staging: xillybus: fix format string usage
[linux-2.6/btrfs-unstable.git] / fs / btrfs / disk-io.c
blob4cbb00af92ff3bed86561b9f02ec6fbcc04665b2
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70 struct extent_io_tree *dirty_pages,
71 int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73 struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
78 * end_io_wq structs are used to do processing in task context when an IO is
79 * complete. This is used during reads to verify checksums, and it is used
80 * by writes to insert metadata for new file extents after IO is complete.
82 struct end_io_wq {
83 struct bio *bio;
84 bio_end_io_t *end_io;
85 void *private;
86 struct btrfs_fs_info *info;
87 int error;
88 int metadata;
89 struct list_head list;
90 struct btrfs_work work;
94 * async submit bios are used to offload expensive checksumming
95 * onto the worker threads. They checksum file and metadata bios
96 * just before they are sent down the IO stack.
98 struct async_submit_bio {
99 struct inode *inode;
100 struct bio *bio;
101 struct list_head list;
102 extent_submit_bio_hook_t *submit_bio_start;
103 extent_submit_bio_hook_t *submit_bio_done;
104 int rw;
105 int mirror_num;
106 unsigned long bio_flags;
108 * bio_offset is optional, can be used if the pages in the bio
109 * can't tell us where in the file the bio should go
111 u64 bio_offset;
112 struct btrfs_work work;
113 int error;
117 * Lockdep class keys for extent_buffer->lock's in this root. For a given
118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
119 * the level the eb occupies in the tree.
121 * Different roots are used for different purposes and may nest inside each
122 * other and they require separate keysets. As lockdep keys should be
123 * static, assign keysets according to the purpose of the root as indicated
124 * by btrfs_root->objectid. This ensures that all special purpose roots
125 * have separate keysets.
127 * Lock-nesting across peer nodes is always done with the immediate parent
128 * node locked thus preventing deadlock. As lockdep doesn't know this, use
129 * subclass to avoid triggering lockdep warning in such cases.
131 * The key is set by the readpage_end_io_hook after the buffer has passed
132 * csum validation but before the pages are unlocked. It is also set by
133 * btrfs_init_new_buffer on freshly allocated blocks.
135 * We also add a check to make sure the highest level of the tree is the
136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
137 * needs update as well.
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 # error
142 # endif
144 static struct btrfs_lockdep_keyset {
145 u64 id; /* root objectid */
146 const char *name_stem; /* lock name stem */
147 char names[BTRFS_MAX_LEVEL + 1][20];
148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
160 { .id = 0, .name_stem = "tree" },
163 void __init btrfs_init_lockdep(void)
165 int i, j;
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
180 struct btrfs_lockdep_keyset *ks;
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
193 #endif
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
199 static struct extent_map *btree_get_extent(struct inode *inode,
200 struct page *page, size_t pg_offset, u64 start, u64 len,
201 int create)
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
207 read_lock(&em_tree->lock);
208 em = lookup_extent_mapping(em_tree, start, len);
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212 read_unlock(&em_tree->lock);
213 goto out;
215 read_unlock(&em_tree->lock);
217 em = alloc_extent_map();
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
222 em->start = 0;
223 em->len = (u64)-1;
224 em->block_len = (u64)-1;
225 em->block_start = 0;
226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228 write_lock(&em_tree->lock);
229 ret = add_extent_mapping(em_tree, em, 0);
230 if (ret == -EEXIST) {
231 free_extent_map(em);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (!em)
234 em = ERR_PTR(-EIO);
235 } else if (ret) {
236 free_extent_map(em);
237 em = ERR_PTR(ret);
239 write_unlock(&em_tree->lock);
241 out:
242 return em;
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 return crc32c(seed, data, len);
250 void btrfs_csum_final(u32 crc, char *result)
252 put_unaligned_le32(~crc, result);
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263 char *result = NULL;
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
272 unsigned long inline_result;
274 len = buf->len - offset;
275 while (len > 0) {
276 err = map_private_extent_buffer(buf, offset, 32,
277 &kaddr, &map_start, &map_len);
278 if (err)
279 return 1;
280 cur_len = min(len, map_len - (offset - map_start));
281 crc = btrfs_csum_data(kaddr + offset - map_start,
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
294 btrfs_csum_final(crc, result);
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
302 read_extent_buffer(buf, &val, 0, csum_size);
303 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304 "failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
330 struct extent_state *cached_state = NULL;
331 int ret;
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
336 if (atomic)
337 return -EAGAIN;
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 eb->start, parent_transid, btrfs_header_generation(eb));
349 ret = 1;
350 clear_extent_buffer_uptodate(eb);
351 out:
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
354 return ret;
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
361 static int btrfs_check_super_csum(char *raw_disk_sb)
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387 ret = 0;
391 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393 csum_type);
394 ret = 1;
397 return ret;
401 * helper to read a given tree block, doing retries as required when
402 * the checksums don't match and we have alternate mirrors to try.
404 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405 struct extent_buffer *eb,
406 u64 start, u64 parent_transid)
408 struct extent_io_tree *io_tree;
409 int failed = 0;
410 int ret;
411 int num_copies = 0;
412 int mirror_num = 0;
413 int failed_mirror = 0;
415 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
416 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417 while (1) {
418 ret = read_extent_buffer_pages(io_tree, eb, start,
419 WAIT_COMPLETE,
420 btree_get_extent, mirror_num);
421 if (!ret) {
422 if (!verify_parent_transid(io_tree, eb,
423 parent_transid, 0))
424 break;
425 else
426 ret = -EIO;
430 * This buffer's crc is fine, but its contents are corrupted, so
431 * there is no reason to read the other copies, they won't be
432 * any less wrong.
434 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
435 break;
437 num_copies = btrfs_num_copies(root->fs_info,
438 eb->start, eb->len);
439 if (num_copies == 1)
440 break;
442 if (!failed_mirror) {
443 failed = 1;
444 failed_mirror = eb->read_mirror;
447 mirror_num++;
448 if (mirror_num == failed_mirror)
449 mirror_num++;
451 if (mirror_num > num_copies)
452 break;
455 if (failed && !ret && failed_mirror)
456 repair_eb_io_failure(root, eb, failed_mirror);
458 return ret;
462 * checksum a dirty tree block before IO. This has extra checks to make sure
463 * we only fill in the checksum field in the first page of a multi-page block
466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 struct extent_io_tree *tree;
469 u64 start = page_offset(page);
470 u64 found_start;
471 struct extent_buffer *eb;
473 tree = &BTRFS_I(page->mapping->host)->io_tree;
475 eb = (struct extent_buffer *)page->private;
476 if (page != eb->pages[0])
477 return 0;
478 found_start = btrfs_header_bytenr(eb);
479 if (found_start != start) {
480 WARN_ON(1);
481 return 0;
483 if (!PageUptodate(page)) {
484 WARN_ON(1);
485 return 0;
487 csum_tree_block(root, eb, 0);
488 return 0;
491 static int check_tree_block_fsid(struct btrfs_root *root,
492 struct extent_buffer *eb)
494 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
495 u8 fsid[BTRFS_UUID_SIZE];
496 int ret = 1;
498 read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
499 while (fs_devices) {
500 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
501 ret = 0;
502 break;
504 fs_devices = fs_devices->seed;
506 return ret;
509 #define CORRUPT(reason, eb, root, slot) \
510 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
511 "root=%llu, slot=%d\n", reason, \
512 btrfs_header_bytenr(eb), root->objectid, slot)
514 static noinline int check_leaf(struct btrfs_root *root,
515 struct extent_buffer *leaf)
517 struct btrfs_key key;
518 struct btrfs_key leaf_key;
519 u32 nritems = btrfs_header_nritems(leaf);
520 int slot;
522 if (nritems == 0)
523 return 0;
525 /* Check the 0 item */
526 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("invalid item offset size pair", leaf, root, 0);
529 return -EIO;
533 * Check to make sure each items keys are in the correct order and their
534 * offsets make sense. We only have to loop through nritems-1 because
535 * we check the current slot against the next slot, which verifies the
536 * next slot's offset+size makes sense and that the current's slot
537 * offset is correct.
539 for (slot = 0; slot < nritems - 1; slot++) {
540 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
541 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543 /* Make sure the keys are in the right order */
544 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
545 CORRUPT("bad key order", leaf, root, slot);
546 return -EIO;
550 * Make sure the offset and ends are right, remember that the
551 * item data starts at the end of the leaf and grows towards the
552 * front.
554 if (btrfs_item_offset_nr(leaf, slot) !=
555 btrfs_item_end_nr(leaf, slot + 1)) {
556 CORRUPT("slot offset bad", leaf, root, slot);
557 return -EIO;
561 * Check to make sure that we don't point outside of the leaf,
562 * just incase all the items are consistent to eachother, but
563 * all point outside of the leaf.
565 if (btrfs_item_end_nr(leaf, slot) >
566 BTRFS_LEAF_DATA_SIZE(root)) {
567 CORRUPT("slot end outside of leaf", leaf, root, slot);
568 return -EIO;
572 return 0;
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576 u64 phy_offset, struct page *page,
577 u64 start, u64 end, int mirror)
579 struct extent_io_tree *tree;
580 u64 found_start;
581 int found_level;
582 struct extent_buffer *eb;
583 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
584 int ret = 0;
585 int reads_done;
587 if (!page->private)
588 goto out;
590 tree = &BTRFS_I(page->mapping->host)->io_tree;
591 eb = (struct extent_buffer *)page->private;
593 /* the pending IO might have been the only thing that kept this buffer
594 * in memory. Make sure we have a ref for all this other checks
596 extent_buffer_get(eb);
598 reads_done = atomic_dec_and_test(&eb->io_pages);
599 if (!reads_done)
600 goto err;
602 eb->read_mirror = mirror;
603 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
604 ret = -EIO;
605 goto err;
608 found_start = btrfs_header_bytenr(eb);
609 if (found_start != eb->start) {
610 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
611 "%llu %llu\n",
612 found_start, eb->start);
613 ret = -EIO;
614 goto err;
616 if (check_tree_block_fsid(root, eb)) {
617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618 eb->start);
619 ret = -EIO;
620 goto err;
622 found_level = btrfs_header_level(eb);
623 if (found_level >= BTRFS_MAX_LEVEL) {
624 btrfs_info(root->fs_info, "bad tree block level %d\n",
625 (int)btrfs_header_level(eb));
626 ret = -EIO;
627 goto err;
630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631 eb, found_level);
633 ret = csum_tree_block(root, eb, 1);
634 if (ret) {
635 ret = -EIO;
636 goto err;
640 * If this is a leaf block and it is corrupt, set the corrupt bit so
641 * that we don't try and read the other copies of this block, just
642 * return -EIO.
644 if (found_level == 0 && check_leaf(root, eb)) {
645 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
646 ret = -EIO;
649 if (!ret)
650 set_extent_buffer_uptodate(eb);
651 err:
652 if (reads_done &&
653 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
654 btree_readahead_hook(root, eb, eb->start, ret);
656 if (ret) {
658 * our io error hook is going to dec the io pages
659 * again, we have to make sure it has something
660 * to decrement
662 atomic_inc(&eb->io_pages);
663 clear_extent_buffer_uptodate(eb);
665 free_extent_buffer(eb);
666 out:
667 return ret;
670 static int btree_io_failed_hook(struct page *page, int failed_mirror)
672 struct extent_buffer *eb;
673 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675 eb = (struct extent_buffer *)page->private;
676 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
677 eb->read_mirror = failed_mirror;
678 atomic_dec(&eb->io_pages);
679 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
680 btree_readahead_hook(root, eb, eb->start, -EIO);
681 return -EIO; /* we fixed nothing */
684 static void end_workqueue_bio(struct bio *bio, int err)
686 struct end_io_wq *end_io_wq = bio->bi_private;
687 struct btrfs_fs_info *fs_info;
689 fs_info = end_io_wq->info;
690 end_io_wq->error = err;
691 end_io_wq->work.func = end_workqueue_fn;
692 end_io_wq->work.flags = 0;
694 if (bio->bi_rw & REQ_WRITE) {
695 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
696 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
697 &end_io_wq->work);
698 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
699 btrfs_queue_worker(&fs_info->endio_freespace_worker,
700 &end_io_wq->work);
701 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 btrfs_queue_worker(&fs_info->endio_raid56_workers,
703 &end_io_wq->work);
704 else
705 btrfs_queue_worker(&fs_info->endio_write_workers,
706 &end_io_wq->work);
707 } else {
708 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709 btrfs_queue_worker(&fs_info->endio_raid56_workers,
710 &end_io_wq->work);
711 else if (end_io_wq->metadata)
712 btrfs_queue_worker(&fs_info->endio_meta_workers,
713 &end_io_wq->work);
714 else
715 btrfs_queue_worker(&fs_info->endio_workers,
716 &end_io_wq->work);
721 * For the metadata arg you want
723 * 0 - if data
724 * 1 - if normal metadta
725 * 2 - if writing to the free space cache area
726 * 3 - raid parity work
728 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
729 int metadata)
731 struct end_io_wq *end_io_wq;
732 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
733 if (!end_io_wq)
734 return -ENOMEM;
736 end_io_wq->private = bio->bi_private;
737 end_io_wq->end_io = bio->bi_end_io;
738 end_io_wq->info = info;
739 end_io_wq->error = 0;
740 end_io_wq->bio = bio;
741 end_io_wq->metadata = metadata;
743 bio->bi_private = end_io_wq;
744 bio->bi_end_io = end_workqueue_bio;
745 return 0;
748 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
750 unsigned long limit = min_t(unsigned long,
751 info->workers.max_workers,
752 info->fs_devices->open_devices);
753 return 256 * limit;
756 static void run_one_async_start(struct btrfs_work *work)
758 struct async_submit_bio *async;
759 int ret;
761 async = container_of(work, struct async_submit_bio, work);
762 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
765 if (ret)
766 async->error = ret;
769 static void run_one_async_done(struct btrfs_work *work)
771 struct btrfs_fs_info *fs_info;
772 struct async_submit_bio *async;
773 int limit;
775 async = container_of(work, struct async_submit_bio, work);
776 fs_info = BTRFS_I(async->inode)->root->fs_info;
778 limit = btrfs_async_submit_limit(fs_info);
779 limit = limit * 2 / 3;
781 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
782 waitqueue_active(&fs_info->async_submit_wait))
783 wake_up(&fs_info->async_submit_wait);
785 /* If an error occured we just want to clean up the bio and move on */
786 if (async->error) {
787 bio_endio(async->bio, async->error);
788 return;
791 async->submit_bio_done(async->inode, async->rw, async->bio,
792 async->mirror_num, async->bio_flags,
793 async->bio_offset);
796 static void run_one_async_free(struct btrfs_work *work)
798 struct async_submit_bio *async;
800 async = container_of(work, struct async_submit_bio, work);
801 kfree(async);
804 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
805 int rw, struct bio *bio, int mirror_num,
806 unsigned long bio_flags,
807 u64 bio_offset,
808 extent_submit_bio_hook_t *submit_bio_start,
809 extent_submit_bio_hook_t *submit_bio_done)
811 struct async_submit_bio *async;
813 async = kmalloc(sizeof(*async), GFP_NOFS);
814 if (!async)
815 return -ENOMEM;
817 async->inode = inode;
818 async->rw = rw;
819 async->bio = bio;
820 async->mirror_num = mirror_num;
821 async->submit_bio_start = submit_bio_start;
822 async->submit_bio_done = submit_bio_done;
824 async->work.func = run_one_async_start;
825 async->work.ordered_func = run_one_async_done;
826 async->work.ordered_free = run_one_async_free;
828 async->work.flags = 0;
829 async->bio_flags = bio_flags;
830 async->bio_offset = bio_offset;
832 async->error = 0;
834 atomic_inc(&fs_info->nr_async_submits);
836 if (rw & REQ_SYNC)
837 btrfs_set_work_high_prio(&async->work);
839 btrfs_queue_worker(&fs_info->workers, &async->work);
841 while (atomic_read(&fs_info->async_submit_draining) &&
842 atomic_read(&fs_info->nr_async_submits)) {
843 wait_event(fs_info->async_submit_wait,
844 (atomic_read(&fs_info->nr_async_submits) == 0));
847 return 0;
850 static int btree_csum_one_bio(struct bio *bio)
852 struct bio_vec *bvec = bio->bi_io_vec;
853 int bio_index = 0;
854 struct btrfs_root *root;
855 int ret = 0;
857 WARN_ON(bio->bi_vcnt <= 0);
858 while (bio_index < bio->bi_vcnt) {
859 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
860 ret = csum_dirty_buffer(root, bvec->bv_page);
861 if (ret)
862 break;
863 bio_index++;
864 bvec++;
866 return ret;
869 static int __btree_submit_bio_start(struct inode *inode, int rw,
870 struct bio *bio, int mirror_num,
871 unsigned long bio_flags,
872 u64 bio_offset)
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
878 return btree_csum_one_bio(bio);
881 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
882 int mirror_num, unsigned long bio_flags,
883 u64 bio_offset)
885 int ret;
888 * when we're called for a write, we're already in the async
889 * submission context. Just jump into btrfs_map_bio
891 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
892 if (ret)
893 bio_endio(bio, ret);
894 return ret;
897 static int check_async_write(struct inode *inode, unsigned long bio_flags)
899 if (bio_flags & EXTENT_BIO_TREE_LOG)
900 return 0;
901 #ifdef CONFIG_X86
902 if (cpu_has_xmm4_2)
903 return 0;
904 #endif
905 return 1;
908 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
909 int mirror_num, unsigned long bio_flags,
910 u64 bio_offset)
912 int async = check_async_write(inode, bio_flags);
913 int ret;
915 if (!(rw & REQ_WRITE)) {
917 * called for a read, do the setup so that checksum validation
918 * can happen in the async kernel threads
920 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
921 bio, 1);
922 if (ret)
923 goto out_w_error;
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925 mirror_num, 0);
926 } else if (!async) {
927 ret = btree_csum_one_bio(bio);
928 if (ret)
929 goto out_w_error;
930 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931 mirror_num, 0);
932 } else {
934 * kthread helpers are used to submit writes so that
935 * checksumming can happen in parallel across all CPUs
937 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
938 inode, rw, bio, mirror_num, 0,
939 bio_offset,
940 __btree_submit_bio_start,
941 __btree_submit_bio_done);
944 if (ret) {
945 out_w_error:
946 bio_endio(bio, ret);
948 return ret;
951 #ifdef CONFIG_MIGRATION
952 static int btree_migratepage(struct address_space *mapping,
953 struct page *newpage, struct page *page,
954 enum migrate_mode mode)
957 * we can't safely write a btree page from here,
958 * we haven't done the locking hook
960 if (PageDirty(page))
961 return -EAGAIN;
963 * Buffers may be managed in a filesystem specific way.
964 * We must have no buffers or drop them.
966 if (page_has_private(page) &&
967 !try_to_release_page(page, GFP_KERNEL))
968 return -EAGAIN;
969 return migrate_page(mapping, newpage, page, mode);
971 #endif
974 static int btree_writepages(struct address_space *mapping,
975 struct writeback_control *wbc)
977 struct extent_io_tree *tree;
978 struct btrfs_fs_info *fs_info;
979 int ret;
981 tree = &BTRFS_I(mapping->host)->io_tree;
982 if (wbc->sync_mode == WB_SYNC_NONE) {
984 if (wbc->for_kupdate)
985 return 0;
987 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988 /* this is a bit racy, but that's ok */
989 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990 BTRFS_DIRTY_METADATA_THRESH);
991 if (ret < 0)
992 return 0;
994 return btree_write_cache_pages(mapping, wbc);
997 static int btree_readpage(struct file *file, struct page *page)
999 struct extent_io_tree *tree;
1000 tree = &BTRFS_I(page->mapping->host)->io_tree;
1001 return extent_read_full_page(tree, page, btree_get_extent, 0);
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 if (PageWriteback(page) || PageDirty(page))
1007 return 0;
1009 return try_release_extent_buffer(page);
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013 unsigned int length)
1015 struct extent_io_tree *tree;
1016 tree = &BTRFS_I(page->mapping->host)->io_tree;
1017 extent_invalidatepage(tree, page, offset);
1018 btree_releasepage(page, GFP_NOFS);
1019 if (PagePrivate(page)) {
1020 printk(KERN_WARNING "btrfs warning page private not zero "
1021 "on page %llu\n", (unsigned long long)page_offset(page));
1022 ClearPagePrivate(page);
1023 set_page_private(page, 0);
1024 page_cache_release(page);
1028 static int btree_set_page_dirty(struct page *page)
1030 #ifdef DEBUG
1031 struct extent_buffer *eb;
1033 BUG_ON(!PagePrivate(page));
1034 eb = (struct extent_buffer *)page->private;
1035 BUG_ON(!eb);
1036 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037 BUG_ON(!atomic_read(&eb->refs));
1038 btrfs_assert_tree_locked(eb);
1039 #endif
1040 return __set_page_dirty_nobuffers(page);
1043 static const struct address_space_operations btree_aops = {
1044 .readpage = btree_readpage,
1045 .writepages = btree_writepages,
1046 .releasepage = btree_releasepage,
1047 .invalidatepage = btree_invalidatepage,
1048 #ifdef CONFIG_MIGRATION
1049 .migratepage = btree_migratepage,
1050 #endif
1051 .set_page_dirty = btree_set_page_dirty,
1054 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1055 u64 parent_transid)
1057 struct extent_buffer *buf = NULL;
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1059 int ret = 0;
1061 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1062 if (!buf)
1063 return 0;
1064 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1065 buf, 0, WAIT_NONE, btree_get_extent, 0);
1066 free_extent_buffer(buf);
1067 return ret;
1070 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1071 int mirror_num, struct extent_buffer **eb)
1073 struct extent_buffer *buf = NULL;
1074 struct inode *btree_inode = root->fs_info->btree_inode;
1075 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1076 int ret;
1078 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1079 if (!buf)
1080 return 0;
1082 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1085 btree_get_extent, mirror_num);
1086 if (ret) {
1087 free_extent_buffer(buf);
1088 return ret;
1091 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1092 free_extent_buffer(buf);
1093 return -EIO;
1094 } else if (extent_buffer_uptodate(buf)) {
1095 *eb = buf;
1096 } else {
1097 free_extent_buffer(buf);
1099 return 0;
1102 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1103 u64 bytenr, u32 blocksize)
1105 struct inode *btree_inode = root->fs_info->btree_inode;
1106 struct extent_buffer *eb;
1107 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1108 bytenr, blocksize);
1109 return eb;
1112 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113 u64 bytenr, u32 blocksize)
1115 struct inode *btree_inode = root->fs_info->btree_inode;
1116 struct extent_buffer *eb;
1118 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1119 bytenr, blocksize);
1120 return eb;
1124 int btrfs_write_tree_block(struct extent_buffer *buf)
1126 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1127 buf->start + buf->len - 1);
1130 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1132 return filemap_fdatawait_range(buf->pages[0]->mapping,
1133 buf->start, buf->start + buf->len - 1);
1136 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1137 u32 blocksize, u64 parent_transid)
1139 struct extent_buffer *buf = NULL;
1140 int ret;
1142 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1143 if (!buf)
1144 return NULL;
1146 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1147 if (ret) {
1148 free_extent_buffer(buf);
1149 return NULL;
1151 return buf;
1155 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1156 struct extent_buffer *buf)
1158 struct btrfs_fs_info *fs_info = root->fs_info;
1160 if (btrfs_header_generation(buf) ==
1161 fs_info->running_transaction->transid) {
1162 btrfs_assert_tree_locked(buf);
1164 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1165 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1166 -buf->len,
1167 fs_info->dirty_metadata_batch);
1168 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1169 btrfs_set_lock_blocking(buf);
1170 clear_extent_buffer_dirty(buf);
1175 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1176 u32 stripesize, struct btrfs_root *root,
1177 struct btrfs_fs_info *fs_info,
1178 u64 objectid)
1180 root->node = NULL;
1181 root->commit_root = NULL;
1182 root->sectorsize = sectorsize;
1183 root->nodesize = nodesize;
1184 root->leafsize = leafsize;
1185 root->stripesize = stripesize;
1186 root->ref_cows = 0;
1187 root->track_dirty = 0;
1188 root->in_radix = 0;
1189 root->orphan_item_inserted = 0;
1190 root->orphan_cleanup_state = 0;
1192 root->objectid = objectid;
1193 root->last_trans = 0;
1194 root->highest_objectid = 0;
1195 root->nr_delalloc_inodes = 0;
1196 root->nr_ordered_extents = 0;
1197 root->name = NULL;
1198 root->inode_tree = RB_ROOT;
1199 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1200 root->block_rsv = NULL;
1201 root->orphan_block_rsv = NULL;
1203 INIT_LIST_HEAD(&root->dirty_list);
1204 INIT_LIST_HEAD(&root->root_list);
1205 INIT_LIST_HEAD(&root->delalloc_inodes);
1206 INIT_LIST_HEAD(&root->delalloc_root);
1207 INIT_LIST_HEAD(&root->ordered_extents);
1208 INIT_LIST_HEAD(&root->ordered_root);
1209 INIT_LIST_HEAD(&root->logged_list[0]);
1210 INIT_LIST_HEAD(&root->logged_list[1]);
1211 spin_lock_init(&root->orphan_lock);
1212 spin_lock_init(&root->inode_lock);
1213 spin_lock_init(&root->delalloc_lock);
1214 spin_lock_init(&root->ordered_extent_lock);
1215 spin_lock_init(&root->accounting_lock);
1216 spin_lock_init(&root->log_extents_lock[0]);
1217 spin_lock_init(&root->log_extents_lock[1]);
1218 mutex_init(&root->objectid_mutex);
1219 mutex_init(&root->log_mutex);
1220 init_waitqueue_head(&root->log_writer_wait);
1221 init_waitqueue_head(&root->log_commit_wait[0]);
1222 init_waitqueue_head(&root->log_commit_wait[1]);
1223 atomic_set(&root->log_commit[0], 0);
1224 atomic_set(&root->log_commit[1], 0);
1225 atomic_set(&root->log_writers, 0);
1226 atomic_set(&root->log_batch, 0);
1227 atomic_set(&root->orphan_inodes, 0);
1228 atomic_set(&root->refs, 1);
1229 root->log_transid = 0;
1230 root->last_log_commit = 0;
1231 extent_io_tree_init(&root->dirty_log_pages,
1232 fs_info->btree_inode->i_mapping);
1234 memset(&root->root_key, 0, sizeof(root->root_key));
1235 memset(&root->root_item, 0, sizeof(root->root_item));
1236 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1237 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1238 root->defrag_trans_start = fs_info->generation;
1239 init_completion(&root->kobj_unregister);
1240 root->defrag_running = 0;
1241 root->root_key.objectid = objectid;
1242 root->anon_dev = 0;
1244 spin_lock_init(&root->root_item_lock);
1247 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1249 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1250 if (root)
1251 root->fs_info = fs_info;
1252 return root;
1255 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1257 u64 objectid)
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
1263 int ret = 0;
1264 u64 bytenr;
1265 uuid_le uuid;
1267 root = btrfs_alloc_root(fs_info);
1268 if (!root)
1269 return ERR_PTR(-ENOMEM);
1271 __setup_root(tree_root->nodesize, tree_root->leafsize,
1272 tree_root->sectorsize, tree_root->stripesize,
1273 root, fs_info, objectid);
1274 root->root_key.objectid = objectid;
1275 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1276 root->root_key.offset = 0;
1278 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1279 0, objectid, NULL, 0, 0, 0);
1280 if (IS_ERR(leaf)) {
1281 ret = PTR_ERR(leaf);
1282 leaf = NULL;
1283 goto fail;
1286 bytenr = leaf->start;
1287 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1288 btrfs_set_header_bytenr(leaf, leaf->start);
1289 btrfs_set_header_generation(leaf, trans->transid);
1290 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1291 btrfs_set_header_owner(leaf, objectid);
1292 root->node = leaf;
1294 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
1295 BTRFS_FSID_SIZE);
1296 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1297 btrfs_header_chunk_tree_uuid(leaf),
1298 BTRFS_UUID_SIZE);
1299 btrfs_mark_buffer_dirty(leaf);
1301 root->commit_root = btrfs_root_node(root);
1302 root->track_dirty = 1;
1305 root->root_item.flags = 0;
1306 root->root_item.byte_limit = 0;
1307 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1308 btrfs_set_root_generation(&root->root_item, trans->transid);
1309 btrfs_set_root_level(&root->root_item, 0);
1310 btrfs_set_root_refs(&root->root_item, 1);
1311 btrfs_set_root_used(&root->root_item, leaf->len);
1312 btrfs_set_root_last_snapshot(&root->root_item, 0);
1313 btrfs_set_root_dirid(&root->root_item, 0);
1314 uuid_le_gen(&uuid);
1315 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1316 root->root_item.drop_level = 0;
1318 key.objectid = objectid;
1319 key.type = BTRFS_ROOT_ITEM_KEY;
1320 key.offset = 0;
1321 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322 if (ret)
1323 goto fail;
1325 btrfs_tree_unlock(leaf);
1327 return root;
1329 fail:
1330 if (leaf) {
1331 btrfs_tree_unlock(leaf);
1332 free_extent_buffer(leaf);
1334 kfree(root);
1336 return ERR_PTR(ret);
1339 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1340 struct btrfs_fs_info *fs_info)
1342 struct btrfs_root *root;
1343 struct btrfs_root *tree_root = fs_info->tree_root;
1344 struct extent_buffer *leaf;
1346 root = btrfs_alloc_root(fs_info);
1347 if (!root)
1348 return ERR_PTR(-ENOMEM);
1350 __setup_root(tree_root->nodesize, tree_root->leafsize,
1351 tree_root->sectorsize, tree_root->stripesize,
1352 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1355 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1356 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1358 * log trees do not get reference counted because they go away
1359 * before a real commit is actually done. They do store pointers
1360 * to file data extents, and those reference counts still get
1361 * updated (along with back refs to the log tree).
1363 root->ref_cows = 0;
1365 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1366 BTRFS_TREE_LOG_OBJECTID, NULL,
1367 0, 0, 0);
1368 if (IS_ERR(leaf)) {
1369 kfree(root);
1370 return ERR_CAST(leaf);
1373 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1374 btrfs_set_header_bytenr(leaf, leaf->start);
1375 btrfs_set_header_generation(leaf, trans->transid);
1376 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1377 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1378 root->node = leaf;
1380 write_extent_buffer(root->node, root->fs_info->fsid,
1381 btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
1382 btrfs_mark_buffer_dirty(root->node);
1383 btrfs_tree_unlock(root->node);
1384 return root;
1387 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
1390 struct btrfs_root *log_root;
1392 log_root = alloc_log_tree(trans, fs_info);
1393 if (IS_ERR(log_root))
1394 return PTR_ERR(log_root);
1395 WARN_ON(fs_info->log_root_tree);
1396 fs_info->log_root_tree = log_root;
1397 return 0;
1400 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1401 struct btrfs_root *root)
1403 struct btrfs_root *log_root;
1404 struct btrfs_inode_item *inode_item;
1406 log_root = alloc_log_tree(trans, root->fs_info);
1407 if (IS_ERR(log_root))
1408 return PTR_ERR(log_root);
1410 log_root->last_trans = trans->transid;
1411 log_root->root_key.offset = root->root_key.objectid;
1413 inode_item = &log_root->root_item.inode;
1414 btrfs_set_stack_inode_generation(inode_item, 1);
1415 btrfs_set_stack_inode_size(inode_item, 3);
1416 btrfs_set_stack_inode_nlink(inode_item, 1);
1417 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1418 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1420 btrfs_set_root_node(&log_root->root_item, log_root->node);
1422 WARN_ON(root->log_root);
1423 root->log_root = log_root;
1424 root->log_transid = 0;
1425 root->last_log_commit = 0;
1426 return 0;
1429 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1430 struct btrfs_key *key)
1432 struct btrfs_root *root;
1433 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1434 struct btrfs_path *path;
1435 u64 generation;
1436 u32 blocksize;
1437 int ret;
1439 path = btrfs_alloc_path();
1440 if (!path)
1441 return ERR_PTR(-ENOMEM);
1443 root = btrfs_alloc_root(fs_info);
1444 if (!root) {
1445 ret = -ENOMEM;
1446 goto alloc_fail;
1449 __setup_root(tree_root->nodesize, tree_root->leafsize,
1450 tree_root->sectorsize, tree_root->stripesize,
1451 root, fs_info, key->objectid);
1453 ret = btrfs_find_root(tree_root, key, path,
1454 &root->root_item, &root->root_key);
1455 if (ret) {
1456 if (ret > 0)
1457 ret = -ENOENT;
1458 goto find_fail;
1461 generation = btrfs_root_generation(&root->root_item);
1462 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1463 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1464 blocksize, generation);
1465 if (!root->node) {
1466 ret = -ENOMEM;
1467 goto find_fail;
1468 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1469 ret = -EIO;
1470 goto read_fail;
1472 root->commit_root = btrfs_root_node(root);
1473 out:
1474 btrfs_free_path(path);
1475 return root;
1477 read_fail:
1478 free_extent_buffer(root->node);
1479 find_fail:
1480 kfree(root);
1481 alloc_fail:
1482 root = ERR_PTR(ret);
1483 goto out;
1486 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1487 struct btrfs_key *location)
1489 struct btrfs_root *root;
1491 root = btrfs_read_tree_root(tree_root, location);
1492 if (IS_ERR(root))
1493 return root;
1495 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1496 root->ref_cows = 1;
1497 btrfs_check_and_init_root_item(&root->root_item);
1500 return root;
1503 int btrfs_init_fs_root(struct btrfs_root *root)
1505 int ret;
1507 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1508 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1509 GFP_NOFS);
1510 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1511 ret = -ENOMEM;
1512 goto fail;
1515 btrfs_init_free_ino_ctl(root);
1516 mutex_init(&root->fs_commit_mutex);
1517 spin_lock_init(&root->cache_lock);
1518 init_waitqueue_head(&root->cache_wait);
1520 ret = get_anon_bdev(&root->anon_dev);
1521 if (ret)
1522 goto fail;
1523 return 0;
1524 fail:
1525 kfree(root->free_ino_ctl);
1526 kfree(root->free_ino_pinned);
1527 return ret;
1530 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531 u64 root_id)
1533 struct btrfs_root *root;
1535 spin_lock(&fs_info->fs_roots_radix_lock);
1536 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537 (unsigned long)root_id);
1538 spin_unlock(&fs_info->fs_roots_radix_lock);
1539 return root;
1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543 struct btrfs_root *root)
1545 int ret;
1547 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1548 if (ret)
1549 return ret;
1551 spin_lock(&fs_info->fs_roots_radix_lock);
1552 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 (unsigned long)root->root_key.objectid,
1554 root);
1555 if (ret == 0)
1556 root->in_radix = 1;
1557 spin_unlock(&fs_info->fs_roots_radix_lock);
1558 radix_tree_preload_end();
1560 return ret;
1563 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1564 struct btrfs_key *location)
1566 struct btrfs_root *root;
1567 int ret;
1569 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1570 return fs_info->tree_root;
1571 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1572 return fs_info->extent_root;
1573 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1574 return fs_info->chunk_root;
1575 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1576 return fs_info->dev_root;
1577 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1578 return fs_info->csum_root;
1579 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1580 return fs_info->quota_root ? fs_info->quota_root :
1581 ERR_PTR(-ENOENT);
1582 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1583 return fs_info->uuid_root ? fs_info->uuid_root :
1584 ERR_PTR(-ENOENT);
1585 again:
1586 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1587 if (root) {
1588 if (btrfs_root_refs(&root->root_item) == 0)
1589 return ERR_PTR(-ENOENT);
1590 return root;
1593 root = btrfs_read_fs_root(fs_info->tree_root, location);
1594 if (IS_ERR(root))
1595 return root;
1597 if (btrfs_root_refs(&root->root_item) == 0) {
1598 ret = -ENOENT;
1599 goto fail;
1602 ret = btrfs_init_fs_root(root);
1603 if (ret)
1604 goto fail;
1606 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1607 if (ret < 0)
1608 goto fail;
1609 if (ret == 0)
1610 root->orphan_item_inserted = 1;
1612 ret = btrfs_insert_fs_root(fs_info, root);
1613 if (ret) {
1614 if (ret == -EEXIST) {
1615 free_fs_root(root);
1616 goto again;
1618 goto fail;
1620 return root;
1621 fail:
1622 free_fs_root(root);
1623 return ERR_PTR(ret);
1626 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1629 int ret = 0;
1630 struct btrfs_device *device;
1631 struct backing_dev_info *bdi;
1633 rcu_read_lock();
1634 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1635 if (!device->bdev)
1636 continue;
1637 bdi = blk_get_backing_dev_info(device->bdev);
1638 if (bdi && bdi_congested(bdi, bdi_bits)) {
1639 ret = 1;
1640 break;
1643 rcu_read_unlock();
1644 return ret;
1648 * If this fails, caller must call bdi_destroy() to get rid of the
1649 * bdi again.
1651 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653 int err;
1655 bdi->capabilities = BDI_CAP_MAP_COPY;
1656 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1657 if (err)
1658 return err;
1660 bdi->ra_pages = default_backing_dev_info.ra_pages;
1661 bdi->congested_fn = btrfs_congested_fn;
1662 bdi->congested_data = info;
1663 return 0;
1667 * called by the kthread helper functions to finally call the bio end_io
1668 * functions. This is where read checksum verification actually happens
1670 static void end_workqueue_fn(struct btrfs_work *work)
1672 struct bio *bio;
1673 struct end_io_wq *end_io_wq;
1674 struct btrfs_fs_info *fs_info;
1675 int error;
1677 end_io_wq = container_of(work, struct end_io_wq, work);
1678 bio = end_io_wq->bio;
1679 fs_info = end_io_wq->info;
1681 error = end_io_wq->error;
1682 bio->bi_private = end_io_wq->private;
1683 bio->bi_end_io = end_io_wq->end_io;
1684 kfree(end_io_wq);
1685 bio_endio(bio, error);
1688 static int cleaner_kthread(void *arg)
1690 struct btrfs_root *root = arg;
1691 int again;
1693 do {
1694 again = 0;
1696 /* Make the cleaner go to sleep early. */
1697 if (btrfs_need_cleaner_sleep(root))
1698 goto sleep;
1700 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1701 goto sleep;
1704 * Avoid the problem that we change the status of the fs
1705 * during the above check and trylock.
1707 if (btrfs_need_cleaner_sleep(root)) {
1708 mutex_unlock(&root->fs_info->cleaner_mutex);
1709 goto sleep;
1712 btrfs_run_delayed_iputs(root);
1713 again = btrfs_clean_one_deleted_snapshot(root);
1714 mutex_unlock(&root->fs_info->cleaner_mutex);
1717 * The defragger has dealt with the R/O remount and umount,
1718 * needn't do anything special here.
1720 btrfs_run_defrag_inodes(root->fs_info);
1721 sleep:
1722 if (!try_to_freeze() && !again) {
1723 set_current_state(TASK_INTERRUPTIBLE);
1724 if (!kthread_should_stop())
1725 schedule();
1726 __set_current_state(TASK_RUNNING);
1728 } while (!kthread_should_stop());
1729 return 0;
1732 static int transaction_kthread(void *arg)
1734 struct btrfs_root *root = arg;
1735 struct btrfs_trans_handle *trans;
1736 struct btrfs_transaction *cur;
1737 u64 transid;
1738 unsigned long now;
1739 unsigned long delay;
1740 bool cannot_commit;
1742 do {
1743 cannot_commit = false;
1744 delay = HZ * root->fs_info->commit_interval;
1745 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1747 spin_lock(&root->fs_info->trans_lock);
1748 cur = root->fs_info->running_transaction;
1749 if (!cur) {
1750 spin_unlock(&root->fs_info->trans_lock);
1751 goto sleep;
1754 now = get_seconds();
1755 if (cur->state < TRANS_STATE_BLOCKED &&
1756 (now < cur->start_time ||
1757 now - cur->start_time < root->fs_info->commit_interval)) {
1758 spin_unlock(&root->fs_info->trans_lock);
1759 delay = HZ * 5;
1760 goto sleep;
1762 transid = cur->transid;
1763 spin_unlock(&root->fs_info->trans_lock);
1765 /* If the file system is aborted, this will always fail. */
1766 trans = btrfs_attach_transaction(root);
1767 if (IS_ERR(trans)) {
1768 if (PTR_ERR(trans) != -ENOENT)
1769 cannot_commit = true;
1770 goto sleep;
1772 if (transid == trans->transid) {
1773 btrfs_commit_transaction(trans, root);
1774 } else {
1775 btrfs_end_transaction(trans, root);
1777 sleep:
1778 wake_up_process(root->fs_info->cleaner_kthread);
1779 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1781 if (!try_to_freeze()) {
1782 set_current_state(TASK_INTERRUPTIBLE);
1783 if (!kthread_should_stop() &&
1784 (!btrfs_transaction_blocked(root->fs_info) ||
1785 cannot_commit))
1786 schedule_timeout(delay);
1787 __set_current_state(TASK_RUNNING);
1789 } while (!kthread_should_stop());
1790 return 0;
1794 * this will find the highest generation in the array of
1795 * root backups. The index of the highest array is returned,
1796 * or -1 if we can't find anything.
1798 * We check to make sure the array is valid by comparing the
1799 * generation of the latest root in the array with the generation
1800 * in the super block. If they don't match we pitch it.
1802 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 u64 cur;
1805 int newest_index = -1;
1806 struct btrfs_root_backup *root_backup;
1807 int i;
1809 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1810 root_backup = info->super_copy->super_roots + i;
1811 cur = btrfs_backup_tree_root_gen(root_backup);
1812 if (cur == newest_gen)
1813 newest_index = i;
1816 /* check to see if we actually wrapped around */
1817 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1818 root_backup = info->super_copy->super_roots;
1819 cur = btrfs_backup_tree_root_gen(root_backup);
1820 if (cur == newest_gen)
1821 newest_index = 0;
1823 return newest_index;
1828 * find the oldest backup so we know where to store new entries
1829 * in the backup array. This will set the backup_root_index
1830 * field in the fs_info struct
1832 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1833 u64 newest_gen)
1835 int newest_index = -1;
1837 newest_index = find_newest_super_backup(info, newest_gen);
1838 /* if there was garbage in there, just move along */
1839 if (newest_index == -1) {
1840 info->backup_root_index = 0;
1841 } else {
1842 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1847 * copy all the root pointers into the super backup array.
1848 * this will bump the backup pointer by one when it is
1849 * done
1851 static void backup_super_roots(struct btrfs_fs_info *info)
1853 int next_backup;
1854 struct btrfs_root_backup *root_backup;
1855 int last_backup;
1857 next_backup = info->backup_root_index;
1858 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1859 BTRFS_NUM_BACKUP_ROOTS;
1862 * just overwrite the last backup if we're at the same generation
1863 * this happens only at umount
1865 root_backup = info->super_for_commit->super_roots + last_backup;
1866 if (btrfs_backup_tree_root_gen(root_backup) ==
1867 btrfs_header_generation(info->tree_root->node))
1868 next_backup = last_backup;
1870 root_backup = info->super_for_commit->super_roots + next_backup;
1873 * make sure all of our padding and empty slots get zero filled
1874 * regardless of which ones we use today
1876 memset(root_backup, 0, sizeof(*root_backup));
1878 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1881 btrfs_set_backup_tree_root_gen(root_backup,
1882 btrfs_header_generation(info->tree_root->node));
1884 btrfs_set_backup_tree_root_level(root_backup,
1885 btrfs_header_level(info->tree_root->node));
1887 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1888 btrfs_set_backup_chunk_root_gen(root_backup,
1889 btrfs_header_generation(info->chunk_root->node));
1890 btrfs_set_backup_chunk_root_level(root_backup,
1891 btrfs_header_level(info->chunk_root->node));
1893 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1894 btrfs_set_backup_extent_root_gen(root_backup,
1895 btrfs_header_generation(info->extent_root->node));
1896 btrfs_set_backup_extent_root_level(root_backup,
1897 btrfs_header_level(info->extent_root->node));
1900 * we might commit during log recovery, which happens before we set
1901 * the fs_root. Make sure it is valid before we fill it in.
1903 if (info->fs_root && info->fs_root->node) {
1904 btrfs_set_backup_fs_root(root_backup,
1905 info->fs_root->node->start);
1906 btrfs_set_backup_fs_root_gen(root_backup,
1907 btrfs_header_generation(info->fs_root->node));
1908 btrfs_set_backup_fs_root_level(root_backup,
1909 btrfs_header_level(info->fs_root->node));
1912 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1913 btrfs_set_backup_dev_root_gen(root_backup,
1914 btrfs_header_generation(info->dev_root->node));
1915 btrfs_set_backup_dev_root_level(root_backup,
1916 btrfs_header_level(info->dev_root->node));
1918 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1919 btrfs_set_backup_csum_root_gen(root_backup,
1920 btrfs_header_generation(info->csum_root->node));
1921 btrfs_set_backup_csum_root_level(root_backup,
1922 btrfs_header_level(info->csum_root->node));
1924 btrfs_set_backup_total_bytes(root_backup,
1925 btrfs_super_total_bytes(info->super_copy));
1926 btrfs_set_backup_bytes_used(root_backup,
1927 btrfs_super_bytes_used(info->super_copy));
1928 btrfs_set_backup_num_devices(root_backup,
1929 btrfs_super_num_devices(info->super_copy));
1932 * if we don't copy this out to the super_copy, it won't get remembered
1933 * for the next commit
1935 memcpy(&info->super_copy->super_roots,
1936 &info->super_for_commit->super_roots,
1937 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1941 * this copies info out of the root backup array and back into
1942 * the in-memory super block. It is meant to help iterate through
1943 * the array, so you send it the number of backups you've already
1944 * tried and the last backup index you used.
1946 * this returns -1 when it has tried all the backups
1948 static noinline int next_root_backup(struct btrfs_fs_info *info,
1949 struct btrfs_super_block *super,
1950 int *num_backups_tried, int *backup_index)
1952 struct btrfs_root_backup *root_backup;
1953 int newest = *backup_index;
1955 if (*num_backups_tried == 0) {
1956 u64 gen = btrfs_super_generation(super);
1958 newest = find_newest_super_backup(info, gen);
1959 if (newest == -1)
1960 return -1;
1962 *backup_index = newest;
1963 *num_backups_tried = 1;
1964 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1965 /* we've tried all the backups, all done */
1966 return -1;
1967 } else {
1968 /* jump to the next oldest backup */
1969 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1970 BTRFS_NUM_BACKUP_ROOTS;
1971 *backup_index = newest;
1972 *num_backups_tried += 1;
1974 root_backup = super->super_roots + newest;
1976 btrfs_set_super_generation(super,
1977 btrfs_backup_tree_root_gen(root_backup));
1978 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1979 btrfs_set_super_root_level(super,
1980 btrfs_backup_tree_root_level(root_backup));
1981 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1984 * fixme: the total bytes and num_devices need to match or we should
1985 * need a fsck
1987 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1988 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1989 return 0;
1992 /* helper to cleanup workers */
1993 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 btrfs_stop_workers(&fs_info->generic_worker);
1996 btrfs_stop_workers(&fs_info->fixup_workers);
1997 btrfs_stop_workers(&fs_info->delalloc_workers);
1998 btrfs_stop_workers(&fs_info->workers);
1999 btrfs_stop_workers(&fs_info->endio_workers);
2000 btrfs_stop_workers(&fs_info->endio_meta_workers);
2001 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2002 btrfs_stop_workers(&fs_info->rmw_workers);
2003 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2004 btrfs_stop_workers(&fs_info->endio_write_workers);
2005 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2006 btrfs_stop_workers(&fs_info->submit_workers);
2007 btrfs_stop_workers(&fs_info->delayed_workers);
2008 btrfs_stop_workers(&fs_info->caching_workers);
2009 btrfs_stop_workers(&fs_info->readahead_workers);
2010 btrfs_stop_workers(&fs_info->flush_workers);
2011 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2014 /* helper to cleanup tree roots */
2015 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2017 free_extent_buffer(info->tree_root->node);
2018 free_extent_buffer(info->tree_root->commit_root);
2019 info->tree_root->node = NULL;
2020 info->tree_root->commit_root = NULL;
2022 if (info->dev_root) {
2023 free_extent_buffer(info->dev_root->node);
2024 free_extent_buffer(info->dev_root->commit_root);
2025 info->dev_root->node = NULL;
2026 info->dev_root->commit_root = NULL;
2028 if (info->extent_root) {
2029 free_extent_buffer(info->extent_root->node);
2030 free_extent_buffer(info->extent_root->commit_root);
2031 info->extent_root->node = NULL;
2032 info->extent_root->commit_root = NULL;
2034 if (info->csum_root) {
2035 free_extent_buffer(info->csum_root->node);
2036 free_extent_buffer(info->csum_root->commit_root);
2037 info->csum_root->node = NULL;
2038 info->csum_root->commit_root = NULL;
2040 if (info->quota_root) {
2041 free_extent_buffer(info->quota_root->node);
2042 free_extent_buffer(info->quota_root->commit_root);
2043 info->quota_root->node = NULL;
2044 info->quota_root->commit_root = NULL;
2046 if (info->uuid_root) {
2047 free_extent_buffer(info->uuid_root->node);
2048 free_extent_buffer(info->uuid_root->commit_root);
2049 info->uuid_root->node = NULL;
2050 info->uuid_root->commit_root = NULL;
2052 if (chunk_root) {
2053 free_extent_buffer(info->chunk_root->node);
2054 free_extent_buffer(info->chunk_root->commit_root);
2055 info->chunk_root->node = NULL;
2056 info->chunk_root->commit_root = NULL;
2060 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2062 int ret;
2063 struct btrfs_root *gang[8];
2064 int i;
2066 while (!list_empty(&fs_info->dead_roots)) {
2067 gang[0] = list_entry(fs_info->dead_roots.next,
2068 struct btrfs_root, root_list);
2069 list_del(&gang[0]->root_list);
2071 if (gang[0]->in_radix) {
2072 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2073 } else {
2074 free_extent_buffer(gang[0]->node);
2075 free_extent_buffer(gang[0]->commit_root);
2076 btrfs_put_fs_root(gang[0]);
2080 while (1) {
2081 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2082 (void **)gang, 0,
2083 ARRAY_SIZE(gang));
2084 if (!ret)
2085 break;
2086 for (i = 0; i < ret; i++)
2087 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2091 int open_ctree(struct super_block *sb,
2092 struct btrfs_fs_devices *fs_devices,
2093 char *options)
2095 u32 sectorsize;
2096 u32 nodesize;
2097 u32 leafsize;
2098 u32 blocksize;
2099 u32 stripesize;
2100 u64 generation;
2101 u64 features;
2102 struct btrfs_key location;
2103 struct buffer_head *bh;
2104 struct btrfs_super_block *disk_super;
2105 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2106 struct btrfs_root *tree_root;
2107 struct btrfs_root *extent_root;
2108 struct btrfs_root *csum_root;
2109 struct btrfs_root *chunk_root;
2110 struct btrfs_root *dev_root;
2111 struct btrfs_root *quota_root;
2112 struct btrfs_root *uuid_root;
2113 struct btrfs_root *log_tree_root;
2114 int ret;
2115 int err = -EINVAL;
2116 int num_backups_tried = 0;
2117 int backup_index = 0;
2118 bool create_uuid_tree;
2119 bool check_uuid_tree;
2121 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2122 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2123 if (!tree_root || !chunk_root) {
2124 err = -ENOMEM;
2125 goto fail;
2128 ret = init_srcu_struct(&fs_info->subvol_srcu);
2129 if (ret) {
2130 err = ret;
2131 goto fail;
2134 ret = setup_bdi(fs_info, &fs_info->bdi);
2135 if (ret) {
2136 err = ret;
2137 goto fail_srcu;
2140 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2141 if (ret) {
2142 err = ret;
2143 goto fail_bdi;
2145 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2146 (1 + ilog2(nr_cpu_ids));
2148 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2149 if (ret) {
2150 err = ret;
2151 goto fail_dirty_metadata_bytes;
2154 fs_info->btree_inode = new_inode(sb);
2155 if (!fs_info->btree_inode) {
2156 err = -ENOMEM;
2157 goto fail_delalloc_bytes;
2160 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2162 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2163 INIT_LIST_HEAD(&fs_info->trans_list);
2164 INIT_LIST_HEAD(&fs_info->dead_roots);
2165 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2166 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2167 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2168 spin_lock_init(&fs_info->delalloc_root_lock);
2169 spin_lock_init(&fs_info->trans_lock);
2170 spin_lock_init(&fs_info->fs_roots_radix_lock);
2171 spin_lock_init(&fs_info->delayed_iput_lock);
2172 spin_lock_init(&fs_info->defrag_inodes_lock);
2173 spin_lock_init(&fs_info->free_chunk_lock);
2174 spin_lock_init(&fs_info->tree_mod_seq_lock);
2175 spin_lock_init(&fs_info->super_lock);
2176 rwlock_init(&fs_info->tree_mod_log_lock);
2177 mutex_init(&fs_info->reloc_mutex);
2178 seqlock_init(&fs_info->profiles_lock);
2180 init_completion(&fs_info->kobj_unregister);
2181 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2182 INIT_LIST_HEAD(&fs_info->space_info);
2183 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2184 btrfs_mapping_init(&fs_info->mapping_tree);
2185 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2186 BTRFS_BLOCK_RSV_GLOBAL);
2187 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2188 BTRFS_BLOCK_RSV_DELALLOC);
2189 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2190 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2191 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2192 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2193 BTRFS_BLOCK_RSV_DELOPS);
2194 atomic_set(&fs_info->nr_async_submits, 0);
2195 atomic_set(&fs_info->async_delalloc_pages, 0);
2196 atomic_set(&fs_info->async_submit_draining, 0);
2197 atomic_set(&fs_info->nr_async_bios, 0);
2198 atomic_set(&fs_info->defrag_running, 0);
2199 atomic64_set(&fs_info->tree_mod_seq, 0);
2200 fs_info->sb = sb;
2201 fs_info->max_inline = 8192 * 1024;
2202 fs_info->metadata_ratio = 0;
2203 fs_info->defrag_inodes = RB_ROOT;
2204 fs_info->free_chunk_space = 0;
2205 fs_info->tree_mod_log = RB_ROOT;
2206 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2208 /* readahead state */
2209 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2210 spin_lock_init(&fs_info->reada_lock);
2212 fs_info->thread_pool_size = min_t(unsigned long,
2213 num_online_cpus() + 2, 8);
2215 INIT_LIST_HEAD(&fs_info->ordered_roots);
2216 spin_lock_init(&fs_info->ordered_root_lock);
2217 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2218 GFP_NOFS);
2219 if (!fs_info->delayed_root) {
2220 err = -ENOMEM;
2221 goto fail_iput;
2223 btrfs_init_delayed_root(fs_info->delayed_root);
2225 mutex_init(&fs_info->scrub_lock);
2226 atomic_set(&fs_info->scrubs_running, 0);
2227 atomic_set(&fs_info->scrub_pause_req, 0);
2228 atomic_set(&fs_info->scrubs_paused, 0);
2229 atomic_set(&fs_info->scrub_cancel_req, 0);
2230 init_waitqueue_head(&fs_info->scrub_pause_wait);
2231 init_rwsem(&fs_info->scrub_super_lock);
2232 fs_info->scrub_workers_refcnt = 0;
2233 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2234 fs_info->check_integrity_print_mask = 0;
2235 #endif
2237 spin_lock_init(&fs_info->balance_lock);
2238 mutex_init(&fs_info->balance_mutex);
2239 atomic_set(&fs_info->balance_running, 0);
2240 atomic_set(&fs_info->balance_pause_req, 0);
2241 atomic_set(&fs_info->balance_cancel_req, 0);
2242 fs_info->balance_ctl = NULL;
2243 init_waitqueue_head(&fs_info->balance_wait_q);
2245 sb->s_blocksize = 4096;
2246 sb->s_blocksize_bits = blksize_bits(4096);
2247 sb->s_bdi = &fs_info->bdi;
2249 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2250 set_nlink(fs_info->btree_inode, 1);
2252 * we set the i_size on the btree inode to the max possible int.
2253 * the real end of the address space is determined by all of
2254 * the devices in the system
2256 fs_info->btree_inode->i_size = OFFSET_MAX;
2257 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2258 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2260 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262 fs_info->btree_inode->i_mapping);
2263 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2266 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2268 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270 sizeof(struct btrfs_key));
2271 set_bit(BTRFS_INODE_DUMMY,
2272 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273 insert_inode_hash(fs_info->btree_inode);
2275 spin_lock_init(&fs_info->block_group_cache_lock);
2276 fs_info->block_group_cache_tree = RB_ROOT;
2277 fs_info->first_logical_byte = (u64)-1;
2279 extent_io_tree_init(&fs_info->freed_extents[0],
2280 fs_info->btree_inode->i_mapping);
2281 extent_io_tree_init(&fs_info->freed_extents[1],
2282 fs_info->btree_inode->i_mapping);
2283 fs_info->pinned_extents = &fs_info->freed_extents[0];
2284 fs_info->do_barriers = 1;
2287 mutex_init(&fs_info->ordered_operations_mutex);
2288 mutex_init(&fs_info->ordered_extent_flush_mutex);
2289 mutex_init(&fs_info->tree_log_mutex);
2290 mutex_init(&fs_info->chunk_mutex);
2291 mutex_init(&fs_info->transaction_kthread_mutex);
2292 mutex_init(&fs_info->cleaner_mutex);
2293 mutex_init(&fs_info->volume_mutex);
2294 init_rwsem(&fs_info->extent_commit_sem);
2295 init_rwsem(&fs_info->cleanup_work_sem);
2296 init_rwsem(&fs_info->subvol_sem);
2297 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2298 fs_info->dev_replace.lock_owner = 0;
2299 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2300 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2301 mutex_init(&fs_info->dev_replace.lock_management_lock);
2302 mutex_init(&fs_info->dev_replace.lock);
2304 spin_lock_init(&fs_info->qgroup_lock);
2305 mutex_init(&fs_info->qgroup_ioctl_lock);
2306 fs_info->qgroup_tree = RB_ROOT;
2307 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2308 fs_info->qgroup_seq = 1;
2309 fs_info->quota_enabled = 0;
2310 fs_info->pending_quota_state = 0;
2311 fs_info->qgroup_ulist = NULL;
2312 mutex_init(&fs_info->qgroup_rescan_lock);
2314 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2315 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2317 init_waitqueue_head(&fs_info->transaction_throttle);
2318 init_waitqueue_head(&fs_info->transaction_wait);
2319 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2320 init_waitqueue_head(&fs_info->async_submit_wait);
2322 ret = btrfs_alloc_stripe_hash_table(fs_info);
2323 if (ret) {
2324 err = ret;
2325 goto fail_alloc;
2328 __setup_root(4096, 4096, 4096, 4096, tree_root,
2329 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2331 invalidate_bdev(fs_devices->latest_bdev);
2334 * Read super block and check the signature bytes only
2336 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2337 if (!bh) {
2338 err = -EINVAL;
2339 goto fail_alloc;
2343 * We want to check superblock checksum, the type is stored inside.
2344 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2346 if (btrfs_check_super_csum(bh->b_data)) {
2347 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2348 err = -EINVAL;
2349 goto fail_alloc;
2353 * super_copy is zeroed at allocation time and we never touch the
2354 * following bytes up to INFO_SIZE, the checksum is calculated from
2355 * the whole block of INFO_SIZE
2357 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2358 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2359 sizeof(*fs_info->super_for_commit));
2360 brelse(bh);
2362 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2364 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2365 if (ret) {
2366 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2367 err = -EINVAL;
2368 goto fail_alloc;
2371 disk_super = fs_info->super_copy;
2372 if (!btrfs_super_root(disk_super))
2373 goto fail_alloc;
2375 /* check FS state, whether FS is broken. */
2376 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2377 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2380 * run through our array of backup supers and setup
2381 * our ring pointer to the oldest one
2383 generation = btrfs_super_generation(disk_super);
2384 find_oldest_super_backup(fs_info, generation);
2387 * In the long term, we'll store the compression type in the super
2388 * block, and it'll be used for per file compression control.
2390 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2392 ret = btrfs_parse_options(tree_root, options);
2393 if (ret) {
2394 err = ret;
2395 goto fail_alloc;
2398 features = btrfs_super_incompat_flags(disk_super) &
2399 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2400 if (features) {
2401 printk(KERN_ERR "BTRFS: couldn't mount because of "
2402 "unsupported optional features (%Lx).\n",
2403 features);
2404 err = -EINVAL;
2405 goto fail_alloc;
2408 if (btrfs_super_leafsize(disk_super) !=
2409 btrfs_super_nodesize(disk_super)) {
2410 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2411 "blocksizes don't match. node %d leaf %d\n",
2412 btrfs_super_nodesize(disk_super),
2413 btrfs_super_leafsize(disk_super));
2414 err = -EINVAL;
2415 goto fail_alloc;
2417 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2418 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2419 "blocksize (%d) was too large\n",
2420 btrfs_super_leafsize(disk_super));
2421 err = -EINVAL;
2422 goto fail_alloc;
2425 features = btrfs_super_incompat_flags(disk_super);
2426 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2427 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2428 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2430 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2431 printk(KERN_ERR "btrfs: has skinny extents\n");
2434 * flag our filesystem as having big metadata blocks if
2435 * they are bigger than the page size
2437 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2438 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2439 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2440 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2443 nodesize = btrfs_super_nodesize(disk_super);
2444 leafsize = btrfs_super_leafsize(disk_super);
2445 sectorsize = btrfs_super_sectorsize(disk_super);
2446 stripesize = btrfs_super_stripesize(disk_super);
2447 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2448 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2451 * mixed block groups end up with duplicate but slightly offset
2452 * extent buffers for the same range. It leads to corruptions
2454 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2455 (sectorsize != leafsize)) {
2456 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2457 "are not allowed for mixed block groups on %s\n",
2458 sb->s_id);
2459 goto fail_alloc;
2463 * Needn't use the lock because there is no other task which will
2464 * update the flag.
2466 btrfs_set_super_incompat_flags(disk_super, features);
2468 features = btrfs_super_compat_ro_flags(disk_super) &
2469 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2470 if (!(sb->s_flags & MS_RDONLY) && features) {
2471 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2472 "unsupported option features (%Lx).\n",
2473 features);
2474 err = -EINVAL;
2475 goto fail_alloc;
2478 btrfs_init_workers(&fs_info->generic_worker,
2479 "genwork", 1, NULL);
2481 btrfs_init_workers(&fs_info->workers, "worker",
2482 fs_info->thread_pool_size,
2483 &fs_info->generic_worker);
2485 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2486 fs_info->thread_pool_size, NULL);
2488 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2489 fs_info->thread_pool_size, NULL);
2491 btrfs_init_workers(&fs_info->submit_workers, "submit",
2492 min_t(u64, fs_devices->num_devices,
2493 fs_info->thread_pool_size), NULL);
2495 btrfs_init_workers(&fs_info->caching_workers, "cache",
2496 fs_info->thread_pool_size, NULL);
2498 /* a higher idle thresh on the submit workers makes it much more
2499 * likely that bios will be send down in a sane order to the
2500 * devices
2502 fs_info->submit_workers.idle_thresh = 64;
2504 fs_info->workers.idle_thresh = 16;
2505 fs_info->workers.ordered = 1;
2507 fs_info->delalloc_workers.idle_thresh = 2;
2508 fs_info->delalloc_workers.ordered = 1;
2510 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2511 &fs_info->generic_worker);
2512 btrfs_init_workers(&fs_info->endio_workers, "endio",
2513 fs_info->thread_pool_size,
2514 &fs_info->generic_worker);
2515 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2516 fs_info->thread_pool_size,
2517 &fs_info->generic_worker);
2518 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2519 "endio-meta-write", fs_info->thread_pool_size,
2520 &fs_info->generic_worker);
2521 btrfs_init_workers(&fs_info->endio_raid56_workers,
2522 "endio-raid56", fs_info->thread_pool_size,
2523 &fs_info->generic_worker);
2524 btrfs_init_workers(&fs_info->rmw_workers,
2525 "rmw", fs_info->thread_pool_size,
2526 &fs_info->generic_worker);
2527 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2528 fs_info->thread_pool_size,
2529 &fs_info->generic_worker);
2530 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2531 1, &fs_info->generic_worker);
2532 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2533 fs_info->thread_pool_size,
2534 &fs_info->generic_worker);
2535 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2536 fs_info->thread_pool_size,
2537 &fs_info->generic_worker);
2538 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2539 &fs_info->generic_worker);
2542 * endios are largely parallel and should have a very
2543 * low idle thresh
2545 fs_info->endio_workers.idle_thresh = 4;
2546 fs_info->endio_meta_workers.idle_thresh = 4;
2547 fs_info->endio_raid56_workers.idle_thresh = 4;
2548 fs_info->rmw_workers.idle_thresh = 2;
2550 fs_info->endio_write_workers.idle_thresh = 2;
2551 fs_info->endio_meta_write_workers.idle_thresh = 2;
2552 fs_info->readahead_workers.idle_thresh = 2;
2555 * btrfs_start_workers can really only fail because of ENOMEM so just
2556 * return -ENOMEM if any of these fail.
2558 ret = btrfs_start_workers(&fs_info->workers);
2559 ret |= btrfs_start_workers(&fs_info->generic_worker);
2560 ret |= btrfs_start_workers(&fs_info->submit_workers);
2561 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2562 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2563 ret |= btrfs_start_workers(&fs_info->endio_workers);
2564 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2565 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2566 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2567 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2568 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2569 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2570 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2571 ret |= btrfs_start_workers(&fs_info->caching_workers);
2572 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2573 ret |= btrfs_start_workers(&fs_info->flush_workers);
2574 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2575 if (ret) {
2576 err = -ENOMEM;
2577 goto fail_sb_buffer;
2580 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2581 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2582 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2584 tree_root->nodesize = nodesize;
2585 tree_root->leafsize = leafsize;
2586 tree_root->sectorsize = sectorsize;
2587 tree_root->stripesize = stripesize;
2589 sb->s_blocksize = sectorsize;
2590 sb->s_blocksize_bits = blksize_bits(sectorsize);
2592 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2593 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2594 goto fail_sb_buffer;
2597 if (sectorsize != PAGE_SIZE) {
2598 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2599 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2600 goto fail_sb_buffer;
2603 mutex_lock(&fs_info->chunk_mutex);
2604 ret = btrfs_read_sys_array(tree_root);
2605 mutex_unlock(&fs_info->chunk_mutex);
2606 if (ret) {
2607 printk(KERN_WARNING "btrfs: failed to read the system "
2608 "array on %s\n", sb->s_id);
2609 goto fail_sb_buffer;
2612 blocksize = btrfs_level_size(tree_root,
2613 btrfs_super_chunk_root_level(disk_super));
2614 generation = btrfs_super_chunk_root_generation(disk_super);
2616 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2617 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2619 chunk_root->node = read_tree_block(chunk_root,
2620 btrfs_super_chunk_root(disk_super),
2621 blocksize, generation);
2622 if (!chunk_root->node ||
2623 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2624 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2625 sb->s_id);
2626 goto fail_tree_roots;
2628 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2629 chunk_root->commit_root = btrfs_root_node(chunk_root);
2631 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2632 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2634 ret = btrfs_read_chunk_tree(chunk_root);
2635 if (ret) {
2636 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2637 sb->s_id);
2638 goto fail_tree_roots;
2642 * keep the device that is marked to be the target device for the
2643 * dev_replace procedure
2645 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2647 if (!fs_devices->latest_bdev) {
2648 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2649 sb->s_id);
2650 goto fail_tree_roots;
2653 retry_root_backup:
2654 blocksize = btrfs_level_size(tree_root,
2655 btrfs_super_root_level(disk_super));
2656 generation = btrfs_super_generation(disk_super);
2658 tree_root->node = read_tree_block(tree_root,
2659 btrfs_super_root(disk_super),
2660 blocksize, generation);
2661 if (!tree_root->node ||
2662 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2663 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2664 sb->s_id);
2666 goto recovery_tree_root;
2669 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2670 tree_root->commit_root = btrfs_root_node(tree_root);
2672 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2673 location.type = BTRFS_ROOT_ITEM_KEY;
2674 location.offset = 0;
2676 extent_root = btrfs_read_tree_root(tree_root, &location);
2677 if (IS_ERR(extent_root)) {
2678 ret = PTR_ERR(extent_root);
2679 goto recovery_tree_root;
2681 extent_root->track_dirty = 1;
2682 fs_info->extent_root = extent_root;
2684 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2685 dev_root = btrfs_read_tree_root(tree_root, &location);
2686 if (IS_ERR(dev_root)) {
2687 ret = PTR_ERR(dev_root);
2688 goto recovery_tree_root;
2690 dev_root->track_dirty = 1;
2691 fs_info->dev_root = dev_root;
2692 btrfs_init_devices_late(fs_info);
2694 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2695 csum_root = btrfs_read_tree_root(tree_root, &location);
2696 if (IS_ERR(csum_root)) {
2697 ret = PTR_ERR(csum_root);
2698 goto recovery_tree_root;
2700 csum_root->track_dirty = 1;
2701 fs_info->csum_root = csum_root;
2703 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2704 quota_root = btrfs_read_tree_root(tree_root, &location);
2705 if (!IS_ERR(quota_root)) {
2706 quota_root->track_dirty = 1;
2707 fs_info->quota_enabled = 1;
2708 fs_info->pending_quota_state = 1;
2709 fs_info->quota_root = quota_root;
2712 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2713 uuid_root = btrfs_read_tree_root(tree_root, &location);
2714 if (IS_ERR(uuid_root)) {
2715 ret = PTR_ERR(uuid_root);
2716 if (ret != -ENOENT)
2717 goto recovery_tree_root;
2718 create_uuid_tree = true;
2719 check_uuid_tree = false;
2720 } else {
2721 uuid_root->track_dirty = 1;
2722 fs_info->uuid_root = uuid_root;
2723 create_uuid_tree = false;
2724 check_uuid_tree =
2725 generation != btrfs_super_uuid_tree_generation(disk_super);
2728 fs_info->generation = generation;
2729 fs_info->last_trans_committed = generation;
2731 ret = btrfs_recover_balance(fs_info);
2732 if (ret) {
2733 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2734 goto fail_block_groups;
2737 ret = btrfs_init_dev_stats(fs_info);
2738 if (ret) {
2739 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2740 ret);
2741 goto fail_block_groups;
2744 ret = btrfs_init_dev_replace(fs_info);
2745 if (ret) {
2746 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2747 goto fail_block_groups;
2750 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2752 ret = btrfs_init_space_info(fs_info);
2753 if (ret) {
2754 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2755 goto fail_block_groups;
2758 ret = btrfs_read_block_groups(extent_root);
2759 if (ret) {
2760 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2761 goto fail_block_groups;
2763 fs_info->num_tolerated_disk_barrier_failures =
2764 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2765 if (fs_info->fs_devices->missing_devices >
2766 fs_info->num_tolerated_disk_barrier_failures &&
2767 !(sb->s_flags & MS_RDONLY)) {
2768 printk(KERN_WARNING
2769 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2770 goto fail_block_groups;
2773 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2774 "btrfs-cleaner");
2775 if (IS_ERR(fs_info->cleaner_kthread))
2776 goto fail_block_groups;
2778 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2779 tree_root,
2780 "btrfs-transaction");
2781 if (IS_ERR(fs_info->transaction_kthread))
2782 goto fail_cleaner;
2784 if (!btrfs_test_opt(tree_root, SSD) &&
2785 !btrfs_test_opt(tree_root, NOSSD) &&
2786 !fs_info->fs_devices->rotating) {
2787 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2788 "mode\n");
2789 btrfs_set_opt(fs_info->mount_opt, SSD);
2792 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2793 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2794 ret = btrfsic_mount(tree_root, fs_devices,
2795 btrfs_test_opt(tree_root,
2796 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2797 1 : 0,
2798 fs_info->check_integrity_print_mask);
2799 if (ret)
2800 printk(KERN_WARNING "btrfs: failed to initialize"
2801 " integrity check module %s\n", sb->s_id);
2803 #endif
2804 ret = btrfs_read_qgroup_config(fs_info);
2805 if (ret)
2806 goto fail_trans_kthread;
2808 /* do not make disk changes in broken FS */
2809 if (btrfs_super_log_root(disk_super) != 0) {
2810 u64 bytenr = btrfs_super_log_root(disk_super);
2812 if (fs_devices->rw_devices == 0) {
2813 printk(KERN_WARNING "Btrfs log replay required "
2814 "on RO media\n");
2815 err = -EIO;
2816 goto fail_qgroup;
2818 blocksize =
2819 btrfs_level_size(tree_root,
2820 btrfs_super_log_root_level(disk_super));
2822 log_tree_root = btrfs_alloc_root(fs_info);
2823 if (!log_tree_root) {
2824 err = -ENOMEM;
2825 goto fail_qgroup;
2828 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2829 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2831 log_tree_root->node = read_tree_block(tree_root, bytenr,
2832 blocksize,
2833 generation + 1);
2834 if (!log_tree_root->node ||
2835 !extent_buffer_uptodate(log_tree_root->node)) {
2836 printk(KERN_ERR "btrfs: failed to read log tree\n");
2837 free_extent_buffer(log_tree_root->node);
2838 kfree(log_tree_root);
2839 goto fail_trans_kthread;
2841 /* returns with log_tree_root freed on success */
2842 ret = btrfs_recover_log_trees(log_tree_root);
2843 if (ret) {
2844 btrfs_error(tree_root->fs_info, ret,
2845 "Failed to recover log tree");
2846 free_extent_buffer(log_tree_root->node);
2847 kfree(log_tree_root);
2848 goto fail_trans_kthread;
2851 if (sb->s_flags & MS_RDONLY) {
2852 ret = btrfs_commit_super(tree_root);
2853 if (ret)
2854 goto fail_trans_kthread;
2858 ret = btrfs_find_orphan_roots(tree_root);
2859 if (ret)
2860 goto fail_trans_kthread;
2862 if (!(sb->s_flags & MS_RDONLY)) {
2863 ret = btrfs_cleanup_fs_roots(fs_info);
2864 if (ret)
2865 goto fail_trans_kthread;
2867 ret = btrfs_recover_relocation(tree_root);
2868 if (ret < 0) {
2869 printk(KERN_WARNING
2870 "btrfs: failed to recover relocation\n");
2871 err = -EINVAL;
2872 goto fail_qgroup;
2876 location.objectid = BTRFS_FS_TREE_OBJECTID;
2877 location.type = BTRFS_ROOT_ITEM_KEY;
2878 location.offset = 0;
2880 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2881 if (IS_ERR(fs_info->fs_root)) {
2882 err = PTR_ERR(fs_info->fs_root);
2883 goto fail_qgroup;
2886 if (sb->s_flags & MS_RDONLY)
2887 return 0;
2889 down_read(&fs_info->cleanup_work_sem);
2890 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2891 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2892 up_read(&fs_info->cleanup_work_sem);
2893 close_ctree(tree_root);
2894 return ret;
2896 up_read(&fs_info->cleanup_work_sem);
2898 ret = btrfs_resume_balance_async(fs_info);
2899 if (ret) {
2900 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2901 close_ctree(tree_root);
2902 return ret;
2905 ret = btrfs_resume_dev_replace_async(fs_info);
2906 if (ret) {
2907 pr_warn("btrfs: failed to resume dev_replace\n");
2908 close_ctree(tree_root);
2909 return ret;
2912 btrfs_qgroup_rescan_resume(fs_info);
2914 if (create_uuid_tree) {
2915 pr_info("btrfs: creating UUID tree\n");
2916 ret = btrfs_create_uuid_tree(fs_info);
2917 if (ret) {
2918 pr_warn("btrfs: failed to create the UUID tree %d\n",
2919 ret);
2920 close_ctree(tree_root);
2921 return ret;
2923 } else if (check_uuid_tree ||
2924 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2925 pr_info("btrfs: checking UUID tree\n");
2926 ret = btrfs_check_uuid_tree(fs_info);
2927 if (ret) {
2928 pr_warn("btrfs: failed to check the UUID tree %d\n",
2929 ret);
2930 close_ctree(tree_root);
2931 return ret;
2933 } else {
2934 fs_info->update_uuid_tree_gen = 1;
2937 return 0;
2939 fail_qgroup:
2940 btrfs_free_qgroup_config(fs_info);
2941 fail_trans_kthread:
2942 kthread_stop(fs_info->transaction_kthread);
2943 btrfs_cleanup_transaction(fs_info->tree_root);
2944 del_fs_roots(fs_info);
2945 fail_cleaner:
2946 kthread_stop(fs_info->cleaner_kthread);
2949 * make sure we're done with the btree inode before we stop our
2950 * kthreads
2952 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2954 fail_block_groups:
2955 btrfs_put_block_group_cache(fs_info);
2956 btrfs_free_block_groups(fs_info);
2958 fail_tree_roots:
2959 free_root_pointers(fs_info, 1);
2960 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2962 fail_sb_buffer:
2963 btrfs_stop_all_workers(fs_info);
2964 fail_alloc:
2965 fail_iput:
2966 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2968 iput(fs_info->btree_inode);
2969 fail_delalloc_bytes:
2970 percpu_counter_destroy(&fs_info->delalloc_bytes);
2971 fail_dirty_metadata_bytes:
2972 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2973 fail_bdi:
2974 bdi_destroy(&fs_info->bdi);
2975 fail_srcu:
2976 cleanup_srcu_struct(&fs_info->subvol_srcu);
2977 fail:
2978 btrfs_free_stripe_hash_table(fs_info);
2979 btrfs_close_devices(fs_info->fs_devices);
2980 return err;
2982 recovery_tree_root:
2983 if (!btrfs_test_opt(tree_root, RECOVERY))
2984 goto fail_tree_roots;
2986 free_root_pointers(fs_info, 0);
2988 /* don't use the log in recovery mode, it won't be valid */
2989 btrfs_set_super_log_root(disk_super, 0);
2991 /* we can't trust the free space cache either */
2992 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2994 ret = next_root_backup(fs_info, fs_info->super_copy,
2995 &num_backups_tried, &backup_index);
2996 if (ret == -1)
2997 goto fail_block_groups;
2998 goto retry_root_backup;
3001 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3003 if (uptodate) {
3004 set_buffer_uptodate(bh);
3005 } else {
3006 struct btrfs_device *device = (struct btrfs_device *)
3007 bh->b_private;
3009 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3010 "I/O error on %s\n",
3011 rcu_str_deref(device->name));
3012 /* note, we dont' set_buffer_write_io_error because we have
3013 * our own ways of dealing with the IO errors
3015 clear_buffer_uptodate(bh);
3016 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3018 unlock_buffer(bh);
3019 put_bh(bh);
3022 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3024 struct buffer_head *bh;
3025 struct buffer_head *latest = NULL;
3026 struct btrfs_super_block *super;
3027 int i;
3028 u64 transid = 0;
3029 u64 bytenr;
3031 /* we would like to check all the supers, but that would make
3032 * a btrfs mount succeed after a mkfs from a different FS.
3033 * So, we need to add a special mount option to scan for
3034 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3036 for (i = 0; i < 1; i++) {
3037 bytenr = btrfs_sb_offset(i);
3038 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3039 i_size_read(bdev->bd_inode))
3040 break;
3041 bh = __bread(bdev, bytenr / 4096,
3042 BTRFS_SUPER_INFO_SIZE);
3043 if (!bh)
3044 continue;
3046 super = (struct btrfs_super_block *)bh->b_data;
3047 if (btrfs_super_bytenr(super) != bytenr ||
3048 btrfs_super_magic(super) != BTRFS_MAGIC) {
3049 brelse(bh);
3050 continue;
3053 if (!latest || btrfs_super_generation(super) > transid) {
3054 brelse(latest);
3055 latest = bh;
3056 transid = btrfs_super_generation(super);
3057 } else {
3058 brelse(bh);
3061 return latest;
3065 * this should be called twice, once with wait == 0 and
3066 * once with wait == 1. When wait == 0 is done, all the buffer heads
3067 * we write are pinned.
3069 * They are released when wait == 1 is done.
3070 * max_mirrors must be the same for both runs, and it indicates how
3071 * many supers on this one device should be written.
3073 * max_mirrors == 0 means to write them all.
3075 static int write_dev_supers(struct btrfs_device *device,
3076 struct btrfs_super_block *sb,
3077 int do_barriers, int wait, int max_mirrors)
3079 struct buffer_head *bh;
3080 int i;
3081 int ret;
3082 int errors = 0;
3083 u32 crc;
3084 u64 bytenr;
3086 if (max_mirrors == 0)
3087 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3089 for (i = 0; i < max_mirrors; i++) {
3090 bytenr = btrfs_sb_offset(i);
3091 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3092 break;
3094 if (wait) {
3095 bh = __find_get_block(device->bdev, bytenr / 4096,
3096 BTRFS_SUPER_INFO_SIZE);
3097 if (!bh) {
3098 errors++;
3099 continue;
3101 wait_on_buffer(bh);
3102 if (!buffer_uptodate(bh))
3103 errors++;
3105 /* drop our reference */
3106 brelse(bh);
3108 /* drop the reference from the wait == 0 run */
3109 brelse(bh);
3110 continue;
3111 } else {
3112 btrfs_set_super_bytenr(sb, bytenr);
3114 crc = ~(u32)0;
3115 crc = btrfs_csum_data((char *)sb +
3116 BTRFS_CSUM_SIZE, crc,
3117 BTRFS_SUPER_INFO_SIZE -
3118 BTRFS_CSUM_SIZE);
3119 btrfs_csum_final(crc, sb->csum);
3122 * one reference for us, and we leave it for the
3123 * caller
3125 bh = __getblk(device->bdev, bytenr / 4096,
3126 BTRFS_SUPER_INFO_SIZE);
3127 if (!bh) {
3128 printk(KERN_ERR "btrfs: couldn't get super "
3129 "buffer head for bytenr %Lu\n", bytenr);
3130 errors++;
3131 continue;
3134 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3136 /* one reference for submit_bh */
3137 get_bh(bh);
3139 set_buffer_uptodate(bh);
3140 lock_buffer(bh);
3141 bh->b_end_io = btrfs_end_buffer_write_sync;
3142 bh->b_private = device;
3146 * we fua the first super. The others we allow
3147 * to go down lazy.
3149 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3150 if (ret)
3151 errors++;
3153 return errors < i ? 0 : -1;
3157 * endio for the write_dev_flush, this will wake anyone waiting
3158 * for the barrier when it is done
3160 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3162 if (err) {
3163 if (err == -EOPNOTSUPP)
3164 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3165 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3167 if (bio->bi_private)
3168 complete(bio->bi_private);
3169 bio_put(bio);
3173 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3174 * sent down. With wait == 1, it waits for the previous flush.
3176 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3177 * capable
3179 static int write_dev_flush(struct btrfs_device *device, int wait)
3181 struct bio *bio;
3182 int ret = 0;
3184 if (device->nobarriers)
3185 return 0;
3187 if (wait) {
3188 bio = device->flush_bio;
3189 if (!bio)
3190 return 0;
3192 wait_for_completion(&device->flush_wait);
3194 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3195 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3196 rcu_str_deref(device->name));
3197 device->nobarriers = 1;
3198 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3199 ret = -EIO;
3200 btrfs_dev_stat_inc_and_print(device,
3201 BTRFS_DEV_STAT_FLUSH_ERRS);
3204 /* drop the reference from the wait == 0 run */
3205 bio_put(bio);
3206 device->flush_bio = NULL;
3208 return ret;
3212 * one reference for us, and we leave it for the
3213 * caller
3215 device->flush_bio = NULL;
3216 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3217 if (!bio)
3218 return -ENOMEM;
3220 bio->bi_end_io = btrfs_end_empty_barrier;
3221 bio->bi_bdev = device->bdev;
3222 init_completion(&device->flush_wait);
3223 bio->bi_private = &device->flush_wait;
3224 device->flush_bio = bio;
3226 bio_get(bio);
3227 btrfsic_submit_bio(WRITE_FLUSH, bio);
3229 return 0;
3233 * send an empty flush down to each device in parallel,
3234 * then wait for them
3236 static int barrier_all_devices(struct btrfs_fs_info *info)
3238 struct list_head *head;
3239 struct btrfs_device *dev;
3240 int errors_send = 0;
3241 int errors_wait = 0;
3242 int ret;
3244 /* send down all the barriers */
3245 head = &info->fs_devices->devices;
3246 list_for_each_entry_rcu(dev, head, dev_list) {
3247 if (!dev->bdev) {
3248 errors_send++;
3249 continue;
3251 if (!dev->in_fs_metadata || !dev->writeable)
3252 continue;
3254 ret = write_dev_flush(dev, 0);
3255 if (ret)
3256 errors_send++;
3259 /* wait for all the barriers */
3260 list_for_each_entry_rcu(dev, head, dev_list) {
3261 if (!dev->bdev) {
3262 errors_wait++;
3263 continue;
3265 if (!dev->in_fs_metadata || !dev->writeable)
3266 continue;
3268 ret = write_dev_flush(dev, 1);
3269 if (ret)
3270 errors_wait++;
3272 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3273 errors_wait > info->num_tolerated_disk_barrier_failures)
3274 return -EIO;
3275 return 0;
3278 int btrfs_calc_num_tolerated_disk_barrier_failures(
3279 struct btrfs_fs_info *fs_info)
3281 struct btrfs_ioctl_space_info space;
3282 struct btrfs_space_info *sinfo;
3283 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3284 BTRFS_BLOCK_GROUP_SYSTEM,
3285 BTRFS_BLOCK_GROUP_METADATA,
3286 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3287 int num_types = 4;
3288 int i;
3289 int c;
3290 int num_tolerated_disk_barrier_failures =
3291 (int)fs_info->fs_devices->num_devices;
3293 for (i = 0; i < num_types; i++) {
3294 struct btrfs_space_info *tmp;
3296 sinfo = NULL;
3297 rcu_read_lock();
3298 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3299 if (tmp->flags == types[i]) {
3300 sinfo = tmp;
3301 break;
3304 rcu_read_unlock();
3306 if (!sinfo)
3307 continue;
3309 down_read(&sinfo->groups_sem);
3310 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3311 if (!list_empty(&sinfo->block_groups[c])) {
3312 u64 flags;
3314 btrfs_get_block_group_info(
3315 &sinfo->block_groups[c], &space);
3316 if (space.total_bytes == 0 ||
3317 space.used_bytes == 0)
3318 continue;
3319 flags = space.flags;
3321 * return
3322 * 0: if dup, single or RAID0 is configured for
3323 * any of metadata, system or data, else
3324 * 1: if RAID5 is configured, or if RAID1 or
3325 * RAID10 is configured and only two mirrors
3326 * are used, else
3327 * 2: if RAID6 is configured, else
3328 * num_mirrors - 1: if RAID1 or RAID10 is
3329 * configured and more than
3330 * 2 mirrors are used.
3332 if (num_tolerated_disk_barrier_failures > 0 &&
3333 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3334 BTRFS_BLOCK_GROUP_RAID0)) ||
3335 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3336 == 0)))
3337 num_tolerated_disk_barrier_failures = 0;
3338 else if (num_tolerated_disk_barrier_failures > 1) {
3339 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3340 BTRFS_BLOCK_GROUP_RAID5 |
3341 BTRFS_BLOCK_GROUP_RAID10)) {
3342 num_tolerated_disk_barrier_failures = 1;
3343 } else if (flags &
3344 BTRFS_BLOCK_GROUP_RAID6) {
3345 num_tolerated_disk_barrier_failures = 2;
3350 up_read(&sinfo->groups_sem);
3353 return num_tolerated_disk_barrier_failures;
3356 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3358 struct list_head *head;
3359 struct btrfs_device *dev;
3360 struct btrfs_super_block *sb;
3361 struct btrfs_dev_item *dev_item;
3362 int ret;
3363 int do_barriers;
3364 int max_errors;
3365 int total_errors = 0;
3366 u64 flags;
3368 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3369 backup_super_roots(root->fs_info);
3371 sb = root->fs_info->super_for_commit;
3372 dev_item = &sb->dev_item;
3374 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3375 head = &root->fs_info->fs_devices->devices;
3376 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3378 if (do_barriers) {
3379 ret = barrier_all_devices(root->fs_info);
3380 if (ret) {
3381 mutex_unlock(
3382 &root->fs_info->fs_devices->device_list_mutex);
3383 btrfs_error(root->fs_info, ret,
3384 "errors while submitting device barriers.");
3385 return ret;
3389 list_for_each_entry_rcu(dev, head, dev_list) {
3390 if (!dev->bdev) {
3391 total_errors++;
3392 continue;
3394 if (!dev->in_fs_metadata || !dev->writeable)
3395 continue;
3397 btrfs_set_stack_device_generation(dev_item, 0);
3398 btrfs_set_stack_device_type(dev_item, dev->type);
3399 btrfs_set_stack_device_id(dev_item, dev->devid);
3400 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3401 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3402 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3403 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3404 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3405 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3406 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3408 flags = btrfs_super_flags(sb);
3409 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3411 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3412 if (ret)
3413 total_errors++;
3415 if (total_errors > max_errors) {
3416 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3417 total_errors);
3419 /* FUA is masked off if unsupported and can't be the reason */
3420 btrfs_error(root->fs_info, -EIO,
3421 "%d errors while writing supers", total_errors);
3422 return -EIO;
3425 total_errors = 0;
3426 list_for_each_entry_rcu(dev, head, dev_list) {
3427 if (!dev->bdev)
3428 continue;
3429 if (!dev->in_fs_metadata || !dev->writeable)
3430 continue;
3432 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3433 if (ret)
3434 total_errors++;
3436 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3437 if (total_errors > max_errors) {
3438 btrfs_error(root->fs_info, -EIO,
3439 "%d errors while writing supers", total_errors);
3440 return -EIO;
3442 return 0;
3445 int write_ctree_super(struct btrfs_trans_handle *trans,
3446 struct btrfs_root *root, int max_mirrors)
3448 int ret;
3450 ret = write_all_supers(root, max_mirrors);
3451 return ret;
3454 /* Drop a fs root from the radix tree and free it. */
3455 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3456 struct btrfs_root *root)
3458 spin_lock(&fs_info->fs_roots_radix_lock);
3459 radix_tree_delete(&fs_info->fs_roots_radix,
3460 (unsigned long)root->root_key.objectid);
3461 spin_unlock(&fs_info->fs_roots_radix_lock);
3463 if (btrfs_root_refs(&root->root_item) == 0)
3464 synchronize_srcu(&fs_info->subvol_srcu);
3466 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3467 btrfs_free_log(NULL, root);
3468 btrfs_free_log_root_tree(NULL, fs_info);
3471 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3472 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3473 free_fs_root(root);
3476 static void free_fs_root(struct btrfs_root *root)
3478 iput(root->cache_inode);
3479 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3480 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3481 root->orphan_block_rsv = NULL;
3482 if (root->anon_dev)
3483 free_anon_bdev(root->anon_dev);
3484 free_extent_buffer(root->node);
3485 free_extent_buffer(root->commit_root);
3486 kfree(root->free_ino_ctl);
3487 kfree(root->free_ino_pinned);
3488 kfree(root->name);
3489 btrfs_put_fs_root(root);
3492 void btrfs_free_fs_root(struct btrfs_root *root)
3494 free_fs_root(root);
3497 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3499 u64 root_objectid = 0;
3500 struct btrfs_root *gang[8];
3501 int i;
3502 int ret;
3504 while (1) {
3505 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3506 (void **)gang, root_objectid,
3507 ARRAY_SIZE(gang));
3508 if (!ret)
3509 break;
3511 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3512 for (i = 0; i < ret; i++) {
3513 int err;
3515 root_objectid = gang[i]->root_key.objectid;
3516 err = btrfs_orphan_cleanup(gang[i]);
3517 if (err)
3518 return err;
3520 root_objectid++;
3522 return 0;
3525 int btrfs_commit_super(struct btrfs_root *root)
3527 struct btrfs_trans_handle *trans;
3528 int ret;
3530 mutex_lock(&root->fs_info->cleaner_mutex);
3531 btrfs_run_delayed_iputs(root);
3532 mutex_unlock(&root->fs_info->cleaner_mutex);
3533 wake_up_process(root->fs_info->cleaner_kthread);
3535 /* wait until ongoing cleanup work done */
3536 down_write(&root->fs_info->cleanup_work_sem);
3537 up_write(&root->fs_info->cleanup_work_sem);
3539 trans = btrfs_join_transaction(root);
3540 if (IS_ERR(trans))
3541 return PTR_ERR(trans);
3542 ret = btrfs_commit_transaction(trans, root);
3543 if (ret)
3544 return ret;
3545 /* run commit again to drop the original snapshot */
3546 trans = btrfs_join_transaction(root);
3547 if (IS_ERR(trans))
3548 return PTR_ERR(trans);
3549 ret = btrfs_commit_transaction(trans, root);
3550 if (ret)
3551 return ret;
3552 ret = btrfs_write_and_wait_transaction(NULL, root);
3553 if (ret) {
3554 btrfs_error(root->fs_info, ret,
3555 "Failed to sync btree inode to disk.");
3556 return ret;
3559 ret = write_ctree_super(NULL, root, 0);
3560 return ret;
3563 int close_ctree(struct btrfs_root *root)
3565 struct btrfs_fs_info *fs_info = root->fs_info;
3566 int ret;
3568 fs_info->closing = 1;
3569 smp_mb();
3571 /* wait for the uuid_scan task to finish */
3572 down(&fs_info->uuid_tree_rescan_sem);
3573 /* avoid complains from lockdep et al., set sem back to initial state */
3574 up(&fs_info->uuid_tree_rescan_sem);
3576 /* pause restriper - we want to resume on mount */
3577 btrfs_pause_balance(fs_info);
3579 btrfs_dev_replace_suspend_for_unmount(fs_info);
3581 btrfs_scrub_cancel(fs_info);
3583 /* wait for any defraggers to finish */
3584 wait_event(fs_info->transaction_wait,
3585 (atomic_read(&fs_info->defrag_running) == 0));
3587 /* clear out the rbtree of defraggable inodes */
3588 btrfs_cleanup_defrag_inodes(fs_info);
3590 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3591 ret = btrfs_commit_super(root);
3592 if (ret)
3593 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3596 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3597 btrfs_error_commit_super(root);
3599 btrfs_put_block_group_cache(fs_info);
3601 kthread_stop(fs_info->transaction_kthread);
3602 kthread_stop(fs_info->cleaner_kthread);
3604 fs_info->closing = 2;
3605 smp_mb();
3607 btrfs_free_qgroup_config(root->fs_info);
3609 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3610 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3611 percpu_counter_sum(&fs_info->delalloc_bytes));
3614 btrfs_free_block_groups(fs_info);
3616 btrfs_stop_all_workers(fs_info);
3618 del_fs_roots(fs_info);
3620 free_root_pointers(fs_info, 1);
3622 iput(fs_info->btree_inode);
3624 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3625 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3626 btrfsic_unmount(root, fs_info->fs_devices);
3627 #endif
3629 btrfs_close_devices(fs_info->fs_devices);
3630 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3632 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3633 percpu_counter_destroy(&fs_info->delalloc_bytes);
3634 bdi_destroy(&fs_info->bdi);
3635 cleanup_srcu_struct(&fs_info->subvol_srcu);
3637 btrfs_free_stripe_hash_table(fs_info);
3639 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3640 root->orphan_block_rsv = NULL;
3642 return 0;
3645 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3646 int atomic)
3648 int ret;
3649 struct inode *btree_inode = buf->pages[0]->mapping->host;
3651 ret = extent_buffer_uptodate(buf);
3652 if (!ret)
3653 return ret;
3655 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3656 parent_transid, atomic);
3657 if (ret == -EAGAIN)
3658 return ret;
3659 return !ret;
3662 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3664 return set_extent_buffer_uptodate(buf);
3667 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3669 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3670 u64 transid = btrfs_header_generation(buf);
3671 int was_dirty;
3673 btrfs_assert_tree_locked(buf);
3674 if (transid != root->fs_info->generation)
3675 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3676 "found %llu running %llu\n",
3677 buf->start, transid, root->fs_info->generation);
3678 was_dirty = set_extent_buffer_dirty(buf);
3679 if (!was_dirty)
3680 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3681 buf->len,
3682 root->fs_info->dirty_metadata_batch);
3685 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3686 int flush_delayed)
3689 * looks as though older kernels can get into trouble with
3690 * this code, they end up stuck in balance_dirty_pages forever
3692 int ret;
3694 if (current->flags & PF_MEMALLOC)
3695 return;
3697 if (flush_delayed)
3698 btrfs_balance_delayed_items(root);
3700 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3701 BTRFS_DIRTY_METADATA_THRESH);
3702 if (ret > 0) {
3703 balance_dirty_pages_ratelimited(
3704 root->fs_info->btree_inode->i_mapping);
3706 return;
3709 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3711 __btrfs_btree_balance_dirty(root, 1);
3714 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3716 __btrfs_btree_balance_dirty(root, 0);
3719 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3721 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3722 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3725 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3726 int read_only)
3729 * Placeholder for checks
3731 return 0;
3734 static void btrfs_error_commit_super(struct btrfs_root *root)
3736 mutex_lock(&root->fs_info->cleaner_mutex);
3737 btrfs_run_delayed_iputs(root);
3738 mutex_unlock(&root->fs_info->cleaner_mutex);
3740 down_write(&root->fs_info->cleanup_work_sem);
3741 up_write(&root->fs_info->cleanup_work_sem);
3743 /* cleanup FS via transaction */
3744 btrfs_cleanup_transaction(root);
3747 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3748 struct btrfs_root *root)
3750 struct btrfs_inode *btrfs_inode;
3751 struct list_head splice;
3753 INIT_LIST_HEAD(&splice);
3755 mutex_lock(&root->fs_info->ordered_operations_mutex);
3756 spin_lock(&root->fs_info->ordered_root_lock);
3758 list_splice_init(&t->ordered_operations, &splice);
3759 while (!list_empty(&splice)) {
3760 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3761 ordered_operations);
3763 list_del_init(&btrfs_inode->ordered_operations);
3764 spin_unlock(&root->fs_info->ordered_root_lock);
3766 btrfs_invalidate_inodes(btrfs_inode->root);
3768 spin_lock(&root->fs_info->ordered_root_lock);
3771 spin_unlock(&root->fs_info->ordered_root_lock);
3772 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3775 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3777 struct btrfs_ordered_extent *ordered;
3779 spin_lock(&root->ordered_extent_lock);
3781 * This will just short circuit the ordered completion stuff which will
3782 * make sure the ordered extent gets properly cleaned up.
3784 list_for_each_entry(ordered, &root->ordered_extents,
3785 root_extent_list)
3786 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3787 spin_unlock(&root->ordered_extent_lock);
3790 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3792 struct btrfs_root *root;
3793 struct list_head splice;
3795 INIT_LIST_HEAD(&splice);
3797 spin_lock(&fs_info->ordered_root_lock);
3798 list_splice_init(&fs_info->ordered_roots, &splice);
3799 while (!list_empty(&splice)) {
3800 root = list_first_entry(&splice, struct btrfs_root,
3801 ordered_root);
3802 list_del_init(&root->ordered_root);
3804 btrfs_destroy_ordered_extents(root);
3806 cond_resched_lock(&fs_info->ordered_root_lock);
3808 spin_unlock(&fs_info->ordered_root_lock);
3811 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3812 struct btrfs_root *root)
3814 struct rb_node *node;
3815 struct btrfs_delayed_ref_root *delayed_refs;
3816 struct btrfs_delayed_ref_node *ref;
3817 int ret = 0;
3819 delayed_refs = &trans->delayed_refs;
3821 spin_lock(&delayed_refs->lock);
3822 if (delayed_refs->num_entries == 0) {
3823 spin_unlock(&delayed_refs->lock);
3824 printk(KERN_INFO "delayed_refs has NO entry\n");
3825 return ret;
3828 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3829 struct btrfs_delayed_ref_head *head = NULL;
3830 bool pin_bytes = false;
3832 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3833 atomic_set(&ref->refs, 1);
3834 if (btrfs_delayed_ref_is_head(ref)) {
3836 head = btrfs_delayed_node_to_head(ref);
3837 if (!mutex_trylock(&head->mutex)) {
3838 atomic_inc(&ref->refs);
3839 spin_unlock(&delayed_refs->lock);
3841 /* Need to wait for the delayed ref to run */
3842 mutex_lock(&head->mutex);
3843 mutex_unlock(&head->mutex);
3844 btrfs_put_delayed_ref(ref);
3846 spin_lock(&delayed_refs->lock);
3847 continue;
3850 if (head->must_insert_reserved)
3851 pin_bytes = true;
3852 btrfs_free_delayed_extent_op(head->extent_op);
3853 delayed_refs->num_heads--;
3854 if (list_empty(&head->cluster))
3855 delayed_refs->num_heads_ready--;
3856 list_del_init(&head->cluster);
3859 ref->in_tree = 0;
3860 rb_erase(&ref->rb_node, &delayed_refs->root);
3861 delayed_refs->num_entries--;
3862 spin_unlock(&delayed_refs->lock);
3863 if (head) {
3864 if (pin_bytes)
3865 btrfs_pin_extent(root, ref->bytenr,
3866 ref->num_bytes, 1);
3867 mutex_unlock(&head->mutex);
3869 btrfs_put_delayed_ref(ref);
3871 cond_resched();
3872 spin_lock(&delayed_refs->lock);
3875 spin_unlock(&delayed_refs->lock);
3877 return ret;
3880 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3882 struct btrfs_pending_snapshot *snapshot;
3883 struct list_head splice;
3885 INIT_LIST_HEAD(&splice);
3887 list_splice_init(&t->pending_snapshots, &splice);
3889 while (!list_empty(&splice)) {
3890 snapshot = list_entry(splice.next,
3891 struct btrfs_pending_snapshot,
3892 list);
3893 snapshot->error = -ECANCELED;
3894 list_del_init(&snapshot->list);
3898 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3900 struct btrfs_inode *btrfs_inode;
3901 struct list_head splice;
3903 INIT_LIST_HEAD(&splice);
3905 spin_lock(&root->delalloc_lock);
3906 list_splice_init(&root->delalloc_inodes, &splice);
3908 while (!list_empty(&splice)) {
3909 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3910 delalloc_inodes);
3912 list_del_init(&btrfs_inode->delalloc_inodes);
3913 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3914 &btrfs_inode->runtime_flags);
3915 spin_unlock(&root->delalloc_lock);
3917 btrfs_invalidate_inodes(btrfs_inode->root);
3919 spin_lock(&root->delalloc_lock);
3922 spin_unlock(&root->delalloc_lock);
3925 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3927 struct btrfs_root *root;
3928 struct list_head splice;
3930 INIT_LIST_HEAD(&splice);
3932 spin_lock(&fs_info->delalloc_root_lock);
3933 list_splice_init(&fs_info->delalloc_roots, &splice);
3934 while (!list_empty(&splice)) {
3935 root = list_first_entry(&splice, struct btrfs_root,
3936 delalloc_root);
3937 list_del_init(&root->delalloc_root);
3938 root = btrfs_grab_fs_root(root);
3939 BUG_ON(!root);
3940 spin_unlock(&fs_info->delalloc_root_lock);
3942 btrfs_destroy_delalloc_inodes(root);
3943 btrfs_put_fs_root(root);
3945 spin_lock(&fs_info->delalloc_root_lock);
3947 spin_unlock(&fs_info->delalloc_root_lock);
3950 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3951 struct extent_io_tree *dirty_pages,
3952 int mark)
3954 int ret;
3955 struct extent_buffer *eb;
3956 u64 start = 0;
3957 u64 end;
3959 while (1) {
3960 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3961 mark, NULL);
3962 if (ret)
3963 break;
3965 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3966 while (start <= end) {
3967 eb = btrfs_find_tree_block(root, start,
3968 root->leafsize);
3969 start += root->leafsize;
3970 if (!eb)
3971 continue;
3972 wait_on_extent_buffer_writeback(eb);
3974 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3975 &eb->bflags))
3976 clear_extent_buffer_dirty(eb);
3977 free_extent_buffer_stale(eb);
3981 return ret;
3984 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3985 struct extent_io_tree *pinned_extents)
3987 struct extent_io_tree *unpin;
3988 u64 start;
3989 u64 end;
3990 int ret;
3991 bool loop = true;
3993 unpin = pinned_extents;
3994 again:
3995 while (1) {
3996 ret = find_first_extent_bit(unpin, 0, &start, &end,
3997 EXTENT_DIRTY, NULL);
3998 if (ret)
3999 break;
4001 /* opt_discard */
4002 if (btrfs_test_opt(root, DISCARD))
4003 ret = btrfs_error_discard_extent(root, start,
4004 end + 1 - start,
4005 NULL);
4007 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4008 btrfs_error_unpin_extent_range(root, start, end);
4009 cond_resched();
4012 if (loop) {
4013 if (unpin == &root->fs_info->freed_extents[0])
4014 unpin = &root->fs_info->freed_extents[1];
4015 else
4016 unpin = &root->fs_info->freed_extents[0];
4017 loop = false;
4018 goto again;
4021 return 0;
4024 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4025 struct btrfs_root *root)
4027 btrfs_destroy_delayed_refs(cur_trans, root);
4028 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4029 cur_trans->dirty_pages.dirty_bytes);
4031 cur_trans->state = TRANS_STATE_COMMIT_START;
4032 wake_up(&root->fs_info->transaction_blocked_wait);
4034 btrfs_evict_pending_snapshots(cur_trans);
4036 cur_trans->state = TRANS_STATE_UNBLOCKED;
4037 wake_up(&root->fs_info->transaction_wait);
4039 btrfs_destroy_delayed_inodes(root);
4040 btrfs_assert_delayed_root_empty(root);
4042 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4043 EXTENT_DIRTY);
4044 btrfs_destroy_pinned_extent(root,
4045 root->fs_info->pinned_extents);
4047 cur_trans->state =TRANS_STATE_COMPLETED;
4048 wake_up(&cur_trans->commit_wait);
4051 memset(cur_trans, 0, sizeof(*cur_trans));
4052 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4056 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4058 struct btrfs_transaction *t;
4059 LIST_HEAD(list);
4061 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4063 spin_lock(&root->fs_info->trans_lock);
4064 list_splice_init(&root->fs_info->trans_list, &list);
4065 root->fs_info->running_transaction = NULL;
4066 spin_unlock(&root->fs_info->trans_lock);
4068 while (!list_empty(&list)) {
4069 t = list_entry(list.next, struct btrfs_transaction, list);
4071 btrfs_destroy_ordered_operations(t, root);
4073 btrfs_destroy_all_ordered_extents(root->fs_info);
4075 btrfs_destroy_delayed_refs(t, root);
4078 * FIXME: cleanup wait for commit
4079 * We needn't acquire the lock here, because we are during
4080 * the umount, there is no other task which will change it.
4082 t->state = TRANS_STATE_COMMIT_START;
4083 smp_mb();
4084 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4085 wake_up(&root->fs_info->transaction_blocked_wait);
4087 btrfs_evict_pending_snapshots(t);
4089 t->state = TRANS_STATE_UNBLOCKED;
4090 smp_mb();
4091 if (waitqueue_active(&root->fs_info->transaction_wait))
4092 wake_up(&root->fs_info->transaction_wait);
4094 btrfs_destroy_delayed_inodes(root);
4095 btrfs_assert_delayed_root_empty(root);
4097 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4099 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4100 EXTENT_DIRTY);
4102 btrfs_destroy_pinned_extent(root,
4103 root->fs_info->pinned_extents);
4105 t->state = TRANS_STATE_COMPLETED;
4106 smp_mb();
4107 if (waitqueue_active(&t->commit_wait))
4108 wake_up(&t->commit_wait);
4110 atomic_set(&t->use_count, 0);
4111 list_del_init(&t->list);
4112 memset(t, 0, sizeof(*t));
4113 kmem_cache_free(btrfs_transaction_cachep, t);
4116 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4118 return 0;
4121 static struct extent_io_ops btree_extent_io_ops = {
4122 .readpage_end_io_hook = btree_readpage_end_io_hook,
4123 .readpage_io_failed_hook = btree_io_failed_hook,
4124 .submit_bio_hook = btree_submit_bio_hook,
4125 /* note we're sharing with inode.c for the merge bio hook */
4126 .merge_bio_hook = btrfs_merge_bio_hook,