target: remove transport_generic_remove
[linux-2.6/btrfs-unstable.git] / drivers / target / target_core_transport.c
blob4f21b88b85b138a0fc0e101d1ed713ff0c814faa
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_scdb.h"
58 #include "target_core_ua.h"
60 static int sub_api_initialized;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72 /* Used for transport_dev_get_map_*() */
73 typedef int (*map_func_t)(struct se_task *, u32);
75 static int transport_generic_write_pending(struct se_cmd *);
76 static int transport_processing_thread(void *param);
77 static int __transport_execute_tasks(struct se_device *dev);
78 static void transport_complete_task_attr(struct se_cmd *cmd);
79 static int transport_complete_qf(struct se_cmd *cmd);
80 static void transport_handle_queue_full(struct se_cmd *cmd,
81 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
82 static void transport_direct_request_timeout(struct se_cmd *cmd);
83 static void transport_free_dev_tasks(struct se_cmd *cmd);
84 static u32 transport_allocate_tasks(struct se_cmd *cmd,
85 unsigned long long starting_lba,
86 enum dma_data_direction data_direction,
87 struct scatterlist *sgl, unsigned int nents);
88 static int transport_generic_get_mem(struct se_cmd *cmd);
89 static bool transport_put_cmd(struct se_cmd *cmd);
90 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
91 struct se_queue_obj *qobj);
92 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
93 static void transport_stop_all_task_timers(struct se_cmd *cmd);
95 int init_se_kmem_caches(void)
97 se_cmd_cache = kmem_cache_create("se_cmd_cache",
98 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
99 if (!se_cmd_cache) {
100 pr_err("kmem_cache_create for struct se_cmd failed\n");
101 goto out;
103 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
104 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
105 0, NULL);
106 if (!se_tmr_req_cache) {
107 pr_err("kmem_cache_create() for struct se_tmr_req"
108 " failed\n");
109 goto out;
111 se_sess_cache = kmem_cache_create("se_sess_cache",
112 sizeof(struct se_session), __alignof__(struct se_session),
113 0, NULL);
114 if (!se_sess_cache) {
115 pr_err("kmem_cache_create() for struct se_session"
116 " failed\n");
117 goto out;
119 se_ua_cache = kmem_cache_create("se_ua_cache",
120 sizeof(struct se_ua), __alignof__(struct se_ua),
121 0, NULL);
122 if (!se_ua_cache) {
123 pr_err("kmem_cache_create() for struct se_ua failed\n");
124 goto out;
126 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
127 sizeof(struct t10_pr_registration),
128 __alignof__(struct t10_pr_registration), 0, NULL);
129 if (!t10_pr_reg_cache) {
130 pr_err("kmem_cache_create() for struct t10_pr_registration"
131 " failed\n");
132 goto out;
134 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
135 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
136 0, NULL);
137 if (!t10_alua_lu_gp_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
139 " failed\n");
140 goto out;
142 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
143 sizeof(struct t10_alua_lu_gp_member),
144 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
145 if (!t10_alua_lu_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
147 "cache failed\n");
148 goto out;
150 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
151 sizeof(struct t10_alua_tg_pt_gp),
152 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
153 if (!t10_alua_tg_pt_gp_cache) {
154 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
155 "cache failed\n");
156 goto out;
158 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
159 "t10_alua_tg_pt_gp_mem_cache",
160 sizeof(struct t10_alua_tg_pt_gp_member),
161 __alignof__(struct t10_alua_tg_pt_gp_member),
162 0, NULL);
163 if (!t10_alua_tg_pt_gp_mem_cache) {
164 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
165 "mem_t failed\n");
166 goto out;
169 return 0;
170 out:
171 if (se_cmd_cache)
172 kmem_cache_destroy(se_cmd_cache);
173 if (se_tmr_req_cache)
174 kmem_cache_destroy(se_tmr_req_cache);
175 if (se_sess_cache)
176 kmem_cache_destroy(se_sess_cache);
177 if (se_ua_cache)
178 kmem_cache_destroy(se_ua_cache);
179 if (t10_pr_reg_cache)
180 kmem_cache_destroy(t10_pr_reg_cache);
181 if (t10_alua_lu_gp_cache)
182 kmem_cache_destroy(t10_alua_lu_gp_cache);
183 if (t10_alua_lu_gp_mem_cache)
184 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
185 if (t10_alua_tg_pt_gp_cache)
186 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
187 if (t10_alua_tg_pt_gp_mem_cache)
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 return -ENOMEM;
192 void release_se_kmem_caches(void)
194 kmem_cache_destroy(se_cmd_cache);
195 kmem_cache_destroy(se_tmr_req_cache);
196 kmem_cache_destroy(se_sess_cache);
197 kmem_cache_destroy(se_ua_cache);
198 kmem_cache_destroy(t10_pr_reg_cache);
199 kmem_cache_destroy(t10_alua_lu_gp_cache);
200 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
201 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
202 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
205 /* This code ensures unique mib indexes are handed out. */
206 static DEFINE_SPINLOCK(scsi_mib_index_lock);
207 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
210 * Allocate a new row index for the entry type specified
212 u32 scsi_get_new_index(scsi_index_t type)
214 u32 new_index;
216 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
218 spin_lock(&scsi_mib_index_lock);
219 new_index = ++scsi_mib_index[type];
220 spin_unlock(&scsi_mib_index_lock);
222 return new_index;
225 void transport_init_queue_obj(struct se_queue_obj *qobj)
227 atomic_set(&qobj->queue_cnt, 0);
228 INIT_LIST_HEAD(&qobj->qobj_list);
229 init_waitqueue_head(&qobj->thread_wq);
230 spin_lock_init(&qobj->cmd_queue_lock);
232 EXPORT_SYMBOL(transport_init_queue_obj);
234 static int transport_subsystem_reqmods(void)
236 int ret;
238 ret = request_module("target_core_iblock");
239 if (ret != 0)
240 pr_err("Unable to load target_core_iblock\n");
242 ret = request_module("target_core_file");
243 if (ret != 0)
244 pr_err("Unable to load target_core_file\n");
246 ret = request_module("target_core_pscsi");
247 if (ret != 0)
248 pr_err("Unable to load target_core_pscsi\n");
250 ret = request_module("target_core_stgt");
251 if (ret != 0)
252 pr_err("Unable to load target_core_stgt\n");
254 return 0;
257 int transport_subsystem_check_init(void)
259 int ret;
261 if (sub_api_initialized)
262 return 0;
264 * Request the loading of known TCM subsystem plugins..
266 ret = transport_subsystem_reqmods();
267 if (ret < 0)
268 return ret;
270 sub_api_initialized = 1;
271 return 0;
274 struct se_session *transport_init_session(void)
276 struct se_session *se_sess;
278 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
279 if (!se_sess) {
280 pr_err("Unable to allocate struct se_session from"
281 " se_sess_cache\n");
282 return ERR_PTR(-ENOMEM);
284 INIT_LIST_HEAD(&se_sess->sess_list);
285 INIT_LIST_HEAD(&se_sess->sess_acl_list);
287 return se_sess;
289 EXPORT_SYMBOL(transport_init_session);
292 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
294 void __transport_register_session(
295 struct se_portal_group *se_tpg,
296 struct se_node_acl *se_nacl,
297 struct se_session *se_sess,
298 void *fabric_sess_ptr)
300 unsigned char buf[PR_REG_ISID_LEN];
302 se_sess->se_tpg = se_tpg;
303 se_sess->fabric_sess_ptr = fabric_sess_ptr;
305 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
307 * Only set for struct se_session's that will actually be moving I/O.
308 * eg: *NOT* discovery sessions.
310 if (se_nacl) {
312 * If the fabric module supports an ISID based TransportID,
313 * save this value in binary from the fabric I_T Nexus now.
315 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
316 memset(&buf[0], 0, PR_REG_ISID_LEN);
317 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
318 &buf[0], PR_REG_ISID_LEN);
319 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
321 spin_lock_irq(&se_nacl->nacl_sess_lock);
323 * The se_nacl->nacl_sess pointer will be set to the
324 * last active I_T Nexus for each struct se_node_acl.
326 se_nacl->nacl_sess = se_sess;
328 list_add_tail(&se_sess->sess_acl_list,
329 &se_nacl->acl_sess_list);
330 spin_unlock_irq(&se_nacl->nacl_sess_lock);
332 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
334 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
335 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
337 EXPORT_SYMBOL(__transport_register_session);
339 void transport_register_session(
340 struct se_portal_group *se_tpg,
341 struct se_node_acl *se_nacl,
342 struct se_session *se_sess,
343 void *fabric_sess_ptr)
345 spin_lock_bh(&se_tpg->session_lock);
346 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
347 spin_unlock_bh(&se_tpg->session_lock);
349 EXPORT_SYMBOL(transport_register_session);
351 void transport_deregister_session_configfs(struct se_session *se_sess)
353 struct se_node_acl *se_nacl;
354 unsigned long flags;
356 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
358 se_nacl = se_sess->se_node_acl;
359 if (se_nacl) {
360 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
361 list_del(&se_sess->sess_acl_list);
363 * If the session list is empty, then clear the pointer.
364 * Otherwise, set the struct se_session pointer from the tail
365 * element of the per struct se_node_acl active session list.
367 if (list_empty(&se_nacl->acl_sess_list))
368 se_nacl->nacl_sess = NULL;
369 else {
370 se_nacl->nacl_sess = container_of(
371 se_nacl->acl_sess_list.prev,
372 struct se_session, sess_acl_list);
374 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
377 EXPORT_SYMBOL(transport_deregister_session_configfs);
379 void transport_free_session(struct se_session *se_sess)
381 kmem_cache_free(se_sess_cache, se_sess);
383 EXPORT_SYMBOL(transport_free_session);
385 void transport_deregister_session(struct se_session *se_sess)
387 struct se_portal_group *se_tpg = se_sess->se_tpg;
388 struct se_node_acl *se_nacl;
389 unsigned long flags;
391 if (!se_tpg) {
392 transport_free_session(se_sess);
393 return;
396 spin_lock_irqsave(&se_tpg->session_lock, flags);
397 list_del(&se_sess->sess_list);
398 se_sess->se_tpg = NULL;
399 se_sess->fabric_sess_ptr = NULL;
400 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
403 * Determine if we need to do extra work for this initiator node's
404 * struct se_node_acl if it had been previously dynamically generated.
406 se_nacl = se_sess->se_node_acl;
407 if (se_nacl) {
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 if (se_nacl->dynamic_node_acl) {
410 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
411 se_tpg)) {
412 list_del(&se_nacl->acl_list);
413 se_tpg->num_node_acls--;
414 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
416 core_tpg_wait_for_nacl_pr_ref(se_nacl);
417 core_free_device_list_for_node(se_nacl, se_tpg);
418 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
419 se_nacl);
420 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
423 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
426 transport_free_session(se_sess);
428 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
429 se_tpg->se_tpg_tfo->get_fabric_name());
431 EXPORT_SYMBOL(transport_deregister_session);
434 * Called with cmd->t_state_lock held.
436 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
438 struct se_device *dev;
439 struct se_task *task;
440 unsigned long flags;
442 list_for_each_entry(task, &cmd->t_task_list, t_list) {
443 dev = task->se_dev;
444 if (!dev)
445 continue;
447 if (atomic_read(&task->task_active))
448 continue;
450 if (!atomic_read(&task->task_state_active))
451 continue;
453 spin_lock_irqsave(&dev->execute_task_lock, flags);
454 list_del(&task->t_state_list);
455 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
456 cmd->se_tfo->get_task_tag(cmd), dev, task);
457 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
459 atomic_set(&task->task_state_active, 0);
460 atomic_dec(&cmd->t_task_cdbs_ex_left);
464 /* transport_cmd_check_stop():
466 * 'transport_off = 1' determines if t_transport_active should be cleared.
467 * 'transport_off = 2' determines if task_dev_state should be removed.
469 * A non-zero u8 t_state sets cmd->t_state.
470 * Returns 1 when command is stopped, else 0.
472 static int transport_cmd_check_stop(
473 struct se_cmd *cmd,
474 int transport_off,
475 u8 t_state)
477 unsigned long flags;
479 spin_lock_irqsave(&cmd->t_state_lock, flags);
481 * Determine if IOCTL context caller in requesting the stopping of this
482 * command for LUN shutdown purposes.
484 if (atomic_read(&cmd->transport_lun_stop)) {
485 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
486 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
487 cmd->se_tfo->get_task_tag(cmd));
489 cmd->deferred_t_state = cmd->t_state;
490 cmd->t_state = TRANSPORT_DEFERRED_CMD;
491 atomic_set(&cmd->t_transport_active, 0);
492 if (transport_off == 2)
493 transport_all_task_dev_remove_state(cmd);
494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
496 complete(&cmd->transport_lun_stop_comp);
497 return 1;
500 * Determine if frontend context caller is requesting the stopping of
501 * this command for frontend exceptions.
503 if (atomic_read(&cmd->t_transport_stop)) {
504 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
505 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
506 cmd->se_tfo->get_task_tag(cmd));
508 cmd->deferred_t_state = cmd->t_state;
509 cmd->t_state = TRANSPORT_DEFERRED_CMD;
510 if (transport_off == 2)
511 transport_all_task_dev_remove_state(cmd);
514 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
515 * to FE.
517 if (transport_off == 2)
518 cmd->se_lun = NULL;
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
521 complete(&cmd->t_transport_stop_comp);
522 return 1;
524 if (transport_off) {
525 atomic_set(&cmd->t_transport_active, 0);
526 if (transport_off == 2) {
527 transport_all_task_dev_remove_state(cmd);
529 * Clear struct se_cmd->se_lun before the transport_off == 2
530 * handoff to fabric module.
532 cmd->se_lun = NULL;
534 * Some fabric modules like tcm_loop can release
535 * their internally allocated I/O reference now and
536 * struct se_cmd now.
538 if (cmd->se_tfo->check_stop_free != NULL) {
539 spin_unlock_irqrestore(
540 &cmd->t_state_lock, flags);
542 cmd->se_tfo->check_stop_free(cmd);
543 return 1;
546 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
548 return 0;
549 } else if (t_state)
550 cmd->t_state = t_state;
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
553 return 0;
556 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
558 return transport_cmd_check_stop(cmd, 2, 0);
561 static void transport_lun_remove_cmd(struct se_cmd *cmd)
563 struct se_lun *lun = cmd->se_lun;
564 unsigned long flags;
566 if (!lun)
567 return;
569 spin_lock_irqsave(&cmd->t_state_lock, flags);
570 if (!atomic_read(&cmd->transport_dev_active)) {
571 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
572 goto check_lun;
574 atomic_set(&cmd->transport_dev_active, 0);
575 transport_all_task_dev_remove_state(cmd);
576 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
579 check_lun:
580 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
581 if (atomic_read(&cmd->transport_lun_active)) {
582 list_del(&cmd->se_lun_node);
583 atomic_set(&cmd->transport_lun_active, 0);
584 #if 0
585 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
586 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
587 #endif
589 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
592 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
594 transport_lun_remove_cmd(cmd);
596 if (transport_cmd_check_stop_to_fabric(cmd))
597 return;
598 if (remove) {
599 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
600 transport_put_cmd(cmd);
604 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
606 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
608 if (transport_cmd_check_stop_to_fabric(cmd))
609 return;
611 transport_put_cmd(cmd);
614 static void transport_add_cmd_to_queue(
615 struct se_cmd *cmd,
616 int t_state)
618 struct se_device *dev = cmd->se_dev;
619 struct se_queue_obj *qobj = &dev->dev_queue_obj;
620 unsigned long flags;
622 if (t_state) {
623 spin_lock_irqsave(&cmd->t_state_lock, flags);
624 cmd->t_state = t_state;
625 atomic_set(&cmd->t_transport_active, 1);
626 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
629 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
631 /* If the cmd is already on the list, remove it before we add it */
632 if (!list_empty(&cmd->se_queue_node))
633 list_del(&cmd->se_queue_node);
634 else
635 atomic_inc(&qobj->queue_cnt);
637 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
638 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
639 list_add(&cmd->se_queue_node, &qobj->qobj_list);
640 } else
641 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
642 atomic_set(&cmd->t_transport_queue_active, 1);
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
645 wake_up_interruptible(&qobj->thread_wq);
648 static struct se_cmd *
649 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
651 struct se_cmd *cmd;
652 unsigned long flags;
654 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
655 if (list_empty(&qobj->qobj_list)) {
656 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
657 return NULL;
659 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
661 atomic_set(&cmd->t_transport_queue_active, 0);
663 list_del_init(&cmd->se_queue_node);
664 atomic_dec(&qobj->queue_cnt);
665 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
667 return cmd;
670 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
671 struct se_queue_obj *qobj)
673 unsigned long flags;
675 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
676 if (!atomic_read(&cmd->t_transport_queue_active)) {
677 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
678 return;
680 atomic_set(&cmd->t_transport_queue_active, 0);
681 atomic_dec(&qobj->queue_cnt);
682 list_del_init(&cmd->se_queue_node);
683 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
685 if (atomic_read(&cmd->t_transport_queue_active)) {
686 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
687 cmd->se_tfo->get_task_tag(cmd),
688 atomic_read(&cmd->t_transport_queue_active));
693 * Completion function used by TCM subsystem plugins (such as FILEIO)
694 * for queueing up response from struct se_subsystem_api->do_task()
696 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
698 struct se_task *task = list_entry(cmd->t_task_list.next,
699 struct se_task, t_list);
701 if (good) {
702 cmd->scsi_status = SAM_STAT_GOOD;
703 task->task_scsi_status = GOOD;
704 } else {
705 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
706 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
707 task->task_se_cmd->transport_error_status =
708 PYX_TRANSPORT_ILLEGAL_REQUEST;
711 transport_complete_task(task, good);
713 EXPORT_SYMBOL(transport_complete_sync_cache);
715 /* transport_complete_task():
717 * Called from interrupt and non interrupt context depending
718 * on the transport plugin.
720 void transport_complete_task(struct se_task *task, int success)
722 struct se_cmd *cmd = task->task_se_cmd;
723 struct se_device *dev = task->se_dev;
724 int t_state;
725 unsigned long flags;
726 #if 0
727 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
728 cmd->t_task_cdb[0], dev);
729 #endif
730 if (dev)
731 atomic_inc(&dev->depth_left);
733 spin_lock_irqsave(&cmd->t_state_lock, flags);
734 atomic_set(&task->task_active, 0);
737 * See if any sense data exists, if so set the TASK_SENSE flag.
738 * Also check for any other post completion work that needs to be
739 * done by the plugins.
741 if (dev && dev->transport->transport_complete) {
742 if (dev->transport->transport_complete(task) != 0) {
743 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
744 task->task_sense = 1;
745 success = 1;
750 * See if we are waiting for outstanding struct se_task
751 * to complete for an exception condition
753 if (atomic_read(&task->task_stop)) {
755 * Decrement cmd->t_se_count if this task had
756 * previously thrown its timeout exception handler.
758 if (atomic_read(&task->task_timeout)) {
759 atomic_dec(&cmd->t_se_count);
760 atomic_set(&task->task_timeout, 0);
762 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
764 complete(&task->task_stop_comp);
765 return;
768 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
769 * left counter to determine when the struct se_cmd is ready to be queued to
770 * the processing thread.
772 if (atomic_read(&task->task_timeout)) {
773 if (!atomic_dec_and_test(
774 &cmd->t_task_cdbs_timeout_left)) {
775 spin_unlock_irqrestore(&cmd->t_state_lock,
776 flags);
777 return;
779 t_state = TRANSPORT_COMPLETE_TIMEOUT;
780 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
782 transport_add_cmd_to_queue(cmd, t_state);
783 return;
785 atomic_dec(&cmd->t_task_cdbs_timeout_left);
788 * Decrement the outstanding t_task_cdbs_left count. The last
789 * struct se_task from struct se_cmd will complete itself into the
790 * device queue depending upon int success.
792 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
793 if (!success)
794 cmd->t_tasks_failed = 1;
796 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
797 return;
800 if (!success || cmd->t_tasks_failed) {
801 t_state = TRANSPORT_COMPLETE_FAILURE;
802 if (!task->task_error_status) {
803 task->task_error_status =
804 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
805 cmd->transport_error_status =
806 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
808 } else {
809 atomic_set(&cmd->t_transport_complete, 1);
810 t_state = TRANSPORT_COMPLETE_OK;
812 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
814 transport_add_cmd_to_queue(cmd, t_state);
816 EXPORT_SYMBOL(transport_complete_task);
819 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
820 * struct se_task list are ready to be added to the active execution list
821 * struct se_device
823 * Called with se_dev_t->execute_task_lock called.
825 static inline int transport_add_task_check_sam_attr(
826 struct se_task *task,
827 struct se_task *task_prev,
828 struct se_device *dev)
831 * No SAM Task attribute emulation enabled, add to tail of
832 * execution queue
834 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
835 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
836 return 0;
839 * HEAD_OF_QUEUE attribute for received CDB, which means
840 * the first task that is associated with a struct se_cmd goes to
841 * head of the struct se_device->execute_task_list, and task_prev
842 * after that for each subsequent task
844 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
845 list_add(&task->t_execute_list,
846 (task_prev != NULL) ?
847 &task_prev->t_execute_list :
848 &dev->execute_task_list);
850 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
851 " in execution queue\n",
852 task->task_se_cmd->t_task_cdb[0]);
853 return 1;
856 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
857 * transitioned from Dermant -> Active state, and are added to the end
858 * of the struct se_device->execute_task_list
860 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
861 return 0;
864 /* __transport_add_task_to_execute_queue():
866 * Called with se_dev_t->execute_task_lock called.
868 static void __transport_add_task_to_execute_queue(
869 struct se_task *task,
870 struct se_task *task_prev,
871 struct se_device *dev)
873 int head_of_queue;
875 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
876 atomic_inc(&dev->execute_tasks);
878 if (atomic_read(&task->task_state_active))
879 return;
881 * Determine if this task needs to go to HEAD_OF_QUEUE for the
882 * state list as well. Running with SAM Task Attribute emulation
883 * will always return head_of_queue == 0 here
885 if (head_of_queue)
886 list_add(&task->t_state_list, (task_prev) ?
887 &task_prev->t_state_list :
888 &dev->state_task_list);
889 else
890 list_add_tail(&task->t_state_list, &dev->state_task_list);
892 atomic_set(&task->task_state_active, 1);
894 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
895 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
896 task, dev);
899 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
901 struct se_device *dev;
902 struct se_task *task;
903 unsigned long flags;
905 spin_lock_irqsave(&cmd->t_state_lock, flags);
906 list_for_each_entry(task, &cmd->t_task_list, t_list) {
907 dev = task->se_dev;
909 if (atomic_read(&task->task_state_active))
910 continue;
912 spin_lock(&dev->execute_task_lock);
913 list_add_tail(&task->t_state_list, &dev->state_task_list);
914 atomic_set(&task->task_state_active, 1);
916 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
917 task->task_se_cmd->se_tfo->get_task_tag(
918 task->task_se_cmd), task, dev);
920 spin_unlock(&dev->execute_task_lock);
922 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
925 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
927 struct se_device *dev = cmd->se_dev;
928 struct se_task *task, *task_prev = NULL;
929 unsigned long flags;
931 spin_lock_irqsave(&dev->execute_task_lock, flags);
932 list_for_each_entry(task, &cmd->t_task_list, t_list) {
933 if (atomic_read(&task->task_execute_queue))
934 continue;
936 * __transport_add_task_to_execute_queue() handles the
937 * SAM Task Attribute emulation if enabled
939 __transport_add_task_to_execute_queue(task, task_prev, dev);
940 atomic_set(&task->task_execute_queue, 1);
941 task_prev = task;
943 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
946 /* transport_remove_task_from_execute_queue():
950 void transport_remove_task_from_execute_queue(
951 struct se_task *task,
952 struct se_device *dev)
954 unsigned long flags;
956 if (atomic_read(&task->task_execute_queue) == 0) {
957 dump_stack();
958 return;
961 spin_lock_irqsave(&dev->execute_task_lock, flags);
962 list_del(&task->t_execute_list);
963 atomic_set(&task->task_execute_queue, 0);
964 atomic_dec(&dev->execute_tasks);
965 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
969 * Handle QUEUE_FULL / -EAGAIN status
972 static void target_qf_do_work(struct work_struct *work)
974 struct se_device *dev = container_of(work, struct se_device,
975 qf_work_queue);
976 LIST_HEAD(qf_cmd_list);
977 struct se_cmd *cmd, *cmd_tmp;
979 spin_lock_irq(&dev->qf_cmd_lock);
980 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
981 spin_unlock_irq(&dev->qf_cmd_lock);
983 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
984 list_del(&cmd->se_qf_node);
985 atomic_dec(&dev->dev_qf_count);
986 smp_mb__after_atomic_dec();
988 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
989 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
990 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
991 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
992 : "UNKNOWN");
994 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
995 * has been added to head of queue
997 transport_add_cmd_to_queue(cmd, cmd->t_state);
1001 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1003 switch (cmd->data_direction) {
1004 case DMA_NONE:
1005 return "NONE";
1006 case DMA_FROM_DEVICE:
1007 return "READ";
1008 case DMA_TO_DEVICE:
1009 return "WRITE";
1010 case DMA_BIDIRECTIONAL:
1011 return "BIDI";
1012 default:
1013 break;
1016 return "UNKNOWN";
1019 void transport_dump_dev_state(
1020 struct se_device *dev,
1021 char *b,
1022 int *bl)
1024 *bl += sprintf(b + *bl, "Status: ");
1025 switch (dev->dev_status) {
1026 case TRANSPORT_DEVICE_ACTIVATED:
1027 *bl += sprintf(b + *bl, "ACTIVATED");
1028 break;
1029 case TRANSPORT_DEVICE_DEACTIVATED:
1030 *bl += sprintf(b + *bl, "DEACTIVATED");
1031 break;
1032 case TRANSPORT_DEVICE_SHUTDOWN:
1033 *bl += sprintf(b + *bl, "SHUTDOWN");
1034 break;
1035 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1036 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1037 *bl += sprintf(b + *bl, "OFFLINE");
1038 break;
1039 default:
1040 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1041 break;
1044 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1045 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1046 dev->queue_depth);
1047 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1048 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1049 *bl += sprintf(b + *bl, " ");
1052 /* transport_release_all_cmds():
1056 static void transport_release_all_cmds(struct se_device *dev)
1058 struct se_cmd *cmd, *tcmd;
1059 int bug_out = 0, t_state;
1060 unsigned long flags;
1062 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1063 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1064 se_queue_node) {
1065 t_state = cmd->t_state;
1066 list_del_init(&cmd->se_queue_node);
1067 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1068 flags);
1070 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1071 " t_state: %u directly\n",
1072 cmd->se_tfo->get_task_tag(cmd),
1073 cmd->se_tfo->get_cmd_state(cmd), t_state);
1075 transport_put_cmd(cmd);
1076 bug_out = 1;
1078 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1080 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1081 #if 0
1082 if (bug_out)
1083 BUG();
1084 #endif
1087 void transport_dump_vpd_proto_id(
1088 struct t10_vpd *vpd,
1089 unsigned char *p_buf,
1090 int p_buf_len)
1092 unsigned char buf[VPD_TMP_BUF_SIZE];
1093 int len;
1095 memset(buf, 0, VPD_TMP_BUF_SIZE);
1096 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1098 switch (vpd->protocol_identifier) {
1099 case 0x00:
1100 sprintf(buf+len, "Fibre Channel\n");
1101 break;
1102 case 0x10:
1103 sprintf(buf+len, "Parallel SCSI\n");
1104 break;
1105 case 0x20:
1106 sprintf(buf+len, "SSA\n");
1107 break;
1108 case 0x30:
1109 sprintf(buf+len, "IEEE 1394\n");
1110 break;
1111 case 0x40:
1112 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1113 " Protocol\n");
1114 break;
1115 case 0x50:
1116 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1117 break;
1118 case 0x60:
1119 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1120 break;
1121 case 0x70:
1122 sprintf(buf+len, "Automation/Drive Interface Transport"
1123 " Protocol\n");
1124 break;
1125 case 0x80:
1126 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1127 break;
1128 default:
1129 sprintf(buf+len, "Unknown 0x%02x\n",
1130 vpd->protocol_identifier);
1131 break;
1134 if (p_buf)
1135 strncpy(p_buf, buf, p_buf_len);
1136 else
1137 pr_debug("%s", buf);
1140 void
1141 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1144 * Check if the Protocol Identifier Valid (PIV) bit is set..
1146 * from spc3r23.pdf section 7.5.1
1148 if (page_83[1] & 0x80) {
1149 vpd->protocol_identifier = (page_83[0] & 0xf0);
1150 vpd->protocol_identifier_set = 1;
1151 transport_dump_vpd_proto_id(vpd, NULL, 0);
1154 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1156 int transport_dump_vpd_assoc(
1157 struct t10_vpd *vpd,
1158 unsigned char *p_buf,
1159 int p_buf_len)
1161 unsigned char buf[VPD_TMP_BUF_SIZE];
1162 int ret = 0;
1163 int len;
1165 memset(buf, 0, VPD_TMP_BUF_SIZE);
1166 len = sprintf(buf, "T10 VPD Identifier Association: ");
1168 switch (vpd->association) {
1169 case 0x00:
1170 sprintf(buf+len, "addressed logical unit\n");
1171 break;
1172 case 0x10:
1173 sprintf(buf+len, "target port\n");
1174 break;
1175 case 0x20:
1176 sprintf(buf+len, "SCSI target device\n");
1177 break;
1178 default:
1179 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1180 ret = -EINVAL;
1181 break;
1184 if (p_buf)
1185 strncpy(p_buf, buf, p_buf_len);
1186 else
1187 pr_debug("%s", buf);
1189 return ret;
1192 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1195 * The VPD identification association..
1197 * from spc3r23.pdf Section 7.6.3.1 Table 297
1199 vpd->association = (page_83[1] & 0x30);
1200 return transport_dump_vpd_assoc(vpd, NULL, 0);
1202 EXPORT_SYMBOL(transport_set_vpd_assoc);
1204 int transport_dump_vpd_ident_type(
1205 struct t10_vpd *vpd,
1206 unsigned char *p_buf,
1207 int p_buf_len)
1209 unsigned char buf[VPD_TMP_BUF_SIZE];
1210 int ret = 0;
1211 int len;
1213 memset(buf, 0, VPD_TMP_BUF_SIZE);
1214 len = sprintf(buf, "T10 VPD Identifier Type: ");
1216 switch (vpd->device_identifier_type) {
1217 case 0x00:
1218 sprintf(buf+len, "Vendor specific\n");
1219 break;
1220 case 0x01:
1221 sprintf(buf+len, "T10 Vendor ID based\n");
1222 break;
1223 case 0x02:
1224 sprintf(buf+len, "EUI-64 based\n");
1225 break;
1226 case 0x03:
1227 sprintf(buf+len, "NAA\n");
1228 break;
1229 case 0x04:
1230 sprintf(buf+len, "Relative target port identifier\n");
1231 break;
1232 case 0x08:
1233 sprintf(buf+len, "SCSI name string\n");
1234 break;
1235 default:
1236 sprintf(buf+len, "Unsupported: 0x%02x\n",
1237 vpd->device_identifier_type);
1238 ret = -EINVAL;
1239 break;
1242 if (p_buf) {
1243 if (p_buf_len < strlen(buf)+1)
1244 return -EINVAL;
1245 strncpy(p_buf, buf, p_buf_len);
1246 } else {
1247 pr_debug("%s", buf);
1250 return ret;
1253 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1256 * The VPD identifier type..
1258 * from spc3r23.pdf Section 7.6.3.1 Table 298
1260 vpd->device_identifier_type = (page_83[1] & 0x0f);
1261 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1263 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1265 int transport_dump_vpd_ident(
1266 struct t10_vpd *vpd,
1267 unsigned char *p_buf,
1268 int p_buf_len)
1270 unsigned char buf[VPD_TMP_BUF_SIZE];
1271 int ret = 0;
1273 memset(buf, 0, VPD_TMP_BUF_SIZE);
1275 switch (vpd->device_identifier_code_set) {
1276 case 0x01: /* Binary */
1277 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1278 &vpd->device_identifier[0]);
1279 break;
1280 case 0x02: /* ASCII */
1281 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1282 &vpd->device_identifier[0]);
1283 break;
1284 case 0x03: /* UTF-8 */
1285 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1286 &vpd->device_identifier[0]);
1287 break;
1288 default:
1289 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1290 " 0x%02x", vpd->device_identifier_code_set);
1291 ret = -EINVAL;
1292 break;
1295 if (p_buf)
1296 strncpy(p_buf, buf, p_buf_len);
1297 else
1298 pr_debug("%s", buf);
1300 return ret;
1304 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1306 static const char hex_str[] = "0123456789abcdef";
1307 int j = 0, i = 4; /* offset to start of the identifer */
1310 * The VPD Code Set (encoding)
1312 * from spc3r23.pdf Section 7.6.3.1 Table 296
1314 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1315 switch (vpd->device_identifier_code_set) {
1316 case 0x01: /* Binary */
1317 vpd->device_identifier[j++] =
1318 hex_str[vpd->device_identifier_type];
1319 while (i < (4 + page_83[3])) {
1320 vpd->device_identifier[j++] =
1321 hex_str[(page_83[i] & 0xf0) >> 4];
1322 vpd->device_identifier[j++] =
1323 hex_str[page_83[i] & 0x0f];
1324 i++;
1326 break;
1327 case 0x02: /* ASCII */
1328 case 0x03: /* UTF-8 */
1329 while (i < (4 + page_83[3]))
1330 vpd->device_identifier[j++] = page_83[i++];
1331 break;
1332 default:
1333 break;
1336 return transport_dump_vpd_ident(vpd, NULL, 0);
1338 EXPORT_SYMBOL(transport_set_vpd_ident);
1340 static void core_setup_task_attr_emulation(struct se_device *dev)
1343 * If this device is from Target_Core_Mod/pSCSI, disable the
1344 * SAM Task Attribute emulation.
1346 * This is currently not available in upsream Linux/SCSI Target
1347 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1349 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1350 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1351 return;
1354 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1355 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1356 " device\n", dev->transport->name,
1357 dev->transport->get_device_rev(dev));
1360 static void scsi_dump_inquiry(struct se_device *dev)
1362 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1363 int i, device_type;
1365 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1367 pr_debug(" Vendor: ");
1368 for (i = 0; i < 8; i++)
1369 if (wwn->vendor[i] >= 0x20)
1370 pr_debug("%c", wwn->vendor[i]);
1371 else
1372 pr_debug(" ");
1374 pr_debug(" Model: ");
1375 for (i = 0; i < 16; i++)
1376 if (wwn->model[i] >= 0x20)
1377 pr_debug("%c", wwn->model[i]);
1378 else
1379 pr_debug(" ");
1381 pr_debug(" Revision: ");
1382 for (i = 0; i < 4; i++)
1383 if (wwn->revision[i] >= 0x20)
1384 pr_debug("%c", wwn->revision[i]);
1385 else
1386 pr_debug(" ");
1388 pr_debug("\n");
1390 device_type = dev->transport->get_device_type(dev);
1391 pr_debug(" Type: %s ", scsi_device_type(device_type));
1392 pr_debug(" ANSI SCSI revision: %02x\n",
1393 dev->transport->get_device_rev(dev));
1396 struct se_device *transport_add_device_to_core_hba(
1397 struct se_hba *hba,
1398 struct se_subsystem_api *transport,
1399 struct se_subsystem_dev *se_dev,
1400 u32 device_flags,
1401 void *transport_dev,
1402 struct se_dev_limits *dev_limits,
1403 const char *inquiry_prod,
1404 const char *inquiry_rev)
1406 int force_pt;
1407 struct se_device *dev;
1409 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1410 if (!dev) {
1411 pr_err("Unable to allocate memory for se_dev_t\n");
1412 return NULL;
1415 transport_init_queue_obj(&dev->dev_queue_obj);
1416 dev->dev_flags = device_flags;
1417 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1418 dev->dev_ptr = transport_dev;
1419 dev->se_hba = hba;
1420 dev->se_sub_dev = se_dev;
1421 dev->transport = transport;
1422 atomic_set(&dev->active_cmds, 0);
1423 INIT_LIST_HEAD(&dev->dev_list);
1424 INIT_LIST_HEAD(&dev->dev_sep_list);
1425 INIT_LIST_HEAD(&dev->dev_tmr_list);
1426 INIT_LIST_HEAD(&dev->execute_task_list);
1427 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1428 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1429 INIT_LIST_HEAD(&dev->state_task_list);
1430 INIT_LIST_HEAD(&dev->qf_cmd_list);
1431 spin_lock_init(&dev->execute_task_lock);
1432 spin_lock_init(&dev->delayed_cmd_lock);
1433 spin_lock_init(&dev->ordered_cmd_lock);
1434 spin_lock_init(&dev->state_task_lock);
1435 spin_lock_init(&dev->dev_alua_lock);
1436 spin_lock_init(&dev->dev_reservation_lock);
1437 spin_lock_init(&dev->dev_status_lock);
1438 spin_lock_init(&dev->dev_status_thr_lock);
1439 spin_lock_init(&dev->se_port_lock);
1440 spin_lock_init(&dev->se_tmr_lock);
1441 spin_lock_init(&dev->qf_cmd_lock);
1443 dev->queue_depth = dev_limits->queue_depth;
1444 atomic_set(&dev->depth_left, dev->queue_depth);
1445 atomic_set(&dev->dev_ordered_id, 0);
1447 se_dev_set_default_attribs(dev, dev_limits);
1449 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1450 dev->creation_time = get_jiffies_64();
1451 spin_lock_init(&dev->stats_lock);
1453 spin_lock(&hba->device_lock);
1454 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1455 hba->dev_count++;
1456 spin_unlock(&hba->device_lock);
1458 * Setup the SAM Task Attribute emulation for struct se_device
1460 core_setup_task_attr_emulation(dev);
1462 * Force PR and ALUA passthrough emulation with internal object use.
1464 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1466 * Setup the Reservations infrastructure for struct se_device
1468 core_setup_reservations(dev, force_pt);
1470 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1472 if (core_setup_alua(dev, force_pt) < 0)
1473 goto out;
1476 * Startup the struct se_device processing thread
1478 dev->process_thread = kthread_run(transport_processing_thread, dev,
1479 "LIO_%s", dev->transport->name);
1480 if (IS_ERR(dev->process_thread)) {
1481 pr_err("Unable to create kthread: LIO_%s\n",
1482 dev->transport->name);
1483 goto out;
1486 * Setup work_queue for QUEUE_FULL
1488 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1490 * Preload the initial INQUIRY const values if we are doing
1491 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1492 * passthrough because this is being provided by the backend LLD.
1493 * This is required so that transport_get_inquiry() copies these
1494 * originals once back into DEV_T10_WWN(dev) for the virtual device
1495 * setup.
1497 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1498 if (!inquiry_prod || !inquiry_rev) {
1499 pr_err("All non TCM/pSCSI plugins require"
1500 " INQUIRY consts\n");
1501 goto out;
1504 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1505 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1506 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1508 scsi_dump_inquiry(dev);
1510 return dev;
1511 out:
1512 kthread_stop(dev->process_thread);
1514 spin_lock(&hba->device_lock);
1515 list_del(&dev->dev_list);
1516 hba->dev_count--;
1517 spin_unlock(&hba->device_lock);
1519 se_release_vpd_for_dev(dev);
1521 kfree(dev);
1523 return NULL;
1525 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1527 /* transport_generic_prepare_cdb():
1529 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1530 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1531 * The point of this is since we are mapping iSCSI LUNs to
1532 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1533 * devices and HBAs for a loop.
1535 static inline void transport_generic_prepare_cdb(
1536 unsigned char *cdb)
1538 switch (cdb[0]) {
1539 case READ_10: /* SBC - RDProtect */
1540 case READ_12: /* SBC - RDProtect */
1541 case READ_16: /* SBC - RDProtect */
1542 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1543 case VERIFY: /* SBC - VRProtect */
1544 case VERIFY_16: /* SBC - VRProtect */
1545 case WRITE_VERIFY: /* SBC - VRProtect */
1546 case WRITE_VERIFY_12: /* SBC - VRProtect */
1547 break;
1548 default:
1549 cdb[1] &= 0x1f; /* clear logical unit number */
1550 break;
1554 static struct se_task *
1555 transport_generic_get_task(struct se_cmd *cmd,
1556 enum dma_data_direction data_direction)
1558 struct se_task *task;
1559 struct se_device *dev = cmd->se_dev;
1561 task = dev->transport->alloc_task(cmd->t_task_cdb);
1562 if (!task) {
1563 pr_err("Unable to allocate struct se_task\n");
1564 return NULL;
1567 INIT_LIST_HEAD(&task->t_list);
1568 INIT_LIST_HEAD(&task->t_execute_list);
1569 INIT_LIST_HEAD(&task->t_state_list);
1570 init_completion(&task->task_stop_comp);
1571 task->task_se_cmd = cmd;
1572 task->se_dev = dev;
1573 task->task_data_direction = data_direction;
1575 return task;
1578 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1581 * Used by fabric modules containing a local struct se_cmd within their
1582 * fabric dependent per I/O descriptor.
1584 void transport_init_se_cmd(
1585 struct se_cmd *cmd,
1586 struct target_core_fabric_ops *tfo,
1587 struct se_session *se_sess,
1588 u32 data_length,
1589 int data_direction,
1590 int task_attr,
1591 unsigned char *sense_buffer)
1593 INIT_LIST_HEAD(&cmd->se_lun_node);
1594 INIT_LIST_HEAD(&cmd->se_delayed_node);
1595 INIT_LIST_HEAD(&cmd->se_ordered_node);
1596 INIT_LIST_HEAD(&cmd->se_qf_node);
1597 INIT_LIST_HEAD(&cmd->se_queue_node);
1599 INIT_LIST_HEAD(&cmd->t_task_list);
1600 init_completion(&cmd->transport_lun_fe_stop_comp);
1601 init_completion(&cmd->transport_lun_stop_comp);
1602 init_completion(&cmd->t_transport_stop_comp);
1603 spin_lock_init(&cmd->t_state_lock);
1604 atomic_set(&cmd->transport_dev_active, 1);
1606 cmd->se_tfo = tfo;
1607 cmd->se_sess = se_sess;
1608 cmd->data_length = data_length;
1609 cmd->data_direction = data_direction;
1610 cmd->sam_task_attr = task_attr;
1611 cmd->sense_buffer = sense_buffer;
1613 EXPORT_SYMBOL(transport_init_se_cmd);
1615 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1618 * Check if SAM Task Attribute emulation is enabled for this
1619 * struct se_device storage object
1621 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1622 return 0;
1624 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1625 pr_debug("SAM Task Attribute ACA"
1626 " emulation is not supported\n");
1627 return -EINVAL;
1630 * Used to determine when ORDERED commands should go from
1631 * Dormant to Active status.
1633 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1634 smp_mb__after_atomic_inc();
1635 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1636 cmd->se_ordered_id, cmd->sam_task_attr,
1637 cmd->se_dev->transport->name);
1638 return 0;
1641 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1643 /* transport_generic_allocate_tasks():
1645 * Called from fabric RX Thread.
1647 int transport_generic_allocate_tasks(
1648 struct se_cmd *cmd,
1649 unsigned char *cdb)
1651 int ret;
1653 transport_generic_prepare_cdb(cdb);
1656 * This is needed for early exceptions.
1658 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1661 * Ensure that the received CDB is less than the max (252 + 8) bytes
1662 * for VARIABLE_LENGTH_CMD
1664 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1665 pr_err("Received SCSI CDB with command_size: %d that"
1666 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1667 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1668 return -EINVAL;
1671 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1672 * allocate the additional extended CDB buffer now.. Otherwise
1673 * setup the pointer from __t_task_cdb to t_task_cdb.
1675 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1676 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1677 GFP_KERNEL);
1678 if (!cmd->t_task_cdb) {
1679 pr_err("Unable to allocate cmd->t_task_cdb"
1680 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1681 scsi_command_size(cdb),
1682 (unsigned long)sizeof(cmd->__t_task_cdb));
1683 return -ENOMEM;
1685 } else
1686 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1688 * Copy the original CDB into cmd->
1690 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1692 * Setup the received CDB based on SCSI defined opcodes and
1693 * perform unit attention, persistent reservations and ALUA
1694 * checks for virtual device backends. The cmd->t_task_cdb
1695 * pointer is expected to be setup before we reach this point.
1697 ret = transport_generic_cmd_sequencer(cmd, cdb);
1698 if (ret < 0)
1699 return ret;
1701 * Check for SAM Task Attribute Emulation
1703 if (transport_check_alloc_task_attr(cmd) < 0) {
1704 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1705 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1706 return -EINVAL;
1708 spin_lock(&cmd->se_lun->lun_sep_lock);
1709 if (cmd->se_lun->lun_sep)
1710 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1711 spin_unlock(&cmd->se_lun->lun_sep_lock);
1712 return 0;
1714 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1716 static void transport_generic_request_failure(struct se_cmd *,
1717 struct se_device *, int, int);
1719 * Used by fabric module frontends to queue tasks directly.
1720 * Many only be used from process context only
1722 int transport_handle_cdb_direct(
1723 struct se_cmd *cmd)
1725 int ret;
1727 if (!cmd->se_lun) {
1728 dump_stack();
1729 pr_err("cmd->se_lun is NULL\n");
1730 return -EINVAL;
1732 if (in_interrupt()) {
1733 dump_stack();
1734 pr_err("transport_generic_handle_cdb cannot be called"
1735 " from interrupt context\n");
1736 return -EINVAL;
1739 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1740 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1741 * in existing usage to ensure that outstanding descriptors are handled
1742 * correctly during shutdown via transport_generic_wait_for_tasks()
1744 * Also, we don't take cmd->t_state_lock here as we only expect
1745 * this to be called for initial descriptor submission.
1747 cmd->t_state = TRANSPORT_NEW_CMD;
1748 atomic_set(&cmd->t_transport_active, 1);
1750 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1751 * so follow TRANSPORT_NEW_CMD processing thread context usage
1752 * and call transport_generic_request_failure() if necessary..
1754 ret = transport_generic_new_cmd(cmd);
1755 if (ret == -EAGAIN)
1756 return 0;
1757 else if (ret < 0) {
1758 cmd->transport_error_status = ret;
1759 transport_generic_request_failure(cmd, NULL, 0,
1760 (cmd->data_direction != DMA_TO_DEVICE));
1762 return 0;
1764 EXPORT_SYMBOL(transport_handle_cdb_direct);
1767 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1768 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1769 * complete setup in TCM process context w/ TFO->new_cmd_map().
1771 int transport_generic_handle_cdb_map(
1772 struct se_cmd *cmd)
1774 if (!cmd->se_lun) {
1775 dump_stack();
1776 pr_err("cmd->se_lun is NULL\n");
1777 return -EINVAL;
1780 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1781 return 0;
1783 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1785 /* transport_generic_handle_data():
1789 int transport_generic_handle_data(
1790 struct se_cmd *cmd)
1793 * For the software fabric case, then we assume the nexus is being
1794 * failed/shutdown when signals are pending from the kthread context
1795 * caller, so we return a failure. For the HW target mode case running
1796 * in interrupt code, the signal_pending() check is skipped.
1798 if (!in_interrupt() && signal_pending(current))
1799 return -EPERM;
1801 * If the received CDB has aleady been ABORTED by the generic
1802 * target engine, we now call transport_check_aborted_status()
1803 * to queue any delated TASK_ABORTED status for the received CDB to the
1804 * fabric module as we are expecting no further incoming DATA OUT
1805 * sequences at this point.
1807 if (transport_check_aborted_status(cmd, 1) != 0)
1808 return 0;
1810 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1811 return 0;
1813 EXPORT_SYMBOL(transport_generic_handle_data);
1815 /* transport_generic_handle_tmr():
1819 int transport_generic_handle_tmr(
1820 struct se_cmd *cmd)
1823 * This is needed for early exceptions.
1825 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1827 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1828 return 0;
1830 EXPORT_SYMBOL(transport_generic_handle_tmr);
1832 void transport_generic_free_cmd_intr(
1833 struct se_cmd *cmd)
1835 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1837 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1839 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1841 struct se_task *task, *task_tmp;
1842 unsigned long flags;
1843 int ret = 0;
1845 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1846 cmd->se_tfo->get_task_tag(cmd));
1849 * No tasks remain in the execution queue
1851 spin_lock_irqsave(&cmd->t_state_lock, flags);
1852 list_for_each_entry_safe(task, task_tmp,
1853 &cmd->t_task_list, t_list) {
1854 pr_debug("task_no[%d] - Processing task %p\n",
1855 task->task_no, task);
1857 * If the struct se_task has not been sent and is not active,
1858 * remove the struct se_task from the execution queue.
1860 if (!atomic_read(&task->task_sent) &&
1861 !atomic_read(&task->task_active)) {
1862 spin_unlock_irqrestore(&cmd->t_state_lock,
1863 flags);
1864 transport_remove_task_from_execute_queue(task,
1865 task->se_dev);
1867 pr_debug("task_no[%d] - Removed from execute queue\n",
1868 task->task_no);
1869 spin_lock_irqsave(&cmd->t_state_lock, flags);
1870 continue;
1874 * If the struct se_task is active, sleep until it is returned
1875 * from the plugin.
1877 if (atomic_read(&task->task_active)) {
1878 atomic_set(&task->task_stop, 1);
1879 spin_unlock_irqrestore(&cmd->t_state_lock,
1880 flags);
1882 pr_debug("task_no[%d] - Waiting to complete\n",
1883 task->task_no);
1884 wait_for_completion(&task->task_stop_comp);
1885 pr_debug("task_no[%d] - Stopped successfully\n",
1886 task->task_no);
1888 spin_lock_irqsave(&cmd->t_state_lock, flags);
1889 atomic_dec(&cmd->t_task_cdbs_left);
1891 atomic_set(&task->task_active, 0);
1892 atomic_set(&task->task_stop, 0);
1893 } else {
1894 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1895 ret++;
1898 __transport_stop_task_timer(task, &flags);
1900 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1902 return ret;
1906 * Handle SAM-esque emulation for generic transport request failures.
1908 static void transport_generic_request_failure(
1909 struct se_cmd *cmd,
1910 struct se_device *dev,
1911 int complete,
1912 int sc)
1914 int ret = 0;
1916 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1917 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1918 cmd->t_task_cdb[0]);
1919 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1920 " %d/%d transport_error_status: %d\n",
1921 cmd->se_tfo->get_cmd_state(cmd),
1922 cmd->t_state, cmd->deferred_t_state,
1923 cmd->transport_error_status);
1924 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1925 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1926 " t_transport_active: %d t_transport_stop: %d"
1927 " t_transport_sent: %d\n", cmd->t_task_list_num,
1928 atomic_read(&cmd->t_task_cdbs_left),
1929 atomic_read(&cmd->t_task_cdbs_sent),
1930 atomic_read(&cmd->t_task_cdbs_ex_left),
1931 atomic_read(&cmd->t_transport_active),
1932 atomic_read(&cmd->t_transport_stop),
1933 atomic_read(&cmd->t_transport_sent));
1935 transport_stop_all_task_timers(cmd);
1937 if (dev)
1938 atomic_inc(&dev->depth_left);
1940 * For SAM Task Attribute emulation for failed struct se_cmd
1942 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1943 transport_complete_task_attr(cmd);
1945 if (complete) {
1946 transport_direct_request_timeout(cmd);
1947 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1950 switch (cmd->transport_error_status) {
1951 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1952 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1953 break;
1954 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1955 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1956 break;
1957 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1958 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1959 break;
1960 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1961 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1962 break;
1963 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1964 if (!sc)
1965 transport_new_cmd_failure(cmd);
1967 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1968 * we force this session to fall back to session
1969 * recovery.
1971 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1972 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1974 goto check_stop;
1975 case PYX_TRANSPORT_LU_COMM_FAILURE:
1976 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1977 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1978 break;
1979 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1980 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1981 break;
1982 case PYX_TRANSPORT_WRITE_PROTECTED:
1983 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1984 break;
1985 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1987 * No SENSE Data payload for this case, set SCSI Status
1988 * and queue the response to $FABRIC_MOD.
1990 * Uses linux/include/scsi/scsi.h SAM status codes defs
1992 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1994 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1995 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1996 * CONFLICT STATUS.
1998 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2000 if (cmd->se_sess &&
2001 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2002 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2003 cmd->orig_fe_lun, 0x2C,
2004 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2006 ret = cmd->se_tfo->queue_status(cmd);
2007 if (ret == -EAGAIN)
2008 goto queue_full;
2009 goto check_stop;
2010 case PYX_TRANSPORT_USE_SENSE_REASON:
2012 * struct se_cmd->scsi_sense_reason already set
2014 break;
2015 default:
2016 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2017 cmd->t_task_cdb[0],
2018 cmd->transport_error_status);
2019 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2020 break;
2023 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2024 * make the call to transport_send_check_condition_and_sense()
2025 * directly. Otherwise expect the fabric to make the call to
2026 * transport_send_check_condition_and_sense() after handling
2027 * possible unsoliticied write data payloads.
2029 if (!sc && !cmd->se_tfo->new_cmd_map)
2030 transport_new_cmd_failure(cmd);
2031 else {
2032 ret = transport_send_check_condition_and_sense(cmd,
2033 cmd->scsi_sense_reason, 0);
2034 if (ret == -EAGAIN)
2035 goto queue_full;
2038 check_stop:
2039 transport_lun_remove_cmd(cmd);
2040 if (!transport_cmd_check_stop_to_fabric(cmd))
2042 return;
2044 queue_full:
2045 cmd->t_state = TRANSPORT_COMPLETE_OK;
2046 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2049 static void transport_direct_request_timeout(struct se_cmd *cmd)
2051 unsigned long flags;
2053 spin_lock_irqsave(&cmd->t_state_lock, flags);
2054 if (!atomic_read(&cmd->t_transport_timeout)) {
2055 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2056 return;
2058 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2059 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2060 return;
2063 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2064 &cmd->t_se_count);
2065 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2068 static void transport_generic_request_timeout(struct se_cmd *cmd)
2070 unsigned long flags;
2073 * Reset cmd->t_se_count to allow transport_put_cmd()
2074 * to allow last call to free memory resources.
2076 spin_lock_irqsave(&cmd->t_state_lock, flags);
2077 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2078 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2080 atomic_sub(tmp, &cmd->t_se_count);
2082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2084 transport_put_cmd(cmd);
2087 static inline u32 transport_lba_21(unsigned char *cdb)
2089 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2092 static inline u32 transport_lba_32(unsigned char *cdb)
2094 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2097 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2099 unsigned int __v1, __v2;
2101 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2102 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2104 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2108 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2110 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2112 unsigned int __v1, __v2;
2114 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2115 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2117 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2120 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2122 unsigned long flags;
2124 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2125 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2126 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2130 * Called from interrupt context.
2132 static void transport_task_timeout_handler(unsigned long data)
2134 struct se_task *task = (struct se_task *)data;
2135 struct se_cmd *cmd = task->task_se_cmd;
2136 unsigned long flags;
2138 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2140 spin_lock_irqsave(&cmd->t_state_lock, flags);
2141 if (task->task_flags & TF_STOP) {
2142 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2143 return;
2145 task->task_flags &= ~TF_RUNNING;
2148 * Determine if transport_complete_task() has already been called.
2150 if (!atomic_read(&task->task_active)) {
2151 pr_debug("transport task: %p cmd: %p timeout task_active"
2152 " == 0\n", task, cmd);
2153 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2154 return;
2157 atomic_inc(&cmd->t_se_count);
2158 atomic_inc(&cmd->t_transport_timeout);
2159 cmd->t_tasks_failed = 1;
2161 atomic_set(&task->task_timeout, 1);
2162 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2163 task->task_scsi_status = 1;
2165 if (atomic_read(&task->task_stop)) {
2166 pr_debug("transport task: %p cmd: %p timeout task_stop"
2167 " == 1\n", task, cmd);
2168 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2169 complete(&task->task_stop_comp);
2170 return;
2173 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2174 pr_debug("transport task: %p cmd: %p timeout non zero"
2175 " t_task_cdbs_left\n", task, cmd);
2176 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2177 return;
2179 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2180 task, cmd);
2182 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2183 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2185 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2189 * Called with cmd->t_state_lock held.
2191 static void transport_start_task_timer(struct se_task *task)
2193 struct se_device *dev = task->se_dev;
2194 int timeout;
2196 if (task->task_flags & TF_RUNNING)
2197 return;
2199 * If the task_timeout is disabled, exit now.
2201 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2202 if (!timeout)
2203 return;
2205 init_timer(&task->task_timer);
2206 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2207 task->task_timer.data = (unsigned long) task;
2208 task->task_timer.function = transport_task_timeout_handler;
2210 task->task_flags |= TF_RUNNING;
2211 add_timer(&task->task_timer);
2212 #if 0
2213 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2214 " %d\n", task->task_se_cmd, task, timeout);
2215 #endif
2219 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2221 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2223 struct se_cmd *cmd = task->task_se_cmd;
2225 if (!task->task_flags & TF_RUNNING)
2226 return;
2228 task->task_flags |= TF_STOP;
2229 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2231 del_timer_sync(&task->task_timer);
2233 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2234 task->task_flags &= ~TF_RUNNING;
2235 task->task_flags &= ~TF_STOP;
2238 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2240 struct se_task *task = NULL, *task_tmp;
2241 unsigned long flags;
2243 spin_lock_irqsave(&cmd->t_state_lock, flags);
2244 list_for_each_entry_safe(task, task_tmp,
2245 &cmd->t_task_list, t_list)
2246 __transport_stop_task_timer(task, &flags);
2247 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2250 static inline int transport_tcq_window_closed(struct se_device *dev)
2252 if (dev->dev_tcq_window_closed++ <
2253 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2254 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2255 } else
2256 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2258 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2259 return 0;
2263 * Called from Fabric Module context from transport_execute_tasks()
2265 * The return of this function determins if the tasks from struct se_cmd
2266 * get added to the execution queue in transport_execute_tasks(),
2267 * or are added to the delayed or ordered lists here.
2269 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2271 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2272 return 1;
2274 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2275 * to allow the passed struct se_cmd list of tasks to the front of the list.
2277 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2278 atomic_inc(&cmd->se_dev->dev_hoq_count);
2279 smp_mb__after_atomic_inc();
2280 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2281 " 0x%02x, se_ordered_id: %u\n",
2282 cmd->t_task_cdb[0],
2283 cmd->se_ordered_id);
2284 return 1;
2285 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2286 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2287 list_add_tail(&cmd->se_ordered_node,
2288 &cmd->se_dev->ordered_cmd_list);
2289 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2291 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2292 smp_mb__after_atomic_inc();
2294 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2295 " list, se_ordered_id: %u\n",
2296 cmd->t_task_cdb[0],
2297 cmd->se_ordered_id);
2299 * Add ORDERED command to tail of execution queue if
2300 * no other older commands exist that need to be
2301 * completed first.
2303 if (!atomic_read(&cmd->se_dev->simple_cmds))
2304 return 1;
2305 } else {
2307 * For SIMPLE and UNTAGGED Task Attribute commands
2309 atomic_inc(&cmd->se_dev->simple_cmds);
2310 smp_mb__after_atomic_inc();
2313 * Otherwise if one or more outstanding ORDERED task attribute exist,
2314 * add the dormant task(s) built for the passed struct se_cmd to the
2315 * execution queue and become in Active state for this struct se_device.
2317 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2319 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2320 * will be drained upon completion of HEAD_OF_QUEUE task.
2322 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2323 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2324 list_add_tail(&cmd->se_delayed_node,
2325 &cmd->se_dev->delayed_cmd_list);
2326 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2328 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2329 " delayed CMD list, se_ordered_id: %u\n",
2330 cmd->t_task_cdb[0], cmd->sam_task_attr,
2331 cmd->se_ordered_id);
2333 * Return zero to let transport_execute_tasks() know
2334 * not to add the delayed tasks to the execution list.
2336 return 0;
2339 * Otherwise, no ORDERED task attributes exist..
2341 return 1;
2345 * Called from fabric module context in transport_generic_new_cmd() and
2346 * transport_generic_process_write()
2348 static int transport_execute_tasks(struct se_cmd *cmd)
2350 int add_tasks;
2352 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2353 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2354 transport_generic_request_failure(cmd, NULL, 0, 1);
2355 return 0;
2359 * Call transport_cmd_check_stop() to see if a fabric exception
2360 * has occurred that prevents execution.
2362 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2364 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2365 * attribute for the tasks of the received struct se_cmd CDB
2367 add_tasks = transport_execute_task_attr(cmd);
2368 if (!add_tasks)
2369 goto execute_tasks;
2371 * This calls transport_add_tasks_from_cmd() to handle
2372 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2373 * (if enabled) in __transport_add_task_to_execute_queue() and
2374 * transport_add_task_check_sam_attr().
2376 transport_add_tasks_from_cmd(cmd);
2379 * Kick the execution queue for the cmd associated struct se_device
2380 * storage object.
2382 execute_tasks:
2383 __transport_execute_tasks(cmd->se_dev);
2384 return 0;
2388 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2389 * from struct se_device->execute_task_list and
2391 * Called from transport_processing_thread()
2393 static int __transport_execute_tasks(struct se_device *dev)
2395 int error;
2396 struct se_cmd *cmd = NULL;
2397 struct se_task *task = NULL;
2398 unsigned long flags;
2401 * Check if there is enough room in the device and HBA queue to send
2402 * struct se_tasks to the selected transport.
2404 check_depth:
2405 if (!atomic_read(&dev->depth_left))
2406 return transport_tcq_window_closed(dev);
2408 dev->dev_tcq_window_closed = 0;
2410 spin_lock_irq(&dev->execute_task_lock);
2411 if (list_empty(&dev->execute_task_list)) {
2412 spin_unlock_irq(&dev->execute_task_lock);
2413 return 0;
2415 task = list_first_entry(&dev->execute_task_list,
2416 struct se_task, t_execute_list);
2417 list_del(&task->t_execute_list);
2418 atomic_set(&task->task_execute_queue, 0);
2419 atomic_dec(&dev->execute_tasks);
2420 spin_unlock_irq(&dev->execute_task_lock);
2422 atomic_dec(&dev->depth_left);
2424 cmd = task->task_se_cmd;
2426 spin_lock_irqsave(&cmd->t_state_lock, flags);
2427 atomic_set(&task->task_active, 1);
2428 atomic_set(&task->task_sent, 1);
2429 atomic_inc(&cmd->t_task_cdbs_sent);
2431 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2432 cmd->t_task_list_num)
2433 atomic_set(&cmd->transport_sent, 1);
2435 transport_start_task_timer(task);
2436 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2438 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2439 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2440 * struct se_subsystem_api->do_task() caller below.
2442 if (cmd->transport_emulate_cdb) {
2443 error = cmd->transport_emulate_cdb(cmd);
2444 if (error != 0) {
2445 cmd->transport_error_status = error;
2446 atomic_set(&task->task_active, 0);
2447 atomic_set(&cmd->transport_sent, 0);
2448 transport_stop_tasks_for_cmd(cmd);
2449 transport_generic_request_failure(cmd, dev, 0, 1);
2450 goto check_depth;
2453 * Handle the successful completion for transport_emulate_cdb()
2454 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2455 * Otherwise the caller is expected to complete the task with
2456 * proper status.
2458 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2459 cmd->scsi_status = SAM_STAT_GOOD;
2460 task->task_scsi_status = GOOD;
2461 transport_complete_task(task, 1);
2463 } else {
2465 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2466 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2467 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2468 * LUN emulation code.
2470 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2471 * call ->do_task() directly and let the underlying TCM subsystem plugin
2472 * code handle the CDB emulation.
2474 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2475 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2476 error = transport_emulate_control_cdb(task);
2477 else
2478 error = dev->transport->do_task(task);
2480 if (error != 0) {
2481 cmd->transport_error_status = error;
2482 atomic_set(&task->task_active, 0);
2483 atomic_set(&cmd->transport_sent, 0);
2484 transport_stop_tasks_for_cmd(cmd);
2485 transport_generic_request_failure(cmd, dev, 0, 1);
2489 goto check_depth;
2491 return 0;
2494 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2496 unsigned long flags;
2498 * Any unsolicited data will get dumped for failed command inside of
2499 * the fabric plugin
2501 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2502 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2503 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2504 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2507 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2509 static inline u32 transport_get_sectors_6(
2510 unsigned char *cdb,
2511 struct se_cmd *cmd,
2512 int *ret)
2514 struct se_device *dev = cmd->se_dev;
2517 * Assume TYPE_DISK for non struct se_device objects.
2518 * Use 8-bit sector value.
2520 if (!dev)
2521 goto type_disk;
2524 * Use 24-bit allocation length for TYPE_TAPE.
2526 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2527 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2530 * Everything else assume TYPE_DISK Sector CDB location.
2531 * Use 8-bit sector value.
2533 type_disk:
2534 return (u32)cdb[4];
2537 static inline u32 transport_get_sectors_10(
2538 unsigned char *cdb,
2539 struct se_cmd *cmd,
2540 int *ret)
2542 struct se_device *dev = cmd->se_dev;
2545 * Assume TYPE_DISK for non struct se_device objects.
2546 * Use 16-bit sector value.
2548 if (!dev)
2549 goto type_disk;
2552 * XXX_10 is not defined in SSC, throw an exception
2554 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2555 *ret = -EINVAL;
2556 return 0;
2560 * Everything else assume TYPE_DISK Sector CDB location.
2561 * Use 16-bit sector value.
2563 type_disk:
2564 return (u32)(cdb[7] << 8) + cdb[8];
2567 static inline u32 transport_get_sectors_12(
2568 unsigned char *cdb,
2569 struct se_cmd *cmd,
2570 int *ret)
2572 struct se_device *dev = cmd->se_dev;
2575 * Assume TYPE_DISK for non struct se_device objects.
2576 * Use 32-bit sector value.
2578 if (!dev)
2579 goto type_disk;
2582 * XXX_12 is not defined in SSC, throw an exception
2584 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2585 *ret = -EINVAL;
2586 return 0;
2590 * Everything else assume TYPE_DISK Sector CDB location.
2591 * Use 32-bit sector value.
2593 type_disk:
2594 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2597 static inline u32 transport_get_sectors_16(
2598 unsigned char *cdb,
2599 struct se_cmd *cmd,
2600 int *ret)
2602 struct se_device *dev = cmd->se_dev;
2605 * Assume TYPE_DISK for non struct se_device objects.
2606 * Use 32-bit sector value.
2608 if (!dev)
2609 goto type_disk;
2612 * Use 24-bit allocation length for TYPE_TAPE.
2614 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2615 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2617 type_disk:
2618 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2619 (cdb[12] << 8) + cdb[13];
2623 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2625 static inline u32 transport_get_sectors_32(
2626 unsigned char *cdb,
2627 struct se_cmd *cmd,
2628 int *ret)
2631 * Assume TYPE_DISK for non struct se_device objects.
2632 * Use 32-bit sector value.
2634 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2635 (cdb[30] << 8) + cdb[31];
2639 static inline u32 transport_get_size(
2640 u32 sectors,
2641 unsigned char *cdb,
2642 struct se_cmd *cmd)
2644 struct se_device *dev = cmd->se_dev;
2646 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2647 if (cdb[1] & 1) { /* sectors */
2648 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2649 } else /* bytes */
2650 return sectors;
2652 #if 0
2653 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2654 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2655 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2656 dev->transport->name);
2657 #endif
2658 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2661 static void transport_xor_callback(struct se_cmd *cmd)
2663 unsigned char *buf, *addr;
2664 struct scatterlist *sg;
2665 unsigned int offset;
2666 int i;
2667 int count;
2669 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2671 * 1) read the specified logical block(s);
2672 * 2) transfer logical blocks from the data-out buffer;
2673 * 3) XOR the logical blocks transferred from the data-out buffer with
2674 * the logical blocks read, storing the resulting XOR data in a buffer;
2675 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2676 * blocks transferred from the data-out buffer; and
2677 * 5) transfer the resulting XOR data to the data-in buffer.
2679 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2680 if (!buf) {
2681 pr_err("Unable to allocate xor_callback buf\n");
2682 return;
2685 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2686 * into the locally allocated *buf
2688 sg_copy_to_buffer(cmd->t_data_sg,
2689 cmd->t_data_nents,
2690 buf,
2691 cmd->data_length);
2694 * Now perform the XOR against the BIDI read memory located at
2695 * cmd->t_mem_bidi_list
2698 offset = 0;
2699 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2700 addr = kmap_atomic(sg_page(sg), KM_USER0);
2701 if (!addr)
2702 goto out;
2704 for (i = 0; i < sg->length; i++)
2705 *(addr + sg->offset + i) ^= *(buf + offset + i);
2707 offset += sg->length;
2708 kunmap_atomic(addr, KM_USER0);
2711 out:
2712 kfree(buf);
2716 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2718 static int transport_get_sense_data(struct se_cmd *cmd)
2720 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2721 struct se_device *dev;
2722 struct se_task *task = NULL, *task_tmp;
2723 unsigned long flags;
2724 u32 offset = 0;
2726 WARN_ON(!cmd->se_lun);
2728 spin_lock_irqsave(&cmd->t_state_lock, flags);
2729 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2730 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2731 return 0;
2734 list_for_each_entry_safe(task, task_tmp,
2735 &cmd->t_task_list, t_list) {
2737 if (!task->task_sense)
2738 continue;
2740 dev = task->se_dev;
2741 if (!dev)
2742 continue;
2744 if (!dev->transport->get_sense_buffer) {
2745 pr_err("dev->transport->get_sense_buffer"
2746 " is NULL\n");
2747 continue;
2750 sense_buffer = dev->transport->get_sense_buffer(task);
2751 if (!sense_buffer) {
2752 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2753 " sense buffer for task with sense\n",
2754 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2755 continue;
2757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2759 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2760 TRANSPORT_SENSE_BUFFER);
2762 memcpy(&buffer[offset], sense_buffer,
2763 TRANSPORT_SENSE_BUFFER);
2764 cmd->scsi_status = task->task_scsi_status;
2765 /* Automatically padded */
2766 cmd->scsi_sense_length =
2767 (TRANSPORT_SENSE_BUFFER + offset);
2769 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2770 " and sense\n",
2771 dev->se_hba->hba_id, dev->transport->name,
2772 cmd->scsi_status);
2773 return 0;
2775 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2777 return -1;
2780 static int
2781 transport_handle_reservation_conflict(struct se_cmd *cmd)
2783 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2784 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2785 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2786 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2788 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2789 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2790 * CONFLICT STATUS.
2792 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2794 if (cmd->se_sess &&
2795 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2796 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2797 cmd->orig_fe_lun, 0x2C,
2798 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2799 return -EINVAL;
2802 static inline long long transport_dev_end_lba(struct se_device *dev)
2804 return dev->transport->get_blocks(dev) + 1;
2807 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2809 struct se_device *dev = cmd->se_dev;
2810 u32 sectors;
2812 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2813 return 0;
2815 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2817 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2818 pr_err("LBA: %llu Sectors: %u exceeds"
2819 " transport_dev_end_lba(): %llu\n",
2820 cmd->t_task_lba, sectors,
2821 transport_dev_end_lba(dev));
2822 return -EINVAL;
2825 return 0;
2828 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2831 * Determine if the received WRITE_SAME is used to for direct
2832 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2833 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2834 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2836 int passthrough = (dev->transport->transport_type ==
2837 TRANSPORT_PLUGIN_PHBA_PDEV);
2839 if (!passthrough) {
2840 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2841 pr_err("WRITE_SAME PBDATA and LBDATA"
2842 " bits not supported for Block Discard"
2843 " Emulation\n");
2844 return -ENOSYS;
2847 * Currently for the emulated case we only accept
2848 * tpws with the UNMAP=1 bit set.
2850 if (!(flags[0] & 0x08)) {
2851 pr_err("WRITE_SAME w/o UNMAP bit not"
2852 " supported for Block Discard Emulation\n");
2853 return -ENOSYS;
2857 return 0;
2860 /* transport_generic_cmd_sequencer():
2862 * Generic Command Sequencer that should work for most DAS transport
2863 * drivers.
2865 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2866 * RX Thread.
2868 * FIXME: Need to support other SCSI OPCODES where as well.
2870 static int transport_generic_cmd_sequencer(
2871 struct se_cmd *cmd,
2872 unsigned char *cdb)
2874 struct se_device *dev = cmd->se_dev;
2875 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2876 int ret = 0, sector_ret = 0, passthrough;
2877 u32 sectors = 0, size = 0, pr_reg_type = 0;
2878 u16 service_action;
2879 u8 alua_ascq = 0;
2881 * Check for an existing UNIT ATTENTION condition
2883 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2884 cmd->transport_wait_for_tasks =
2885 &transport_nop_wait_for_tasks;
2886 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2887 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2888 return -EINVAL;
2891 * Check status of Asymmetric Logical Unit Assignment port
2893 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2894 if (ret != 0) {
2895 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2897 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2898 * The ALUA additional sense code qualifier (ASCQ) is determined
2899 * by the ALUA primary or secondary access state..
2901 if (ret > 0) {
2902 #if 0
2903 pr_debug("[%s]: ALUA TG Port not available,"
2904 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2905 cmd->se_tfo->get_fabric_name(), alua_ascq);
2906 #endif
2907 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2908 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2909 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2910 return -EINVAL;
2912 goto out_invalid_cdb_field;
2915 * Check status for SPC-3 Persistent Reservations
2917 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2918 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2919 cmd, cdb, pr_reg_type) != 0)
2920 return transport_handle_reservation_conflict(cmd);
2922 * This means the CDB is allowed for the SCSI Initiator port
2923 * when said port is *NOT* holding the legacy SPC-2 or
2924 * SPC-3 Persistent Reservation.
2928 switch (cdb[0]) {
2929 case READ_6:
2930 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2931 if (sector_ret)
2932 goto out_unsupported_cdb;
2933 size = transport_get_size(sectors, cdb, cmd);
2934 cmd->transport_split_cdb = &split_cdb_XX_6;
2935 cmd->t_task_lba = transport_lba_21(cdb);
2936 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2937 break;
2938 case READ_10:
2939 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2940 if (sector_ret)
2941 goto out_unsupported_cdb;
2942 size = transport_get_size(sectors, cdb, cmd);
2943 cmd->transport_split_cdb = &split_cdb_XX_10;
2944 cmd->t_task_lba = transport_lba_32(cdb);
2945 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2946 break;
2947 case READ_12:
2948 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2949 if (sector_ret)
2950 goto out_unsupported_cdb;
2951 size = transport_get_size(sectors, cdb, cmd);
2952 cmd->transport_split_cdb = &split_cdb_XX_12;
2953 cmd->t_task_lba = transport_lba_32(cdb);
2954 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2955 break;
2956 case READ_16:
2957 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2958 if (sector_ret)
2959 goto out_unsupported_cdb;
2960 size = transport_get_size(sectors, cdb, cmd);
2961 cmd->transport_split_cdb = &split_cdb_XX_16;
2962 cmd->t_task_lba = transport_lba_64(cdb);
2963 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2964 break;
2965 case WRITE_6:
2966 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2967 if (sector_ret)
2968 goto out_unsupported_cdb;
2969 size = transport_get_size(sectors, cdb, cmd);
2970 cmd->transport_split_cdb = &split_cdb_XX_6;
2971 cmd->t_task_lba = transport_lba_21(cdb);
2972 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2973 break;
2974 case WRITE_10:
2975 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2976 if (sector_ret)
2977 goto out_unsupported_cdb;
2978 size = transport_get_size(sectors, cdb, cmd);
2979 cmd->transport_split_cdb = &split_cdb_XX_10;
2980 cmd->t_task_lba = transport_lba_32(cdb);
2981 cmd->t_tasks_fua = (cdb[1] & 0x8);
2982 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2983 break;
2984 case WRITE_12:
2985 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2986 if (sector_ret)
2987 goto out_unsupported_cdb;
2988 size = transport_get_size(sectors, cdb, cmd);
2989 cmd->transport_split_cdb = &split_cdb_XX_12;
2990 cmd->t_task_lba = transport_lba_32(cdb);
2991 cmd->t_tasks_fua = (cdb[1] & 0x8);
2992 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2993 break;
2994 case WRITE_16:
2995 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2996 if (sector_ret)
2997 goto out_unsupported_cdb;
2998 size = transport_get_size(sectors, cdb, cmd);
2999 cmd->transport_split_cdb = &split_cdb_XX_16;
3000 cmd->t_task_lba = transport_lba_64(cdb);
3001 cmd->t_tasks_fua = (cdb[1] & 0x8);
3002 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3003 break;
3004 case XDWRITEREAD_10:
3005 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3006 !(cmd->t_tasks_bidi))
3007 goto out_invalid_cdb_field;
3008 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3009 if (sector_ret)
3010 goto out_unsupported_cdb;
3011 size = transport_get_size(sectors, cdb, cmd);
3012 cmd->transport_split_cdb = &split_cdb_XX_10;
3013 cmd->t_task_lba = transport_lba_32(cdb);
3014 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3015 passthrough = (dev->transport->transport_type ==
3016 TRANSPORT_PLUGIN_PHBA_PDEV);
3018 * Skip the remaining assignments for TCM/PSCSI passthrough
3020 if (passthrough)
3021 break;
3023 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3025 cmd->transport_complete_callback = &transport_xor_callback;
3026 cmd->t_tasks_fua = (cdb[1] & 0x8);
3027 break;
3028 case VARIABLE_LENGTH_CMD:
3029 service_action = get_unaligned_be16(&cdb[8]);
3031 * Determine if this is TCM/PSCSI device and we should disable
3032 * internal emulation for this CDB.
3034 passthrough = (dev->transport->transport_type ==
3035 TRANSPORT_PLUGIN_PHBA_PDEV);
3037 switch (service_action) {
3038 case XDWRITEREAD_32:
3039 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3040 if (sector_ret)
3041 goto out_unsupported_cdb;
3042 size = transport_get_size(sectors, cdb, cmd);
3044 * Use WRITE_32 and READ_32 opcodes for the emulated
3045 * XDWRITE_READ_32 logic.
3047 cmd->transport_split_cdb = &split_cdb_XX_32;
3048 cmd->t_task_lba = transport_lba_64_ext(cdb);
3049 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3052 * Skip the remaining assignments for TCM/PSCSI passthrough
3054 if (passthrough)
3055 break;
3058 * Setup BIDI XOR callback to be run during
3059 * transport_generic_complete_ok()
3061 cmd->transport_complete_callback = &transport_xor_callback;
3062 cmd->t_tasks_fua = (cdb[10] & 0x8);
3063 break;
3064 case WRITE_SAME_32:
3065 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3066 if (sector_ret)
3067 goto out_unsupported_cdb;
3069 if (sectors)
3070 size = transport_get_size(1, cdb, cmd);
3071 else {
3072 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3073 " supported\n");
3074 goto out_invalid_cdb_field;
3077 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3078 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3080 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3081 goto out_invalid_cdb_field;
3083 break;
3084 default:
3085 pr_err("VARIABLE_LENGTH_CMD service action"
3086 " 0x%04x not supported\n", service_action);
3087 goto out_unsupported_cdb;
3089 break;
3090 case MAINTENANCE_IN:
3091 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3092 /* MAINTENANCE_IN from SCC-2 */
3094 * Check for emulated MI_REPORT_TARGET_PGS.
3096 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3097 cmd->transport_emulate_cdb =
3098 (su_dev->t10_alua.alua_type ==
3099 SPC3_ALUA_EMULATED) ?
3100 core_emulate_report_target_port_groups :
3101 NULL;
3103 size = (cdb[6] << 24) | (cdb[7] << 16) |
3104 (cdb[8] << 8) | cdb[9];
3105 } else {
3106 /* GPCMD_SEND_KEY from multi media commands */
3107 size = (cdb[8] << 8) + cdb[9];
3109 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3110 break;
3111 case MODE_SELECT:
3112 size = cdb[4];
3113 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3114 break;
3115 case MODE_SELECT_10:
3116 size = (cdb[7] << 8) + cdb[8];
3117 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3118 break;
3119 case MODE_SENSE:
3120 size = cdb[4];
3121 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3122 break;
3123 case MODE_SENSE_10:
3124 case GPCMD_READ_BUFFER_CAPACITY:
3125 case GPCMD_SEND_OPC:
3126 case LOG_SELECT:
3127 case LOG_SENSE:
3128 size = (cdb[7] << 8) + cdb[8];
3129 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3130 break;
3131 case READ_BLOCK_LIMITS:
3132 size = READ_BLOCK_LEN;
3133 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3134 break;
3135 case GPCMD_GET_CONFIGURATION:
3136 case GPCMD_READ_FORMAT_CAPACITIES:
3137 case GPCMD_READ_DISC_INFO:
3138 case GPCMD_READ_TRACK_RZONE_INFO:
3139 size = (cdb[7] << 8) + cdb[8];
3140 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3141 break;
3142 case PERSISTENT_RESERVE_IN:
3143 case PERSISTENT_RESERVE_OUT:
3144 cmd->transport_emulate_cdb =
3145 (su_dev->t10_pr.res_type ==
3146 SPC3_PERSISTENT_RESERVATIONS) ?
3147 core_scsi3_emulate_pr : NULL;
3148 size = (cdb[7] << 8) + cdb[8];
3149 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3150 break;
3151 case GPCMD_MECHANISM_STATUS:
3152 case GPCMD_READ_DVD_STRUCTURE:
3153 size = (cdb[8] << 8) + cdb[9];
3154 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3155 break;
3156 case READ_POSITION:
3157 size = READ_POSITION_LEN;
3158 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3159 break;
3160 case MAINTENANCE_OUT:
3161 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3162 /* MAINTENANCE_OUT from SCC-2
3164 * Check for emulated MO_SET_TARGET_PGS.
3166 if (cdb[1] == MO_SET_TARGET_PGS) {
3167 cmd->transport_emulate_cdb =
3168 (su_dev->t10_alua.alua_type ==
3169 SPC3_ALUA_EMULATED) ?
3170 core_emulate_set_target_port_groups :
3171 NULL;
3174 size = (cdb[6] << 24) | (cdb[7] << 16) |
3175 (cdb[8] << 8) | cdb[9];
3176 } else {
3177 /* GPCMD_REPORT_KEY from multi media commands */
3178 size = (cdb[8] << 8) + cdb[9];
3180 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3181 break;
3182 case INQUIRY:
3183 size = (cdb[3] << 8) + cdb[4];
3185 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3186 * See spc4r17 section 5.3
3188 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3189 cmd->sam_task_attr = MSG_HEAD_TAG;
3190 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3191 break;
3192 case READ_BUFFER:
3193 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3194 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3195 break;
3196 case READ_CAPACITY:
3197 size = READ_CAP_LEN;
3198 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3199 break;
3200 case READ_MEDIA_SERIAL_NUMBER:
3201 case SECURITY_PROTOCOL_IN:
3202 case SECURITY_PROTOCOL_OUT:
3203 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3204 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3205 break;
3206 case SERVICE_ACTION_IN:
3207 case ACCESS_CONTROL_IN:
3208 case ACCESS_CONTROL_OUT:
3209 case EXTENDED_COPY:
3210 case READ_ATTRIBUTE:
3211 case RECEIVE_COPY_RESULTS:
3212 case WRITE_ATTRIBUTE:
3213 size = (cdb[10] << 24) | (cdb[11] << 16) |
3214 (cdb[12] << 8) | cdb[13];
3215 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3216 break;
3217 case RECEIVE_DIAGNOSTIC:
3218 case SEND_DIAGNOSTIC:
3219 size = (cdb[3] << 8) | cdb[4];
3220 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3221 break;
3222 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3223 #if 0
3224 case GPCMD_READ_CD:
3225 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3226 size = (2336 * sectors);
3227 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3228 break;
3229 #endif
3230 case READ_TOC:
3231 size = cdb[8];
3232 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3233 break;
3234 case REQUEST_SENSE:
3235 size = cdb[4];
3236 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3237 break;
3238 case READ_ELEMENT_STATUS:
3239 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3240 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3241 break;
3242 case WRITE_BUFFER:
3243 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3244 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3245 break;
3246 case RESERVE:
3247 case RESERVE_10:
3249 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3250 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3252 if (cdb[0] == RESERVE_10)
3253 size = (cdb[7] << 8) | cdb[8];
3254 else
3255 size = cmd->data_length;
3258 * Setup the legacy emulated handler for SPC-2 and
3259 * >= SPC-3 compatible reservation handling (CRH=1)
3260 * Otherwise, we assume the underlying SCSI logic is
3261 * is running in SPC_PASSTHROUGH, and wants reservations
3262 * emulation disabled.
3264 cmd->transport_emulate_cdb =
3265 (su_dev->t10_pr.res_type !=
3266 SPC_PASSTHROUGH) ?
3267 core_scsi2_emulate_crh : NULL;
3268 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3269 break;
3270 case RELEASE:
3271 case RELEASE_10:
3273 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3274 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3276 if (cdb[0] == RELEASE_10)
3277 size = (cdb[7] << 8) | cdb[8];
3278 else
3279 size = cmd->data_length;
3281 cmd->transport_emulate_cdb =
3282 (su_dev->t10_pr.res_type !=
3283 SPC_PASSTHROUGH) ?
3284 core_scsi2_emulate_crh : NULL;
3285 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3286 break;
3287 case SYNCHRONIZE_CACHE:
3288 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3290 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3292 if (cdb[0] == SYNCHRONIZE_CACHE) {
3293 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3294 cmd->t_task_lba = transport_lba_32(cdb);
3295 } else {
3296 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3297 cmd->t_task_lba = transport_lba_64(cdb);
3299 if (sector_ret)
3300 goto out_unsupported_cdb;
3302 size = transport_get_size(sectors, cdb, cmd);
3303 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3306 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3308 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3309 break;
3311 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3312 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3314 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3316 * Check to ensure that LBA + Range does not exceed past end of
3317 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3319 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3320 if (transport_cmd_get_valid_sectors(cmd) < 0)
3321 goto out_invalid_cdb_field;
3323 break;
3324 case UNMAP:
3325 size = get_unaligned_be16(&cdb[7]);
3326 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3327 break;
3328 case WRITE_SAME_16:
3329 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3330 if (sector_ret)
3331 goto out_unsupported_cdb;
3333 if (sectors)
3334 size = transport_get_size(1, cdb, cmd);
3335 else {
3336 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3337 goto out_invalid_cdb_field;
3340 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3341 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3343 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3344 goto out_invalid_cdb_field;
3345 break;
3346 case WRITE_SAME:
3347 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3348 if (sector_ret)
3349 goto out_unsupported_cdb;
3351 if (sectors)
3352 size = transport_get_size(1, cdb, cmd);
3353 else {
3354 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3355 goto out_invalid_cdb_field;
3358 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3359 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3361 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3362 * of byte 1 bit 3 UNMAP instead of original reserved field
3364 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3365 goto out_invalid_cdb_field;
3366 break;
3367 case ALLOW_MEDIUM_REMOVAL:
3368 case GPCMD_CLOSE_TRACK:
3369 case ERASE:
3370 case INITIALIZE_ELEMENT_STATUS:
3371 case GPCMD_LOAD_UNLOAD:
3372 case REZERO_UNIT:
3373 case SEEK_10:
3374 case GPCMD_SET_SPEED:
3375 case SPACE:
3376 case START_STOP:
3377 case TEST_UNIT_READY:
3378 case VERIFY:
3379 case WRITE_FILEMARKS:
3380 case MOVE_MEDIUM:
3381 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3382 break;
3383 case REPORT_LUNS:
3384 cmd->transport_emulate_cdb =
3385 transport_core_report_lun_response;
3386 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3388 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3389 * See spc4r17 section 5.3
3391 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3392 cmd->sam_task_attr = MSG_HEAD_TAG;
3393 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3394 break;
3395 default:
3396 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3397 " 0x%02x, sending CHECK_CONDITION.\n",
3398 cmd->se_tfo->get_fabric_name(), cdb[0]);
3399 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3400 goto out_unsupported_cdb;
3403 if (size != cmd->data_length) {
3404 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3405 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3406 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3407 cmd->data_length, size, cdb[0]);
3409 cmd->cmd_spdtl = size;
3411 if (cmd->data_direction == DMA_TO_DEVICE) {
3412 pr_err("Rejecting underflow/overflow"
3413 " WRITE data\n");
3414 goto out_invalid_cdb_field;
3417 * Reject READ_* or WRITE_* with overflow/underflow for
3418 * type SCF_SCSI_DATA_SG_IO_CDB.
3420 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3421 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3422 " CDB on non 512-byte sector setup subsystem"
3423 " plugin: %s\n", dev->transport->name);
3424 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3425 goto out_invalid_cdb_field;
3428 if (size > cmd->data_length) {
3429 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3430 cmd->residual_count = (size - cmd->data_length);
3431 } else {
3432 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3433 cmd->residual_count = (cmd->data_length - size);
3435 cmd->data_length = size;
3438 /* Let's limit control cdbs to a page, for simplicity's sake. */
3439 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3440 size > PAGE_SIZE)
3441 goto out_invalid_cdb_field;
3443 transport_set_supported_SAM_opcode(cmd);
3444 return ret;
3446 out_unsupported_cdb:
3447 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3448 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3449 return -EINVAL;
3450 out_invalid_cdb_field:
3451 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3452 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3453 return -EINVAL;
3457 * Called from transport_generic_complete_ok() and
3458 * transport_generic_request_failure() to determine which dormant/delayed
3459 * and ordered cmds need to have their tasks added to the execution queue.
3461 static void transport_complete_task_attr(struct se_cmd *cmd)
3463 struct se_device *dev = cmd->se_dev;
3464 struct se_cmd *cmd_p, *cmd_tmp;
3465 int new_active_tasks = 0;
3467 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3468 atomic_dec(&dev->simple_cmds);
3469 smp_mb__after_atomic_dec();
3470 dev->dev_cur_ordered_id++;
3471 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3472 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3473 cmd->se_ordered_id);
3474 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3475 atomic_dec(&dev->dev_hoq_count);
3476 smp_mb__after_atomic_dec();
3477 dev->dev_cur_ordered_id++;
3478 pr_debug("Incremented dev_cur_ordered_id: %u for"
3479 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3480 cmd->se_ordered_id);
3481 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3482 spin_lock(&dev->ordered_cmd_lock);
3483 list_del(&cmd->se_ordered_node);
3484 atomic_dec(&dev->dev_ordered_sync);
3485 smp_mb__after_atomic_dec();
3486 spin_unlock(&dev->ordered_cmd_lock);
3488 dev->dev_cur_ordered_id++;
3489 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3490 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3493 * Process all commands up to the last received
3494 * ORDERED task attribute which requires another blocking
3495 * boundary
3497 spin_lock(&dev->delayed_cmd_lock);
3498 list_for_each_entry_safe(cmd_p, cmd_tmp,
3499 &dev->delayed_cmd_list, se_delayed_node) {
3501 list_del(&cmd_p->se_delayed_node);
3502 spin_unlock(&dev->delayed_cmd_lock);
3504 pr_debug("Calling add_tasks() for"
3505 " cmd_p: 0x%02x Task Attr: 0x%02x"
3506 " Dormant -> Active, se_ordered_id: %u\n",
3507 cmd_p->t_task_cdb[0],
3508 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3510 transport_add_tasks_from_cmd(cmd_p);
3511 new_active_tasks++;
3513 spin_lock(&dev->delayed_cmd_lock);
3514 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3515 break;
3517 spin_unlock(&dev->delayed_cmd_lock);
3519 * If new tasks have become active, wake up the transport thread
3520 * to do the processing of the Active tasks.
3522 if (new_active_tasks != 0)
3523 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3526 static int transport_complete_qf(struct se_cmd *cmd)
3528 int ret = 0;
3530 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3531 return cmd->se_tfo->queue_status(cmd);
3533 switch (cmd->data_direction) {
3534 case DMA_FROM_DEVICE:
3535 ret = cmd->se_tfo->queue_data_in(cmd);
3536 break;
3537 case DMA_TO_DEVICE:
3538 if (cmd->t_bidi_data_sg) {
3539 ret = cmd->se_tfo->queue_data_in(cmd);
3540 if (ret < 0)
3541 return ret;
3543 /* Fall through for DMA_TO_DEVICE */
3544 case DMA_NONE:
3545 ret = cmd->se_tfo->queue_status(cmd);
3546 break;
3547 default:
3548 break;
3551 return ret;
3554 static void transport_handle_queue_full(
3555 struct se_cmd *cmd,
3556 struct se_device *dev,
3557 int (*qf_callback)(struct se_cmd *))
3559 spin_lock_irq(&dev->qf_cmd_lock);
3560 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3561 cmd->transport_qf_callback = qf_callback;
3562 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3563 atomic_inc(&dev->dev_qf_count);
3564 smp_mb__after_atomic_inc();
3565 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3567 schedule_work(&cmd->se_dev->qf_work_queue);
3570 static void transport_generic_complete_ok(struct se_cmd *cmd)
3572 int reason = 0, ret;
3574 * Check if we need to move delayed/dormant tasks from cmds on the
3575 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3576 * Attribute.
3578 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3579 transport_complete_task_attr(cmd);
3581 * Check to schedule QUEUE_FULL work, or execute an existing
3582 * cmd->transport_qf_callback()
3584 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3585 schedule_work(&cmd->se_dev->qf_work_queue);
3587 if (cmd->transport_qf_callback) {
3588 ret = cmd->transport_qf_callback(cmd);
3589 if (ret < 0)
3590 goto queue_full;
3592 cmd->transport_qf_callback = NULL;
3593 goto done;
3596 * Check if we need to retrieve a sense buffer from
3597 * the struct se_cmd in question.
3599 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3600 if (transport_get_sense_data(cmd) < 0)
3601 reason = TCM_NON_EXISTENT_LUN;
3604 * Only set when an struct se_task->task_scsi_status returned
3605 * a non GOOD status.
3607 if (cmd->scsi_status) {
3608 ret = transport_send_check_condition_and_sense(
3609 cmd, reason, 1);
3610 if (ret == -EAGAIN)
3611 goto queue_full;
3613 transport_lun_remove_cmd(cmd);
3614 transport_cmd_check_stop_to_fabric(cmd);
3615 return;
3619 * Check for a callback, used by amongst other things
3620 * XDWRITE_READ_10 emulation.
3622 if (cmd->transport_complete_callback)
3623 cmd->transport_complete_callback(cmd);
3625 switch (cmd->data_direction) {
3626 case DMA_FROM_DEVICE:
3627 spin_lock(&cmd->se_lun->lun_sep_lock);
3628 if (cmd->se_lun->lun_sep) {
3629 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3630 cmd->data_length;
3632 spin_unlock(&cmd->se_lun->lun_sep_lock);
3634 ret = cmd->se_tfo->queue_data_in(cmd);
3635 if (ret == -EAGAIN)
3636 goto queue_full;
3637 break;
3638 case DMA_TO_DEVICE:
3639 spin_lock(&cmd->se_lun->lun_sep_lock);
3640 if (cmd->se_lun->lun_sep) {
3641 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3642 cmd->data_length;
3644 spin_unlock(&cmd->se_lun->lun_sep_lock);
3646 * Check if we need to send READ payload for BIDI-COMMAND
3648 if (cmd->t_bidi_data_sg) {
3649 spin_lock(&cmd->se_lun->lun_sep_lock);
3650 if (cmd->se_lun->lun_sep) {
3651 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3652 cmd->data_length;
3654 spin_unlock(&cmd->se_lun->lun_sep_lock);
3655 ret = cmd->se_tfo->queue_data_in(cmd);
3656 if (ret == -EAGAIN)
3657 goto queue_full;
3658 break;
3660 /* Fall through for DMA_TO_DEVICE */
3661 case DMA_NONE:
3662 ret = cmd->se_tfo->queue_status(cmd);
3663 if (ret == -EAGAIN)
3664 goto queue_full;
3665 break;
3666 default:
3667 break;
3670 done:
3671 transport_lun_remove_cmd(cmd);
3672 transport_cmd_check_stop_to_fabric(cmd);
3673 return;
3675 queue_full:
3676 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3677 " data_direction: %d\n", cmd, cmd->data_direction);
3678 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3681 static void transport_free_dev_tasks(struct se_cmd *cmd)
3683 struct se_task *task, *task_tmp;
3684 unsigned long flags;
3686 spin_lock_irqsave(&cmd->t_state_lock, flags);
3687 list_for_each_entry_safe(task, task_tmp,
3688 &cmd->t_task_list, t_list) {
3689 if (atomic_read(&task->task_active))
3690 continue;
3692 kfree(task->task_sg_bidi);
3693 kfree(task->task_sg);
3695 list_del(&task->t_list);
3697 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3698 if (task->se_dev)
3699 task->se_dev->transport->free_task(task);
3700 else
3701 pr_err("task[%u] - task->se_dev is NULL\n",
3702 task->task_no);
3703 spin_lock_irqsave(&cmd->t_state_lock, flags);
3705 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3708 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3710 struct scatterlist *sg;
3711 int count;
3713 for_each_sg(sgl, sg, nents, count)
3714 __free_page(sg_page(sg));
3716 kfree(sgl);
3719 static inline void transport_free_pages(struct se_cmd *cmd)
3721 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3722 return;
3724 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3725 cmd->t_data_sg = NULL;
3726 cmd->t_data_nents = 0;
3728 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3729 cmd->t_bidi_data_sg = NULL;
3730 cmd->t_bidi_data_nents = 0;
3734 * transport_put_cmd - release a reference to a command
3735 * @cmd: command to release
3737 * This routine releases our reference to the command and frees it if possible.
3739 static bool transport_put_cmd(struct se_cmd *cmd)
3741 unsigned long flags;
3742 int free_tasks = 0;
3744 spin_lock_irqsave(&cmd->t_state_lock, flags);
3745 if (atomic_read(&cmd->t_fe_count)) {
3746 if (!atomic_dec_and_test(&cmd->t_fe_count))
3747 goto out_busy;
3750 if (atomic_read(&cmd->t_se_count)) {
3751 if (!atomic_dec_and_test(&cmd->t_se_count))
3752 goto out_busy;
3755 if (atomic_read(&cmd->transport_dev_active)) {
3756 atomic_set(&cmd->transport_dev_active, 0);
3757 transport_all_task_dev_remove_state(cmd);
3758 free_tasks = 1;
3760 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3762 if (free_tasks != 0)
3763 transport_free_dev_tasks(cmd);
3765 transport_free_pages(cmd);
3766 transport_release_cmd(cmd);
3767 return true;
3768 out_busy:
3769 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3770 return false;
3774 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3775 * allocating in the core.
3776 * @cmd: Associated se_cmd descriptor
3777 * @mem: SGL style memory for TCM WRITE / READ
3778 * @sg_mem_num: Number of SGL elements
3779 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3780 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3782 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3783 * of parameters.
3785 int transport_generic_map_mem_to_cmd(
3786 struct se_cmd *cmd,
3787 struct scatterlist *sgl,
3788 u32 sgl_count,
3789 struct scatterlist *sgl_bidi,
3790 u32 sgl_bidi_count)
3792 if (!sgl || !sgl_count)
3793 return 0;
3795 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3796 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3798 cmd->t_data_sg = sgl;
3799 cmd->t_data_nents = sgl_count;
3801 if (sgl_bidi && sgl_bidi_count) {
3802 cmd->t_bidi_data_sg = sgl_bidi;
3803 cmd->t_bidi_data_nents = sgl_bidi_count;
3805 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3808 return 0;
3810 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3812 static int transport_new_cmd_obj(struct se_cmd *cmd)
3814 struct se_device *dev = cmd->se_dev;
3815 int set_counts = 1, rc, task_cdbs;
3818 * Setup any BIDI READ tasks and memory from
3819 * cmd->t_mem_bidi_list so the READ struct se_tasks
3820 * are queued first for the non pSCSI passthrough case.
3822 if (cmd->t_bidi_data_sg &&
3823 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3824 rc = transport_allocate_tasks(cmd,
3825 cmd->t_task_lba,
3826 DMA_FROM_DEVICE,
3827 cmd->t_bidi_data_sg,
3828 cmd->t_bidi_data_nents);
3829 if (rc <= 0) {
3830 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3831 cmd->scsi_sense_reason =
3832 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3833 return -EINVAL;
3835 atomic_inc(&cmd->t_fe_count);
3836 atomic_inc(&cmd->t_se_count);
3837 set_counts = 0;
3840 * Setup the tasks and memory from cmd->t_mem_list
3841 * Note for BIDI transfers this will contain the WRITE payload
3843 task_cdbs = transport_allocate_tasks(cmd,
3844 cmd->t_task_lba,
3845 cmd->data_direction,
3846 cmd->t_data_sg,
3847 cmd->t_data_nents);
3848 if (task_cdbs <= 0) {
3849 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3850 cmd->scsi_sense_reason =
3851 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3852 return -EINVAL;
3855 if (set_counts) {
3856 atomic_inc(&cmd->t_fe_count);
3857 atomic_inc(&cmd->t_se_count);
3860 cmd->t_task_list_num = task_cdbs;
3862 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3863 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3864 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3865 return 0;
3868 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3870 struct scatterlist *sg = cmd->t_data_sg;
3872 BUG_ON(!sg);
3874 * We need to take into account a possible offset here for fabrics like
3875 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3876 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3878 return kmap(sg_page(sg)) + sg->offset;
3880 EXPORT_SYMBOL(transport_kmap_first_data_page);
3882 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3884 kunmap(sg_page(cmd->t_data_sg));
3886 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3888 static int
3889 transport_generic_get_mem(struct se_cmd *cmd)
3891 u32 length = cmd->data_length;
3892 unsigned int nents;
3893 struct page *page;
3894 int i = 0;
3896 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3897 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3898 if (!cmd->t_data_sg)
3899 return -ENOMEM;
3901 cmd->t_data_nents = nents;
3902 sg_init_table(cmd->t_data_sg, nents);
3904 while (length) {
3905 u32 page_len = min_t(u32, length, PAGE_SIZE);
3906 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3907 if (!page)
3908 goto out;
3910 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3911 length -= page_len;
3912 i++;
3914 return 0;
3916 out:
3917 while (i >= 0) {
3918 __free_page(sg_page(&cmd->t_data_sg[i]));
3919 i--;
3921 kfree(cmd->t_data_sg);
3922 cmd->t_data_sg = NULL;
3923 return -ENOMEM;
3926 /* Reduce sectors if they are too long for the device */
3927 static inline sector_t transport_limit_task_sectors(
3928 struct se_device *dev,
3929 unsigned long long lba,
3930 sector_t sectors)
3932 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3934 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3935 if ((lba + sectors) > transport_dev_end_lba(dev))
3936 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3938 return sectors;
3943 * This function can be used by HW target mode drivers to create a linked
3944 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3945 * This is intended to be called during the completion path by TCM Core
3946 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3948 void transport_do_task_sg_chain(struct se_cmd *cmd)
3950 struct scatterlist *sg_first = NULL;
3951 struct scatterlist *sg_prev = NULL;
3952 int sg_prev_nents = 0;
3953 struct scatterlist *sg;
3954 struct se_task *task;
3955 u32 chained_nents = 0;
3956 int i;
3958 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3961 * Walk the struct se_task list and setup scatterlist chains
3962 * for each contiguously allocated struct se_task->task_sg[].
3964 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3965 if (!task->task_sg)
3966 continue;
3968 if (!sg_first) {
3969 sg_first = task->task_sg;
3970 chained_nents = task->task_sg_nents;
3971 } else {
3972 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3973 chained_nents += task->task_sg_nents;
3976 * For the padded tasks, use the extra SGL vector allocated
3977 * in transport_allocate_data_tasks() for the sg_prev_nents
3978 * offset into sg_chain() above.. The last task of a
3979 * multi-task list, or a single task will not have
3980 * task->task_sg_padded set..
3982 if (task->task_padded_sg)
3983 sg_prev_nents = (task->task_sg_nents + 1);
3984 else
3985 sg_prev_nents = task->task_sg_nents;
3987 sg_prev = task->task_sg;
3990 * Setup the starting pointer and total t_tasks_sg_linked_no including
3991 * padding SGs for linking and to mark the end.
3993 cmd->t_tasks_sg_chained = sg_first;
3994 cmd->t_tasks_sg_chained_no = chained_nents;
3996 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3997 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3998 cmd->t_tasks_sg_chained_no);
4000 for_each_sg(cmd->t_tasks_sg_chained, sg,
4001 cmd->t_tasks_sg_chained_no, i) {
4003 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4004 i, sg, sg_page(sg), sg->length, sg->offset);
4005 if (sg_is_chain(sg))
4006 pr_debug("SG: %p sg_is_chain=1\n", sg);
4007 if (sg_is_last(sg))
4008 pr_debug("SG: %p sg_is_last=1\n", sg);
4011 EXPORT_SYMBOL(transport_do_task_sg_chain);
4014 * Break up cmd into chunks transport can handle
4016 static int transport_allocate_data_tasks(
4017 struct se_cmd *cmd,
4018 unsigned long long lba,
4019 enum dma_data_direction data_direction,
4020 struct scatterlist *sgl,
4021 unsigned int sgl_nents)
4023 unsigned char *cdb = NULL;
4024 struct se_task *task;
4025 struct se_device *dev = cmd->se_dev;
4026 unsigned long flags;
4027 int task_count, i, ret;
4028 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4029 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4030 struct scatterlist *sg;
4031 struct scatterlist *cmd_sg;
4033 WARN_ON(cmd->data_length % sector_size);
4034 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4035 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4037 cmd_sg = sgl;
4038 for (i = 0; i < task_count; i++) {
4039 unsigned int task_size, task_sg_nents_padded;
4040 int count;
4042 task = transport_generic_get_task(cmd, data_direction);
4043 if (!task)
4044 return -ENOMEM;
4046 task->task_lba = lba;
4047 task->task_sectors = min(sectors, dev_max_sectors);
4048 task->task_size = task->task_sectors * sector_size;
4050 cdb = dev->transport->get_cdb(task);
4051 BUG_ON(!cdb);
4053 memcpy(cdb, cmd->t_task_cdb,
4054 scsi_command_size(cmd->t_task_cdb));
4056 /* Update new cdb with updated lba/sectors */
4057 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4059 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4060 * in order to calculate the number per task SGL entries
4062 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
4064 * Check if the fabric module driver is requesting that all
4065 * struct se_task->task_sg[] be chained together.. If so,
4066 * then allocate an extra padding SG entry for linking and
4067 * marking the end of the chained SGL for every task except
4068 * the last one for (task_count > 1) operation, or skipping
4069 * the extra padding for the (task_count == 1) case.
4071 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4072 task_sg_nents_padded = (task->task_sg_nents + 1);
4073 task->task_padded_sg = 1;
4074 } else
4075 task_sg_nents_padded = task->task_sg_nents;
4077 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4078 task_sg_nents_padded, GFP_KERNEL);
4079 if (!task->task_sg) {
4080 cmd->se_dev->transport->free_task(task);
4081 return -ENOMEM;
4084 sg_init_table(task->task_sg, task_sg_nents_padded);
4086 task_size = task->task_size;
4088 /* Build new sgl, only up to task_size */
4089 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4090 if (cmd_sg->length > task_size)
4091 break;
4093 *sg = *cmd_sg;
4094 task_size -= cmd_sg->length;
4095 cmd_sg = sg_next(cmd_sg);
4098 lba += task->task_sectors;
4099 sectors -= task->task_sectors;
4101 spin_lock_irqsave(&cmd->t_state_lock, flags);
4102 list_add_tail(&task->t_list, &cmd->t_task_list);
4103 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4106 * Now perform the memory map of task->task_sg[] into backend
4107 * subsystem memory..
4109 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4110 if (atomic_read(&task->task_sent))
4111 continue;
4112 if (!dev->transport->map_data_SG)
4113 continue;
4115 ret = dev->transport->map_data_SG(task);
4116 if (ret < 0)
4117 return 0;
4120 return task_count;
4123 static int
4124 transport_allocate_control_task(struct se_cmd *cmd)
4126 struct se_device *dev = cmd->se_dev;
4127 unsigned char *cdb;
4128 struct se_task *task;
4129 unsigned long flags;
4130 int ret = 0;
4132 task = transport_generic_get_task(cmd, cmd->data_direction);
4133 if (!task)
4134 return -ENOMEM;
4136 cdb = dev->transport->get_cdb(task);
4137 BUG_ON(!cdb);
4138 memcpy(cdb, cmd->t_task_cdb,
4139 scsi_command_size(cmd->t_task_cdb));
4141 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4142 GFP_KERNEL);
4143 if (!task->task_sg) {
4144 cmd->se_dev->transport->free_task(task);
4145 return -ENOMEM;
4148 memcpy(task->task_sg, cmd->t_data_sg,
4149 sizeof(struct scatterlist) * cmd->t_data_nents);
4150 task->task_size = cmd->data_length;
4151 task->task_sg_nents = cmd->t_data_nents;
4153 spin_lock_irqsave(&cmd->t_state_lock, flags);
4154 list_add_tail(&task->t_list, &cmd->t_task_list);
4155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4157 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4158 if (dev->transport->map_control_SG)
4159 ret = dev->transport->map_control_SG(task);
4160 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4161 if (dev->transport->cdb_none)
4162 ret = dev->transport->cdb_none(task);
4163 } else {
4164 pr_err("target: Unknown control cmd type!\n");
4165 BUG();
4168 /* Success! Return number of tasks allocated */
4169 if (ret == 0)
4170 return 1;
4171 return ret;
4174 static u32 transport_allocate_tasks(
4175 struct se_cmd *cmd,
4176 unsigned long long lba,
4177 enum dma_data_direction data_direction,
4178 struct scatterlist *sgl,
4179 unsigned int sgl_nents)
4181 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4182 if (transport_cmd_get_valid_sectors(cmd) < 0)
4183 return -EINVAL;
4185 return transport_allocate_data_tasks(cmd, lba, data_direction,
4186 sgl, sgl_nents);
4187 } else
4188 return transport_allocate_control_task(cmd);
4193 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4195 * Allocate storage transport resources from a set of values predefined
4196 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4197 * Any non zero return here is treated as an "out of resource' op here.
4200 * Generate struct se_task(s) and/or their payloads for this CDB.
4202 int transport_generic_new_cmd(struct se_cmd *cmd)
4204 int ret = 0;
4207 * Determine is the TCM fabric module has already allocated physical
4208 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4209 * beforehand.
4211 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4212 cmd->data_length) {
4213 ret = transport_generic_get_mem(cmd);
4214 if (ret < 0)
4215 return ret;
4218 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4219 * control or data CDB types, and perform the map to backend subsystem
4220 * code from SGL memory allocated here by transport_generic_get_mem(), or
4221 * via pre-existing SGL memory setup explictly by fabric module code with
4222 * transport_generic_map_mem_to_cmd().
4224 ret = transport_new_cmd_obj(cmd);
4225 if (ret < 0)
4226 return ret;
4228 * For WRITEs, let the fabric know its buffer is ready..
4229 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4230 * will be added to the struct se_device execution queue after its WRITE
4231 * data has arrived. (ie: It gets handled by the transport processing
4232 * thread a second time)
4234 if (cmd->data_direction == DMA_TO_DEVICE) {
4235 transport_add_tasks_to_state_queue(cmd);
4236 return transport_generic_write_pending(cmd);
4239 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4240 * to the execution queue.
4242 transport_execute_tasks(cmd);
4243 return 0;
4245 EXPORT_SYMBOL(transport_generic_new_cmd);
4247 /* transport_generic_process_write():
4251 void transport_generic_process_write(struct se_cmd *cmd)
4253 transport_execute_tasks(cmd);
4255 EXPORT_SYMBOL(transport_generic_process_write);
4257 static int transport_write_pending_qf(struct se_cmd *cmd)
4259 return cmd->se_tfo->write_pending(cmd);
4262 /* transport_generic_write_pending():
4266 static int transport_generic_write_pending(struct se_cmd *cmd)
4268 unsigned long flags;
4269 int ret;
4271 spin_lock_irqsave(&cmd->t_state_lock, flags);
4272 cmd->t_state = TRANSPORT_WRITE_PENDING;
4273 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4275 if (cmd->transport_qf_callback) {
4276 ret = cmd->transport_qf_callback(cmd);
4277 if (ret == -EAGAIN)
4278 goto queue_full;
4279 else if (ret < 0)
4280 return ret;
4282 cmd->transport_qf_callback = NULL;
4283 return 0;
4287 * Clear the se_cmd for WRITE_PENDING status in order to set
4288 * cmd->t_transport_active=0 so that transport_generic_handle_data
4289 * can be called from HW target mode interrupt code. This is safe
4290 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4291 * because the se_cmd->se_lun pointer is not being cleared.
4293 transport_cmd_check_stop(cmd, 1, 0);
4296 * Call the fabric write_pending function here to let the
4297 * frontend know that WRITE buffers are ready.
4299 ret = cmd->se_tfo->write_pending(cmd);
4300 if (ret == -EAGAIN)
4301 goto queue_full;
4302 else if (ret < 0)
4303 return ret;
4305 return PYX_TRANSPORT_WRITE_PENDING;
4307 queue_full:
4308 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4309 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4310 transport_handle_queue_full(cmd, cmd->se_dev,
4311 transport_write_pending_qf);
4312 return ret;
4316 * transport_release_cmd - free a command
4317 * @cmd: command to free
4319 * This routine unconditionally frees a command, and reference counting
4320 * or list removal must be done in the caller.
4322 void transport_release_cmd(struct se_cmd *cmd)
4324 BUG_ON(!cmd->se_tfo);
4326 if (cmd->se_tmr_req)
4327 core_tmr_release_req(cmd->se_tmr_req);
4328 if (cmd->t_task_cdb != cmd->__t_task_cdb)
4329 kfree(cmd->t_task_cdb);
4330 cmd->se_tfo->release_cmd(cmd);
4332 EXPORT_SYMBOL(transport_release_cmd);
4334 /* transport_generic_free_cmd():
4336 * Called from processing frontend to release storage engine resources
4338 void transport_generic_free_cmd(
4339 struct se_cmd *cmd,
4340 int wait_for_tasks,
4341 int session_reinstatement)
4343 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4344 transport_release_cmd(cmd);
4345 else {
4346 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4348 if (cmd->se_lun) {
4349 #if 0
4350 pr_debug("cmd: %p ITT: 0x%08x contains"
4351 " cmd->se_lun\n", cmd,
4352 cmd->se_tfo->get_task_tag(cmd));
4353 #endif
4354 transport_lun_remove_cmd(cmd);
4357 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4358 cmd->transport_wait_for_tasks(cmd, 0, 0);
4360 transport_free_dev_tasks(cmd);
4362 if (!transport_put_cmd(cmd) && session_reinstatement) {
4363 unsigned long flags;
4365 spin_lock_irqsave(&cmd->t_state_lock, flags);
4366 transport_all_task_dev_remove_state(cmd);
4367 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4371 EXPORT_SYMBOL(transport_generic_free_cmd);
4373 static void transport_nop_wait_for_tasks(
4374 struct se_cmd *cmd,
4375 int remove_cmd,
4376 int session_reinstatement)
4378 return;
4381 /* transport_lun_wait_for_tasks():
4383 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4384 * an struct se_lun to be successfully shutdown.
4386 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4388 unsigned long flags;
4389 int ret;
4391 * If the frontend has already requested this struct se_cmd to
4392 * be stopped, we can safely ignore this struct se_cmd.
4394 spin_lock_irqsave(&cmd->t_state_lock, flags);
4395 if (atomic_read(&cmd->t_transport_stop)) {
4396 atomic_set(&cmd->transport_lun_stop, 0);
4397 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4398 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4399 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4400 transport_cmd_check_stop(cmd, 1, 0);
4401 return -EPERM;
4403 atomic_set(&cmd->transport_lun_fe_stop, 1);
4404 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4406 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4408 ret = transport_stop_tasks_for_cmd(cmd);
4410 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4411 " %d\n", cmd, cmd->t_task_list_num, ret);
4412 if (!ret) {
4413 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4414 cmd->se_tfo->get_task_tag(cmd));
4415 wait_for_completion(&cmd->transport_lun_stop_comp);
4416 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4417 cmd->se_tfo->get_task_tag(cmd));
4419 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4421 return 0;
4424 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4426 struct se_cmd *cmd = NULL;
4427 unsigned long lun_flags, cmd_flags;
4429 * Do exception processing and return CHECK_CONDITION status to the
4430 * Initiator Port.
4432 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4433 while (!list_empty(&lun->lun_cmd_list)) {
4434 cmd = list_first_entry(&lun->lun_cmd_list,
4435 struct se_cmd, se_lun_node);
4436 list_del(&cmd->se_lun_node);
4438 atomic_set(&cmd->transport_lun_active, 0);
4440 * This will notify iscsi_target_transport.c:
4441 * transport_cmd_check_stop() that a LUN shutdown is in
4442 * progress for the iscsi_cmd_t.
4444 spin_lock(&cmd->t_state_lock);
4445 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4446 "_lun_stop for ITT: 0x%08x\n",
4447 cmd->se_lun->unpacked_lun,
4448 cmd->se_tfo->get_task_tag(cmd));
4449 atomic_set(&cmd->transport_lun_stop, 1);
4450 spin_unlock(&cmd->t_state_lock);
4452 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4454 if (!cmd->se_lun) {
4455 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4456 cmd->se_tfo->get_task_tag(cmd),
4457 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4458 BUG();
4461 * If the Storage engine still owns the iscsi_cmd_t, determine
4462 * and/or stop its context.
4464 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4465 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4466 cmd->se_tfo->get_task_tag(cmd));
4468 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4469 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4470 continue;
4473 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4474 "_wait_for_tasks(): SUCCESS\n",
4475 cmd->se_lun->unpacked_lun,
4476 cmd->se_tfo->get_task_tag(cmd));
4478 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4479 if (!atomic_read(&cmd->transport_dev_active)) {
4480 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4481 goto check_cond;
4483 atomic_set(&cmd->transport_dev_active, 0);
4484 transport_all_task_dev_remove_state(cmd);
4485 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4487 transport_free_dev_tasks(cmd);
4489 * The Storage engine stopped this struct se_cmd before it was
4490 * send to the fabric frontend for delivery back to the
4491 * Initiator Node. Return this SCSI CDB back with an
4492 * CHECK_CONDITION status.
4494 check_cond:
4495 transport_send_check_condition_and_sense(cmd,
4496 TCM_NON_EXISTENT_LUN, 0);
4498 * If the fabric frontend is waiting for this iscsi_cmd_t to
4499 * be released, notify the waiting thread now that LU has
4500 * finished accessing it.
4502 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4503 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4504 pr_debug("SE_LUN[%d] - Detected FE stop for"
4505 " struct se_cmd: %p ITT: 0x%08x\n",
4506 lun->unpacked_lun,
4507 cmd, cmd->se_tfo->get_task_tag(cmd));
4509 spin_unlock_irqrestore(&cmd->t_state_lock,
4510 cmd_flags);
4511 transport_cmd_check_stop(cmd, 1, 0);
4512 complete(&cmd->transport_lun_fe_stop_comp);
4513 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4514 continue;
4516 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4517 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4519 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4520 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4522 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4525 static int transport_clear_lun_thread(void *p)
4527 struct se_lun *lun = (struct se_lun *)p;
4529 __transport_clear_lun_from_sessions(lun);
4530 complete(&lun->lun_shutdown_comp);
4532 return 0;
4535 int transport_clear_lun_from_sessions(struct se_lun *lun)
4537 struct task_struct *kt;
4539 kt = kthread_run(transport_clear_lun_thread, lun,
4540 "tcm_cl_%u", lun->unpacked_lun);
4541 if (IS_ERR(kt)) {
4542 pr_err("Unable to start clear_lun thread\n");
4543 return PTR_ERR(kt);
4545 wait_for_completion(&lun->lun_shutdown_comp);
4547 return 0;
4550 /* transport_generic_wait_for_tasks():
4552 * Called from frontend or passthrough context to wait for storage engine
4553 * to pause and/or release frontend generated struct se_cmd.
4555 static void transport_generic_wait_for_tasks(
4556 struct se_cmd *cmd,
4557 int remove_cmd,
4558 int session_reinstatement)
4560 unsigned long flags;
4562 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4563 return;
4565 spin_lock_irqsave(&cmd->t_state_lock, flags);
4567 * If we are already stopped due to an external event (ie: LUN shutdown)
4568 * sleep until the connection can have the passed struct se_cmd back.
4569 * The cmd->transport_lun_stopped_sem will be upped by
4570 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4571 * has completed its operation on the struct se_cmd.
4573 if (atomic_read(&cmd->transport_lun_stop)) {
4575 pr_debug("wait_for_tasks: Stopping"
4576 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4577 "_stop_comp); for ITT: 0x%08x\n",
4578 cmd->se_tfo->get_task_tag(cmd));
4580 * There is a special case for WRITES where a FE exception +
4581 * LUN shutdown means ConfigFS context is still sleeping on
4582 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4583 * We go ahead and up transport_lun_stop_comp just to be sure
4584 * here.
4586 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4587 complete(&cmd->transport_lun_stop_comp);
4588 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4589 spin_lock_irqsave(&cmd->t_state_lock, flags);
4591 transport_all_task_dev_remove_state(cmd);
4593 * At this point, the frontend who was the originator of this
4594 * struct se_cmd, now owns the structure and can be released through
4595 * normal means below.
4597 pr_debug("wait_for_tasks: Stopped"
4598 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4599 "stop_comp); for ITT: 0x%08x\n",
4600 cmd->se_tfo->get_task_tag(cmd));
4602 atomic_set(&cmd->transport_lun_stop, 0);
4604 if (!atomic_read(&cmd->t_transport_active) ||
4605 atomic_read(&cmd->t_transport_aborted))
4606 goto remove;
4608 atomic_set(&cmd->t_transport_stop, 1);
4610 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4611 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4612 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4613 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4614 cmd->deferred_t_state);
4616 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4618 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4620 wait_for_completion(&cmd->t_transport_stop_comp);
4622 spin_lock_irqsave(&cmd->t_state_lock, flags);
4623 atomic_set(&cmd->t_transport_active, 0);
4624 atomic_set(&cmd->t_transport_stop, 0);
4626 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4627 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4628 cmd->se_tfo->get_task_tag(cmd));
4629 remove:
4630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4631 if (!remove_cmd)
4632 return;
4634 transport_generic_free_cmd(cmd, 0, session_reinstatement);
4637 static int transport_get_sense_codes(
4638 struct se_cmd *cmd,
4639 u8 *asc,
4640 u8 *ascq)
4642 *asc = cmd->scsi_asc;
4643 *ascq = cmd->scsi_ascq;
4645 return 0;
4648 static int transport_set_sense_codes(
4649 struct se_cmd *cmd,
4650 u8 asc,
4651 u8 ascq)
4653 cmd->scsi_asc = asc;
4654 cmd->scsi_ascq = ascq;
4656 return 0;
4659 int transport_send_check_condition_and_sense(
4660 struct se_cmd *cmd,
4661 u8 reason,
4662 int from_transport)
4664 unsigned char *buffer = cmd->sense_buffer;
4665 unsigned long flags;
4666 int offset;
4667 u8 asc = 0, ascq = 0;
4669 spin_lock_irqsave(&cmd->t_state_lock, flags);
4670 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4671 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4672 return 0;
4674 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4675 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4677 if (!reason && from_transport)
4678 goto after_reason;
4680 if (!from_transport)
4681 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4683 * Data Segment and SenseLength of the fabric response PDU.
4685 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4686 * from include/scsi/scsi_cmnd.h
4688 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4689 TRANSPORT_SENSE_BUFFER);
4691 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4692 * SENSE KEY values from include/scsi/scsi.h
4694 switch (reason) {
4695 case TCM_NON_EXISTENT_LUN:
4696 /* CURRENT ERROR */
4697 buffer[offset] = 0x70;
4698 /* ILLEGAL REQUEST */
4699 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4700 /* LOGICAL UNIT NOT SUPPORTED */
4701 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4702 break;
4703 case TCM_UNSUPPORTED_SCSI_OPCODE:
4704 case TCM_SECTOR_COUNT_TOO_MANY:
4705 /* CURRENT ERROR */
4706 buffer[offset] = 0x70;
4707 /* ILLEGAL REQUEST */
4708 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4709 /* INVALID COMMAND OPERATION CODE */
4710 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4711 break;
4712 case TCM_UNKNOWN_MODE_PAGE:
4713 /* CURRENT ERROR */
4714 buffer[offset] = 0x70;
4715 /* ILLEGAL REQUEST */
4716 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4717 /* INVALID FIELD IN CDB */
4718 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4719 break;
4720 case TCM_CHECK_CONDITION_ABORT_CMD:
4721 /* CURRENT ERROR */
4722 buffer[offset] = 0x70;
4723 /* ABORTED COMMAND */
4724 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4725 /* BUS DEVICE RESET FUNCTION OCCURRED */
4726 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4727 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4728 break;
4729 case TCM_INCORRECT_AMOUNT_OF_DATA:
4730 /* CURRENT ERROR */
4731 buffer[offset] = 0x70;
4732 /* ABORTED COMMAND */
4733 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4734 /* WRITE ERROR */
4735 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4736 /* NOT ENOUGH UNSOLICITED DATA */
4737 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4738 break;
4739 case TCM_INVALID_CDB_FIELD:
4740 /* CURRENT ERROR */
4741 buffer[offset] = 0x70;
4742 /* ABORTED COMMAND */
4743 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4744 /* INVALID FIELD IN CDB */
4745 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4746 break;
4747 case TCM_INVALID_PARAMETER_LIST:
4748 /* CURRENT ERROR */
4749 buffer[offset] = 0x70;
4750 /* ABORTED COMMAND */
4751 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4752 /* INVALID FIELD IN PARAMETER LIST */
4753 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4754 break;
4755 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4756 /* CURRENT ERROR */
4757 buffer[offset] = 0x70;
4758 /* ABORTED COMMAND */
4759 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4760 /* WRITE ERROR */
4761 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4762 /* UNEXPECTED_UNSOLICITED_DATA */
4763 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4764 break;
4765 case TCM_SERVICE_CRC_ERROR:
4766 /* CURRENT ERROR */
4767 buffer[offset] = 0x70;
4768 /* ABORTED COMMAND */
4769 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4770 /* PROTOCOL SERVICE CRC ERROR */
4771 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4772 /* N/A */
4773 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4774 break;
4775 case TCM_SNACK_REJECTED:
4776 /* CURRENT ERROR */
4777 buffer[offset] = 0x70;
4778 /* ABORTED COMMAND */
4779 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4780 /* READ ERROR */
4781 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4782 /* FAILED RETRANSMISSION REQUEST */
4783 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4784 break;
4785 case TCM_WRITE_PROTECTED:
4786 /* CURRENT ERROR */
4787 buffer[offset] = 0x70;
4788 /* DATA PROTECT */
4789 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4790 /* WRITE PROTECTED */
4791 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4792 break;
4793 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4794 /* CURRENT ERROR */
4795 buffer[offset] = 0x70;
4796 /* UNIT ATTENTION */
4797 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4798 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4799 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4800 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4801 break;
4802 case TCM_CHECK_CONDITION_NOT_READY:
4803 /* CURRENT ERROR */
4804 buffer[offset] = 0x70;
4805 /* Not Ready */
4806 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4807 transport_get_sense_codes(cmd, &asc, &ascq);
4808 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4809 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4810 break;
4811 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4812 default:
4813 /* CURRENT ERROR */
4814 buffer[offset] = 0x70;
4815 /* ILLEGAL REQUEST */
4816 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4817 /* LOGICAL UNIT COMMUNICATION FAILURE */
4818 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4819 break;
4822 * This code uses linux/include/scsi/scsi.h SAM status codes!
4824 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4826 * Automatically padded, this value is encoded in the fabric's
4827 * data_length response PDU containing the SCSI defined sense data.
4829 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4831 after_reason:
4832 return cmd->se_tfo->queue_status(cmd);
4834 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4836 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4838 int ret = 0;
4840 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4841 if (!send_status ||
4842 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4843 return 1;
4844 #if 0
4845 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4846 " status for CDB: 0x%02x ITT: 0x%08x\n",
4847 cmd->t_task_cdb[0],
4848 cmd->se_tfo->get_task_tag(cmd));
4849 #endif
4850 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4851 cmd->se_tfo->queue_status(cmd);
4852 ret = 1;
4854 return ret;
4856 EXPORT_SYMBOL(transport_check_aborted_status);
4858 void transport_send_task_abort(struct se_cmd *cmd)
4860 unsigned long flags;
4862 spin_lock_irqsave(&cmd->t_state_lock, flags);
4863 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4864 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4865 return;
4867 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4870 * If there are still expected incoming fabric WRITEs, we wait
4871 * until until they have completed before sending a TASK_ABORTED
4872 * response. This response with TASK_ABORTED status will be
4873 * queued back to fabric module by transport_check_aborted_status().
4875 if (cmd->data_direction == DMA_TO_DEVICE) {
4876 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4877 atomic_inc(&cmd->t_transport_aborted);
4878 smp_mb__after_atomic_inc();
4879 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4880 transport_new_cmd_failure(cmd);
4881 return;
4884 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4885 #if 0
4886 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4887 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4888 cmd->se_tfo->get_task_tag(cmd));
4889 #endif
4890 cmd->se_tfo->queue_status(cmd);
4893 /* transport_generic_do_tmr():
4897 int transport_generic_do_tmr(struct se_cmd *cmd)
4899 struct se_device *dev = cmd->se_dev;
4900 struct se_tmr_req *tmr = cmd->se_tmr_req;
4901 int ret;
4903 switch (tmr->function) {
4904 case TMR_ABORT_TASK:
4905 tmr->response = TMR_FUNCTION_REJECTED;
4906 break;
4907 case TMR_ABORT_TASK_SET:
4908 case TMR_CLEAR_ACA:
4909 case TMR_CLEAR_TASK_SET:
4910 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4911 break;
4912 case TMR_LUN_RESET:
4913 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4914 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4915 TMR_FUNCTION_REJECTED;
4916 break;
4917 case TMR_TARGET_WARM_RESET:
4918 tmr->response = TMR_FUNCTION_REJECTED;
4919 break;
4920 case TMR_TARGET_COLD_RESET:
4921 tmr->response = TMR_FUNCTION_REJECTED;
4922 break;
4923 default:
4924 pr_err("Uknown TMR function: 0x%02x.\n",
4925 tmr->function);
4926 tmr->response = TMR_FUNCTION_REJECTED;
4927 break;
4930 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4931 cmd->se_tfo->queue_tm_rsp(cmd);
4933 transport_cmd_check_stop(cmd, 2, 0);
4934 return 0;
4938 * Called with spin_lock_irq(&dev->execute_task_lock); held
4941 static struct se_task *
4942 transport_get_task_from_state_list(struct se_device *dev)
4944 struct se_task *task;
4946 if (list_empty(&dev->state_task_list))
4947 return NULL;
4949 list_for_each_entry(task, &dev->state_task_list, t_state_list)
4950 break;
4952 list_del(&task->t_state_list);
4953 atomic_set(&task->task_state_active, 0);
4955 return task;
4958 static void transport_processing_shutdown(struct se_device *dev)
4960 struct se_cmd *cmd;
4961 struct se_task *task;
4962 unsigned long flags;
4964 * Empty the struct se_device's struct se_task state list.
4966 spin_lock_irqsave(&dev->execute_task_lock, flags);
4967 while ((task = transport_get_task_from_state_list(dev))) {
4968 if (!task->task_se_cmd) {
4969 pr_err("task->task_se_cmd is NULL!\n");
4970 continue;
4972 cmd = task->task_se_cmd;
4974 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
4976 spin_lock_irqsave(&cmd->t_state_lock, flags);
4978 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
4979 " i_state: %d, t_state/def_t_state:"
4980 " %d/%d cdb: 0x%02x\n", cmd, task,
4981 cmd->se_tfo->get_task_tag(cmd),
4982 cmd->se_tfo->get_cmd_state(cmd),
4983 cmd->t_state, cmd->deferred_t_state,
4984 cmd->t_task_cdb[0]);
4985 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
4986 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
4987 " t_transport_stop: %d t_transport_sent: %d\n",
4988 cmd->se_tfo->get_task_tag(cmd),
4989 cmd->t_task_list_num,
4990 atomic_read(&cmd->t_task_cdbs_left),
4991 atomic_read(&cmd->t_task_cdbs_sent),
4992 atomic_read(&cmd->t_transport_active),
4993 atomic_read(&cmd->t_transport_stop),
4994 atomic_read(&cmd->t_transport_sent));
4996 if (atomic_read(&task->task_active)) {
4997 atomic_set(&task->task_stop, 1);
4998 spin_unlock_irqrestore(
4999 &cmd->t_state_lock, flags);
5001 pr_debug("Waiting for task: %p to shutdown for dev:"
5002 " %p\n", task, dev);
5003 wait_for_completion(&task->task_stop_comp);
5004 pr_debug("Completed task: %p shutdown for dev: %p\n",
5005 task, dev);
5007 spin_lock_irqsave(&cmd->t_state_lock, flags);
5008 atomic_dec(&cmd->t_task_cdbs_left);
5010 atomic_set(&task->task_active, 0);
5011 atomic_set(&task->task_stop, 0);
5012 } else {
5013 if (atomic_read(&task->task_execute_queue) != 0)
5014 transport_remove_task_from_execute_queue(task, dev);
5016 __transport_stop_task_timer(task, &flags);
5018 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5019 spin_unlock_irqrestore(
5020 &cmd->t_state_lock, flags);
5022 pr_debug("Skipping task: %p, dev: %p for"
5023 " t_task_cdbs_ex_left: %d\n", task, dev,
5024 atomic_read(&cmd->t_task_cdbs_ex_left));
5026 spin_lock_irqsave(&dev->execute_task_lock, flags);
5027 continue;
5030 if (atomic_read(&cmd->t_transport_active)) {
5031 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5032 " %p\n", task, dev);
5034 if (atomic_read(&cmd->t_fe_count)) {
5035 spin_unlock_irqrestore(
5036 &cmd->t_state_lock, flags);
5037 transport_send_check_condition_and_sense(
5038 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5040 transport_remove_cmd_from_queue(cmd,
5041 &cmd->se_dev->dev_queue_obj);
5043 transport_lun_remove_cmd(cmd);
5044 transport_cmd_check_stop(cmd, 1, 0);
5045 } else {
5046 spin_unlock_irqrestore(
5047 &cmd->t_state_lock, flags);
5049 transport_remove_cmd_from_queue(cmd,
5050 &cmd->se_dev->dev_queue_obj);
5052 transport_lun_remove_cmd(cmd);
5054 if (transport_cmd_check_stop(cmd, 1, 0))
5055 transport_put_cmd(cmd);
5058 spin_lock_irqsave(&dev->execute_task_lock, flags);
5059 continue;
5061 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5062 task, dev);
5064 if (atomic_read(&cmd->t_fe_count)) {
5065 spin_unlock_irqrestore(
5066 &cmd->t_state_lock, flags);
5067 transport_send_check_condition_and_sense(cmd,
5068 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5069 transport_remove_cmd_from_queue(cmd,
5070 &cmd->se_dev->dev_queue_obj);
5072 transport_lun_remove_cmd(cmd);
5073 transport_cmd_check_stop(cmd, 1, 0);
5074 } else {
5075 spin_unlock_irqrestore(
5076 &cmd->t_state_lock, flags);
5078 transport_remove_cmd_from_queue(cmd,
5079 &cmd->se_dev->dev_queue_obj);
5080 transport_lun_remove_cmd(cmd);
5082 if (transport_cmd_check_stop(cmd, 1, 0))
5083 transport_put_cmd(cmd);
5086 spin_lock_irqsave(&dev->execute_task_lock, flags);
5088 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5090 * Empty the struct se_device's struct se_cmd list.
5092 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5094 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5095 cmd, cmd->t_state);
5097 if (atomic_read(&cmd->t_fe_count)) {
5098 transport_send_check_condition_and_sense(cmd,
5099 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5101 transport_lun_remove_cmd(cmd);
5102 transport_cmd_check_stop(cmd, 1, 0);
5103 } else {
5104 transport_lun_remove_cmd(cmd);
5105 if (transport_cmd_check_stop(cmd, 1, 0))
5106 transport_put_cmd(cmd);
5111 /* transport_processing_thread():
5115 static int transport_processing_thread(void *param)
5117 int ret;
5118 struct se_cmd *cmd;
5119 struct se_device *dev = (struct se_device *) param;
5121 set_user_nice(current, -20);
5123 while (!kthread_should_stop()) {
5124 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5125 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5126 kthread_should_stop());
5127 if (ret < 0)
5128 goto out;
5130 spin_lock_irq(&dev->dev_status_lock);
5131 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5132 spin_unlock_irq(&dev->dev_status_lock);
5133 transport_processing_shutdown(dev);
5134 continue;
5136 spin_unlock_irq(&dev->dev_status_lock);
5138 get_cmd:
5139 __transport_execute_tasks(dev);
5141 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5142 if (!cmd)
5143 continue;
5145 switch (cmd->t_state) {
5146 case TRANSPORT_NEW_CMD:
5147 BUG();
5148 break;
5149 case TRANSPORT_NEW_CMD_MAP:
5150 if (!cmd->se_tfo->new_cmd_map) {
5151 pr_err("cmd->se_tfo->new_cmd_map is"
5152 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5153 BUG();
5155 ret = cmd->se_tfo->new_cmd_map(cmd);
5156 if (ret < 0) {
5157 cmd->transport_error_status = ret;
5158 transport_generic_request_failure(cmd, NULL,
5159 0, (cmd->data_direction !=
5160 DMA_TO_DEVICE));
5161 break;
5163 ret = transport_generic_new_cmd(cmd);
5164 if (ret == -EAGAIN)
5165 break;
5166 else if (ret < 0) {
5167 cmd->transport_error_status = ret;
5168 transport_generic_request_failure(cmd, NULL,
5169 0, (cmd->data_direction !=
5170 DMA_TO_DEVICE));
5172 break;
5173 case TRANSPORT_PROCESS_WRITE:
5174 transport_generic_process_write(cmd);
5175 break;
5176 case TRANSPORT_COMPLETE_OK:
5177 transport_stop_all_task_timers(cmd);
5178 transport_generic_complete_ok(cmd);
5179 break;
5180 case TRANSPORT_REMOVE:
5181 transport_put_cmd(cmd);
5182 break;
5183 case TRANSPORT_FREE_CMD_INTR:
5184 transport_generic_free_cmd(cmd, 0, 0);
5185 break;
5186 case TRANSPORT_PROCESS_TMR:
5187 transport_generic_do_tmr(cmd);
5188 break;
5189 case TRANSPORT_COMPLETE_FAILURE:
5190 transport_generic_request_failure(cmd, NULL, 1, 1);
5191 break;
5192 case TRANSPORT_COMPLETE_TIMEOUT:
5193 transport_stop_all_task_timers(cmd);
5194 transport_generic_request_timeout(cmd);
5195 break;
5196 case TRANSPORT_COMPLETE_QF_WP:
5197 transport_generic_write_pending(cmd);
5198 break;
5199 default:
5200 pr_err("Unknown t_state: %d deferred_t_state:"
5201 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5202 " %u\n", cmd->t_state, cmd->deferred_t_state,
5203 cmd->se_tfo->get_task_tag(cmd),
5204 cmd->se_tfo->get_cmd_state(cmd),
5205 cmd->se_lun->unpacked_lun);
5206 BUG();
5209 goto get_cmd;
5212 out:
5213 transport_release_all_cmds(dev);
5214 dev->process_thread = NULL;
5215 return 0;