ARM: shmobile: r8a7794: add GPIO DT support
[linux-2.6/btrfs-unstable.git] / drivers / dma / xgene-dma.c
blobb23e8d52d1263abc11cc126e9e0b80e1dcc5cc1b
1 /*
2 * Applied Micro X-Gene SoC DMA engine Driver
4 * Copyright (c) 2015, Applied Micro Circuits Corporation
5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6 * Loc Ho <lho@apm.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 * NOTE: PM support is currently not available.
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/module.h>
33 #include <linux/of_device.h>
35 #include "dmaengine.h"
37 /* X-Gene DMA ring csr registers and bit definations */
38 #define XGENE_DMA_RING_CONFIG 0x04
39 #define XGENE_DMA_RING_ENABLE BIT(31)
40 #define XGENE_DMA_RING_ID 0x08
41 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
42 #define XGENE_DMA_RING_ID_BUF 0x0C
43 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
44 #define XGENE_DMA_RING_THRESLD0_SET1 0x30
45 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
46 #define XGENE_DMA_RING_THRESLD1_SET1 0x34
47 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
48 #define XGENE_DMA_RING_HYSTERESIS 0x68
49 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
50 #define XGENE_DMA_RING_STATE 0x6C
51 #define XGENE_DMA_RING_STATE_WR_BASE 0x70
52 #define XGENE_DMA_RING_NE_INT_MODE 0x017C
53 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
54 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
55 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
56 ((m) &= (~BIT(31 - (v))))
57 #define XGENE_DMA_RING_CLKEN 0xC208
58 #define XGENE_DMA_RING_SRST 0xC200
59 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
60 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
61 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
62 #define XGENE_DMA_RING_DESC_CNT(v) (((v) & 0x0001FFFE) >> 1)
63 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
64 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
65 #define XGENE_DMA_RING_CMD_OFFSET 0x2C
66 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
67 #define XGENE_DMA_RING_COHERENT_SET(m) \
68 (((u32 *)(m))[2] |= BIT(4))
69 #define XGENE_DMA_RING_ADDRL_SET(m, v) \
70 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
71 #define XGENE_DMA_RING_ADDRH_SET(m, v) \
72 (((u32 *)(m))[3] |= ((v) >> 35))
73 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
74 (((u32 *)(m))[3] |= BIT(19))
75 #define XGENE_DMA_RING_SIZE_SET(m, v) \
76 (((u32 *)(m))[3] |= ((v) << 23))
77 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \
78 (((u32 *)(m))[3] |= BIT(27))
79 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
80 (((u32 *)(m))[3] |= (0x7 << 28))
81 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
82 (((u32 *)(m))[4] |= 0x3)
83 #define XGENE_DMA_RING_SELTHRSH_SET(m) \
84 (((u32 *)(m))[4] |= BIT(3))
85 #define XGENE_DMA_RING_TYPE_SET(m, v) \
86 (((u32 *)(m))[4] |= ((v) << 19))
88 /* X-Gene DMA device csr registers and bit definitions */
89 #define XGENE_DMA_IPBRR 0x0
90 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
91 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
92 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
93 #define XGENE_DMA_GCR 0x10
94 #define XGENE_DMA_CH_SETUP(v) \
95 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
96 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
97 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
98 #define XGENE_DMA_RAID6_CONT 0x14
99 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
100 #define XGENE_DMA_INT 0x70
101 #define XGENE_DMA_INT_MASK 0x74
102 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
103 #define XGENE_DMA_INT_ALL_UNMASK 0x0
104 #define XGENE_DMA_INT_MASK_SHIFT 0x14
105 #define XGENE_DMA_RING_INT0_MASK 0x90A0
106 #define XGENE_DMA_RING_INT1_MASK 0x90A8
107 #define XGENE_DMA_RING_INT2_MASK 0x90B0
108 #define XGENE_DMA_RING_INT3_MASK 0x90B8
109 #define XGENE_DMA_RING_INT4_MASK 0x90C0
110 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
111 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
112 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
113 #define XGENE_DMA_BLK_MEM_RDY 0xD074
114 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
115 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
117 /* X-Gene SoC EFUSE csr register and bit defination */
118 #define XGENE_SOC_JTAG1_SHADOW 0x18
119 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
121 /* X-Gene DMA Descriptor format */
122 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
123 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
124 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
125 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
126 #define XGENE_DMA_DESC_ELERR_POS 46
127 #define XGENE_DMA_DESC_RTYPE_POS 56
128 #define XGENE_DMA_DESC_LERR_POS 60
129 #define XGENE_DMA_DESC_BUFLEN_POS 48
130 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48
131 #define XGENE_DMA_DESC_ELERR_RD(m) \
132 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
133 #define XGENE_DMA_DESC_LERR_RD(m) \
134 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
135 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \
136 (((elerr) << 4) | (lerr))
138 /* X-Gene DMA descriptor empty s/w signature */
139 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
141 /* X-Gene DMA configurable parameters defines */
142 #define XGENE_DMA_RING_NUM 512
143 #define XGENE_DMA_BUFNUM 0x0
144 #define XGENE_DMA_CPU_BUFNUM 0x18
145 #define XGENE_DMA_RING_OWNER_DMA 0x03
146 #define XGENE_DMA_RING_OWNER_CPU 0x0F
147 #define XGENE_DMA_RING_TYPE_REGULAR 0x01
148 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
149 #define XGENE_DMA_RING_NUM_CONFIG 5
150 #define XGENE_DMA_MAX_CHANNEL 4
151 #define XGENE_DMA_XOR_CHANNEL 0
152 #define XGENE_DMA_PQ_CHANNEL 1
153 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
154 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
155 #define XGENE_DMA_MAX_XOR_SRC 5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
157 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI 0x01
161 #define ERR_BAD_DESC 0x02
162 #define ERR_READ_DATA_AXI 0x03
163 #define ERR_WRITE_DATA_AXI 0x04
164 #define ERR_FBP_TIMEOUT 0x05
165 #define ERR_ECC 0x06
166 #define ERR_DIFF_SIZE 0x08
167 #define ERR_SCT_GAT_LEN 0x09
168 #define ERR_CRC_ERR 0x11
169 #define ERR_CHKSUM 0x12
170 #define ERR_DIF 0x13
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT 0x0
174 #define ERR_GS_ERR_INT 0x1
175 #define ERR_FPB_TIMEO_INT 0x2
176 #define ERR_WFIFO_OVF_INT 0x3
177 #define ERR_RFIFO_OVF_INT 0x4
178 #define ERR_WR_TIMEO_INT 0x5
179 #define ERR_RD_TIMEO_INT 0x6
180 #define ERR_WR_ERR_INT 0x7
181 #define ERR_RD_ERR_INT 0x8
182 #define ERR_BAD_DESC_INT 0x9
183 #define ERR_DESC_DST_INT 0xA
184 #define ERR_DESC_SRC_INT 0xB
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR 0x80
188 #define FLYBY_3SRC_XOR 0x90
189 #define FLYBY_4SRC_XOR 0xA0
190 #define FLYBY_5SRC_XOR 0xB0
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC BIT(0)
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m) \
197 print_hex_dump(KERN_ERR, (m), \
198 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
200 #define to_dma_desc_sw(tx) \
201 container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan) \
203 container_of(dchan, struct xgene_dma_chan, dma_chan)
205 #define chan_dbg(chan, fmt, arg...) \
206 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...) \
208 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
210 struct xgene_dma_desc_hw {
211 __le64 m0;
212 __le64 m1;
213 __le64 m2;
214 __le64 m3;
217 enum xgene_dma_ring_cfgsize {
218 XGENE_DMA_RING_CFG_SIZE_512B,
219 XGENE_DMA_RING_CFG_SIZE_2KB,
220 XGENE_DMA_RING_CFG_SIZE_16KB,
221 XGENE_DMA_RING_CFG_SIZE_64KB,
222 XGENE_DMA_RING_CFG_SIZE_512KB,
223 XGENE_DMA_RING_CFG_SIZE_INVALID
226 struct xgene_dma_ring {
227 struct xgene_dma *pdma;
228 u8 buf_num;
229 u16 id;
230 u16 num;
231 u16 head;
232 u16 owner;
233 u16 slots;
234 u16 dst_ring_num;
235 u32 size;
236 void __iomem *cmd;
237 void __iomem *cmd_base;
238 dma_addr_t desc_paddr;
239 u32 state[XGENE_DMA_RING_NUM_CONFIG];
240 enum xgene_dma_ring_cfgsize cfgsize;
241 union {
242 void *desc_vaddr;
243 struct xgene_dma_desc_hw *desc_hw;
247 struct xgene_dma_desc_sw {
248 struct xgene_dma_desc_hw desc1;
249 struct xgene_dma_desc_hw desc2;
250 u32 flags;
251 struct list_head node;
252 struct list_head tx_list;
253 struct dma_async_tx_descriptor tx;
257 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258 * @dma_chan: dmaengine channel object member
259 * @pdma: X-Gene DMA device structure reference
260 * @dev: struct device reference for dma mapping api
261 * @id: raw id of this channel
262 * @rx_irq: channel IRQ
263 * @name: name of X-Gene DMA channel
264 * @lock: serializes enqueue/dequeue operations to the descriptor pool
265 * @pending: number of transaction request pushed to DMA controller for
266 * execution, but still waiting for completion,
267 * @max_outstanding: max number of outstanding request we can push to channel
268 * @ld_pending: descriptors which are queued to run, but have not yet been
269 * submitted to the hardware for execution
270 * @ld_running: descriptors which are currently being executing by the hardware
271 * @ld_completed: descriptors which have finished execution by the hardware.
272 * These descriptors have already had their cleanup actions run. They
273 * are waiting for the ACK bit to be set by the async tx API.
274 * @desc_pool: descriptor pool for DMA operations
275 * @tasklet: bottom half where all completed descriptors cleans
276 * @tx_ring: transmit ring descriptor that we use to prepare actual
277 * descriptors for further executions
278 * @rx_ring: receive ring descriptor that we use to get completed DMA
279 * descriptors during cleanup time
281 struct xgene_dma_chan {
282 struct dma_chan dma_chan;
283 struct xgene_dma *pdma;
284 struct device *dev;
285 int id;
286 int rx_irq;
287 char name[10];
288 spinlock_t lock;
289 int pending;
290 int max_outstanding;
291 struct list_head ld_pending;
292 struct list_head ld_running;
293 struct list_head ld_completed;
294 struct dma_pool *desc_pool;
295 struct tasklet_struct tasklet;
296 struct xgene_dma_ring tx_ring;
297 struct xgene_dma_ring rx_ring;
301 * struct xgene_dma - internal representation of an X-Gene DMA device
302 * @err_irq: DMA error irq number
303 * @ring_num: start id number for DMA ring
304 * @csr_dma: base for DMA register access
305 * @csr_ring: base for DMA ring register access
306 * @csr_ring_cmd: base for DMA ring command register access
307 * @csr_efuse: base for efuse register access
308 * @dma_dev: embedded struct dma_device
309 * @chan: reference to X-Gene DMA channels
311 struct xgene_dma {
312 struct device *dev;
313 struct clk *clk;
314 int err_irq;
315 int ring_num;
316 void __iomem *csr_dma;
317 void __iomem *csr_ring;
318 void __iomem *csr_ring_cmd;
319 void __iomem *csr_efuse;
320 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
324 static const char * const xgene_dma_desc_err[] = {
325 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327 [ERR_READ_DATA_AXI] = "AXI error when reading data",
328 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330 [ERR_ECC] = "ECC double bit error",
331 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333 [ERR_CRC_ERR] = "CRC error",
334 [ERR_CHKSUM] = "Checksum error",
335 [ERR_DIF] = "DIF error",
338 static const char * const xgene_dma_err[] = {
339 [ERR_DIF_SIZE_INT] = "DIF size error",
340 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
341 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
342 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344 [ERR_WR_TIMEO_INT] = "Write time out error",
345 [ERR_RD_TIMEO_INT] = "Read time out error",
346 [ERR_WR_ERR_INT] = "HBF bus write error",
347 [ERR_RD_ERR_INT] = "HBF bus read error",
348 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
350 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
353 static bool is_pq_enabled(struct xgene_dma *pdma)
355 u32 val;
357 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
361 static u64 xgene_dma_encode_len(size_t len)
363 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365 XGENE_DMA_16K_BUFFER_LEN_CODE;
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
370 static u8 flyby_type[] = {
371 FLYBY_2SRC_XOR, /* Dummy */
372 FLYBY_2SRC_XOR, /* Dummy */
373 FLYBY_2SRC_XOR,
374 FLYBY_3SRC_XOR,
375 FLYBY_4SRC_XOR,
376 FLYBY_5SRC_XOR
379 return flyby_type[src_cnt];
382 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
384 u32 __iomem *cmd_base = ring->cmd_base;
385 u32 ring_state = ioread32(&cmd_base[1]);
387 return XGENE_DMA_RING_DESC_CNT(ring_state);
390 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
391 dma_addr_t *paddr)
393 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
394 *len : XGENE_DMA_MAX_BYTE_CNT;
396 *ext8 |= cpu_to_le64(*paddr);
397 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
398 *len -= nbytes;
399 *paddr += nbytes;
402 static void xgene_dma_invalidate_buffer(__le64 *ext8)
404 *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
407 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
409 switch (idx) {
410 case 0:
411 return &desc->m1;
412 case 1:
413 return &desc->m0;
414 case 2:
415 return &desc->m3;
416 case 3:
417 return &desc->m2;
418 default:
419 pr_err("Invalid dma descriptor index\n");
422 return NULL;
425 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
426 u16 dst_ring_num)
428 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
429 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
430 XGENE_DMA_DESC_RTYPE_POS);
431 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
432 desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
433 XGENE_DMA_DESC_HOENQ_NUM_POS);
436 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
437 struct xgene_dma_desc_sw *desc_sw,
438 dma_addr_t dst, dma_addr_t src,
439 size_t len)
441 struct xgene_dma_desc_hw *desc1, *desc2;
442 int i;
444 /* Get 1st descriptor */
445 desc1 = &desc_sw->desc1;
446 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
448 /* Set destination address */
449 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
450 desc1->m3 |= cpu_to_le64(dst);
452 /* Set 1st source address */
453 xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
455 if (!len)
456 return;
459 * We need to split this source buffer,
460 * and need to use 2nd descriptor
462 desc2 = &desc_sw->desc2;
463 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
465 /* Set 2nd to 5th source address */
466 for (i = 0; i < 4 && len; i++)
467 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
468 &len, &src);
470 /* Invalidate unused source address field */
471 for (; i < 4; i++)
472 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
474 /* Updated flag that we have prepared 64B descriptor */
475 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
478 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
479 struct xgene_dma_desc_sw *desc_sw,
480 dma_addr_t *dst, dma_addr_t *src,
481 u32 src_cnt, size_t *nbytes,
482 const u8 *scf)
484 struct xgene_dma_desc_hw *desc1, *desc2;
485 size_t len = *nbytes;
486 int i;
488 desc1 = &desc_sw->desc1;
489 desc2 = &desc_sw->desc2;
491 /* Initialize DMA descriptor */
492 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
494 /* Set destination address */
495 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
496 desc1->m3 |= cpu_to_le64(*dst);
498 /* We have multiple source addresses, so need to set NV bit*/
499 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
501 /* Set flyby opcode */
502 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
504 /* Set 1st to 5th source addresses */
505 for (i = 0; i < src_cnt; i++) {
506 len = *nbytes;
507 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
508 xgene_dma_lookup_ext8(desc2, i - 1),
509 &len, &src[i]);
510 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
513 /* Update meta data */
514 *nbytes = len;
515 *dst += XGENE_DMA_MAX_BYTE_CNT;
517 /* We need always 64B descriptor to perform xor or pq operations */
518 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
521 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
523 struct xgene_dma_desc_sw *desc;
524 struct xgene_dma_chan *chan;
525 dma_cookie_t cookie;
527 if (unlikely(!tx))
528 return -EINVAL;
530 chan = to_dma_chan(tx->chan);
531 desc = to_dma_desc_sw(tx);
533 spin_lock_bh(&chan->lock);
535 cookie = dma_cookie_assign(tx);
537 /* Add this transaction list onto the tail of the pending queue */
538 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
540 spin_unlock_bh(&chan->lock);
542 return cookie;
545 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
546 struct xgene_dma_desc_sw *desc)
548 list_del(&desc->node);
549 chan_dbg(chan, "LD %p free\n", desc);
550 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
553 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
554 struct xgene_dma_chan *chan)
556 struct xgene_dma_desc_sw *desc;
557 dma_addr_t phys;
559 desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
560 if (!desc) {
561 chan_err(chan, "Failed to allocate LDs\n");
562 return NULL;
565 memset(desc, 0, sizeof(*desc));
567 INIT_LIST_HEAD(&desc->tx_list);
568 desc->tx.phys = phys;
569 desc->tx.tx_submit = xgene_dma_tx_submit;
570 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
572 chan_dbg(chan, "LD %p allocated\n", desc);
574 return desc;
578 * xgene_dma_clean_completed_descriptor - free all descriptors which
579 * has been completed and acked
580 * @chan: X-Gene DMA channel
582 * This function is used on all completed and acked descriptors.
584 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
586 struct xgene_dma_desc_sw *desc, *_desc;
588 /* Run the callback for each descriptor, in order */
589 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
590 if (async_tx_test_ack(&desc->tx))
591 xgene_dma_clean_descriptor(chan, desc);
596 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
597 * @chan: X-Gene DMA channel
598 * @desc: descriptor to cleanup and free
600 * This function is used on a descriptor which has been executed by the DMA
601 * controller. It will run any callbacks, submit any dependencies.
603 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
604 struct xgene_dma_desc_sw *desc)
606 struct dma_async_tx_descriptor *tx = &desc->tx;
609 * If this is not the last transaction in the group,
610 * then no need to complete cookie and run any callback as
611 * this is not the tx_descriptor which had been sent to caller
612 * of this DMA request
615 if (tx->cookie == 0)
616 return;
618 dma_cookie_complete(tx);
620 /* Run the link descriptor callback function */
621 if (tx->callback)
622 tx->callback(tx->callback_param);
624 dma_descriptor_unmap(tx);
626 /* Run any dependencies */
627 dma_run_dependencies(tx);
631 * xgene_dma_clean_running_descriptor - move the completed descriptor from
632 * ld_running to ld_completed
633 * @chan: X-Gene DMA channel
634 * @desc: the descriptor which is completed
636 * Free the descriptor directly if acked by async_tx api,
637 * else move it to queue ld_completed.
639 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
640 struct xgene_dma_desc_sw *desc)
642 /* Remove from the list of running transactions */
643 list_del(&desc->node);
646 * the client is allowed to attach dependent operations
647 * until 'ack' is set
649 if (!async_tx_test_ack(&desc->tx)) {
651 * Move this descriptor to the list of descriptors which is
652 * completed, but still awaiting the 'ack' bit to be set.
654 list_add_tail(&desc->node, &chan->ld_completed);
655 return;
658 chan_dbg(chan, "LD %p free\n", desc);
659 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
662 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
663 struct xgene_dma_desc_sw *desc_sw)
665 struct xgene_dma_desc_hw *desc_hw;
667 /* Check if can push more descriptor to hw for execution */
668 if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
669 return -EBUSY;
671 /* Get hw descriptor from DMA tx ring */
672 desc_hw = &ring->desc_hw[ring->head];
675 * Increment the head count to point next
676 * descriptor for next time
678 if (++ring->head == ring->slots)
679 ring->head = 0;
681 /* Copy prepared sw descriptor data to hw descriptor */
682 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
685 * Check if we have prepared 64B descriptor,
686 * in this case we need one more hw descriptor
688 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
689 desc_hw = &ring->desc_hw[ring->head];
691 if (++ring->head == ring->slots)
692 ring->head = 0;
694 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
697 /* Notify the hw that we have descriptor ready for execution */
698 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
699 2 : 1, ring->cmd);
701 return 0;
705 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
706 * @chan : X-Gene DMA channel
708 * LOCKING: must hold chan->lock
710 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
712 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
713 int ret;
716 * If the list of pending descriptors is empty, then we
717 * don't need to do any work at all
719 if (list_empty(&chan->ld_pending)) {
720 chan_dbg(chan, "No pending LDs\n");
721 return;
725 * Move elements from the queue of pending transactions onto the list
726 * of running transactions and push it to hw for further executions
728 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
730 * Check if have pushed max number of transactions to hw
731 * as capable, so let's stop here and will push remaining
732 * elements from pening ld queue after completing some
733 * descriptors that we have already pushed
735 if (chan->pending >= chan->max_outstanding)
736 return;
738 ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
739 if (ret)
740 return;
743 * Delete this element from ld pending queue and append it to
744 * ld running queue
746 list_move_tail(&desc_sw->node, &chan->ld_running);
748 /* Increment the pending transaction count */
749 chan->pending++;
754 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
755 * and move them to ld_completed to free until flag 'ack' is set
756 * @chan: X-Gene DMA channel
758 * This function is used on descriptors which have been executed by the DMA
759 * controller. It will run any callbacks, submit any dependencies, then
760 * free these descriptors if flag 'ack' is set.
762 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
764 struct xgene_dma_ring *ring = &chan->rx_ring;
765 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
766 struct xgene_dma_desc_hw *desc_hw;
767 struct list_head ld_completed;
768 u8 status;
770 INIT_LIST_HEAD(&ld_completed);
772 spin_lock_bh(&chan->lock);
774 /* Clean already completed and acked descriptors */
775 xgene_dma_clean_completed_descriptor(chan);
777 /* Move all completed descriptors to ld completed queue, in order */
778 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
779 /* Get subsequent hw descriptor from DMA rx ring */
780 desc_hw = &ring->desc_hw[ring->head];
782 /* Check if this descriptor has been completed */
783 if (unlikely(le64_to_cpu(desc_hw->m0) ==
784 XGENE_DMA_DESC_EMPTY_SIGNATURE))
785 break;
787 if (++ring->head == ring->slots)
788 ring->head = 0;
790 /* Check if we have any error with DMA transactions */
791 status = XGENE_DMA_DESC_STATUS(
792 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
793 desc_hw->m0)),
794 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
795 desc_hw->m0)));
796 if (status) {
797 /* Print the DMA error type */
798 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
801 * We have DMA transactions error here. Dump DMA Tx
802 * and Rx descriptors for this request */
803 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
804 "X-Gene DMA TX DESC1: ");
806 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
807 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
808 "X-Gene DMA TX DESC2: ");
810 XGENE_DMA_DESC_DUMP(desc_hw,
811 "X-Gene DMA RX ERR DESC: ");
814 /* Notify the hw about this completed descriptor */
815 iowrite32(-1, ring->cmd);
817 /* Mark this hw descriptor as processed */
818 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
821 * Decrement the pending transaction count
822 * as we have processed one
824 chan->pending--;
827 * Delete this node from ld running queue and append it to
828 * ld completed queue for further processing
830 list_move_tail(&desc_sw->node, &ld_completed);
834 * Start any pending transactions automatically
835 * In the ideal case, we keep the DMA controller busy while we go
836 * ahead and free the descriptors below.
838 xgene_chan_xfer_ld_pending(chan);
840 spin_unlock_bh(&chan->lock);
842 /* Run the callback for each descriptor, in order */
843 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
844 xgene_dma_run_tx_complete_actions(chan, desc_sw);
845 xgene_dma_clean_running_descriptor(chan, desc_sw);
849 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
851 struct xgene_dma_chan *chan = to_dma_chan(dchan);
853 /* Has this channel already been allocated? */
854 if (chan->desc_pool)
855 return 1;
857 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
858 sizeof(struct xgene_dma_desc_sw),
859 0, 0);
860 if (!chan->desc_pool) {
861 chan_err(chan, "Failed to allocate descriptor pool\n");
862 return -ENOMEM;
865 chan_dbg(chan, "Allocate descripto pool\n");
867 return 1;
871 * xgene_dma_free_desc_list - Free all descriptors in a queue
872 * @chan: X-Gene DMA channel
873 * @list: the list to free
875 * LOCKING: must hold chan->lock
877 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
878 struct list_head *list)
880 struct xgene_dma_desc_sw *desc, *_desc;
882 list_for_each_entry_safe(desc, _desc, list, node)
883 xgene_dma_clean_descriptor(chan, desc);
886 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
888 struct xgene_dma_chan *chan = to_dma_chan(dchan);
890 chan_dbg(chan, "Free all resources\n");
892 if (!chan->desc_pool)
893 return;
895 /* Process all running descriptor */
896 xgene_dma_cleanup_descriptors(chan);
898 spin_lock_bh(&chan->lock);
900 /* Clean all link descriptor queues */
901 xgene_dma_free_desc_list(chan, &chan->ld_pending);
902 xgene_dma_free_desc_list(chan, &chan->ld_running);
903 xgene_dma_free_desc_list(chan, &chan->ld_completed);
905 spin_unlock_bh(&chan->lock);
907 /* Delete this channel DMA pool */
908 dma_pool_destroy(chan->desc_pool);
909 chan->desc_pool = NULL;
912 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
913 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
914 size_t len, unsigned long flags)
916 struct xgene_dma_desc_sw *first = NULL, *new;
917 struct xgene_dma_chan *chan;
918 size_t copy;
920 if (unlikely(!dchan || !len))
921 return NULL;
923 chan = to_dma_chan(dchan);
925 do {
926 /* Allocate the link descriptor from DMA pool */
927 new = xgene_dma_alloc_descriptor(chan);
928 if (!new)
929 goto fail;
931 /* Create the largest transaction possible */
932 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
934 /* Prepare DMA descriptor */
935 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
937 if (!first)
938 first = new;
940 new->tx.cookie = 0;
941 async_tx_ack(&new->tx);
943 /* Update metadata */
944 len -= copy;
945 dst += copy;
946 src += copy;
948 /* Insert the link descriptor to the LD ring */
949 list_add_tail(&new->node, &first->tx_list);
950 } while (len);
952 new->tx.flags = flags; /* client is in control of this ack */
953 new->tx.cookie = -EBUSY;
954 list_splice(&first->tx_list, &new->tx_list);
956 return &new->tx;
958 fail:
959 if (!first)
960 return NULL;
962 xgene_dma_free_desc_list(chan, &first->tx_list);
963 return NULL;
966 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
967 struct dma_chan *dchan, struct scatterlist *dst_sg,
968 u32 dst_nents, struct scatterlist *src_sg,
969 u32 src_nents, unsigned long flags)
971 struct xgene_dma_desc_sw *first = NULL, *new = NULL;
972 struct xgene_dma_chan *chan;
973 size_t dst_avail, src_avail;
974 dma_addr_t dst, src;
975 size_t len;
977 if (unlikely(!dchan))
978 return NULL;
980 if (unlikely(!dst_nents || !src_nents))
981 return NULL;
983 if (unlikely(!dst_sg || !src_sg))
984 return NULL;
986 chan = to_dma_chan(dchan);
988 /* Get prepared for the loop */
989 dst_avail = sg_dma_len(dst_sg);
990 src_avail = sg_dma_len(src_sg);
991 dst_nents--;
992 src_nents--;
994 /* Run until we are out of scatterlist entries */
995 while (true) {
996 /* Create the largest transaction possible */
997 len = min_t(size_t, src_avail, dst_avail);
998 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
999 if (len == 0)
1000 goto fetch;
1002 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
1003 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
1005 /* Allocate the link descriptor from DMA pool */
1006 new = xgene_dma_alloc_descriptor(chan);
1007 if (!new)
1008 goto fail;
1010 /* Prepare DMA descriptor */
1011 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
1013 if (!first)
1014 first = new;
1016 new->tx.cookie = 0;
1017 async_tx_ack(&new->tx);
1019 /* update metadata */
1020 dst_avail -= len;
1021 src_avail -= len;
1023 /* Insert the link descriptor to the LD ring */
1024 list_add_tail(&new->node, &first->tx_list);
1026 fetch:
1027 /* fetch the next dst scatterlist entry */
1028 if (dst_avail == 0) {
1029 /* no more entries: we're done */
1030 if (dst_nents == 0)
1031 break;
1033 /* fetch the next entry: if there are no more: done */
1034 dst_sg = sg_next(dst_sg);
1035 if (!dst_sg)
1036 break;
1038 dst_nents--;
1039 dst_avail = sg_dma_len(dst_sg);
1042 /* fetch the next src scatterlist entry */
1043 if (src_avail == 0) {
1044 /* no more entries: we're done */
1045 if (src_nents == 0)
1046 break;
1048 /* fetch the next entry: if there are no more: done */
1049 src_sg = sg_next(src_sg);
1050 if (!src_sg)
1051 break;
1053 src_nents--;
1054 src_avail = sg_dma_len(src_sg);
1058 if (!new)
1059 return NULL;
1061 new->tx.flags = flags; /* client is in control of this ack */
1062 new->tx.cookie = -EBUSY;
1063 list_splice(&first->tx_list, &new->tx_list);
1065 return &new->tx;
1066 fail:
1067 if (!first)
1068 return NULL;
1070 xgene_dma_free_desc_list(chan, &first->tx_list);
1071 return NULL;
1074 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1075 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1076 u32 src_cnt, size_t len, unsigned long flags)
1078 struct xgene_dma_desc_sw *first = NULL, *new;
1079 struct xgene_dma_chan *chan;
1080 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1081 0x01, 0x01, 0x01, 0x01, 0x01};
1083 if (unlikely(!dchan || !len))
1084 return NULL;
1086 chan = to_dma_chan(dchan);
1088 do {
1089 /* Allocate the link descriptor from DMA pool */
1090 new = xgene_dma_alloc_descriptor(chan);
1091 if (!new)
1092 goto fail;
1094 /* Prepare xor DMA descriptor */
1095 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1096 src_cnt, &len, multi);
1098 if (!first)
1099 first = new;
1101 new->tx.cookie = 0;
1102 async_tx_ack(&new->tx);
1104 /* Insert the link descriptor to the LD ring */
1105 list_add_tail(&new->node, &first->tx_list);
1106 } while (len);
1108 new->tx.flags = flags; /* client is in control of this ack */
1109 new->tx.cookie = -EBUSY;
1110 list_splice(&first->tx_list, &new->tx_list);
1112 return &new->tx;
1114 fail:
1115 if (!first)
1116 return NULL;
1118 xgene_dma_free_desc_list(chan, &first->tx_list);
1119 return NULL;
1122 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1123 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1124 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1126 struct xgene_dma_desc_sw *first = NULL, *new;
1127 struct xgene_dma_chan *chan;
1128 size_t _len = len;
1129 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1130 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1132 if (unlikely(!dchan || !len))
1133 return NULL;
1135 chan = to_dma_chan(dchan);
1138 * Save source addresses on local variable, may be we have to
1139 * prepare two descriptor to generate P and Q if both enabled
1140 * in the flags by client
1142 memcpy(_src, src, sizeof(*src) * src_cnt);
1144 if (flags & DMA_PREP_PQ_DISABLE_P)
1145 len = 0;
1147 if (flags & DMA_PREP_PQ_DISABLE_Q)
1148 _len = 0;
1150 do {
1151 /* Allocate the link descriptor from DMA pool */
1152 new = xgene_dma_alloc_descriptor(chan);
1153 if (!new)
1154 goto fail;
1156 if (!first)
1157 first = new;
1159 new->tx.cookie = 0;
1160 async_tx_ack(&new->tx);
1162 /* Insert the link descriptor to the LD ring */
1163 list_add_tail(&new->node, &first->tx_list);
1166 * Prepare DMA descriptor to generate P,
1167 * if DMA_PREP_PQ_DISABLE_P flag is not set
1169 if (len) {
1170 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1171 src_cnt, &len, multi);
1172 continue;
1176 * Prepare DMA descriptor to generate Q,
1177 * if DMA_PREP_PQ_DISABLE_Q flag is not set
1179 if (_len) {
1180 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1181 src_cnt, &_len, scf);
1183 } while (len || _len);
1185 new->tx.flags = flags; /* client is in control of this ack */
1186 new->tx.cookie = -EBUSY;
1187 list_splice(&first->tx_list, &new->tx_list);
1189 return &new->tx;
1191 fail:
1192 if (!first)
1193 return NULL;
1195 xgene_dma_free_desc_list(chan, &first->tx_list);
1196 return NULL;
1199 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1201 struct xgene_dma_chan *chan = to_dma_chan(dchan);
1203 spin_lock_bh(&chan->lock);
1204 xgene_chan_xfer_ld_pending(chan);
1205 spin_unlock_bh(&chan->lock);
1208 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1209 dma_cookie_t cookie,
1210 struct dma_tx_state *txstate)
1212 return dma_cookie_status(dchan, cookie, txstate);
1215 static void xgene_dma_tasklet_cb(unsigned long data)
1217 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1219 /* Run all cleanup for descriptors which have been completed */
1220 xgene_dma_cleanup_descriptors(chan);
1222 /* Re-enable DMA channel IRQ */
1223 enable_irq(chan->rx_irq);
1226 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1228 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1230 BUG_ON(!chan);
1233 * Disable DMA channel IRQ until we process completed
1234 * descriptors
1236 disable_irq_nosync(chan->rx_irq);
1239 * Schedule the tasklet to handle all cleanup of the current
1240 * transaction. It will start a new transaction if there is
1241 * one pending.
1243 tasklet_schedule(&chan->tasklet);
1245 return IRQ_HANDLED;
1248 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1250 struct xgene_dma *pdma = (struct xgene_dma *)id;
1251 unsigned long int_mask;
1252 u32 val, i;
1254 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1256 /* Clear DMA interrupts */
1257 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1259 /* Print DMA error info */
1260 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1261 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1262 dev_err(pdma->dev,
1263 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1265 return IRQ_HANDLED;
1268 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1270 int i;
1272 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1274 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1275 iowrite32(ring->state[i], ring->pdma->csr_ring +
1276 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1279 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1281 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1282 xgene_dma_wr_ring_state(ring);
1285 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1287 void *ring_cfg = ring->state;
1288 u64 addr = ring->desc_paddr;
1289 u32 i, val;
1291 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1293 /* Clear DMA ring state */
1294 xgene_dma_clr_ring_state(ring);
1296 /* Set DMA ring type */
1297 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1299 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1300 /* Set recombination buffer and timeout */
1301 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1302 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1303 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1306 /* Initialize DMA ring state */
1307 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1308 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1309 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1310 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1311 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1312 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1314 /* Write DMA ring configurations */
1315 xgene_dma_wr_ring_state(ring);
1317 /* Set DMA ring id */
1318 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1319 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1321 /* Set DMA ring buffer */
1322 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1323 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1325 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1326 return;
1328 /* Set empty signature to DMA Rx ring descriptors */
1329 for (i = 0; i < ring->slots; i++) {
1330 struct xgene_dma_desc_hw *desc;
1332 desc = &ring->desc_hw[i];
1333 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1336 /* Enable DMA Rx ring interrupt */
1337 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1338 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1339 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1342 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1344 u32 ring_id, val;
1346 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1347 /* Disable DMA Rx ring interrupt */
1348 val = ioread32(ring->pdma->csr_ring +
1349 XGENE_DMA_RING_NE_INT_MODE);
1350 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1351 iowrite32(val, ring->pdma->csr_ring +
1352 XGENE_DMA_RING_NE_INT_MODE);
1355 /* Clear DMA ring state */
1356 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1357 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1359 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1360 xgene_dma_clr_ring_state(ring);
1363 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1365 ring->cmd_base = ring->pdma->csr_ring_cmd +
1366 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1367 XGENE_DMA_RING_NUM));
1369 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1372 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1373 enum xgene_dma_ring_cfgsize cfgsize)
1375 int size;
1377 switch (cfgsize) {
1378 case XGENE_DMA_RING_CFG_SIZE_512B:
1379 size = 0x200;
1380 break;
1381 case XGENE_DMA_RING_CFG_SIZE_2KB:
1382 size = 0x800;
1383 break;
1384 case XGENE_DMA_RING_CFG_SIZE_16KB:
1385 size = 0x4000;
1386 break;
1387 case XGENE_DMA_RING_CFG_SIZE_64KB:
1388 size = 0x10000;
1389 break;
1390 case XGENE_DMA_RING_CFG_SIZE_512KB:
1391 size = 0x80000;
1392 break;
1393 default:
1394 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1395 return -EINVAL;
1398 return size;
1401 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1403 /* Clear DMA ring configurations */
1404 xgene_dma_clear_ring(ring);
1406 /* De-allocate DMA ring descriptor */
1407 if (ring->desc_vaddr) {
1408 dma_free_coherent(ring->pdma->dev, ring->size,
1409 ring->desc_vaddr, ring->desc_paddr);
1410 ring->desc_vaddr = NULL;
1414 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1416 xgene_dma_delete_ring_one(&chan->rx_ring);
1417 xgene_dma_delete_ring_one(&chan->tx_ring);
1420 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1421 struct xgene_dma_ring *ring,
1422 enum xgene_dma_ring_cfgsize cfgsize)
1424 /* Setup DMA ring descriptor variables */
1425 ring->pdma = chan->pdma;
1426 ring->cfgsize = cfgsize;
1427 ring->num = chan->pdma->ring_num++;
1428 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1430 ring->size = xgene_dma_get_ring_size(chan, cfgsize);
1431 if (ring->size <= 0)
1432 return ring->size;
1434 /* Allocate memory for DMA ring descriptor */
1435 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1436 &ring->desc_paddr, GFP_KERNEL);
1437 if (!ring->desc_vaddr) {
1438 chan_err(chan, "Failed to allocate ring desc\n");
1439 return -ENOMEM;
1442 /* Configure and enable DMA ring */
1443 xgene_dma_set_ring_cmd(ring);
1444 xgene_dma_setup_ring(ring);
1446 return 0;
1449 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1451 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1452 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1453 int ret;
1455 /* Create DMA Rx ring descriptor */
1456 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1457 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1459 ret = xgene_dma_create_ring_one(chan, rx_ring,
1460 XGENE_DMA_RING_CFG_SIZE_64KB);
1461 if (ret)
1462 return ret;
1464 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1465 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1467 /* Create DMA Tx ring descriptor */
1468 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1469 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1471 ret = xgene_dma_create_ring_one(chan, tx_ring,
1472 XGENE_DMA_RING_CFG_SIZE_64KB);
1473 if (ret) {
1474 xgene_dma_delete_ring_one(rx_ring);
1475 return ret;
1478 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1480 chan_dbg(chan,
1481 "Tx ring id 0x%X num %d desc 0x%p\n",
1482 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1484 /* Set the max outstanding request possible to this channel */
1485 chan->max_outstanding = rx_ring->slots;
1487 return ret;
1490 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1492 int ret, i, j;
1494 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1495 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1496 if (ret) {
1497 for (j = 0; j < i; j++)
1498 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1499 return ret;
1503 return ret;
1506 static void xgene_dma_enable(struct xgene_dma *pdma)
1508 u32 val;
1510 /* Configure and enable DMA engine */
1511 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1512 XGENE_DMA_CH_SETUP(val);
1513 XGENE_DMA_ENABLE(val);
1514 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1517 static void xgene_dma_disable(struct xgene_dma *pdma)
1519 u32 val;
1521 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1522 XGENE_DMA_DISABLE(val);
1523 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1526 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1529 * Mask DMA ring overflow, underflow and
1530 * AXI write/read error interrupts
1532 iowrite32(XGENE_DMA_INT_ALL_MASK,
1533 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1534 iowrite32(XGENE_DMA_INT_ALL_MASK,
1535 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1536 iowrite32(XGENE_DMA_INT_ALL_MASK,
1537 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1538 iowrite32(XGENE_DMA_INT_ALL_MASK,
1539 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1540 iowrite32(XGENE_DMA_INT_ALL_MASK,
1541 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1543 /* Mask DMA error interrupts */
1544 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1547 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1550 * Unmask DMA ring overflow, underflow and
1551 * AXI write/read error interrupts
1553 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1554 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1555 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1556 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1557 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1558 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1559 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1560 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1561 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1562 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1564 /* Unmask DMA error interrupts */
1565 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1566 pdma->csr_dma + XGENE_DMA_INT_MASK);
1569 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1571 u32 val;
1573 /* Associate DMA ring to corresponding ring HW */
1574 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1575 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1577 /* Configure RAID6 polynomial control setting */
1578 if (is_pq_enabled(pdma))
1579 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1580 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1581 else
1582 dev_info(pdma->dev, "PQ is disabled in HW\n");
1584 xgene_dma_enable(pdma);
1585 xgene_dma_unmask_interrupts(pdma);
1587 /* Get DMA id and version info */
1588 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1590 /* DMA device info */
1591 dev_info(pdma->dev,
1592 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1593 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1594 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1597 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1599 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1600 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1601 return 0;
1603 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1604 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1606 /* Bring up memory */
1607 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1609 /* Force a barrier */
1610 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1612 /* reset may take up to 1ms */
1613 usleep_range(1000, 1100);
1615 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1616 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1617 dev_err(pdma->dev,
1618 "Failed to release ring mngr memory from shutdown\n");
1619 return -ENODEV;
1622 /* program threshold set 1 and all hysteresis */
1623 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1624 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1625 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1626 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1627 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1628 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1630 /* Enable QPcore and assign error queue */
1631 iowrite32(XGENE_DMA_RING_ENABLE,
1632 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1634 return 0;
1637 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1639 int ret;
1641 ret = xgene_dma_init_ring_mngr(pdma);
1642 if (ret)
1643 return ret;
1645 /* Bring up memory */
1646 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1648 /* Force a barrier */
1649 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1651 /* reset may take up to 1ms */
1652 usleep_range(1000, 1100);
1654 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1655 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1656 dev_err(pdma->dev,
1657 "Failed to release DMA memory from shutdown\n");
1658 return -ENODEV;
1661 return 0;
1664 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1666 struct xgene_dma_chan *chan;
1667 int ret, i, j;
1669 /* Register DMA error irq */
1670 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1671 0, "dma_error", pdma);
1672 if (ret) {
1673 dev_err(pdma->dev,
1674 "Failed to register error IRQ %d\n", pdma->err_irq);
1675 return ret;
1678 /* Register DMA channel rx irq */
1679 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1680 chan = &pdma->chan[i];
1681 ret = devm_request_irq(chan->dev, chan->rx_irq,
1682 xgene_dma_chan_ring_isr,
1683 0, chan->name, chan);
1684 if (ret) {
1685 chan_err(chan, "Failed to register Rx IRQ %d\n",
1686 chan->rx_irq);
1687 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1689 for (j = 0; j < i; j++) {
1690 chan = &pdma->chan[i];
1691 devm_free_irq(chan->dev, chan->rx_irq, chan);
1694 return ret;
1698 return 0;
1701 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1703 struct xgene_dma_chan *chan;
1704 int i;
1706 /* Free DMA device error irq */
1707 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1709 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1710 chan = &pdma->chan[i];
1711 devm_free_irq(chan->dev, chan->rx_irq, chan);
1715 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1716 struct dma_device *dma_dev)
1718 /* Initialize DMA device capability mask */
1719 dma_cap_zero(dma_dev->cap_mask);
1721 /* Set DMA device capability */
1722 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1723 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1725 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1726 * and channel 1 supports XOR, PQ both. First thing here is we have
1727 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1728 * we can make sure this by reading SoC Efuse register.
1729 * Second thing, we have hw errata that if we run channel 0 and
1730 * channel 1 simultaneously with executing XOR and PQ request,
1731 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1732 * if XOR and PQ supports on channel 1 is disabled.
1734 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1735 is_pq_enabled(chan->pdma)) {
1736 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1737 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1738 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1739 !is_pq_enabled(chan->pdma)) {
1740 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1743 /* Set base and prep routines */
1744 dma_dev->dev = chan->dev;
1745 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1746 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1747 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1748 dma_dev->device_tx_status = xgene_dma_tx_status;
1749 dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1750 dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1752 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1753 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1754 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1755 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1758 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1759 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1760 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1761 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1765 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1767 struct xgene_dma_chan *chan = &pdma->chan[id];
1768 struct dma_device *dma_dev = &pdma->dma_dev[id];
1769 int ret;
1771 chan->dma_chan.device = dma_dev;
1773 spin_lock_init(&chan->lock);
1774 INIT_LIST_HEAD(&chan->ld_pending);
1775 INIT_LIST_HEAD(&chan->ld_running);
1776 INIT_LIST_HEAD(&chan->ld_completed);
1777 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1778 (unsigned long)chan);
1780 chan->pending = 0;
1781 chan->desc_pool = NULL;
1782 dma_cookie_init(&chan->dma_chan);
1784 /* Setup dma device capabilities and prep routines */
1785 xgene_dma_set_caps(chan, dma_dev);
1787 /* Initialize DMA device list head */
1788 INIT_LIST_HEAD(&dma_dev->channels);
1789 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1791 /* Register with Linux async DMA framework*/
1792 ret = dma_async_device_register(dma_dev);
1793 if (ret) {
1794 chan_err(chan, "Failed to register async device %d", ret);
1795 tasklet_kill(&chan->tasklet);
1797 return ret;
1800 /* DMA capability info */
1801 dev_info(pdma->dev,
1802 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1803 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1804 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1805 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1806 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1808 return 0;
1811 static int xgene_dma_init_async(struct xgene_dma *pdma)
1813 int ret, i, j;
1815 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1816 ret = xgene_dma_async_register(pdma, i);
1817 if (ret) {
1818 for (j = 0; j < i; j++) {
1819 dma_async_device_unregister(&pdma->dma_dev[j]);
1820 tasklet_kill(&pdma->chan[j].tasklet);
1823 return ret;
1827 return ret;
1830 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1832 int i;
1834 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1835 dma_async_device_unregister(&pdma->dma_dev[i]);
1838 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1840 struct xgene_dma_chan *chan;
1841 int i;
1843 pdma->ring_num = XGENE_DMA_RING_NUM;
1845 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1846 chan = &pdma->chan[i];
1847 chan->dev = pdma->dev;
1848 chan->pdma = pdma;
1849 chan->id = i;
1850 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1854 static int xgene_dma_get_resources(struct platform_device *pdev,
1855 struct xgene_dma *pdma)
1857 struct resource *res;
1858 int irq, i;
1860 /* Get DMA csr region */
1861 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1862 if (!res) {
1863 dev_err(&pdev->dev, "Failed to get csr region\n");
1864 return -ENXIO;
1867 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1868 resource_size(res));
1869 if (!pdma->csr_dma) {
1870 dev_err(&pdev->dev, "Failed to ioremap csr region");
1871 return -ENOMEM;
1874 /* Get DMA ring csr region */
1875 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1876 if (!res) {
1877 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1878 return -ENXIO;
1881 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1882 resource_size(res));
1883 if (!pdma->csr_ring) {
1884 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1885 return -ENOMEM;
1888 /* Get DMA ring cmd csr region */
1889 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1890 if (!res) {
1891 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1892 return -ENXIO;
1895 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1896 resource_size(res));
1897 if (!pdma->csr_ring_cmd) {
1898 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1899 return -ENOMEM;
1902 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1904 /* Get efuse csr region */
1905 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1906 if (!res) {
1907 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1908 return -ENXIO;
1911 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1912 resource_size(res));
1913 if (!pdma->csr_efuse) {
1914 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1915 return -ENOMEM;
1918 /* Get DMA error interrupt */
1919 irq = platform_get_irq(pdev, 0);
1920 if (irq <= 0) {
1921 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1922 return -ENXIO;
1925 pdma->err_irq = irq;
1927 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1928 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1929 irq = platform_get_irq(pdev, i);
1930 if (irq <= 0) {
1931 dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1932 return -ENXIO;
1935 pdma->chan[i - 1].rx_irq = irq;
1938 return 0;
1941 static int xgene_dma_probe(struct platform_device *pdev)
1943 struct xgene_dma *pdma;
1944 int ret, i;
1946 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1947 if (!pdma)
1948 return -ENOMEM;
1950 pdma->dev = &pdev->dev;
1951 platform_set_drvdata(pdev, pdma);
1953 ret = xgene_dma_get_resources(pdev, pdma);
1954 if (ret)
1955 return ret;
1957 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1958 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1959 dev_err(&pdev->dev, "Failed to get clk\n");
1960 return PTR_ERR(pdma->clk);
1963 /* Enable clk before accessing registers */
1964 if (!IS_ERR(pdma->clk)) {
1965 ret = clk_prepare_enable(pdma->clk);
1966 if (ret) {
1967 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1968 return ret;
1972 /* Remove DMA RAM out of shutdown */
1973 ret = xgene_dma_init_mem(pdma);
1974 if (ret)
1975 goto err_clk_enable;
1977 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1978 if (ret) {
1979 dev_err(&pdev->dev, "No usable DMA configuration\n");
1980 goto err_dma_mask;
1983 /* Initialize DMA channels software state */
1984 xgene_dma_init_channels(pdma);
1986 /* Configue DMA rings */
1987 ret = xgene_dma_init_rings(pdma);
1988 if (ret)
1989 goto err_clk_enable;
1991 ret = xgene_dma_request_irqs(pdma);
1992 if (ret)
1993 goto err_request_irq;
1995 /* Configure and enable DMA engine */
1996 xgene_dma_init_hw(pdma);
1998 /* Register DMA device with linux async framework */
1999 ret = xgene_dma_init_async(pdma);
2000 if (ret)
2001 goto err_async_init;
2003 return 0;
2005 err_async_init:
2006 xgene_dma_free_irqs(pdma);
2008 err_request_irq:
2009 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
2010 xgene_dma_delete_chan_rings(&pdma->chan[i]);
2012 err_dma_mask:
2013 err_clk_enable:
2014 if (!IS_ERR(pdma->clk))
2015 clk_disable_unprepare(pdma->clk);
2017 return ret;
2020 static int xgene_dma_remove(struct platform_device *pdev)
2022 struct xgene_dma *pdma = platform_get_drvdata(pdev);
2023 struct xgene_dma_chan *chan;
2024 int i;
2026 xgene_dma_async_unregister(pdma);
2028 /* Mask interrupts and disable DMA engine */
2029 xgene_dma_mask_interrupts(pdma);
2030 xgene_dma_disable(pdma);
2031 xgene_dma_free_irqs(pdma);
2033 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2034 chan = &pdma->chan[i];
2035 tasklet_kill(&chan->tasklet);
2036 xgene_dma_delete_chan_rings(chan);
2039 if (!IS_ERR(pdma->clk))
2040 clk_disable_unprepare(pdma->clk);
2042 return 0;
2045 #ifdef CONFIG_ACPI
2046 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
2047 {"APMC0D43", 0},
2050 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
2051 #endif
2053 static const struct of_device_id xgene_dma_of_match_ptr[] = {
2054 {.compatible = "apm,xgene-storm-dma",},
2057 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2059 static struct platform_driver xgene_dma_driver = {
2060 .probe = xgene_dma_probe,
2061 .remove = xgene_dma_remove,
2062 .driver = {
2063 .name = "X-Gene-DMA",
2064 .of_match_table = xgene_dma_of_match_ptr,
2065 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
2069 module_platform_driver(xgene_dma_driver);
2071 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2072 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2073 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2074 MODULE_LICENSE("GPL");
2075 MODULE_VERSION("1.0");