devicetree: bindings: Renesas APMU and SMP Enable method
[linux-2.6/btrfs-unstable.git] / lib / rhashtable.c
blob5d845ffd7982770d39af65b6c8906ef7000a4b95
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
31 #define HASH_DEFAULT_SIZE 64UL
32 #define HASH_MIN_SIZE 4U
33 #define BUCKET_LOCKS_PER_CPU 128UL
35 static u32 head_hashfn(struct rhashtable *ht,
36 const struct bucket_table *tbl,
37 const struct rhash_head *he)
39 return rht_head_hashfn(ht, tbl, he, ht->p);
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
47 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
53 spinlock_t *lock = rht_bucket_lock(tbl, hash);
55 return (debug_locks) ? lockdep_is_held(lock) : 1;
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64 gfp_t gfp)
66 unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68 unsigned int nr_pcpus = 2;
69 #else
70 unsigned int nr_pcpus = num_possible_cpus();
71 #endif
73 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
76 /* Never allocate more than 0.5 locks per bucket */
77 size = min_t(unsigned int, size, tbl->size >> 1);
79 if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82 gfp == GFP_KERNEL)
83 tbl->locks = vmalloc(size * sizeof(spinlock_t));
84 else
85 #endif
86 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87 gfp);
88 if (!tbl->locks)
89 return -ENOMEM;
90 for (i = 0; i < size; i++)
91 spin_lock_init(&tbl->locks[i]);
93 tbl->locks_mask = size - 1;
95 return 0;
98 static void bucket_table_free(const struct bucket_table *tbl)
100 if (tbl)
101 kvfree(tbl->locks);
103 kvfree(tbl);
106 static void bucket_table_free_rcu(struct rcu_head *head)
108 bucket_table_free(container_of(head, struct bucket_table, rcu));
111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112 size_t nbuckets,
113 gfp_t gfp)
115 struct bucket_table *tbl = NULL;
116 size_t size;
117 int i;
119 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121 gfp != GFP_KERNEL)
122 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123 if (tbl == NULL && gfp == GFP_KERNEL)
124 tbl = vzalloc(size);
125 if (tbl == NULL)
126 return NULL;
128 tbl->size = nbuckets;
130 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131 bucket_table_free(tbl);
132 return NULL;
135 INIT_LIST_HEAD(&tbl->walkers);
137 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
139 for (i = 0; i < nbuckets; i++)
140 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
142 return tbl;
145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146 struct bucket_table *tbl)
148 struct bucket_table *new_tbl;
150 do {
151 new_tbl = tbl;
152 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153 } while (tbl);
155 return new_tbl;
158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
160 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161 struct bucket_table *new_tbl = rhashtable_last_table(ht,
162 rht_dereference_rcu(old_tbl->future_tbl, ht));
163 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164 int err = -ENOENT;
165 struct rhash_head *head, *next, *entry;
166 spinlock_t *new_bucket_lock;
167 unsigned int new_hash;
169 rht_for_each(entry, old_tbl, old_hash) {
170 err = 0;
171 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
173 if (rht_is_a_nulls(next))
174 break;
176 pprev = &entry->next;
179 if (err)
180 goto out;
182 new_hash = head_hashfn(ht, new_tbl, entry);
184 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
186 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188 new_tbl, new_hash);
190 RCU_INIT_POINTER(entry->next, head);
192 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193 spin_unlock(new_bucket_lock);
195 rcu_assign_pointer(*pprev, next);
197 out:
198 return err;
201 static void rhashtable_rehash_chain(struct rhashtable *ht,
202 unsigned int old_hash)
204 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205 spinlock_t *old_bucket_lock;
207 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
209 spin_lock_bh(old_bucket_lock);
210 while (!rhashtable_rehash_one(ht, old_hash))
212 old_tbl->rehash++;
213 spin_unlock_bh(old_bucket_lock);
216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217 struct bucket_table *old_tbl,
218 struct bucket_table *new_tbl)
220 /* Protect future_tbl using the first bucket lock. */
221 spin_lock_bh(old_tbl->locks);
223 /* Did somebody beat us to it? */
224 if (rcu_access_pointer(old_tbl->future_tbl)) {
225 spin_unlock_bh(old_tbl->locks);
226 return -EEXIST;
229 /* Make insertions go into the new, empty table right away. Deletions
230 * and lookups will be attempted in both tables until we synchronize.
232 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
234 spin_unlock_bh(old_tbl->locks);
236 return 0;
239 static int rhashtable_rehash_table(struct rhashtable *ht)
241 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
242 struct bucket_table *new_tbl;
243 struct rhashtable_walker *walker;
244 unsigned int old_hash;
246 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
247 if (!new_tbl)
248 return 0;
250 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
251 rhashtable_rehash_chain(ht, old_hash);
253 /* Publish the new table pointer. */
254 rcu_assign_pointer(ht->tbl, new_tbl);
256 spin_lock(&ht->lock);
257 list_for_each_entry(walker, &old_tbl->walkers, list)
258 walker->tbl = NULL;
259 spin_unlock(&ht->lock);
261 /* Wait for readers. All new readers will see the new
262 * table, and thus no references to the old table will
263 * remain.
265 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
267 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
271 * rhashtable_expand - Expand hash table while allowing concurrent lookups
272 * @ht: the hash table to expand
274 * A secondary bucket array is allocated and the hash entries are migrated.
276 * This function may only be called in a context where it is safe to call
277 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
279 * The caller must ensure that no concurrent resizing occurs by holding
280 * ht->mutex.
282 * It is valid to have concurrent insertions and deletions protected by per
283 * bucket locks or concurrent RCU protected lookups and traversals.
285 static int rhashtable_expand(struct rhashtable *ht)
287 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
288 int err;
290 ASSERT_RHT_MUTEX(ht);
292 old_tbl = rhashtable_last_table(ht, old_tbl);
294 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
295 if (new_tbl == NULL)
296 return -ENOMEM;
298 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
299 if (err)
300 bucket_table_free(new_tbl);
302 return err;
306 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
307 * @ht: the hash table to shrink
309 * This function shrinks the hash table to fit, i.e., the smallest
310 * size would not cause it to expand right away automatically.
312 * The caller must ensure that no concurrent resizing occurs by holding
313 * ht->mutex.
315 * The caller must ensure that no concurrent table mutations take place.
316 * It is however valid to have concurrent lookups if they are RCU protected.
318 * It is valid to have concurrent insertions and deletions protected by per
319 * bucket locks or concurrent RCU protected lookups and traversals.
321 static int rhashtable_shrink(struct rhashtable *ht)
323 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
324 unsigned int size;
325 int err;
327 ASSERT_RHT_MUTEX(ht);
329 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
330 if (size < ht->p.min_size)
331 size = ht->p.min_size;
333 if (old_tbl->size <= size)
334 return 0;
336 if (rht_dereference(old_tbl->future_tbl, ht))
337 return -EEXIST;
339 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
340 if (new_tbl == NULL)
341 return -ENOMEM;
343 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
344 if (err)
345 bucket_table_free(new_tbl);
347 return err;
350 static void rht_deferred_worker(struct work_struct *work)
352 struct rhashtable *ht;
353 struct bucket_table *tbl;
354 int err = 0;
356 ht = container_of(work, struct rhashtable, run_work);
357 mutex_lock(&ht->mutex);
359 tbl = rht_dereference(ht->tbl, ht);
360 tbl = rhashtable_last_table(ht, tbl);
362 if (rht_grow_above_75(ht, tbl))
363 rhashtable_expand(ht);
364 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
365 rhashtable_shrink(ht);
367 err = rhashtable_rehash_table(ht);
369 mutex_unlock(&ht->mutex);
371 if (err)
372 schedule_work(&ht->run_work);
375 static bool rhashtable_check_elasticity(struct rhashtable *ht,
376 struct bucket_table *tbl,
377 unsigned int hash)
379 unsigned int elasticity = ht->elasticity;
380 struct rhash_head *head;
382 rht_for_each(head, tbl, hash)
383 if (!--elasticity)
384 return true;
386 return false;
389 int rhashtable_insert_rehash(struct rhashtable *ht,
390 struct bucket_table *tbl)
392 struct bucket_table *old_tbl;
393 struct bucket_table *new_tbl;
394 unsigned int size;
395 int err;
397 old_tbl = rht_dereference_rcu(ht->tbl, ht);
399 size = tbl->size;
401 err = -EBUSY;
403 if (rht_grow_above_75(ht, tbl))
404 size *= 2;
405 /* Do not schedule more than one rehash */
406 else if (old_tbl != tbl)
407 goto fail;
409 err = -ENOMEM;
411 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
412 if (new_tbl == NULL)
413 goto fail;
415 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
416 if (err) {
417 bucket_table_free(new_tbl);
418 if (err == -EEXIST)
419 err = 0;
420 } else
421 schedule_work(&ht->run_work);
423 return err;
425 fail:
426 /* Do not fail the insert if someone else did a rehash. */
427 if (likely(rcu_dereference_raw(tbl->future_tbl)))
428 return 0;
430 /* Schedule async rehash to retry allocation in process context. */
431 if (err == -ENOMEM)
432 schedule_work(&ht->run_work);
434 return err;
436 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
438 struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
439 const void *key,
440 struct rhash_head *obj,
441 struct bucket_table *tbl)
443 struct rhash_head *head;
444 unsigned int hash;
445 int err;
447 tbl = rhashtable_last_table(ht, tbl);
448 hash = head_hashfn(ht, tbl, obj);
449 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
451 err = -EEXIST;
452 if (key && rhashtable_lookup_fast(ht, key, ht->p))
453 goto exit;
455 err = -E2BIG;
456 if (unlikely(rht_grow_above_max(ht, tbl)))
457 goto exit;
459 err = -EAGAIN;
460 if (rhashtable_check_elasticity(ht, tbl, hash) ||
461 rht_grow_above_100(ht, tbl))
462 goto exit;
464 err = 0;
466 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
468 RCU_INIT_POINTER(obj->next, head);
470 rcu_assign_pointer(tbl->buckets[hash], obj);
472 atomic_inc(&ht->nelems);
474 exit:
475 spin_unlock(rht_bucket_lock(tbl, hash));
477 if (err == 0)
478 return NULL;
479 else if (err == -EAGAIN)
480 return tbl;
481 else
482 return ERR_PTR(err);
484 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
487 * rhashtable_walk_init - Initialise an iterator
488 * @ht: Table to walk over
489 * @iter: Hash table Iterator
490 * @gfp: GFP flags for allocations
492 * This function prepares a hash table walk.
494 * Note that if you restart a walk after rhashtable_walk_stop you
495 * may see the same object twice. Also, you may miss objects if
496 * there are removals in between rhashtable_walk_stop and the next
497 * call to rhashtable_walk_start.
499 * For a completely stable walk you should construct your own data
500 * structure outside the hash table.
502 * This function may sleep so you must not call it from interrupt
503 * context or with spin locks held.
505 * You must call rhashtable_walk_exit if this function returns
506 * successfully.
508 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter,
509 gfp_t gfp)
511 iter->ht = ht;
512 iter->p = NULL;
513 iter->slot = 0;
514 iter->skip = 0;
516 iter->walker = kmalloc(sizeof(*iter->walker), gfp);
517 if (!iter->walker)
518 return -ENOMEM;
520 spin_lock(&ht->lock);
521 iter->walker->tbl =
522 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
523 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
524 spin_unlock(&ht->lock);
526 return 0;
528 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
531 * rhashtable_walk_exit - Free an iterator
532 * @iter: Hash table Iterator
534 * This function frees resources allocated by rhashtable_walk_init.
536 void rhashtable_walk_exit(struct rhashtable_iter *iter)
538 spin_lock(&iter->ht->lock);
539 if (iter->walker->tbl)
540 list_del(&iter->walker->list);
541 spin_unlock(&iter->ht->lock);
542 kfree(iter->walker);
544 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
547 * rhashtable_walk_start - Start a hash table walk
548 * @iter: Hash table iterator
550 * Start a hash table walk. Note that we take the RCU lock in all
551 * cases including when we return an error. So you must always call
552 * rhashtable_walk_stop to clean up.
554 * Returns zero if successful.
556 * Returns -EAGAIN if resize event occured. Note that the iterator
557 * will rewind back to the beginning and you may use it immediately
558 * by calling rhashtable_walk_next.
560 int rhashtable_walk_start(struct rhashtable_iter *iter)
561 __acquires(RCU)
563 struct rhashtable *ht = iter->ht;
565 rcu_read_lock();
567 spin_lock(&ht->lock);
568 if (iter->walker->tbl)
569 list_del(&iter->walker->list);
570 spin_unlock(&ht->lock);
572 if (!iter->walker->tbl) {
573 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
574 return -EAGAIN;
577 return 0;
579 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
582 * rhashtable_walk_next - Return the next object and advance the iterator
583 * @iter: Hash table iterator
585 * Note that you must call rhashtable_walk_stop when you are finished
586 * with the walk.
588 * Returns the next object or NULL when the end of the table is reached.
590 * Returns -EAGAIN if resize event occured. Note that the iterator
591 * will rewind back to the beginning and you may continue to use it.
593 void *rhashtable_walk_next(struct rhashtable_iter *iter)
595 struct bucket_table *tbl = iter->walker->tbl;
596 struct rhashtable *ht = iter->ht;
597 struct rhash_head *p = iter->p;
599 if (p) {
600 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
601 goto next;
604 for (; iter->slot < tbl->size; iter->slot++) {
605 int skip = iter->skip;
607 rht_for_each_rcu(p, tbl, iter->slot) {
608 if (!skip)
609 break;
610 skip--;
613 next:
614 if (!rht_is_a_nulls(p)) {
615 iter->skip++;
616 iter->p = p;
617 return rht_obj(ht, p);
620 iter->skip = 0;
623 iter->p = NULL;
625 /* Ensure we see any new tables. */
626 smp_rmb();
628 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
629 if (iter->walker->tbl) {
630 iter->slot = 0;
631 iter->skip = 0;
632 return ERR_PTR(-EAGAIN);
635 return NULL;
637 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
640 * rhashtable_walk_stop - Finish a hash table walk
641 * @iter: Hash table iterator
643 * Finish a hash table walk.
645 void rhashtable_walk_stop(struct rhashtable_iter *iter)
646 __releases(RCU)
648 struct rhashtable *ht;
649 struct bucket_table *tbl = iter->walker->tbl;
651 if (!tbl)
652 goto out;
654 ht = iter->ht;
656 spin_lock(&ht->lock);
657 if (tbl->rehash < tbl->size)
658 list_add(&iter->walker->list, &tbl->walkers);
659 else
660 iter->walker->tbl = NULL;
661 spin_unlock(&ht->lock);
663 iter->p = NULL;
665 out:
666 rcu_read_unlock();
668 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
670 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
672 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
673 (unsigned long)params->min_size);
676 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
678 return jhash2(key, length, seed);
682 * rhashtable_init - initialize a new hash table
683 * @ht: hash table to be initialized
684 * @params: configuration parameters
686 * Initializes a new hash table based on the provided configuration
687 * parameters. A table can be configured either with a variable or
688 * fixed length key:
690 * Configuration Example 1: Fixed length keys
691 * struct test_obj {
692 * int key;
693 * void * my_member;
694 * struct rhash_head node;
695 * };
697 * struct rhashtable_params params = {
698 * .head_offset = offsetof(struct test_obj, node),
699 * .key_offset = offsetof(struct test_obj, key),
700 * .key_len = sizeof(int),
701 * .hashfn = jhash,
702 * .nulls_base = (1U << RHT_BASE_SHIFT),
703 * };
705 * Configuration Example 2: Variable length keys
706 * struct test_obj {
707 * [...]
708 * struct rhash_head node;
709 * };
711 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
713 * struct test_obj *obj = data;
715 * return [... hash ...];
718 * struct rhashtable_params params = {
719 * .head_offset = offsetof(struct test_obj, node),
720 * .hashfn = jhash,
721 * .obj_hashfn = my_hash_fn,
722 * };
724 int rhashtable_init(struct rhashtable *ht,
725 const struct rhashtable_params *params)
727 struct bucket_table *tbl;
728 size_t size;
730 size = HASH_DEFAULT_SIZE;
732 if ((!params->key_len && !params->obj_hashfn) ||
733 (params->obj_hashfn && !params->obj_cmpfn))
734 return -EINVAL;
736 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
737 return -EINVAL;
739 memset(ht, 0, sizeof(*ht));
740 mutex_init(&ht->mutex);
741 spin_lock_init(&ht->lock);
742 memcpy(&ht->p, params, sizeof(*params));
744 if (params->min_size)
745 ht->p.min_size = roundup_pow_of_two(params->min_size);
747 if (params->max_size)
748 ht->p.max_size = rounddown_pow_of_two(params->max_size);
750 if (params->insecure_max_entries)
751 ht->p.insecure_max_entries =
752 rounddown_pow_of_two(params->insecure_max_entries);
753 else
754 ht->p.insecure_max_entries = ht->p.max_size * 2;
756 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
758 if (params->nelem_hint)
759 size = rounded_hashtable_size(&ht->p);
761 /* The maximum (not average) chain length grows with the
762 * size of the hash table, at a rate of (log N)/(log log N).
763 * The value of 16 is selected so that even if the hash
764 * table grew to 2^32 you would not expect the maximum
765 * chain length to exceed it unless we are under attack
766 * (or extremely unlucky).
768 * As this limit is only to detect attacks, we don't need
769 * to set it to a lower value as you'd need the chain
770 * length to vastly exceed 16 to have any real effect
771 * on the system.
773 if (!params->insecure_elasticity)
774 ht->elasticity = 16;
776 if (params->locks_mul)
777 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
778 else
779 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
781 ht->key_len = ht->p.key_len;
782 if (!params->hashfn) {
783 ht->p.hashfn = jhash;
785 if (!(ht->key_len & (sizeof(u32) - 1))) {
786 ht->key_len /= sizeof(u32);
787 ht->p.hashfn = rhashtable_jhash2;
791 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
792 if (tbl == NULL)
793 return -ENOMEM;
795 atomic_set(&ht->nelems, 0);
797 RCU_INIT_POINTER(ht->tbl, tbl);
799 INIT_WORK(&ht->run_work, rht_deferred_worker);
801 return 0;
803 EXPORT_SYMBOL_GPL(rhashtable_init);
806 * rhashtable_free_and_destroy - free elements and destroy hash table
807 * @ht: the hash table to destroy
808 * @free_fn: callback to release resources of element
809 * @arg: pointer passed to free_fn
811 * Stops an eventual async resize. If defined, invokes free_fn for each
812 * element to releasal resources. Please note that RCU protected
813 * readers may still be accessing the elements. Releasing of resources
814 * must occur in a compatible manner. Then frees the bucket array.
816 * This function will eventually sleep to wait for an async resize
817 * to complete. The caller is responsible that no further write operations
818 * occurs in parallel.
820 void rhashtable_free_and_destroy(struct rhashtable *ht,
821 void (*free_fn)(void *ptr, void *arg),
822 void *arg)
824 const struct bucket_table *tbl;
825 unsigned int i;
827 cancel_work_sync(&ht->run_work);
829 mutex_lock(&ht->mutex);
830 tbl = rht_dereference(ht->tbl, ht);
831 if (free_fn) {
832 for (i = 0; i < tbl->size; i++) {
833 struct rhash_head *pos, *next;
835 for (pos = rht_dereference(tbl->buckets[i], ht),
836 next = !rht_is_a_nulls(pos) ?
837 rht_dereference(pos->next, ht) : NULL;
838 !rht_is_a_nulls(pos);
839 pos = next,
840 next = !rht_is_a_nulls(pos) ?
841 rht_dereference(pos->next, ht) : NULL)
842 free_fn(rht_obj(ht, pos), arg);
846 bucket_table_free(tbl);
847 mutex_unlock(&ht->mutex);
849 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
851 void rhashtable_destroy(struct rhashtable *ht)
853 return rhashtable_free_and_destroy(ht, NULL, NULL);
855 EXPORT_SYMBOL_GPL(rhashtable_destroy);