powerpc: remove superflous inclusions of asm/fixmap.h
[linux-2.6/btrfs-unstable.git] / mm / memblock.c
blob03d48d8835babeb507f78057c3f3068339dad77a
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
24 #include <asm/sections.h>
25 #include <linux/io.h>
27 #include "internal.h"
29 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33 #endif
35 struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .memory.name = "memory",
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
44 .reserved.name = "reserved",
46 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
50 .physmem.name = "physmem",
51 #endif
53 .bottom_up = false,
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
57 int memblock_debug __initdata_memblock;
58 static bool system_has_some_mirror __initdata_memblock = false;
59 static int memblock_can_resize __initdata_memblock;
60 static int memblock_memory_in_slab __initdata_memblock = 0;
61 static int memblock_reserved_in_slab __initdata_memblock = 0;
63 ulong __init_memblock choose_memblock_flags(void)
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
68 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
71 return *size = min(*size, PHYS_ADDR_MAX - base);
75 * Address comparison utilities
77 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 phys_addr_t base2, phys_addr_t size2)
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
83 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 phys_addr_t base, phys_addr_t size)
86 unsigned long i;
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
91 break;
92 return i < type->cnt;
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99 * @size: size of free area to find
100 * @align: alignment of free area to find
101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * @flags: pick from blocks based on memory attributes
104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
106 * RETURNS:
107 * Found address on success, 0 on failure.
109 static phys_addr_t __init_memblock
110 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 phys_addr_t size, phys_addr_t align, int nid,
112 ulong flags)
114 phys_addr_t this_start, this_end, cand;
115 u64 i;
117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 this_start = clamp(this_start, start, end);
119 this_end = clamp(this_end, start, end);
121 cand = round_up(this_start, align);
122 if (cand < this_end && this_end - cand >= size)
123 return cand;
126 return 0;
130 * __memblock_find_range_top_down - find free area utility, in top-down
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136 * @flags: pick from blocks based on memory attributes
138 * Utility called from memblock_find_in_range_node(), find free area top-down.
140 * RETURNS:
141 * Found address on success, 0 on failure.
143 static phys_addr_t __init_memblock
144 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 phys_addr_t size, phys_addr_t align, int nid,
146 ulong flags)
148 phys_addr_t this_start, this_end, cand;
149 u64 i;
151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 NULL) {
153 this_start = clamp(this_start, start, end);
154 this_end = clamp(this_end, start, end);
156 if (this_end < size)
157 continue;
159 cand = round_down(this_end - size, align);
160 if (cand >= this_start)
161 return cand;
164 return 0;
168 * memblock_find_in_range_node - find free area in given range and node
169 * @size: size of free area to find
170 * @align: alignment of free area to find
171 * @start: start of candidate range
172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174 * @flags: pick from blocks based on memory attributes
176 * Find @size free area aligned to @align in the specified range and node.
178 * When allocation direction is bottom-up, the @start should be greater
179 * than the end of the kernel image. Otherwise, it will be trimmed. The
180 * reason is that we want the bottom-up allocation just near the kernel
181 * image so it is highly likely that the allocated memory and the kernel
182 * will reside in the same node.
184 * If bottom-up allocation failed, will try to allocate memory top-down.
186 * RETURNS:
187 * Found address on success, 0 on failure.
189 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 phys_addr_t align, phys_addr_t start,
191 phys_addr_t end, int nid, ulong flags)
193 phys_addr_t kernel_end, ret;
195 /* pump up @end */
196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 end = memblock.current_limit;
199 /* avoid allocating the first page */
200 start = max_t(phys_addr_t, start, PAGE_SIZE);
201 end = max(start, end);
202 kernel_end = __pa_symbol(_end);
205 * try bottom-up allocation only when bottom-up mode
206 * is set and @end is above the kernel image.
208 if (memblock_bottom_up() && end > kernel_end) {
209 phys_addr_t bottom_up_start;
211 /* make sure we will allocate above the kernel */
212 bottom_up_start = max(start, kernel_end);
214 /* ok, try bottom-up allocation first */
215 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 size, align, nid, flags);
217 if (ret)
218 return ret;
221 * we always limit bottom-up allocation above the kernel,
222 * but top-down allocation doesn't have the limit, so
223 * retrying top-down allocation may succeed when bottom-up
224 * allocation failed.
226 * bottom-up allocation is expected to be fail very rarely,
227 * so we use WARN_ONCE() here to see the stack trace if
228 * fail happens.
230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
233 return __memblock_find_range_top_down(start, end, size, align, nid,
234 flags);
238 * memblock_find_in_range - find free area in given range
239 * @start: start of candidate range
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241 * @size: size of free area to find
242 * @align: alignment of free area to find
244 * Find @size free area aligned to @align in the specified range.
246 * RETURNS:
247 * Found address on success, 0 on failure.
249 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 phys_addr_t end, phys_addr_t size,
251 phys_addr_t align)
253 phys_addr_t ret;
254 ulong flags = choose_memblock_flags();
256 again:
257 ret = memblock_find_in_range_node(size, align, start, end,
258 NUMA_NO_NODE, flags);
260 if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 &size);
263 flags &= ~MEMBLOCK_MIRROR;
264 goto again;
267 return ret;
270 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
272 type->total_size -= type->regions[r].size;
273 memmove(&type->regions[r], &type->regions[r + 1],
274 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 type->cnt--;
277 /* Special case for empty arrays */
278 if (type->cnt == 0) {
279 WARN_ON(type->total_size != 0);
280 type->cnt = 1;
281 type->regions[0].base = 0;
282 type->regions[0].size = 0;
283 type->regions[0].flags = 0;
284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
288 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
290 * Discard memory and reserved arrays if they were allocated
292 void __init memblock_discard(void)
294 phys_addr_t addr, size;
296 if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 addr = __pa(memblock.reserved.regions);
298 size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 memblock.reserved.max);
300 __memblock_free_late(addr, size);
303 if (memblock.memory.regions != memblock_memory_init_regions) {
304 addr = __pa(memblock.memory.regions);
305 size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 memblock.memory.max);
307 __memblock_free_late(addr, size);
310 #endif
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
324 * RETURNS:
325 * 0 on success, -1 on failure.
327 static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
340 if (!memblock_can_resize)
341 return -1;
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
359 /* Try to find some space for it.
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
386 new_array = addr ? __va(addr) : NULL;
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 type->name, type->max, type->max * 2);
391 return -1;
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 type->name, type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
423 /* Update slab flag */
424 *in_slab = use_slab;
426 return 0;
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
433 * Scan @type and merge neighboring compatible regions.
435 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
437 int i = 0;
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accommodate the new region.
472 static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
477 struct memblock_region *rgn = &type->regions[idx];
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
502 * RETURNS:
503 * 0 on success, -errno on failure.
505 int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int idx, nr_new;
513 struct memblock_region *rgn;
515 if (!size)
516 return 0;
518 /* special case for empty array */
519 if (type->regions[0].size == 0) {
520 WARN_ON(type->cnt != 1 || type->total_size);
521 type->regions[0].base = base;
522 type->regions[0].size = size;
523 type->regions[0].flags = flags;
524 memblock_set_region_node(&type->regions[0], nid);
525 type->total_size = size;
526 return 0;
528 repeat:
530 * The following is executed twice. Once with %false @insert and
531 * then with %true. The first counts the number of regions needed
532 * to accommodate the new area. The second actually inserts them.
534 base = obase;
535 nr_new = 0;
537 for_each_memblock_type(idx, type, rgn) {
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
549 if (rbase > base) {
550 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 WARN_ON(nid != memblock_get_region_node(rgn));
552 #endif
553 WARN_ON(flags != rgn->flags);
554 nr_new++;
555 if (insert)
556 memblock_insert_region(type, idx++, base,
557 rbase - base, nid,
558 flags);
560 /* area below @rend is dealt with, forget about it */
561 base = min(rend, end);
564 /* insert the remaining portion */
565 if (base < end) {
566 nr_new++;
567 if (insert)
568 memblock_insert_region(type, idx, base, end - base,
569 nid, flags);
572 if (!nr_new)
573 return 0;
576 * If this was the first round, resize array and repeat for actual
577 * insertions; otherwise, merge and return.
579 if (!insert) {
580 while (type->cnt + nr_new > type->max)
581 if (memblock_double_array(type, obase, size) < 0)
582 return -ENOMEM;
583 insert = true;
584 goto repeat;
585 } else {
586 memblock_merge_regions(type);
587 return 0;
591 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 int nid)
594 return memblock_add_range(&memblock.memory, base, size, nid, 0);
597 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
599 phys_addr_t end = base + size - 1;
601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 &base, &end, (void *)_RET_IP_);
604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
608 * memblock_isolate_range - isolate given range into disjoint memblocks
609 * @type: memblock type to isolate range for
610 * @base: base of range to isolate
611 * @size: size of range to isolate
612 * @start_rgn: out parameter for the start of isolated region
613 * @end_rgn: out parameter for the end of isolated region
615 * Walk @type and ensure that regions don't cross the boundaries defined by
616 * [@base,@base+@size). Crossing regions are split at the boundaries,
617 * which may create at most two more regions. The index of the first
618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
620 * RETURNS:
621 * 0 on success, -errno on failure.
623 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 phys_addr_t base, phys_addr_t size,
625 int *start_rgn, int *end_rgn)
627 phys_addr_t end = base + memblock_cap_size(base, &size);
628 int idx;
629 struct memblock_region *rgn;
631 *start_rgn = *end_rgn = 0;
633 if (!size)
634 return 0;
636 /* we'll create at most two more regions */
637 while (type->cnt + 2 > type->max)
638 if (memblock_double_array(type, base, size) < 0)
639 return -ENOMEM;
641 for_each_memblock_type(idx, type, rgn) {
642 phys_addr_t rbase = rgn->base;
643 phys_addr_t rend = rbase + rgn->size;
645 if (rbase >= end)
646 break;
647 if (rend <= base)
648 continue;
650 if (rbase < base) {
652 * @rgn intersects from below. Split and continue
653 * to process the next region - the new top half.
655 rgn->base = base;
656 rgn->size -= base - rbase;
657 type->total_size -= base - rbase;
658 memblock_insert_region(type, idx, rbase, base - rbase,
659 memblock_get_region_node(rgn),
660 rgn->flags);
661 } else if (rend > end) {
663 * @rgn intersects from above. Split and redo the
664 * current region - the new bottom half.
666 rgn->base = end;
667 rgn->size -= end - rbase;
668 type->total_size -= end - rbase;
669 memblock_insert_region(type, idx--, rbase, end - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else {
673 /* @rgn is fully contained, record it */
674 if (!*end_rgn)
675 *start_rgn = idx;
676 *end_rgn = idx + 1;
680 return 0;
683 static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 phys_addr_t base, phys_addr_t size)
686 int start_rgn, end_rgn;
687 int i, ret;
689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 if (ret)
691 return ret;
693 for (i = end_rgn - 1; i >= start_rgn; i--)
694 memblock_remove_region(type, i);
695 return 0;
698 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
700 phys_addr_t end = base + size - 1;
702 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
703 &base, &end, (void *)_RET_IP_);
705 return memblock_remove_range(&memblock.memory, base, size);
709 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
711 phys_addr_t end = base + size - 1;
713 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
714 &base, &end, (void *)_RET_IP_);
716 kmemleak_free_part_phys(base, size);
717 return memblock_remove_range(&memblock.reserved, base, size);
720 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
722 phys_addr_t end = base + size - 1;
724 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
725 &base, &end, (void *)_RET_IP_);
727 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
732 * This function isolates region [@base, @base + @size), and sets/clears flag
734 * Return 0 on success, -errno on failure.
736 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
737 phys_addr_t size, int set, int flag)
739 struct memblock_type *type = &memblock.memory;
740 int i, ret, start_rgn, end_rgn;
742 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
743 if (ret)
744 return ret;
746 for (i = start_rgn; i < end_rgn; i++)
747 if (set)
748 memblock_set_region_flags(&type->regions[i], flag);
749 else
750 memblock_clear_region_flags(&type->regions[i], flag);
752 memblock_merge_regions(type);
753 return 0;
757 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
758 * @base: the base phys addr of the region
759 * @size: the size of the region
761 * Return 0 on success, -errno on failure.
763 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
769 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
770 * @base: the base phys addr of the region
771 * @size: the size of the region
773 * Return 0 on success, -errno on failure.
775 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
781 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
782 * @base: the base phys addr of the region
783 * @size: the size of the region
785 * Return 0 on success, -errno on failure.
787 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
789 system_has_some_mirror = true;
791 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
795 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
796 * @base: the base phys addr of the region
797 * @size: the size of the region
799 * Return 0 on success, -errno on failure.
801 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
803 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
807 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
808 * @base: the base phys addr of the region
809 * @size: the size of the region
811 * Return 0 on success, -errno on failure.
813 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
815 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
819 * __next_reserved_mem_region - next function for for_each_reserved_region()
820 * @idx: pointer to u64 loop variable
821 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
822 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
824 * Iterate over all reserved memory regions.
826 void __init_memblock __next_reserved_mem_region(u64 *idx,
827 phys_addr_t *out_start,
828 phys_addr_t *out_end)
830 struct memblock_type *type = &memblock.reserved;
832 if (*idx < type->cnt) {
833 struct memblock_region *r = &type->regions[*idx];
834 phys_addr_t base = r->base;
835 phys_addr_t size = r->size;
837 if (out_start)
838 *out_start = base;
839 if (out_end)
840 *out_end = base + size - 1;
842 *idx += 1;
843 return;
846 /* signal end of iteration */
847 *idx = ULLONG_MAX;
851 * __next__mem_range - next function for for_each_free_mem_range() etc.
852 * @idx: pointer to u64 loop variable
853 * @nid: node selector, %NUMA_NO_NODE for all nodes
854 * @flags: pick from blocks based on memory attributes
855 * @type_a: pointer to memblock_type from where the range is taken
856 * @type_b: pointer to memblock_type which excludes memory from being taken
857 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
858 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
859 * @out_nid: ptr to int for nid of the range, can be %NULL
861 * Find the first area from *@idx which matches @nid, fill the out
862 * parameters, and update *@idx for the next iteration. The lower 32bit of
863 * *@idx contains index into type_a and the upper 32bit indexes the
864 * areas before each region in type_b. For example, if type_b regions
865 * look like the following,
867 * 0:[0-16), 1:[32-48), 2:[128-130)
869 * The upper 32bit indexes the following regions.
871 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
873 * As both region arrays are sorted, the function advances the two indices
874 * in lockstep and returns each intersection.
876 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
877 struct memblock_type *type_a,
878 struct memblock_type *type_b,
879 phys_addr_t *out_start,
880 phys_addr_t *out_end, int *out_nid)
882 int idx_a = *idx & 0xffffffff;
883 int idx_b = *idx >> 32;
885 if (WARN_ONCE(nid == MAX_NUMNODES,
886 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
887 nid = NUMA_NO_NODE;
889 for (; idx_a < type_a->cnt; idx_a++) {
890 struct memblock_region *m = &type_a->regions[idx_a];
892 phys_addr_t m_start = m->base;
893 phys_addr_t m_end = m->base + m->size;
894 int m_nid = memblock_get_region_node(m);
896 /* only memory regions are associated with nodes, check it */
897 if (nid != NUMA_NO_NODE && nid != m_nid)
898 continue;
900 /* skip hotpluggable memory regions if needed */
901 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
902 continue;
904 /* if we want mirror memory skip non-mirror memory regions */
905 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
906 continue;
908 /* skip nomap memory unless we were asked for it explicitly */
909 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
910 continue;
912 if (!type_b) {
913 if (out_start)
914 *out_start = m_start;
915 if (out_end)
916 *out_end = m_end;
917 if (out_nid)
918 *out_nid = m_nid;
919 idx_a++;
920 *idx = (u32)idx_a | (u64)idx_b << 32;
921 return;
924 /* scan areas before each reservation */
925 for (; idx_b < type_b->cnt + 1; idx_b++) {
926 struct memblock_region *r;
927 phys_addr_t r_start;
928 phys_addr_t r_end;
930 r = &type_b->regions[idx_b];
931 r_start = idx_b ? r[-1].base + r[-1].size : 0;
932 r_end = idx_b < type_b->cnt ?
933 r->base : PHYS_ADDR_MAX;
936 * if idx_b advanced past idx_a,
937 * break out to advance idx_a
939 if (r_start >= m_end)
940 break;
941 /* if the two regions intersect, we're done */
942 if (m_start < r_end) {
943 if (out_start)
944 *out_start =
945 max(m_start, r_start);
946 if (out_end)
947 *out_end = min(m_end, r_end);
948 if (out_nid)
949 *out_nid = m_nid;
951 * The region which ends first is
952 * advanced for the next iteration.
954 if (m_end <= r_end)
955 idx_a++;
956 else
957 idx_b++;
958 *idx = (u32)idx_a | (u64)idx_b << 32;
959 return;
964 /* signal end of iteration */
965 *idx = ULLONG_MAX;
969 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
971 * Finds the next range from type_a which is not marked as unsuitable
972 * in type_b.
974 * @idx: pointer to u64 loop variable
975 * @nid: node selector, %NUMA_NO_NODE for all nodes
976 * @flags: pick from blocks based on memory attributes
977 * @type_a: pointer to memblock_type from where the range is taken
978 * @type_b: pointer to memblock_type which excludes memory from being taken
979 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
980 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
981 * @out_nid: ptr to int for nid of the range, can be %NULL
983 * Reverse of __next_mem_range().
985 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
986 struct memblock_type *type_a,
987 struct memblock_type *type_b,
988 phys_addr_t *out_start,
989 phys_addr_t *out_end, int *out_nid)
991 int idx_a = *idx & 0xffffffff;
992 int idx_b = *idx >> 32;
994 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
995 nid = NUMA_NO_NODE;
997 if (*idx == (u64)ULLONG_MAX) {
998 idx_a = type_a->cnt - 1;
999 if (type_b != NULL)
1000 idx_b = type_b->cnt;
1001 else
1002 idx_b = 0;
1005 for (; idx_a >= 0; idx_a--) {
1006 struct memblock_region *m = &type_a->regions[idx_a];
1008 phys_addr_t m_start = m->base;
1009 phys_addr_t m_end = m->base + m->size;
1010 int m_nid = memblock_get_region_node(m);
1012 /* only memory regions are associated with nodes, check it */
1013 if (nid != NUMA_NO_NODE && nid != m_nid)
1014 continue;
1016 /* skip hotpluggable memory regions if needed */
1017 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1018 continue;
1020 /* if we want mirror memory skip non-mirror memory regions */
1021 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 continue;
1024 /* skip nomap memory unless we were asked for it explicitly */
1025 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026 continue;
1028 if (!type_b) {
1029 if (out_start)
1030 *out_start = m_start;
1031 if (out_end)
1032 *out_end = m_end;
1033 if (out_nid)
1034 *out_nid = m_nid;
1035 idx_a--;
1036 *idx = (u32)idx_a | (u64)idx_b << 32;
1037 return;
1040 /* scan areas before each reservation */
1041 for (; idx_b >= 0; idx_b--) {
1042 struct memblock_region *r;
1043 phys_addr_t r_start;
1044 phys_addr_t r_end;
1046 r = &type_b->regions[idx_b];
1047 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1048 r_end = idx_b < type_b->cnt ?
1049 r->base : PHYS_ADDR_MAX;
1051 * if idx_b advanced past idx_a,
1052 * break out to advance idx_a
1055 if (r_end <= m_start)
1056 break;
1057 /* if the two regions intersect, we're done */
1058 if (m_end > r_start) {
1059 if (out_start)
1060 *out_start = max(m_start, r_start);
1061 if (out_end)
1062 *out_end = min(m_end, r_end);
1063 if (out_nid)
1064 *out_nid = m_nid;
1065 if (m_start >= r_start)
1066 idx_a--;
1067 else
1068 idx_b--;
1069 *idx = (u32)idx_a | (u64)idx_b << 32;
1070 return;
1074 /* signal end of iteration */
1075 *idx = ULLONG_MAX;
1078 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1080 * Common iterator interface used to define for_each_mem_range().
1082 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1083 unsigned long *out_start_pfn,
1084 unsigned long *out_end_pfn, int *out_nid)
1086 struct memblock_type *type = &memblock.memory;
1087 struct memblock_region *r;
1089 while (++*idx < type->cnt) {
1090 r = &type->regions[*idx];
1092 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1093 continue;
1094 if (nid == MAX_NUMNODES || nid == r->nid)
1095 break;
1097 if (*idx >= type->cnt) {
1098 *idx = -1;
1099 return;
1102 if (out_start_pfn)
1103 *out_start_pfn = PFN_UP(r->base);
1104 if (out_end_pfn)
1105 *out_end_pfn = PFN_DOWN(r->base + r->size);
1106 if (out_nid)
1107 *out_nid = r->nid;
1111 * memblock_set_node - set node ID on memblock regions
1112 * @base: base of area to set node ID for
1113 * @size: size of area to set node ID for
1114 * @type: memblock type to set node ID for
1115 * @nid: node ID to set
1117 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1118 * Regions which cross the area boundaries are split as necessary.
1120 * RETURNS:
1121 * 0 on success, -errno on failure.
1123 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1124 struct memblock_type *type, int nid)
1126 int start_rgn, end_rgn;
1127 int i, ret;
1129 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1130 if (ret)
1131 return ret;
1133 for (i = start_rgn; i < end_rgn; i++)
1134 memblock_set_region_node(&type->regions[i], nid);
1136 memblock_merge_regions(type);
1137 return 0;
1139 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1141 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1142 phys_addr_t align, phys_addr_t start,
1143 phys_addr_t end, int nid, ulong flags)
1145 phys_addr_t found;
1147 if (!align)
1148 align = SMP_CACHE_BYTES;
1150 found = memblock_find_in_range_node(size, align, start, end, nid,
1151 flags);
1152 if (found && !memblock_reserve(found, size)) {
1154 * The min_count is set to 0 so that memblock allocations are
1155 * never reported as leaks.
1157 kmemleak_alloc_phys(found, size, 0, 0);
1158 return found;
1160 return 0;
1163 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1164 phys_addr_t start, phys_addr_t end,
1165 ulong flags)
1167 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1168 flags);
1171 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1172 phys_addr_t align, phys_addr_t max_addr,
1173 int nid, ulong flags)
1175 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1178 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1180 ulong flags = choose_memblock_flags();
1181 phys_addr_t ret;
1183 again:
1184 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1185 nid, flags);
1187 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1188 flags &= ~MEMBLOCK_MIRROR;
1189 goto again;
1191 return ret;
1194 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1197 MEMBLOCK_NONE);
1200 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1202 phys_addr_t alloc;
1204 alloc = __memblock_alloc_base(size, align, max_addr);
1206 if (alloc == 0)
1207 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1208 &size, &max_addr);
1210 return alloc;
1213 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1215 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1218 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1220 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1222 if (res)
1223 return res;
1224 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1228 * memblock_virt_alloc_internal - allocate boot memory block
1229 * @size: size of memory block to be allocated in bytes
1230 * @align: alignment of the region and block's size
1231 * @min_addr: the lower bound of the memory region to allocate (phys address)
1232 * @max_addr: the upper bound of the memory region to allocate (phys address)
1233 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1235 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1236 * will fall back to memory below @min_addr. Also, allocation may fall back
1237 * to any node in the system if the specified node can not
1238 * hold the requested memory.
1240 * The allocation is performed from memory region limited by
1241 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1243 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1245 * The phys address of allocated boot memory block is converted to virtual and
1246 * allocated memory is reset to 0.
1248 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1249 * allocated boot memory block, so that it is never reported as leaks.
1251 * RETURNS:
1252 * Virtual address of allocated memory block on success, NULL on failure.
1254 static void * __init memblock_virt_alloc_internal(
1255 phys_addr_t size, phys_addr_t align,
1256 phys_addr_t min_addr, phys_addr_t max_addr,
1257 int nid)
1259 phys_addr_t alloc;
1260 void *ptr;
1261 ulong flags = choose_memblock_flags();
1263 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1264 nid = NUMA_NO_NODE;
1267 * Detect any accidental use of these APIs after slab is ready, as at
1268 * this moment memblock may be deinitialized already and its
1269 * internal data may be destroyed (after execution of free_all_bootmem)
1271 if (WARN_ON_ONCE(slab_is_available()))
1272 return kzalloc_node(size, GFP_NOWAIT, nid);
1274 if (!align)
1275 align = SMP_CACHE_BYTES;
1277 if (max_addr > memblock.current_limit)
1278 max_addr = memblock.current_limit;
1279 again:
1280 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1281 nid, flags);
1282 if (alloc && !memblock_reserve(alloc, size))
1283 goto done;
1285 if (nid != NUMA_NO_NODE) {
1286 alloc = memblock_find_in_range_node(size, align, min_addr,
1287 max_addr, NUMA_NO_NODE,
1288 flags);
1289 if (alloc && !memblock_reserve(alloc, size))
1290 goto done;
1293 if (min_addr) {
1294 min_addr = 0;
1295 goto again;
1298 if (flags & MEMBLOCK_MIRROR) {
1299 flags &= ~MEMBLOCK_MIRROR;
1300 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1301 &size);
1302 goto again;
1305 return NULL;
1306 done:
1307 ptr = phys_to_virt(alloc);
1310 * The min_count is set to 0 so that bootmem allocated blocks
1311 * are never reported as leaks. This is because many of these blocks
1312 * are only referred via the physical address which is not
1313 * looked up by kmemleak.
1315 kmemleak_alloc(ptr, size, 0, 0);
1317 return ptr;
1321 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1322 * memory and without panicking
1323 * @size: size of memory block to be allocated in bytes
1324 * @align: alignment of the region and block's size
1325 * @min_addr: the lower bound of the memory region from where the allocation
1326 * is preferred (phys address)
1327 * @max_addr: the upper bound of the memory region from where the allocation
1328 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1329 * allocate only from memory limited by memblock.current_limit value
1330 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1332 * Public function, provides additional debug information (including caller
1333 * info), if enabled. Does not zero allocated memory, does not panic if request
1334 * cannot be satisfied.
1336 * RETURNS:
1337 * Virtual address of allocated memory block on success, NULL on failure.
1339 void * __init memblock_virt_alloc_try_nid_raw(
1340 phys_addr_t size, phys_addr_t align,
1341 phys_addr_t min_addr, phys_addr_t max_addr,
1342 int nid)
1344 void *ptr;
1346 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1347 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1348 (u64)max_addr, (void *)_RET_IP_);
1350 ptr = memblock_virt_alloc_internal(size, align,
1351 min_addr, max_addr, nid);
1352 #ifdef CONFIG_DEBUG_VM
1353 if (ptr && size > 0)
1354 memset(ptr, PAGE_POISON_PATTERN, size);
1355 #endif
1356 return ptr;
1360 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1361 * @size: size of memory block to be allocated in bytes
1362 * @align: alignment of the region and block's size
1363 * @min_addr: the lower bound of the memory region from where the allocation
1364 * is preferred (phys address)
1365 * @max_addr: the upper bound of the memory region from where the allocation
1366 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1367 * allocate only from memory limited by memblock.current_limit value
1368 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370 * Public function, provides additional debug information (including caller
1371 * info), if enabled. This function zeroes the allocated memory.
1373 * RETURNS:
1374 * Virtual address of allocated memory block on success, NULL on failure.
1376 void * __init memblock_virt_alloc_try_nid_nopanic(
1377 phys_addr_t size, phys_addr_t align,
1378 phys_addr_t min_addr, phys_addr_t max_addr,
1379 int nid)
1381 void *ptr;
1383 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1384 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1385 (u64)max_addr, (void *)_RET_IP_);
1387 ptr = memblock_virt_alloc_internal(size, align,
1388 min_addr, max_addr, nid);
1389 if (ptr)
1390 memset(ptr, 0, size);
1391 return ptr;
1395 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1396 * @size: size of memory block to be allocated in bytes
1397 * @align: alignment of the region and block's size
1398 * @min_addr: the lower bound of the memory region from where the allocation
1399 * is preferred (phys address)
1400 * @max_addr: the upper bound of the memory region from where the allocation
1401 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1402 * allocate only from memory limited by memblock.current_limit value
1403 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1405 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1406 * which provides debug information (including caller info), if enabled,
1407 * and panics if the request can not be satisfied.
1409 * RETURNS:
1410 * Virtual address of allocated memory block on success, NULL on failure.
1412 void * __init memblock_virt_alloc_try_nid(
1413 phys_addr_t size, phys_addr_t align,
1414 phys_addr_t min_addr, phys_addr_t max_addr,
1415 int nid)
1417 void *ptr;
1419 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1420 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1421 (u64)max_addr, (void *)_RET_IP_);
1422 ptr = memblock_virt_alloc_internal(size, align,
1423 min_addr, max_addr, nid);
1424 if (ptr) {
1425 memset(ptr, 0, size);
1426 return ptr;
1429 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1430 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1431 (u64)max_addr);
1432 return NULL;
1436 * __memblock_free_early - free boot memory block
1437 * @base: phys starting address of the boot memory block
1438 * @size: size of the boot memory block in bytes
1440 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1441 * The freeing memory will not be released to the buddy allocator.
1443 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1445 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1446 __func__, (u64)base, (u64)base + size - 1,
1447 (void *)_RET_IP_);
1448 kmemleak_free_part_phys(base, size);
1449 memblock_remove_range(&memblock.reserved, base, size);
1453 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1454 * @addr: phys starting address of the boot memory block
1455 * @size: size of the boot memory block in bytes
1457 * This is only useful when the bootmem allocator has already been torn
1458 * down, but we are still initializing the system. Pages are released directly
1459 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1461 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1463 u64 cursor, end;
1465 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1466 __func__, (u64)base, (u64)base + size - 1,
1467 (void *)_RET_IP_);
1468 kmemleak_free_part_phys(base, size);
1469 cursor = PFN_UP(base);
1470 end = PFN_DOWN(base + size);
1472 for (; cursor < end; cursor++) {
1473 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1474 totalram_pages++;
1479 * Remaining API functions
1482 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1484 return memblock.memory.total_size;
1487 phys_addr_t __init_memblock memblock_reserved_size(void)
1489 return memblock.reserved.total_size;
1492 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1494 unsigned long pages = 0;
1495 struct memblock_region *r;
1496 unsigned long start_pfn, end_pfn;
1498 for_each_memblock(memory, r) {
1499 start_pfn = memblock_region_memory_base_pfn(r);
1500 end_pfn = memblock_region_memory_end_pfn(r);
1501 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1502 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1503 pages += end_pfn - start_pfn;
1506 return PFN_PHYS(pages);
1509 /* lowest address */
1510 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1512 return memblock.memory.regions[0].base;
1515 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1517 int idx = memblock.memory.cnt - 1;
1519 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1522 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1524 phys_addr_t max_addr = PHYS_ADDR_MAX;
1525 struct memblock_region *r;
1528 * translate the memory @limit size into the max address within one of
1529 * the memory memblock regions, if the @limit exceeds the total size
1530 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1532 for_each_memblock(memory, r) {
1533 if (limit <= r->size) {
1534 max_addr = r->base + limit;
1535 break;
1537 limit -= r->size;
1540 return max_addr;
1543 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1545 phys_addr_t max_addr = PHYS_ADDR_MAX;
1547 if (!limit)
1548 return;
1550 max_addr = __find_max_addr(limit);
1552 /* @limit exceeds the total size of the memory, do nothing */
1553 if (max_addr == PHYS_ADDR_MAX)
1554 return;
1556 /* truncate both memory and reserved regions */
1557 memblock_remove_range(&memblock.memory, max_addr,
1558 PHYS_ADDR_MAX);
1559 memblock_remove_range(&memblock.reserved, max_addr,
1560 PHYS_ADDR_MAX);
1563 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1565 int start_rgn, end_rgn;
1566 int i, ret;
1568 if (!size)
1569 return;
1571 ret = memblock_isolate_range(&memblock.memory, base, size,
1572 &start_rgn, &end_rgn);
1573 if (ret)
1574 return;
1576 /* remove all the MAP regions */
1577 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1578 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1579 memblock_remove_region(&memblock.memory, i);
1581 for (i = start_rgn - 1; i >= 0; i--)
1582 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1583 memblock_remove_region(&memblock.memory, i);
1585 /* truncate the reserved regions */
1586 memblock_remove_range(&memblock.reserved, 0, base);
1587 memblock_remove_range(&memblock.reserved,
1588 base + size, PHYS_ADDR_MAX);
1591 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1593 phys_addr_t max_addr;
1595 if (!limit)
1596 return;
1598 max_addr = __find_max_addr(limit);
1600 /* @limit exceeds the total size of the memory, do nothing */
1601 if (max_addr == PHYS_ADDR_MAX)
1602 return;
1604 memblock_cap_memory_range(0, max_addr);
1607 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1609 unsigned int left = 0, right = type->cnt;
1611 do {
1612 unsigned int mid = (right + left) / 2;
1614 if (addr < type->regions[mid].base)
1615 right = mid;
1616 else if (addr >= (type->regions[mid].base +
1617 type->regions[mid].size))
1618 left = mid + 1;
1619 else
1620 return mid;
1621 } while (left < right);
1622 return -1;
1625 bool __init memblock_is_reserved(phys_addr_t addr)
1627 return memblock_search(&memblock.reserved, addr) != -1;
1630 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1632 return memblock_search(&memblock.memory, addr) != -1;
1635 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1637 int i = memblock_search(&memblock.memory, addr);
1639 if (i == -1)
1640 return false;
1641 return !memblock_is_nomap(&memblock.memory.regions[i]);
1644 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1645 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1646 unsigned long *start_pfn, unsigned long *end_pfn)
1648 struct memblock_type *type = &memblock.memory;
1649 int mid = memblock_search(type, PFN_PHYS(pfn));
1651 if (mid == -1)
1652 return -1;
1654 *start_pfn = PFN_DOWN(type->regions[mid].base);
1655 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1657 return type->regions[mid].nid;
1659 #endif
1662 * memblock_is_region_memory - check if a region is a subset of memory
1663 * @base: base of region to check
1664 * @size: size of region to check
1666 * Check if the region [@base, @base+@size) is a subset of a memory block.
1668 * RETURNS:
1669 * 0 if false, non-zero if true
1671 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1673 int idx = memblock_search(&memblock.memory, base);
1674 phys_addr_t end = base + memblock_cap_size(base, &size);
1676 if (idx == -1)
1677 return false;
1678 return (memblock.memory.regions[idx].base +
1679 memblock.memory.regions[idx].size) >= end;
1683 * memblock_is_region_reserved - check if a region intersects reserved memory
1684 * @base: base of region to check
1685 * @size: size of region to check
1687 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1689 * RETURNS:
1690 * True if they intersect, false if not.
1692 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1694 memblock_cap_size(base, &size);
1695 return memblock_overlaps_region(&memblock.reserved, base, size);
1698 void __init_memblock memblock_trim_memory(phys_addr_t align)
1700 phys_addr_t start, end, orig_start, orig_end;
1701 struct memblock_region *r;
1703 for_each_memblock(memory, r) {
1704 orig_start = r->base;
1705 orig_end = r->base + r->size;
1706 start = round_up(orig_start, align);
1707 end = round_down(orig_end, align);
1709 if (start == orig_start && end == orig_end)
1710 continue;
1712 if (start < end) {
1713 r->base = start;
1714 r->size = end - start;
1715 } else {
1716 memblock_remove_region(&memblock.memory,
1717 r - memblock.memory.regions);
1718 r--;
1723 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1725 memblock.current_limit = limit;
1728 phys_addr_t __init_memblock memblock_get_current_limit(void)
1730 return memblock.current_limit;
1733 static void __init_memblock memblock_dump(struct memblock_type *type)
1735 phys_addr_t base, end, size;
1736 unsigned long flags;
1737 int idx;
1738 struct memblock_region *rgn;
1740 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1742 for_each_memblock_type(idx, type, rgn) {
1743 char nid_buf[32] = "";
1745 base = rgn->base;
1746 size = rgn->size;
1747 end = base + size - 1;
1748 flags = rgn->flags;
1749 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1751 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1752 memblock_get_region_node(rgn));
1753 #endif
1754 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1755 type->name, idx, &base, &end, &size, nid_buf, flags);
1759 void __init_memblock __memblock_dump_all(void)
1761 pr_info("MEMBLOCK configuration:\n");
1762 pr_info(" memory size = %pa reserved size = %pa\n",
1763 &memblock.memory.total_size,
1764 &memblock.reserved.total_size);
1766 memblock_dump(&memblock.memory);
1767 memblock_dump(&memblock.reserved);
1768 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1769 memblock_dump(&memblock.physmem);
1770 #endif
1773 void __init memblock_allow_resize(void)
1775 memblock_can_resize = 1;
1778 static int __init early_memblock(char *p)
1780 if (p && strstr(p, "debug"))
1781 memblock_debug = 1;
1782 return 0;
1784 early_param("memblock", early_memblock);
1786 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1788 static int memblock_debug_show(struct seq_file *m, void *private)
1790 struct memblock_type *type = m->private;
1791 struct memblock_region *reg;
1792 int i;
1793 phys_addr_t end;
1795 for (i = 0; i < type->cnt; i++) {
1796 reg = &type->regions[i];
1797 end = reg->base + reg->size - 1;
1799 seq_printf(m, "%4d: ", i);
1800 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1802 return 0;
1804 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1806 static int __init memblock_init_debugfs(void)
1808 struct dentry *root = debugfs_create_dir("memblock", NULL);
1809 if (!root)
1810 return -ENXIO;
1811 debugfs_create_file("memory", 0444, root,
1812 &memblock.memory, &memblock_debug_fops);
1813 debugfs_create_file("reserved", 0444, root,
1814 &memblock.reserved, &memblock_debug_fops);
1815 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1816 debugfs_create_file("physmem", 0444, root,
1817 &memblock.physmem, &memblock_debug_fops);
1818 #endif
1820 return 0;
1822 __initcall(memblock_init_debugfs);
1824 #endif /* CONFIG_DEBUG_FS */