[media] fc001x: tuner driver for FC0013
[linux-2.6/btrfs-unstable.git] / fs / btrfs / delayed-inode.c
blob03e3748d84d02407c19c6d46648667a56f13ba3e
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache *delayed_node_cache;
30 int __init btrfs_delayed_inode_init(void)
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
82 return root->fs_info->delayed_root;
85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
113 spin_unlock(&root->inode_lock);
115 return NULL;
118 /* Will return either the node or PTR_ERR(-ENOMEM) */
119 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
120 struct inode *inode)
122 struct btrfs_delayed_node *node;
123 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(inode);
126 int ret;
128 again:
129 node = btrfs_get_delayed_node(inode);
130 if (node)
131 return node;
133 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
136 btrfs_init_delayed_node(node, root, ino);
138 atomic_inc(&node->refs); /* cached in the btrfs inode */
139 atomic_inc(&node->refs); /* can be accessed */
141 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
147 spin_lock(&root->inode_lock);
148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 if (ret == -EEXIST) {
150 kmem_cache_free(delayed_node_cache, node);
151 spin_unlock(&root->inode_lock);
152 radix_tree_preload_end();
153 goto again;
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
159 return node;
163 * Call it when holding delayed_node->mutex
165 * If mod = 1, add this node into the prepared list.
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
171 spin_lock(&root->lock);
172 if (node->in_list) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 atomic_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 node->in_list = 1;
184 spin_unlock(&root->lock);
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
191 spin_lock(&root->lock);
192 if (node->in_list) {
193 root->nodes--;
194 atomic_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 node->in_list = 0;
200 spin_unlock(&root->lock);
203 struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 atomic_inc(&node->refs);
216 out:
217 spin_unlock(&delayed_root->lock);
219 return node;
222 struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!node->in_list) { /* not in the list */
232 if (list_empty(&delayed_root->node_list))
233 goto out;
234 p = delayed_root->node_list.next;
235 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
236 goto out;
237 else
238 p = node->n_list.next;
240 next = list_entry(p, struct btrfs_delayed_node, n_list);
241 atomic_inc(&next->refs);
242 out:
243 spin_unlock(&delayed_root->lock);
245 return next;
248 static void __btrfs_release_delayed_node(
249 struct btrfs_delayed_node *delayed_node,
250 int mod)
252 struct btrfs_delayed_root *delayed_root;
254 if (!delayed_node)
255 return;
257 delayed_root = delayed_node->root->fs_info->delayed_root;
259 mutex_lock(&delayed_node->mutex);
260 if (delayed_node->count)
261 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
262 else
263 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
264 mutex_unlock(&delayed_node->mutex);
266 if (atomic_dec_and_test(&delayed_node->refs)) {
267 struct btrfs_root *root = delayed_node->root;
268 spin_lock(&root->inode_lock);
269 if (atomic_read(&delayed_node->refs) == 0) {
270 radix_tree_delete(&root->delayed_nodes_tree,
271 delayed_node->inode_id);
272 kmem_cache_free(delayed_node_cache, delayed_node);
274 spin_unlock(&root->inode_lock);
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 __btrfs_release_delayed_node(node, 0);
283 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
286 struct list_head *p;
287 struct btrfs_delayed_node *node = NULL;
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
291 goto out;
293 p = delayed_root->prepare_list.next;
294 list_del_init(p);
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
297 out:
298 spin_unlock(&delayed_root->lock);
300 return node;
303 static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
306 __btrfs_release_delayed_node(node, 1);
309 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 if (item) {
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
320 return item;
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
330 * Note: if we don't find the right item, we will return the prev item and
331 * the next item.
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
341 int ret = 0;
343 node = root->rb_node;
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 prev_node = node;
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 if (ret < 0)
351 node = node->rb_right;
352 else if (ret > 0)
353 node = node->rb_left;
354 else
355 return delayed_item;
358 if (prev) {
359 if (!prev_node)
360 *prev = NULL;
361 else if (ret < 0)
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
365 rb_node);
366 } else
367 *prev = NULL;
370 if (next) {
371 if (!prev_node)
372 *next = NULL;
373 else if (ret > 0)
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
377 rb_node);
378 } else
379 *next = NULL;
381 return NULL;
384 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
388 struct btrfs_delayed_item *item;
390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391 NULL, NULL);
392 return item;
395 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
396 struct btrfs_delayed_node *delayed_node,
397 struct btrfs_key *key)
399 struct btrfs_delayed_item *item;
401 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
402 NULL, NULL);
403 return item;
406 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
407 struct btrfs_delayed_node *delayed_node,
408 struct btrfs_key *key)
410 struct btrfs_delayed_item *item, *next;
412 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
413 NULL, &next);
414 if (!item)
415 item = next;
417 return item;
420 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
421 struct btrfs_delayed_node *delayed_node,
422 struct btrfs_key *key)
424 struct btrfs_delayed_item *item, *next;
426 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
427 NULL, &next);
428 if (!item)
429 item = next;
431 return item;
434 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
435 struct btrfs_delayed_item *ins,
436 int action)
438 struct rb_node **p, *node;
439 struct rb_node *parent_node = NULL;
440 struct rb_root *root;
441 struct btrfs_delayed_item *item;
442 int cmp;
444 if (action == BTRFS_DELAYED_INSERTION_ITEM)
445 root = &delayed_node->ins_root;
446 else if (action == BTRFS_DELAYED_DELETION_ITEM)
447 root = &delayed_node->del_root;
448 else
449 BUG();
450 p = &root->rb_node;
451 node = &ins->rb_node;
453 while (*p) {
454 parent_node = *p;
455 item = rb_entry(parent_node, struct btrfs_delayed_item,
456 rb_node);
458 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
459 if (cmp < 0)
460 p = &(*p)->rb_right;
461 else if (cmp > 0)
462 p = &(*p)->rb_left;
463 else
464 return -EEXIST;
467 rb_link_node(node, parent_node, p);
468 rb_insert_color(node, root);
469 ins->delayed_node = delayed_node;
470 ins->ins_or_del = action;
472 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
473 action == BTRFS_DELAYED_INSERTION_ITEM &&
474 ins->key.offset >= delayed_node->index_cnt)
475 delayed_node->index_cnt = ins->key.offset + 1;
477 delayed_node->count++;
478 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
479 return 0;
482 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
483 struct btrfs_delayed_item *item)
485 return __btrfs_add_delayed_item(node, item,
486 BTRFS_DELAYED_INSERTION_ITEM);
489 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
490 struct btrfs_delayed_item *item)
492 return __btrfs_add_delayed_item(node, item,
493 BTRFS_DELAYED_DELETION_ITEM);
496 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
498 struct rb_root *root;
499 struct btrfs_delayed_root *delayed_root;
501 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
503 BUG_ON(!delayed_root);
504 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
505 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
507 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
508 root = &delayed_item->delayed_node->ins_root;
509 else
510 root = &delayed_item->delayed_node->del_root;
512 rb_erase(&delayed_item->rb_node, root);
513 delayed_item->delayed_node->count--;
514 atomic_dec(&delayed_root->items);
515 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
516 waitqueue_active(&delayed_root->wait))
517 wake_up(&delayed_root->wait);
520 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
522 if (item) {
523 __btrfs_remove_delayed_item(item);
524 if (atomic_dec_and_test(&item->refs))
525 kfree(item);
529 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
530 struct btrfs_delayed_node *delayed_node)
532 struct rb_node *p;
533 struct btrfs_delayed_item *item = NULL;
535 p = rb_first(&delayed_node->ins_root);
536 if (p)
537 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
539 return item;
542 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
543 struct btrfs_delayed_node *delayed_node)
545 struct rb_node *p;
546 struct btrfs_delayed_item *item = NULL;
548 p = rb_first(&delayed_node->del_root);
549 if (p)
550 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
552 return item;
555 struct btrfs_delayed_item *__btrfs_next_delayed_item(
556 struct btrfs_delayed_item *item)
558 struct rb_node *p;
559 struct btrfs_delayed_item *next = NULL;
561 p = rb_next(&item->rb_node);
562 if (p)
563 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
565 return next;
568 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
569 u64 root_id)
571 struct btrfs_key root_key;
573 if (root->objectid == root_id)
574 return root;
576 root_key.objectid = root_id;
577 root_key.type = BTRFS_ROOT_ITEM_KEY;
578 root_key.offset = (u64)-1;
579 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
582 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_delayed_item *item)
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
588 u64 num_bytes;
589 int ret;
591 if (!trans->bytes_reserved)
592 return 0;
594 src_rsv = trans->block_rsv;
595 dst_rsv = &root->fs_info->delayed_block_rsv;
597 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
599 if (!ret) {
600 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
601 item->key.objectid,
602 num_bytes, 1);
603 item->bytes_reserved = num_bytes;
606 return ret;
609 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
610 struct btrfs_delayed_item *item)
612 struct btrfs_block_rsv *rsv;
614 if (!item->bytes_reserved)
615 return;
617 rsv = &root->fs_info->delayed_block_rsv;
618 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
619 item->key.objectid, item->bytes_reserved,
621 btrfs_block_rsv_release(root, rsv,
622 item->bytes_reserved);
625 static int btrfs_delayed_inode_reserve_metadata(
626 struct btrfs_trans_handle *trans,
627 struct btrfs_root *root,
628 struct inode *inode,
629 struct btrfs_delayed_node *node)
631 struct btrfs_block_rsv *src_rsv;
632 struct btrfs_block_rsv *dst_rsv;
633 u64 num_bytes;
634 int ret;
635 bool release = false;
637 src_rsv = trans->block_rsv;
638 dst_rsv = &root->fs_info->delayed_block_rsv;
640 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
643 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
644 * which doesn't reserve space for speed. This is a problem since we
645 * still need to reserve space for this update, so try to reserve the
646 * space.
648 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
649 * we're accounted for.
651 if (!src_rsv || (!trans->bytes_reserved &&
652 src_rsv != &root->fs_info->delalloc_block_rsv)) {
653 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
655 * Since we're under a transaction reserve_metadata_bytes could
656 * try to commit the transaction which will make it return
657 * EAGAIN to make us stop the transaction we have, so return
658 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
660 if (ret == -EAGAIN)
661 ret = -ENOSPC;
662 if (!ret) {
663 node->bytes_reserved = num_bytes;
664 trace_btrfs_space_reservation(root->fs_info,
665 "delayed_inode",
666 btrfs_ino(inode),
667 num_bytes, 1);
669 return ret;
670 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
671 spin_lock(&BTRFS_I(inode)->lock);
672 if (BTRFS_I(inode)->delalloc_meta_reserved) {
673 BTRFS_I(inode)->delalloc_meta_reserved = 0;
674 spin_unlock(&BTRFS_I(inode)->lock);
675 release = true;
676 goto migrate;
678 spin_unlock(&BTRFS_I(inode)->lock);
680 /* Ok we didn't have space pre-reserved. This shouldn't happen
681 * too often but it can happen if we do delalloc to an existing
682 * inode which gets dirtied because of the time update, and then
683 * isn't touched again until after the transaction commits and
684 * then we try to write out the data. First try to be nice and
685 * reserve something strictly for us. If not be a pain and try
686 * to steal from the delalloc block rsv.
688 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
689 if (!ret)
690 goto out;
692 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
693 if (!ret)
694 goto out;
697 * Ok this is a problem, let's just steal from the global rsv
698 * since this really shouldn't happen that often.
700 WARN_ON(1);
701 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
702 dst_rsv, num_bytes);
703 goto out;
706 migrate:
707 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
709 out:
711 * Migrate only takes a reservation, it doesn't touch the size of the
712 * block_rsv. This is to simplify people who don't normally have things
713 * migrated from their block rsv. If they go to release their
714 * reservation, that will decrease the size as well, so if migrate
715 * reduced size we'd end up with a negative size. But for the
716 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
717 * but we could in fact do this reserve/migrate dance several times
718 * between the time we did the original reservation and we'd clean it
719 * up. So to take care of this, release the space for the meta
720 * reservation here. I think it may be time for a documentation page on
721 * how block rsvs. work.
723 if (!ret) {
724 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
725 btrfs_ino(inode), num_bytes, 1);
726 node->bytes_reserved = num_bytes;
729 if (release) {
730 trace_btrfs_space_reservation(root->fs_info, "delalloc",
731 btrfs_ino(inode), num_bytes, 0);
732 btrfs_block_rsv_release(root, src_rsv, num_bytes);
735 return ret;
738 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
739 struct btrfs_delayed_node *node)
741 struct btrfs_block_rsv *rsv;
743 if (!node->bytes_reserved)
744 return;
746 rsv = &root->fs_info->delayed_block_rsv;
747 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
748 node->inode_id, node->bytes_reserved, 0);
749 btrfs_block_rsv_release(root, rsv,
750 node->bytes_reserved);
751 node->bytes_reserved = 0;
755 * This helper will insert some continuous items into the same leaf according
756 * to the free space of the leaf.
758 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
759 struct btrfs_root *root,
760 struct btrfs_path *path,
761 struct btrfs_delayed_item *item)
763 struct btrfs_delayed_item *curr, *next;
764 int free_space;
765 int total_data_size = 0, total_size = 0;
766 struct extent_buffer *leaf;
767 char *data_ptr;
768 struct btrfs_key *keys;
769 u32 *data_size;
770 struct list_head head;
771 int slot;
772 int nitems;
773 int i;
774 int ret = 0;
776 BUG_ON(!path->nodes[0]);
778 leaf = path->nodes[0];
779 free_space = btrfs_leaf_free_space(root, leaf);
780 INIT_LIST_HEAD(&head);
782 next = item;
783 nitems = 0;
786 * count the number of the continuous items that we can insert in batch
788 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
789 free_space) {
790 total_data_size += next->data_len;
791 total_size += next->data_len + sizeof(struct btrfs_item);
792 list_add_tail(&next->tree_list, &head);
793 nitems++;
795 curr = next;
796 next = __btrfs_next_delayed_item(curr);
797 if (!next)
798 break;
800 if (!btrfs_is_continuous_delayed_item(curr, next))
801 break;
804 if (!nitems) {
805 ret = 0;
806 goto out;
810 * we need allocate some memory space, but it might cause the task
811 * to sleep, so we set all locked nodes in the path to blocking locks
812 * first.
814 btrfs_set_path_blocking(path);
816 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
817 if (!keys) {
818 ret = -ENOMEM;
819 goto out;
822 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
823 if (!data_size) {
824 ret = -ENOMEM;
825 goto error;
828 /* get keys of all the delayed items */
829 i = 0;
830 list_for_each_entry(next, &head, tree_list) {
831 keys[i] = next->key;
832 data_size[i] = next->data_len;
833 i++;
836 /* reset all the locked nodes in the patch to spinning locks. */
837 btrfs_clear_path_blocking(path, NULL, 0);
839 /* insert the keys of the items */
840 setup_items_for_insert(trans, root, path, keys, data_size,
841 total_data_size, total_size, nitems);
843 /* insert the dir index items */
844 slot = path->slots[0];
845 list_for_each_entry_safe(curr, next, &head, tree_list) {
846 data_ptr = btrfs_item_ptr(leaf, slot, char);
847 write_extent_buffer(leaf, &curr->data,
848 (unsigned long)data_ptr,
849 curr->data_len);
850 slot++;
852 btrfs_delayed_item_release_metadata(root, curr);
854 list_del(&curr->tree_list);
855 btrfs_release_delayed_item(curr);
858 error:
859 kfree(data_size);
860 kfree(keys);
861 out:
862 return ret;
866 * This helper can just do simple insertion that needn't extend item for new
867 * data, such as directory name index insertion, inode insertion.
869 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
870 struct btrfs_root *root,
871 struct btrfs_path *path,
872 struct btrfs_delayed_item *delayed_item)
874 struct extent_buffer *leaf;
875 struct btrfs_item *item;
876 char *ptr;
877 int ret;
879 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
880 delayed_item->data_len);
881 if (ret < 0 && ret != -EEXIST)
882 return ret;
884 leaf = path->nodes[0];
886 item = btrfs_item_nr(leaf, path->slots[0]);
887 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
889 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
890 delayed_item->data_len);
891 btrfs_mark_buffer_dirty(leaf);
893 btrfs_delayed_item_release_metadata(root, delayed_item);
894 return 0;
898 * we insert an item first, then if there are some continuous items, we try
899 * to insert those items into the same leaf.
901 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
902 struct btrfs_path *path,
903 struct btrfs_root *root,
904 struct btrfs_delayed_node *node)
906 struct btrfs_delayed_item *curr, *prev;
907 int ret = 0;
909 do_again:
910 mutex_lock(&node->mutex);
911 curr = __btrfs_first_delayed_insertion_item(node);
912 if (!curr)
913 goto insert_end;
915 ret = btrfs_insert_delayed_item(trans, root, path, curr);
916 if (ret < 0) {
917 btrfs_release_path(path);
918 goto insert_end;
921 prev = curr;
922 curr = __btrfs_next_delayed_item(prev);
923 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
924 /* insert the continuous items into the same leaf */
925 path->slots[0]++;
926 btrfs_batch_insert_items(trans, root, path, curr);
928 btrfs_release_delayed_item(prev);
929 btrfs_mark_buffer_dirty(path->nodes[0]);
931 btrfs_release_path(path);
932 mutex_unlock(&node->mutex);
933 goto do_again;
935 insert_end:
936 mutex_unlock(&node->mutex);
937 return ret;
940 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
941 struct btrfs_root *root,
942 struct btrfs_path *path,
943 struct btrfs_delayed_item *item)
945 struct btrfs_delayed_item *curr, *next;
946 struct extent_buffer *leaf;
947 struct btrfs_key key;
948 struct list_head head;
949 int nitems, i, last_item;
950 int ret = 0;
952 BUG_ON(!path->nodes[0]);
954 leaf = path->nodes[0];
956 i = path->slots[0];
957 last_item = btrfs_header_nritems(leaf) - 1;
958 if (i > last_item)
959 return -ENOENT; /* FIXME: Is errno suitable? */
961 next = item;
962 INIT_LIST_HEAD(&head);
963 btrfs_item_key_to_cpu(leaf, &key, i);
964 nitems = 0;
966 * count the number of the dir index items that we can delete in batch
968 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
969 list_add_tail(&next->tree_list, &head);
970 nitems++;
972 curr = next;
973 next = __btrfs_next_delayed_item(curr);
974 if (!next)
975 break;
977 if (!btrfs_is_continuous_delayed_item(curr, next))
978 break;
980 i++;
981 if (i > last_item)
982 break;
983 btrfs_item_key_to_cpu(leaf, &key, i);
986 if (!nitems)
987 return 0;
989 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
990 if (ret)
991 goto out;
993 list_for_each_entry_safe(curr, next, &head, tree_list) {
994 btrfs_delayed_item_release_metadata(root, curr);
995 list_del(&curr->tree_list);
996 btrfs_release_delayed_item(curr);
999 out:
1000 return ret;
1003 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004 struct btrfs_path *path,
1005 struct btrfs_root *root,
1006 struct btrfs_delayed_node *node)
1008 struct btrfs_delayed_item *curr, *prev;
1009 int ret = 0;
1011 do_again:
1012 mutex_lock(&node->mutex);
1013 curr = __btrfs_first_delayed_deletion_item(node);
1014 if (!curr)
1015 goto delete_fail;
1017 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018 if (ret < 0)
1019 goto delete_fail;
1020 else if (ret > 0) {
1022 * can't find the item which the node points to, so this node
1023 * is invalid, just drop it.
1025 prev = curr;
1026 curr = __btrfs_next_delayed_item(prev);
1027 btrfs_release_delayed_item(prev);
1028 ret = 0;
1029 btrfs_release_path(path);
1030 if (curr)
1031 goto do_again;
1032 else
1033 goto delete_fail;
1036 btrfs_batch_delete_items(trans, root, path, curr);
1037 btrfs_release_path(path);
1038 mutex_unlock(&node->mutex);
1039 goto do_again;
1041 delete_fail:
1042 btrfs_release_path(path);
1043 mutex_unlock(&node->mutex);
1044 return ret;
1047 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1049 struct btrfs_delayed_root *delayed_root;
1051 if (delayed_node && delayed_node->inode_dirty) {
1052 BUG_ON(!delayed_node->root);
1053 delayed_node->inode_dirty = 0;
1054 delayed_node->count--;
1056 delayed_root = delayed_node->root->fs_info->delayed_root;
1057 atomic_dec(&delayed_root->items);
1058 if (atomic_read(&delayed_root->items) <
1059 BTRFS_DELAYED_BACKGROUND &&
1060 waitqueue_active(&delayed_root->wait))
1061 wake_up(&delayed_root->wait);
1065 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root,
1067 struct btrfs_path *path,
1068 struct btrfs_delayed_node *node)
1070 struct btrfs_key key;
1071 struct btrfs_inode_item *inode_item;
1072 struct extent_buffer *leaf;
1073 int ret;
1075 mutex_lock(&node->mutex);
1076 if (!node->inode_dirty) {
1077 mutex_unlock(&node->mutex);
1078 return 0;
1081 key.objectid = node->inode_id;
1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083 key.offset = 0;
1084 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085 if (ret > 0) {
1086 btrfs_release_path(path);
1087 mutex_unlock(&node->mutex);
1088 return -ENOENT;
1089 } else if (ret < 0) {
1090 mutex_unlock(&node->mutex);
1091 return ret;
1094 btrfs_unlock_up_safe(path, 1);
1095 leaf = path->nodes[0];
1096 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097 struct btrfs_inode_item);
1098 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099 sizeof(struct btrfs_inode_item));
1100 btrfs_mark_buffer_dirty(leaf);
1101 btrfs_release_path(path);
1103 btrfs_delayed_inode_release_metadata(root, node);
1104 btrfs_release_delayed_inode(node);
1105 mutex_unlock(&node->mutex);
1107 return 0;
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1116 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root)
1119 struct btrfs_root *curr_root = root;
1120 struct btrfs_delayed_root *delayed_root;
1121 struct btrfs_delayed_node *curr_node, *prev_node;
1122 struct btrfs_path *path;
1123 struct btrfs_block_rsv *block_rsv;
1124 int ret = 0;
1126 if (trans->aborted)
1127 return -EIO;
1129 path = btrfs_alloc_path();
1130 if (!path)
1131 return -ENOMEM;
1132 path->leave_spinning = 1;
1134 block_rsv = trans->block_rsv;
1135 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1137 delayed_root = btrfs_get_delayed_root(root);
1139 curr_node = btrfs_first_delayed_node(delayed_root);
1140 while (curr_node) {
1141 curr_root = curr_node->root;
1142 ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143 curr_node);
1144 if (!ret)
1145 ret = btrfs_delete_delayed_items(trans, path,
1146 curr_root, curr_node);
1147 if (!ret)
1148 ret = btrfs_update_delayed_inode(trans, curr_root,
1149 path, curr_node);
1150 if (ret) {
1151 btrfs_release_delayed_node(curr_node);
1152 btrfs_abort_transaction(trans, root, ret);
1153 break;
1156 prev_node = curr_node;
1157 curr_node = btrfs_next_delayed_node(curr_node);
1158 btrfs_release_delayed_node(prev_node);
1161 btrfs_free_path(path);
1162 trans->block_rsv = block_rsv;
1164 return ret;
1167 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168 struct btrfs_delayed_node *node)
1170 struct btrfs_path *path;
1171 struct btrfs_block_rsv *block_rsv;
1172 int ret;
1174 path = btrfs_alloc_path();
1175 if (!path)
1176 return -ENOMEM;
1177 path->leave_spinning = 1;
1179 block_rsv = trans->block_rsv;
1180 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1182 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183 if (!ret)
1184 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185 if (!ret)
1186 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187 btrfs_free_path(path);
1189 trans->block_rsv = block_rsv;
1190 return ret;
1193 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 struct inode *inode)
1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 int ret;
1199 if (!delayed_node)
1200 return 0;
1202 mutex_lock(&delayed_node->mutex);
1203 if (!delayed_node->count) {
1204 mutex_unlock(&delayed_node->mutex);
1205 btrfs_release_delayed_node(delayed_node);
1206 return 0;
1208 mutex_unlock(&delayed_node->mutex);
1210 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1211 btrfs_release_delayed_node(delayed_node);
1212 return ret;
1215 void btrfs_remove_delayed_node(struct inode *inode)
1217 struct btrfs_delayed_node *delayed_node;
1219 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220 if (!delayed_node)
1221 return;
1223 BTRFS_I(inode)->delayed_node = NULL;
1224 btrfs_release_delayed_node(delayed_node);
1227 struct btrfs_async_delayed_node {
1228 struct btrfs_root *root;
1229 struct btrfs_delayed_node *delayed_node;
1230 struct btrfs_work work;
1233 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1235 struct btrfs_async_delayed_node *async_node;
1236 struct btrfs_trans_handle *trans;
1237 struct btrfs_path *path;
1238 struct btrfs_delayed_node *delayed_node = NULL;
1239 struct btrfs_root *root;
1240 struct btrfs_block_rsv *block_rsv;
1241 unsigned long nr = 0;
1242 int need_requeue = 0;
1243 int ret;
1245 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1247 path = btrfs_alloc_path();
1248 if (!path)
1249 goto out;
1250 path->leave_spinning = 1;
1252 delayed_node = async_node->delayed_node;
1253 root = delayed_node->root;
1255 trans = btrfs_join_transaction(root);
1256 if (IS_ERR(trans))
1257 goto free_path;
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1262 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263 if (!ret)
1264 ret = btrfs_delete_delayed_items(trans, path, root,
1265 delayed_node);
1267 if (!ret)
1268 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1271 * Maybe new delayed items have been inserted, so we need requeue
1272 * the work. Besides that, we must dequeue the empty delayed nodes
1273 * to avoid the race between delayed items balance and the worker.
1274 * The race like this:
1275 * Task1 Worker thread
1276 * count == 0, needn't requeue
1277 * also needn't insert the
1278 * delayed node into prepare
1279 * list again.
1280 * add lots of delayed items
1281 * queue the delayed node
1282 * already in the list,
1283 * and not in the prepare
1284 * list, it means the delayed
1285 * node is being dealt with
1286 * by the worker.
1287 * do delayed items balance
1288 * the delayed node is being
1289 * dealt with by the worker
1290 * now, just wait.
1291 * the worker goto idle.
1292 * Task1 will sleep until the transaction is commited.
1294 mutex_lock(&delayed_node->mutex);
1295 if (delayed_node->count)
1296 need_requeue = 1;
1297 else
1298 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299 delayed_node);
1300 mutex_unlock(&delayed_node->mutex);
1302 nr = trans->blocks_used;
1304 trans->block_rsv = block_rsv;
1305 btrfs_end_transaction_dmeta(trans, root);
1306 __btrfs_btree_balance_dirty(root, nr);
1307 free_path:
1308 btrfs_free_path(path);
1309 out:
1310 if (need_requeue)
1311 btrfs_requeue_work(&async_node->work);
1312 else {
1313 btrfs_release_prepared_delayed_node(delayed_node);
1314 kfree(async_node);
1318 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319 struct btrfs_root *root, int all)
1321 struct btrfs_async_delayed_node *async_node;
1322 struct btrfs_delayed_node *curr;
1323 int count = 0;
1325 again:
1326 curr = btrfs_first_prepared_delayed_node(delayed_root);
1327 if (!curr)
1328 return 0;
1330 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331 if (!async_node) {
1332 btrfs_release_prepared_delayed_node(curr);
1333 return -ENOMEM;
1336 async_node->root = root;
1337 async_node->delayed_node = curr;
1339 async_node->work.func = btrfs_async_run_delayed_node_done;
1340 async_node->work.flags = 0;
1342 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343 count++;
1345 if (all || count < 4)
1346 goto again;
1348 return 0;
1351 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1353 struct btrfs_delayed_root *delayed_root;
1354 delayed_root = btrfs_get_delayed_root(root);
1355 WARN_ON(btrfs_first_delayed_node(delayed_root));
1358 void btrfs_balance_delayed_items(struct btrfs_root *root)
1360 struct btrfs_delayed_root *delayed_root;
1362 delayed_root = btrfs_get_delayed_root(root);
1364 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1365 return;
1367 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1368 int ret;
1369 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1370 if (ret)
1371 return;
1373 wait_event_interruptible_timeout(
1374 delayed_root->wait,
1375 (atomic_read(&delayed_root->items) <
1376 BTRFS_DELAYED_BACKGROUND),
1377 HZ);
1378 return;
1381 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1384 /* Will return 0 or -ENOMEM */
1385 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386 struct btrfs_root *root, const char *name,
1387 int name_len, struct inode *dir,
1388 struct btrfs_disk_key *disk_key, u8 type,
1389 u64 index)
1391 struct btrfs_delayed_node *delayed_node;
1392 struct btrfs_delayed_item *delayed_item;
1393 struct btrfs_dir_item *dir_item;
1394 int ret;
1396 delayed_node = btrfs_get_or_create_delayed_node(dir);
1397 if (IS_ERR(delayed_node))
1398 return PTR_ERR(delayed_node);
1400 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401 if (!delayed_item) {
1402 ret = -ENOMEM;
1403 goto release_node;
1406 delayed_item->key.objectid = btrfs_ino(dir);
1407 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408 delayed_item->key.offset = index;
1410 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411 dir_item->location = *disk_key;
1412 dir_item->transid = cpu_to_le64(trans->transid);
1413 dir_item->data_len = 0;
1414 dir_item->name_len = cpu_to_le16(name_len);
1415 dir_item->type = type;
1416 memcpy((char *)(dir_item + 1), name, name_len);
1418 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1420 * we have reserved enough space when we start a new transaction,
1421 * so reserving metadata failure is impossible
1423 BUG_ON(ret);
1426 mutex_lock(&delayed_node->mutex);
1427 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428 if (unlikely(ret)) {
1429 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430 "the insertion tree of the delayed node"
1431 "(root id: %llu, inode id: %llu, errno: %d)\n",
1432 name,
1433 (unsigned long long)delayed_node->root->objectid,
1434 (unsigned long long)delayed_node->inode_id,
1435 ret);
1436 BUG();
1438 mutex_unlock(&delayed_node->mutex);
1440 release_node:
1441 btrfs_release_delayed_node(delayed_node);
1442 return ret;
1445 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446 struct btrfs_delayed_node *node,
1447 struct btrfs_key *key)
1449 struct btrfs_delayed_item *item;
1451 mutex_lock(&node->mutex);
1452 item = __btrfs_lookup_delayed_insertion_item(node, key);
1453 if (!item) {
1454 mutex_unlock(&node->mutex);
1455 return 1;
1458 btrfs_delayed_item_release_metadata(root, item);
1459 btrfs_release_delayed_item(item);
1460 mutex_unlock(&node->mutex);
1461 return 0;
1464 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root, struct inode *dir,
1466 u64 index)
1468 struct btrfs_delayed_node *node;
1469 struct btrfs_delayed_item *item;
1470 struct btrfs_key item_key;
1471 int ret;
1473 node = btrfs_get_or_create_delayed_node(dir);
1474 if (IS_ERR(node))
1475 return PTR_ERR(node);
1477 item_key.objectid = btrfs_ino(dir);
1478 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479 item_key.offset = index;
1481 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1482 if (!ret)
1483 goto end;
1485 item = btrfs_alloc_delayed_item(0);
1486 if (!item) {
1487 ret = -ENOMEM;
1488 goto end;
1491 item->key = item_key;
1493 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1495 * we have reserved enough space when we start a new transaction,
1496 * so reserving metadata failure is impossible.
1498 BUG_ON(ret);
1500 mutex_lock(&node->mutex);
1501 ret = __btrfs_add_delayed_deletion_item(node, item);
1502 if (unlikely(ret)) {
1503 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504 "into the deletion tree of the delayed node"
1505 "(root id: %llu, inode id: %llu, errno: %d)\n",
1506 (unsigned long long)index,
1507 (unsigned long long)node->root->objectid,
1508 (unsigned long long)node->inode_id,
1509 ret);
1510 BUG();
1512 mutex_unlock(&node->mutex);
1513 end:
1514 btrfs_release_delayed_node(node);
1515 return ret;
1518 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1520 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1522 if (!delayed_node)
1523 return -ENOENT;
1526 * Since we have held i_mutex of this directory, it is impossible that
1527 * a new directory index is added into the delayed node and index_cnt
1528 * is updated now. So we needn't lock the delayed node.
1530 if (!delayed_node->index_cnt) {
1531 btrfs_release_delayed_node(delayed_node);
1532 return -EINVAL;
1535 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536 btrfs_release_delayed_node(delayed_node);
1537 return 0;
1540 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541 struct list_head *del_list)
1543 struct btrfs_delayed_node *delayed_node;
1544 struct btrfs_delayed_item *item;
1546 delayed_node = btrfs_get_delayed_node(inode);
1547 if (!delayed_node)
1548 return;
1550 mutex_lock(&delayed_node->mutex);
1551 item = __btrfs_first_delayed_insertion_item(delayed_node);
1552 while (item) {
1553 atomic_inc(&item->refs);
1554 list_add_tail(&item->readdir_list, ins_list);
1555 item = __btrfs_next_delayed_item(item);
1558 item = __btrfs_first_delayed_deletion_item(delayed_node);
1559 while (item) {
1560 atomic_inc(&item->refs);
1561 list_add_tail(&item->readdir_list, del_list);
1562 item = __btrfs_next_delayed_item(item);
1564 mutex_unlock(&delayed_node->mutex);
1566 * This delayed node is still cached in the btrfs inode, so refs
1567 * must be > 1 now, and we needn't check it is going to be freed
1568 * or not.
1570 * Besides that, this function is used to read dir, we do not
1571 * insert/delete delayed items in this period. So we also needn't
1572 * requeue or dequeue this delayed node.
1574 atomic_dec(&delayed_node->refs);
1577 void btrfs_put_delayed_items(struct list_head *ins_list,
1578 struct list_head *del_list)
1580 struct btrfs_delayed_item *curr, *next;
1582 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583 list_del(&curr->readdir_list);
1584 if (atomic_dec_and_test(&curr->refs))
1585 kfree(curr);
1588 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589 list_del(&curr->readdir_list);
1590 if (atomic_dec_and_test(&curr->refs))
1591 kfree(curr);
1595 int btrfs_should_delete_dir_index(struct list_head *del_list,
1596 u64 index)
1598 struct btrfs_delayed_item *curr, *next;
1599 int ret;
1601 if (list_empty(del_list))
1602 return 0;
1604 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605 if (curr->key.offset > index)
1606 break;
1608 list_del(&curr->readdir_list);
1609 ret = (curr->key.offset == index);
1611 if (atomic_dec_and_test(&curr->refs))
1612 kfree(curr);
1614 if (ret)
1615 return 1;
1616 else
1617 continue;
1619 return 0;
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1626 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627 filldir_t filldir,
1628 struct list_head *ins_list)
1630 struct btrfs_dir_item *di;
1631 struct btrfs_delayed_item *curr, *next;
1632 struct btrfs_key location;
1633 char *name;
1634 int name_len;
1635 int over = 0;
1636 unsigned char d_type;
1638 if (list_empty(ins_list))
1639 return 0;
1642 * Changing the data of the delayed item is impossible. So
1643 * we needn't lock them. And we have held i_mutex of the
1644 * directory, nobody can delete any directory indexes now.
1646 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647 list_del(&curr->readdir_list);
1649 if (curr->key.offset < filp->f_pos) {
1650 if (atomic_dec_and_test(&curr->refs))
1651 kfree(curr);
1652 continue;
1655 filp->f_pos = curr->key.offset;
1657 di = (struct btrfs_dir_item *)curr->data;
1658 name = (char *)(di + 1);
1659 name_len = le16_to_cpu(di->name_len);
1661 d_type = btrfs_filetype_table[di->type];
1662 btrfs_disk_key_to_cpu(&location, &di->location);
1664 over = filldir(dirent, name, name_len, curr->key.offset,
1665 location.objectid, d_type);
1667 if (atomic_dec_and_test(&curr->refs))
1668 kfree(curr);
1670 if (over)
1671 return 1;
1673 return 0;
1676 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677 generation, 64);
1678 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679 sequence, 64);
1680 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681 transid, 64);
1682 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684 nbytes, 64);
1685 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686 block_group, 64);
1687 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1694 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1697 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698 struct btrfs_inode_item *inode_item,
1699 struct inode *inode)
1701 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707 btrfs_set_stack_inode_generation(inode_item,
1708 BTRFS_I(inode)->generation);
1709 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1710 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713 btrfs_set_stack_inode_block_group(inode_item, 0);
1715 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716 inode->i_atime.tv_sec);
1717 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718 inode->i_atime.tv_nsec);
1720 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721 inode->i_mtime.tv_sec);
1722 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723 inode->i_mtime.tv_nsec);
1725 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726 inode->i_ctime.tv_sec);
1727 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728 inode->i_ctime.tv_nsec);
1731 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1733 struct btrfs_delayed_node *delayed_node;
1734 struct btrfs_inode_item *inode_item;
1735 struct btrfs_timespec *tspec;
1737 delayed_node = btrfs_get_delayed_node(inode);
1738 if (!delayed_node)
1739 return -ENOENT;
1741 mutex_lock(&delayed_node->mutex);
1742 if (!delayed_node->inode_dirty) {
1743 mutex_unlock(&delayed_node->mutex);
1744 btrfs_release_delayed_node(delayed_node);
1745 return -ENOENT;
1748 inode_item = &delayed_node->inode_item;
1750 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1753 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1758 inode->i_rdev = 0;
1759 *rdev = btrfs_stack_inode_rdev(inode_item);
1760 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1762 tspec = btrfs_inode_atime(inode_item);
1763 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1766 tspec = btrfs_inode_mtime(inode_item);
1767 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1770 tspec = btrfs_inode_ctime(inode_item);
1771 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1774 inode->i_generation = BTRFS_I(inode)->generation;
1775 BTRFS_I(inode)->index_cnt = (u64)-1;
1777 mutex_unlock(&delayed_node->mutex);
1778 btrfs_release_delayed_node(delayed_node);
1779 return 0;
1782 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root, struct inode *inode)
1785 struct btrfs_delayed_node *delayed_node;
1786 int ret = 0;
1788 delayed_node = btrfs_get_or_create_delayed_node(inode);
1789 if (IS_ERR(delayed_node))
1790 return PTR_ERR(delayed_node);
1792 mutex_lock(&delayed_node->mutex);
1793 if (delayed_node->inode_dirty) {
1794 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1795 goto release_node;
1798 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799 delayed_node);
1800 if (ret)
1801 goto release_node;
1803 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804 delayed_node->inode_dirty = 1;
1805 delayed_node->count++;
1806 atomic_inc(&root->fs_info->delayed_root->items);
1807 release_node:
1808 mutex_unlock(&delayed_node->mutex);
1809 btrfs_release_delayed_node(delayed_node);
1810 return ret;
1813 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1815 struct btrfs_root *root = delayed_node->root;
1816 struct btrfs_delayed_item *curr_item, *prev_item;
1818 mutex_lock(&delayed_node->mutex);
1819 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820 while (curr_item) {
1821 btrfs_delayed_item_release_metadata(root, curr_item);
1822 prev_item = curr_item;
1823 curr_item = __btrfs_next_delayed_item(prev_item);
1824 btrfs_release_delayed_item(prev_item);
1827 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828 while (curr_item) {
1829 btrfs_delayed_item_release_metadata(root, curr_item);
1830 prev_item = curr_item;
1831 curr_item = __btrfs_next_delayed_item(prev_item);
1832 btrfs_release_delayed_item(prev_item);
1835 if (delayed_node->inode_dirty) {
1836 btrfs_delayed_inode_release_metadata(root, delayed_node);
1837 btrfs_release_delayed_inode(delayed_node);
1839 mutex_unlock(&delayed_node->mutex);
1842 void btrfs_kill_delayed_inode_items(struct inode *inode)
1844 struct btrfs_delayed_node *delayed_node;
1846 delayed_node = btrfs_get_delayed_node(inode);
1847 if (!delayed_node)
1848 return;
1850 __btrfs_kill_delayed_node(delayed_node);
1851 btrfs_release_delayed_node(delayed_node);
1854 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1856 u64 inode_id = 0;
1857 struct btrfs_delayed_node *delayed_nodes[8];
1858 int i, n;
1860 while (1) {
1861 spin_lock(&root->inode_lock);
1862 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863 (void **)delayed_nodes, inode_id,
1864 ARRAY_SIZE(delayed_nodes));
1865 if (!n) {
1866 spin_unlock(&root->inode_lock);
1867 break;
1870 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1872 for (i = 0; i < n; i++)
1873 atomic_inc(&delayed_nodes[i]->refs);
1874 spin_unlock(&root->inode_lock);
1876 for (i = 0; i < n; i++) {
1877 __btrfs_kill_delayed_node(delayed_nodes[i]);
1878 btrfs_release_delayed_node(delayed_nodes[i]);