KVM: Redesign kvm_io_bus_ API to pass VCPU structure to the callbacks.
[linux-2.6/btrfs-unstable.git] / arch / x86 / kvm / i8254.c
blob4dce6f8b6129ebea2432840154cc97efd513947b
1 /*
2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
33 #define pr_fmt(fmt) "pit: " fmt
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
38 #include "irq.h"
39 #include "i8254.h"
40 #include "x86.h"
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
56 union {
57 u64 ll;
58 struct {
59 u32 low, high;
60 } l;
61 } u, res;
62 u64 rl, rh;
64 u.ll = a;
65 rl = (u64)u.l.low * (u64)b;
66 rh = (u64)u.l.high * (u64)b;
67 rh += (rl >> 32);
68 res.l.high = div64_u64(rh, c);
69 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70 return res.ll;
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
75 struct kvm_kpit_channel_state *c =
76 &kvm->arch.vpit->pit_state.channels[channel];
78 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
80 switch (c->mode) {
81 default:
82 case 0:
83 case 4:
84 /* XXX: just disable/enable counting */
85 break;
86 case 1:
87 case 2:
88 case 3:
89 case 5:
90 /* Restart counting on rising edge. */
91 if (c->gate < val)
92 c->count_load_time = ktime_get();
93 break;
96 c->gate = val;
99 static int pit_get_gate(struct kvm *kvm, int channel)
101 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
103 return kvm->arch.vpit->pit_state.channels[channel].gate;
106 static s64 __kpit_elapsed(struct kvm *kvm)
108 s64 elapsed;
109 ktime_t remaining;
110 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
112 if (!ps->period)
113 return 0;
116 * The Counter does not stop when it reaches zero. In
117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118 * the highest count, either FFFF hex for binary counting
119 * or 9999 for BCD counting, and continues counting.
120 * Modes 2 and 3 are periodic; the Counter reloads
121 * itself with the initial count and continues counting
122 * from there.
124 remaining = hrtimer_get_remaining(&ps->timer);
125 elapsed = ps->period - ktime_to_ns(remaining);
127 return elapsed;
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131 int channel)
133 if (channel == 0)
134 return __kpit_elapsed(kvm);
136 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
139 static int pit_get_count(struct kvm *kvm, int channel)
141 struct kvm_kpit_channel_state *c =
142 &kvm->arch.vpit->pit_state.channels[channel];
143 s64 d, t;
144 int counter;
146 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
148 t = kpit_elapsed(kvm, c, channel);
149 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
151 switch (c->mode) {
152 case 0:
153 case 1:
154 case 4:
155 case 5:
156 counter = (c->count - d) & 0xffff;
157 break;
158 case 3:
159 /* XXX: may be incorrect for odd counts */
160 counter = c->count - (mod_64((2 * d), c->count));
161 break;
162 default:
163 counter = c->count - mod_64(d, c->count);
164 break;
166 return counter;
169 static int pit_get_out(struct kvm *kvm, int channel)
171 struct kvm_kpit_channel_state *c =
172 &kvm->arch.vpit->pit_state.channels[channel];
173 s64 d, t;
174 int out;
176 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
178 t = kpit_elapsed(kvm, c, channel);
179 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
181 switch (c->mode) {
182 default:
183 case 0:
184 out = (d >= c->count);
185 break;
186 case 1:
187 out = (d < c->count);
188 break;
189 case 2:
190 out = ((mod_64(d, c->count) == 0) && (d != 0));
191 break;
192 case 3:
193 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194 break;
195 case 4:
196 case 5:
197 out = (d == c->count);
198 break;
201 return out;
204 static void pit_latch_count(struct kvm *kvm, int channel)
206 struct kvm_kpit_channel_state *c =
207 &kvm->arch.vpit->pit_state.channels[channel];
209 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211 if (!c->count_latched) {
212 c->latched_count = pit_get_count(kvm, channel);
213 c->count_latched = c->rw_mode;
217 static void pit_latch_status(struct kvm *kvm, int channel)
219 struct kvm_kpit_channel_state *c =
220 &kvm->arch.vpit->pit_state.channels[channel];
222 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
224 if (!c->status_latched) {
225 /* TODO: Return NULL COUNT (bit 6). */
226 c->status = ((pit_get_out(kvm, channel) << 7) |
227 (c->rw_mode << 4) |
228 (c->mode << 1) |
229 c->bcd);
230 c->status_latched = 1;
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
236 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237 irq_ack_notifier);
238 int value;
240 spin_lock(&ps->inject_lock);
241 value = atomic_dec_return(&ps->pending);
242 if (value < 0)
243 /* spurious acks can be generated if, for example, the
244 * PIC is being reset. Handle it gracefully here
246 atomic_inc(&ps->pending);
247 else if (value > 0)
248 /* in this case, we had multiple outstanding pit interrupts
249 * that we needed to inject. Reinject
251 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252 ps->irq_ack = 1;
253 spin_unlock(&ps->inject_lock);
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
258 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259 struct hrtimer *timer;
261 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262 return;
264 timer = &pit->pit_state.timer;
265 mutex_lock(&pit->pit_state.lock);
266 if (hrtimer_cancel(timer))
267 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
268 mutex_unlock(&pit->pit_state.lock);
271 static void destroy_pit_timer(struct kvm_pit *pit)
273 hrtimer_cancel(&pit->pit_state.timer);
274 flush_kthread_work(&pit->expired);
277 static void pit_do_work(struct kthread_work *work)
279 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
280 struct kvm *kvm = pit->kvm;
281 struct kvm_vcpu *vcpu;
282 int i;
283 struct kvm_kpit_state *ps = &pit->pit_state;
284 int inject = 0;
286 /* Try to inject pending interrupts when
287 * last one has been acked.
289 spin_lock(&ps->inject_lock);
290 if (ps->irq_ack) {
291 ps->irq_ack = 0;
292 inject = 1;
294 spin_unlock(&ps->inject_lock);
295 if (inject) {
296 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
297 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
300 * Provides NMI watchdog support via Virtual Wire mode.
301 * The route is: PIT -> PIC -> LVT0 in NMI mode.
303 * Note: Our Virtual Wire implementation is simplified, only
304 * propagating PIT interrupts to all VCPUs when they have set
305 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
306 * VCPU0, and only if its LVT0 is in EXTINT mode.
308 if (kvm->arch.vapics_in_nmi_mode > 0)
309 kvm_for_each_vcpu(i, vcpu, kvm)
310 kvm_apic_nmi_wd_deliver(vcpu);
314 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
316 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
317 struct kvm_pit *pt = ps->kvm->arch.vpit;
319 if (ps->reinject || !atomic_read(&ps->pending)) {
320 atomic_inc(&ps->pending);
321 queue_kthread_work(&pt->worker, &pt->expired);
324 if (ps->is_periodic) {
325 hrtimer_add_expires_ns(&ps->timer, ps->period);
326 return HRTIMER_RESTART;
327 } else
328 return HRTIMER_NORESTART;
331 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
333 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
334 s64 interval;
336 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
337 return;
339 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
341 pr_debug("create pit timer, interval is %llu nsec\n", interval);
343 /* TODO The new value only affected after the retriggered */
344 hrtimer_cancel(&ps->timer);
345 flush_kthread_work(&ps->pit->expired);
346 ps->period = interval;
347 ps->is_periodic = is_period;
349 ps->timer.function = pit_timer_fn;
350 ps->kvm = ps->pit->kvm;
352 atomic_set(&ps->pending, 0);
353 ps->irq_ack = 1;
356 * Do not allow the guest to program periodic timers with small
357 * interval, since the hrtimers are not throttled by the host
358 * scheduler.
360 if (ps->is_periodic) {
361 s64 min_period = min_timer_period_us * 1000LL;
363 if (ps->period < min_period) {
364 pr_info_ratelimited(
365 "kvm: requested %lld ns "
366 "i8254 timer period limited to %lld ns\n",
367 ps->period, min_period);
368 ps->period = min_period;
372 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
373 HRTIMER_MODE_ABS);
376 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
378 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
380 WARN_ON(!mutex_is_locked(&ps->lock));
382 pr_debug("load_count val is %d, channel is %d\n", val, channel);
385 * The largest possible initial count is 0; this is equivalent
386 * to 216 for binary counting and 104 for BCD counting.
388 if (val == 0)
389 val = 0x10000;
391 ps->channels[channel].count = val;
393 if (channel != 0) {
394 ps->channels[channel].count_load_time = ktime_get();
395 return;
398 /* Two types of timer
399 * mode 1 is one shot, mode 2 is period, otherwise del timer */
400 switch (ps->channels[0].mode) {
401 case 0:
402 case 1:
403 /* FIXME: enhance mode 4 precision */
404 case 4:
405 create_pit_timer(kvm, val, 0);
406 break;
407 case 2:
408 case 3:
409 create_pit_timer(kvm, val, 1);
410 break;
411 default:
412 destroy_pit_timer(kvm->arch.vpit);
416 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
418 u8 saved_mode;
419 if (hpet_legacy_start) {
420 /* save existing mode for later reenablement */
421 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
422 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
423 pit_load_count(kvm, channel, val);
424 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
425 } else {
426 pit_load_count(kvm, channel, val);
430 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
432 return container_of(dev, struct kvm_pit, dev);
435 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
437 return container_of(dev, struct kvm_pit, speaker_dev);
440 static inline int pit_in_range(gpa_t addr)
442 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
443 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
446 static int pit_ioport_write(struct kvm_vcpu *vcpu,
447 struct kvm_io_device *this,
448 gpa_t addr, int len, const void *data)
450 struct kvm_pit *pit = dev_to_pit(this);
451 struct kvm_kpit_state *pit_state = &pit->pit_state;
452 struct kvm *kvm = pit->kvm;
453 int channel, access;
454 struct kvm_kpit_channel_state *s;
455 u32 val = *(u32 *) data;
456 if (!pit_in_range(addr))
457 return -EOPNOTSUPP;
459 val &= 0xff;
460 addr &= KVM_PIT_CHANNEL_MASK;
462 mutex_lock(&pit_state->lock);
464 if (val != 0)
465 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
466 (unsigned int)addr, len, val);
468 if (addr == 3) {
469 channel = val >> 6;
470 if (channel == 3) {
471 /* Read-Back Command. */
472 for (channel = 0; channel < 3; channel++) {
473 s = &pit_state->channels[channel];
474 if (val & (2 << channel)) {
475 if (!(val & 0x20))
476 pit_latch_count(kvm, channel);
477 if (!(val & 0x10))
478 pit_latch_status(kvm, channel);
481 } else {
482 /* Select Counter <channel>. */
483 s = &pit_state->channels[channel];
484 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
485 if (access == 0) {
486 pit_latch_count(kvm, channel);
487 } else {
488 s->rw_mode = access;
489 s->read_state = access;
490 s->write_state = access;
491 s->mode = (val >> 1) & 7;
492 if (s->mode > 5)
493 s->mode -= 4;
494 s->bcd = val & 1;
497 } else {
498 /* Write Count. */
499 s = &pit_state->channels[addr];
500 switch (s->write_state) {
501 default:
502 case RW_STATE_LSB:
503 pit_load_count(kvm, addr, val);
504 break;
505 case RW_STATE_MSB:
506 pit_load_count(kvm, addr, val << 8);
507 break;
508 case RW_STATE_WORD0:
509 s->write_latch = val;
510 s->write_state = RW_STATE_WORD1;
511 break;
512 case RW_STATE_WORD1:
513 pit_load_count(kvm, addr, s->write_latch | (val << 8));
514 s->write_state = RW_STATE_WORD0;
515 break;
519 mutex_unlock(&pit_state->lock);
520 return 0;
523 static int pit_ioport_read(struct kvm_vcpu *vcpu,
524 struct kvm_io_device *this,
525 gpa_t addr, int len, void *data)
527 struct kvm_pit *pit = dev_to_pit(this);
528 struct kvm_kpit_state *pit_state = &pit->pit_state;
529 struct kvm *kvm = pit->kvm;
530 int ret, count;
531 struct kvm_kpit_channel_state *s;
532 if (!pit_in_range(addr))
533 return -EOPNOTSUPP;
535 addr &= KVM_PIT_CHANNEL_MASK;
536 if (addr == 3)
537 return 0;
539 s = &pit_state->channels[addr];
541 mutex_lock(&pit_state->lock);
543 if (s->status_latched) {
544 s->status_latched = 0;
545 ret = s->status;
546 } else if (s->count_latched) {
547 switch (s->count_latched) {
548 default:
549 case RW_STATE_LSB:
550 ret = s->latched_count & 0xff;
551 s->count_latched = 0;
552 break;
553 case RW_STATE_MSB:
554 ret = s->latched_count >> 8;
555 s->count_latched = 0;
556 break;
557 case RW_STATE_WORD0:
558 ret = s->latched_count & 0xff;
559 s->count_latched = RW_STATE_MSB;
560 break;
562 } else {
563 switch (s->read_state) {
564 default:
565 case RW_STATE_LSB:
566 count = pit_get_count(kvm, addr);
567 ret = count & 0xff;
568 break;
569 case RW_STATE_MSB:
570 count = pit_get_count(kvm, addr);
571 ret = (count >> 8) & 0xff;
572 break;
573 case RW_STATE_WORD0:
574 count = pit_get_count(kvm, addr);
575 ret = count & 0xff;
576 s->read_state = RW_STATE_WORD1;
577 break;
578 case RW_STATE_WORD1:
579 count = pit_get_count(kvm, addr);
580 ret = (count >> 8) & 0xff;
581 s->read_state = RW_STATE_WORD0;
582 break;
586 if (len > sizeof(ret))
587 len = sizeof(ret);
588 memcpy(data, (char *)&ret, len);
590 mutex_unlock(&pit_state->lock);
591 return 0;
594 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
595 struct kvm_io_device *this,
596 gpa_t addr, int len, const void *data)
598 struct kvm_pit *pit = speaker_to_pit(this);
599 struct kvm_kpit_state *pit_state = &pit->pit_state;
600 struct kvm *kvm = pit->kvm;
601 u32 val = *(u32 *) data;
602 if (addr != KVM_SPEAKER_BASE_ADDRESS)
603 return -EOPNOTSUPP;
605 mutex_lock(&pit_state->lock);
606 pit_state->speaker_data_on = (val >> 1) & 1;
607 pit_set_gate(kvm, 2, val & 1);
608 mutex_unlock(&pit_state->lock);
609 return 0;
612 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
613 struct kvm_io_device *this,
614 gpa_t addr, int len, void *data)
616 struct kvm_pit *pit = speaker_to_pit(this);
617 struct kvm_kpit_state *pit_state = &pit->pit_state;
618 struct kvm *kvm = pit->kvm;
619 unsigned int refresh_clock;
620 int ret;
621 if (addr != KVM_SPEAKER_BASE_ADDRESS)
622 return -EOPNOTSUPP;
624 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
625 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
627 mutex_lock(&pit_state->lock);
628 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
629 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
630 if (len > sizeof(ret))
631 len = sizeof(ret);
632 memcpy(data, (char *)&ret, len);
633 mutex_unlock(&pit_state->lock);
634 return 0;
637 void kvm_pit_reset(struct kvm_pit *pit)
639 int i;
640 struct kvm_kpit_channel_state *c;
642 mutex_lock(&pit->pit_state.lock);
643 pit->pit_state.flags = 0;
644 for (i = 0; i < 3; i++) {
645 c = &pit->pit_state.channels[i];
646 c->mode = 0xff;
647 c->gate = (i != 2);
648 pit_load_count(pit->kvm, i, 0);
650 mutex_unlock(&pit->pit_state.lock);
652 atomic_set(&pit->pit_state.pending, 0);
653 pit->pit_state.irq_ack = 1;
656 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
658 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
660 if (!mask) {
661 atomic_set(&pit->pit_state.pending, 0);
662 pit->pit_state.irq_ack = 1;
666 static const struct kvm_io_device_ops pit_dev_ops = {
667 .read = pit_ioport_read,
668 .write = pit_ioport_write,
671 static const struct kvm_io_device_ops speaker_dev_ops = {
672 .read = speaker_ioport_read,
673 .write = speaker_ioport_write,
676 /* Caller must hold slots_lock */
677 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
679 struct kvm_pit *pit;
680 struct kvm_kpit_state *pit_state;
681 struct pid *pid;
682 pid_t pid_nr;
683 int ret;
685 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
686 if (!pit)
687 return NULL;
689 pit->irq_source_id = kvm_request_irq_source_id(kvm);
690 if (pit->irq_source_id < 0) {
691 kfree(pit);
692 return NULL;
695 mutex_init(&pit->pit_state.lock);
696 mutex_lock(&pit->pit_state.lock);
697 spin_lock_init(&pit->pit_state.inject_lock);
699 pid = get_pid(task_tgid(current));
700 pid_nr = pid_vnr(pid);
701 put_pid(pid);
703 init_kthread_worker(&pit->worker);
704 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
705 "kvm-pit/%d", pid_nr);
706 if (IS_ERR(pit->worker_task)) {
707 mutex_unlock(&pit->pit_state.lock);
708 kvm_free_irq_source_id(kvm, pit->irq_source_id);
709 kfree(pit);
710 return NULL;
712 init_kthread_work(&pit->expired, pit_do_work);
714 kvm->arch.vpit = pit;
715 pit->kvm = kvm;
717 pit_state = &pit->pit_state;
718 pit_state->pit = pit;
719 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
720 pit_state->irq_ack_notifier.gsi = 0;
721 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
722 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
723 pit_state->reinject = true;
724 mutex_unlock(&pit->pit_state.lock);
726 kvm_pit_reset(pit);
728 pit->mask_notifier.func = pit_mask_notifer;
729 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
731 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
732 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
733 KVM_PIT_MEM_LENGTH, &pit->dev);
734 if (ret < 0)
735 goto fail;
737 if (flags & KVM_PIT_SPEAKER_DUMMY) {
738 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
739 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
740 KVM_SPEAKER_BASE_ADDRESS, 4,
741 &pit->speaker_dev);
742 if (ret < 0)
743 goto fail_unregister;
746 return pit;
748 fail_unregister:
749 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
751 fail:
752 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
753 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
754 kvm_free_irq_source_id(kvm, pit->irq_source_id);
755 kthread_stop(pit->worker_task);
756 kfree(pit);
757 return NULL;
760 void kvm_free_pit(struct kvm *kvm)
762 struct hrtimer *timer;
764 if (kvm->arch.vpit) {
765 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
766 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
767 &kvm->arch.vpit->speaker_dev);
768 kvm_unregister_irq_mask_notifier(kvm, 0,
769 &kvm->arch.vpit->mask_notifier);
770 kvm_unregister_irq_ack_notifier(kvm,
771 &kvm->arch.vpit->pit_state.irq_ack_notifier);
772 mutex_lock(&kvm->arch.vpit->pit_state.lock);
773 timer = &kvm->arch.vpit->pit_state.timer;
774 hrtimer_cancel(timer);
775 flush_kthread_work(&kvm->arch.vpit->expired);
776 kthread_stop(kvm->arch.vpit->worker_task);
777 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
778 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
779 kfree(kvm->arch.vpit);