(pdshift - shift, NULL);
914 if (!PGT_CACHE(pdshift - shift))
915 panic("hugetlbpage_init(): could not create "
916 "pgtable cache for %d bit pagesize\n", shift);
920 /* Set default large page size. Currently, we pick 16M or 1M
921 * depending on what is available
923 if (mmu_psize_defs[MMU_PAGE_16M].shift)
924 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
925 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
926 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
928 return 0;
930 #endif
931 arch_initcall(hugetlbpage_init);
933 void flush_dcache_icache_hugepage(struct page *page)
935 int i;
936 void *start;
938 BUG_ON(!PageCompound(page));
940 for (i = 0; i < (1UL << compound_order(page)); i++) {
941 if (!PageHighMem(page)) {
942 __flush_dcache_icache(page_address(page+i));
943 } else {
944 start = kmap_atomic(page+i);
945 __flush_dcache_icache(start);
946 kunmap_atomic(start);
951 #endif /* CONFIG_HUGETLB_PAGE */
954 * We have 4 cases for pgds and pmds:
955 * (1) invalid (all zeroes)
956 * (2) pointer to next table, as normal; bottom 6 bits == 0
957 * (3) leaf pte for huge page, bottom two bits != 00
958 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
960 * So long as we atomically load page table pointers we are safe against teardown,
961 * we can follow the address down to the the page and take a ref on it.
962 * This function need to be called with interrupts disabled. We use this variant
963 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
966 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
967 unsigned *shift)
969 pgd_t pgd, *pgdp;
970 pud_t pud, *pudp;
971 pmd_t pmd, *pmdp;
972 pte_t *ret_pte;
973 hugepd_t *hpdp = NULL;
974 unsigned pdshift = PGDIR_SHIFT;
976 if (shift)
977 *shift = 0;
979 pgdp = pgdir + pgd_index(ea);
980 pgd = READ_ONCE(*pgdp);
982 * Always operate on the local stack value. This make sure the
983 * value don't get updated by a parallel THP split/collapse,
984 * page fault or a page unmap. The return pte_t * is still not
985 * stable. So should be checked there for above conditions.
987 if (pgd_none(pgd))
988 return NULL;
989 else if (pgd_huge(pgd)) {
990 ret_pte = (pte_t *) pgdp;
991 goto out;
992 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
993 hpdp = (hugepd_t *)&pgd;
994 else {
996 * Even if we end up with an unmap, the pgtable will not
997 * be freed, because we do an rcu free and here we are
998 * irq disabled
1000 pdshift = PUD_SHIFT;
1001 pudp = pud_offset(&pgd, ea);
1002 pud = READ_ONCE(*pudp);
1004 if (pud_none(pud))
1005 return NULL;
1006 else if (pud_huge(pud)) {
1007 ret_pte = (pte_t *) pudp;
1008 goto out;
1009 } else if (is_hugepd(__hugepd(pud_val(pud))))
1010 hpdp = (hugepd_t *)&pud;
1011 else {
1012 pdshift = PMD_SHIFT;
1013 pmdp = pmd_offset(&pud, ea);
1014 pmd = READ_ONCE(*pmdp);
1016 * A hugepage collapse is captured by pmd_none, because
1017 * it mark the pmd none and do a hpte invalidate.
1019 * We don't worry about pmd_trans_splitting here, The
1020 * caller if it needs to handle the splitting case
1021 * should check for that.
1023 if (pmd_none(pmd))
1024 return NULL;
1026 if (pmd_huge(pmd) || pmd_large(pmd)) {
1027 ret_pte = (pte_t *) pmdp;
1028 goto out;
1029 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1030 hpdp = (hugepd_t *)&pmd;
1031 else
1032 return pte_offset_kernel(&pmd, ea);
1035 if (!hpdp)
1036 return NULL;
1038 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1039 pdshift = hugepd_shift(*hpdp);
1040 out:
1041 if (shift)
1042 *shift = pdshift;
1043 return ret_pte;
1045 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1047 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1048 unsigned long end, int write, struct page **pages, int *nr)
1050 unsigned long mask;
1051 unsigned long pte_end;
1052 struct page *head, *page, *tail;
1053 pte_t pte;
1054 int refs;
1056 pte_end = (addr + sz) & ~(sz-1);
1057 if (pte_end < end)
1058 end = pte_end;
1060 pte = READ_ONCE(*ptep);
1061 mask = _PAGE_PRESENT | _PAGE_USER;
1062 if (write)
1063 mask |= _PAGE_RW;
1065 if ((pte_val(pte) & mask) != mask)
1066 return 0;
1068 /* hugepages are never "special" */
1069 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1071 refs = 0;
1072 head = pte_page(pte);
1074 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1075 tail = page;
1076 do {
1077 VM_BUG_ON(compound_head(page) != head);
1078 pages[*nr] = page;
1079 (*nr)++;
1080 page++;
1081 refs++;
1082 } while (addr += PAGE_SIZE, addr != end);
1084 if (!page_cache_add_speculative(head, refs)) {
1085 *nr -= refs;
1086 return 0;
1089 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1090 /* Could be optimized better */
1091 *nr -= refs;
1092 while (refs--)
1093 put_page(head);
1094 return 0;
1098 * Any tail page need their mapcount reference taken before we
1099 * return.
1101 while (refs--) {
1102 if (PageTail(tail))
1103 get_huge_page_tail(tail);
1104 tail++;
1107 return 1;