mm, page_alloc: don't duplicate code in free_pcp_prepare
[linux-2.6/btrfs-unstable.git] / mm / page_alloc.c
blob7d8f642c498d60c42e4ad19f756b896f21ee8026
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
94 * Array of node states.
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
110 EXPORT_SYMBOL(node_states);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
130 static inline int get_pcppage_migratetype(struct page *page)
132 return page->index;
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 page->index = migratetype;
140 #ifdef CONFIG_PM_SLEEP
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
150 static gfp_t saved_gfp_mask;
152 void pm_restore_gfp_mask(void)
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
161 void pm_restrict_gfp_mask(void)
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
169 bool pm_suspended_storage(void)
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
175 #endif /* CONFIG_PM_SLEEP */
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
181 static void __free_pages_ok(struct page *page, unsigned int order);
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
203 #endif
207 EXPORT_SYMBOL(totalram_pages);
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
278 int page_group_by_mobility_disabled __read_mostly;
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 pgdat->first_deferred_pfn = ULONG_MAX;
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
292 return false;
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
300 return false;
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
311 unsigned long max_initialise;
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
330 return true;
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
337 static inline bool early_page_uninitialised(unsigned long pfn)
339 return false;
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
344 return false;
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
351 return true;
353 #endif
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
384 * Return: pageblock_bits flags
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
456 void set_pageblock_migratetype(struct page *page, int migratetype)
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
487 return ret;
490 static int page_is_consistent(struct zone *zone, struct page *page)
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
497 return 1;
500 * Temporary debugging check for pages not lying within a given zone.
502 static int bad_range(struct zone *zone, struct page *page)
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
509 return 0;
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
514 return 0;
516 #endif
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
527 page_mapcount_reset(page); /* remove PageBuddy */
528 return;
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
540 if (nr_unshown) {
541 pr_alert(
542 "BUG: Bad page state: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
546 nr_shown = 0;
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current->comm, page_to_pfn(page));
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
558 dump_page_owner(page);
560 print_modules();
561 dump_stack();
562 out:
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
569 * Higher-order pages are called "compound pages". They are structured thusly:
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
583 void free_compound_page(struct page *page)
585 __free_pages_ok(page, compound_order(page));
588 void prep_compound_page(struct page *page, unsigned int order)
590 int i;
591 int nr_pages = 1 << order;
593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
598 set_page_count(p, 0);
599 p->mapping = TAIL_MAPPING;
600 set_compound_head(p, page);
602 atomic_set(compound_mapcount_ptr(page), -1);
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled);
610 bool _debug_guardpage_enabled __read_mostly;
612 static int __init early_debug_pagealloc(char *buf)
614 if (!buf)
615 return -EINVAL;
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
623 return 0;
625 early_param("debug_pagealloc", early_debug_pagealloc);
627 static bool need_debug_guardpage(void)
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
633 return true;
636 static void init_debug_guardpage(void)
638 if (!debug_pagealloc_enabled())
639 return;
641 _debug_guardpage_enabled = true;
644 struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
649 static int __init debug_guardpage_minorder_setup(char *buf)
651 unsigned long res;
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
654 pr_err("Bad debug_guardpage_minorder value\n");
655 return 0;
657 _debug_guardpage_minorder = res;
658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
659 return 0;
661 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
663 static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
666 struct page_ext *page_ext;
668 if (!debug_guardpage_enabled())
669 return;
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
680 static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
683 struct page_ext *page_ext;
685 if (!debug_guardpage_enabled())
686 return;
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
695 #else
696 struct page_ext_operations debug_guardpage_ops = { NULL, };
697 static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
703 static inline void set_page_order(struct page *page, unsigned int order)
705 set_page_private(page, order);
706 __SetPageBuddy(page);
709 static inline void rmv_page_order(struct page *page)
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
728 * For recording page's order, we use page_private(page).
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
733 if (!pfn_valid_within(page_to_pfn(buddy)))
734 return 0;
736 if (page_is_guard(buddy) && page_order(buddy) == order) {
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742 return 1;
745 if (PageBuddy(buddy) && page_order(buddy) == order) {
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756 return 1;
758 return 0;
762 * Freeing function for a buddy system allocator.
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
777 * So when we are allocating or freeing one, we can derive the state of the
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
780 * If a block is freed, and its buddy is also free, then this
781 * triggers coalescing into a block of larger size.
783 * -- nyc
786 static inline void __free_one_page(struct page *page,
787 unsigned long pfn,
788 struct zone *zone, unsigned int order,
789 int migratetype)
791 unsigned long page_idx;
792 unsigned long combined_idx;
793 unsigned long uninitialized_var(buddy_idx);
794 struct page *buddy;
795 unsigned int max_order;
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
811 continue_merging:
812 while (order < max_order - 1) {
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
815 if (!page_is_buddy(page, buddy, order))
816 goto done_merging;
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
821 if (page_is_guard(buddy)) {
822 clear_page_guard(zone, buddy, order, migratetype);
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
828 combined_idx = buddy_idx & page_idx;
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
854 max_order++;
855 goto continue_merging;
858 done_merging:
859 set_page_order(page, order);
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
870 struct page *higher_page, *higher_buddy;
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
874 higher_buddy = higher_page + (buddy_idx - combined_idx);
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883 out:
884 zone->free_area[order].nr_free++;
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
892 static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900 #ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902 #endif
903 (page->flags & check_flags)))
904 return false;
906 return true;
909 static void free_pages_check_bad(struct page *page)
911 const char *bad_reason;
912 unsigned long bad_flags;
914 bad_reason = NULL;
915 bad_flags = 0;
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
921 if (unlikely(page_ref_count(page) != 0))
922 bad_reason = "nonzero _refcount";
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
927 #ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930 #endif
931 bad_page(page, bad_reason, bad_flags);
934 static inline int free_pages_check(struct page *page)
936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
937 return 0;
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
941 return 1;
944 static int free_tail_pages_check(struct page *head_page, struct page *page)
946 int ret = 1;
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
965 break;
966 case 2:
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
977 break;
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
987 ret = 0;
988 out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
994 static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
997 int bad = 0;
999 VM_BUG_ON_PAGE(PageTail(page), page);
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003 kasan_free_pages(page, order);
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025 if (PageAnonHead(page))
1026 page->mapping = NULL;
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
1038 PAGE_SIZE << order);
1039 debug_check_no_obj_freed(page_address(page),
1040 PAGE_SIZE << order);
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
1046 return true;
1049 #ifdef CONFIG_DEBUG_VM
1050 static inline bool free_pcp_prepare(struct page *page)
1052 return free_pages_prepare(page, 0, true);
1055 static inline bool bulkfree_pcp_prepare(struct page *page)
1057 return false;
1059 #else
1060 static bool free_pcp_prepare(struct page *page)
1062 return free_pages_prepare(page, 0, false);
1065 static bool bulkfree_pcp_prepare(struct page *page)
1067 return free_pages_check(page);
1069 #endif /* CONFIG_DEBUG_VM */
1072 * Frees a number of pages from the PCP lists
1073 * Assumes all pages on list are in same zone, and of same order.
1074 * count is the number of pages to free.
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1082 static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1085 int migratetype = 0;
1086 int batch_free = 0;
1087 unsigned long nr_scanned;
1088 bool isolated_pageblocks;
1090 spin_lock(&zone->lock);
1091 isolated_pageblocks = has_isolate_pageblock(zone);
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1096 while (count) {
1097 struct page *page;
1098 struct list_head *list;
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1118 do {
1119 int mt; /* migratetype of the to-be-freed page */
1121 page = list_last_entry(list, struct page, lru);
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
1125 mt = get_pcppage_migratetype(page);
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
1129 if (unlikely(isolated_pageblocks))
1130 mt = get_pageblock_migratetype(page);
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1136 trace_mm_page_pcpu_drain(page, 0, mt);
1137 } while (--count && --batch_free && !list_empty(list));
1139 spin_unlock(&zone->lock);
1142 static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
1144 unsigned int order,
1145 int migratetype)
1147 unsigned long nr_scanned;
1148 spin_lock(&zone->lock);
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
1157 __free_one_page(page, pfn, zone, order, migratetype);
1158 spin_unlock(&zone->lock);
1161 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1164 set_page_links(page, zone, nid, pfn);
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1169 INIT_LIST_HEAD(&page->lru);
1170 #ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174 #endif
1177 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1183 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184 static void init_reserved_page(unsigned long pfn)
1186 pg_data_t *pgdat;
1187 int nid, zid;
1189 if (!early_page_uninitialised(pfn))
1190 return;
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1201 __init_single_pfn(pfn, zid, nid);
1203 #else
1204 static inline void init_reserved_page(unsigned long pfn)
1207 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1215 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1224 init_reserved_page(start_pfn);
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1229 SetPageReserved(page);
1234 static void __free_pages_ok(struct page *page, unsigned int order)
1236 unsigned long flags;
1237 int migratetype;
1238 unsigned long pfn = page_to_pfn(page);
1240 if (!free_pages_prepare(page, order, true))
1241 return;
1243 migratetype = get_pfnblock_migratetype(page, pfn);
1244 local_irq_save(flags);
1245 __count_vm_events(PGFREE, 1 << order);
1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
1247 local_irq_restore(flags);
1250 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1252 unsigned int nr_pages = 1 << order;
1253 struct page *p = page;
1254 unsigned int loop;
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1265 page_zone(page)->managed_pages += nr_pages;
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
1270 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1273 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1275 int __meminit early_pfn_to_nid(unsigned long pfn)
1277 static DEFINE_SPINLOCK(early_pfn_lock);
1278 int nid;
1280 spin_lock(&early_pfn_lock);
1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1282 if (nid < 0)
1283 nid = 0;
1284 spin_unlock(&early_pfn_lock);
1286 return nid;
1288 #endif
1290 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1294 int nid;
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1302 /* Only safe to use early in boot when initialisation is single-threaded */
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1308 #else
1310 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 return true;
1314 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1317 return true;
1319 #endif
1322 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1323 unsigned int order)
1325 if (early_page_uninitialised(pfn))
1326 return;
1327 return __free_pages_boot_core(page, order);
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1350 struct page *start_page;
1351 struct page *end_page;
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1359 start_page = pfn_to_page(start_pfn);
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1364 end_page = pfn_to_page(end_pfn);
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1370 return start_page;
1373 void set_zone_contiguous(struct zone *zone)
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1394 void clear_zone_contiguous(struct zone *zone)
1396 zone->contiguous = false;
1399 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1400 static void __init deferred_free_range(struct page *page,
1401 unsigned long pfn, int nr_pages)
1403 int i;
1405 if (!page)
1406 return;
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1412 __free_pages_boot_core(page, MAX_ORDER-1);
1413 return;
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
1420 /* Completion tracking for deferred_init_memmap() threads */
1421 static atomic_t pgdat_init_n_undone __initdata;
1422 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424 static inline void __init pgdat_init_report_one_done(void)
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1430 /* Initialise remaining memory on a node */
1431 static int __init deferred_init_memmap(void *data)
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444 if (first_init_pfn == ULONG_MAX) {
1445 pgdat_init_report_one_done();
1446 return 0;
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
1467 struct page *page = NULL;
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1479 for (; pfn < end_pfn; pfn++) {
1480 if (!pfn_valid_within(pfn))
1481 goto free_range;
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
1490 goto free_range;
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
1496 goto free_range;
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
1515 goto free_range;
1518 __init_single_page(page, pfn, zid, nid);
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1524 nr_to_free++;
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528 free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1544 jiffies_to_msecs(jiffies - start));
1546 pgdat_init_report_one_done();
1547 return 0;
1549 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1551 void __init page_alloc_init_late(void)
1553 struct zone *zone;
1555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1556 int nid;
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1560 for_each_node_state(nid, N_MEMORY) {
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1564 /* Block until all are initialised */
1565 wait_for_completion(&pgdat_init_all_done_comp);
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
1569 #endif
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
1575 #ifdef CONFIG_CMA
1576 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1577 void __init init_cma_reserved_pageblock(struct page *page)
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1587 set_pageblock_migratetype(page, MIGRATE_CMA);
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1602 adjust_managed_page_count(page, pageblock_nr_pages);
1604 #endif
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1618 * -- nyc
1620 static inline void expand(struct zone *zone, struct page *page,
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1624 unsigned long size = 1 << high;
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1633 debug_guardpage_enabled() &&
1634 high < debug_guardpage_minorder()) {
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1641 set_page_guard(zone, &page[size], high, migratetype);
1642 continue;
1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1651 * This page is about to be returned from the page allocator
1653 static inline int check_new_page(struct page *page)
1655 const char *bad_reason;
1656 unsigned long bad_flags;
1658 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1659 return 0;
1661 bad_reason = NULL;
1662 bad_flags = 0;
1663 if (unlikely(atomic_read(&page->_mapcount) != -1))
1664 bad_reason = "nonzero mapcount";
1665 if (unlikely(page->mapping != NULL))
1666 bad_reason = "non-NULL mapping";
1667 if (unlikely(page_ref_count(page) != 0))
1668 bad_reason = "nonzero _count";
1669 if (unlikely(page->flags & __PG_HWPOISON)) {
1670 bad_reason = "HWPoisoned (hardware-corrupted)";
1671 bad_flags = __PG_HWPOISON;
1673 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1674 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1675 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 #ifdef CONFIG_MEMCG
1678 if (unlikely(page->mem_cgroup))
1679 bad_reason = "page still charged to cgroup";
1680 #endif
1681 if (unlikely(bad_reason)) {
1682 bad_page(page, bad_reason, bad_flags);
1683 return 1;
1685 return 0;
1688 static inline bool free_pages_prezeroed(bool poisoned)
1690 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1691 page_poisoning_enabled() && poisoned;
1694 #ifdef CONFIG_DEBUG_VM
1695 static bool check_pcp_refill(struct page *page)
1697 return false;
1700 static bool check_new_pcp(struct page *page)
1702 return check_new_page(page);
1704 #else
1705 static bool check_pcp_refill(struct page *page)
1707 return check_new_page(page);
1709 static bool check_new_pcp(struct page *page)
1711 return false;
1713 #endif /* CONFIG_DEBUG_VM */
1715 static bool check_new_pages(struct page *page, unsigned int order)
1717 int i;
1718 for (i = 0; i < (1 << order); i++) {
1719 struct page *p = page + i;
1721 if (unlikely(check_new_page(p)))
1722 return true;
1725 return false;
1728 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1729 unsigned int alloc_flags)
1731 int i;
1732 bool poisoned = true;
1734 for (i = 0; i < (1 << order); i++) {
1735 struct page *p = page + i;
1736 if (poisoned)
1737 poisoned &= page_is_poisoned(p);
1740 set_page_private(page, 0);
1741 set_page_refcounted(page);
1743 arch_alloc_page(page, order);
1744 kernel_map_pages(page, 1 << order, 1);
1745 kernel_poison_pages(page, 1 << order, 1);
1746 kasan_alloc_pages(page, order);
1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1755 set_page_owner(page, order, gfp_flags);
1758 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1759 * allocate the page. The expectation is that the caller is taking
1760 * steps that will free more memory. The caller should avoid the page
1761 * being used for !PFMEMALLOC purposes.
1763 if (alloc_flags & ALLOC_NO_WATERMARKS)
1764 set_page_pfmemalloc(page);
1765 else
1766 clear_page_pfmemalloc(page);
1770 * Go through the free lists for the given migratetype and remove
1771 * the smallest available page from the freelists
1773 static inline
1774 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1775 int migratetype)
1777 unsigned int current_order;
1778 struct free_area *area;
1779 struct page *page;
1781 /* Find a page of the appropriate size in the preferred list */
1782 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1783 area = &(zone->free_area[current_order]);
1784 page = list_first_entry_or_null(&area->free_list[migratetype],
1785 struct page, lru);
1786 if (!page)
1787 continue;
1788 list_del(&page->lru);
1789 rmv_page_order(page);
1790 area->nr_free--;
1791 expand(zone, page, order, current_order, area, migratetype);
1792 set_pcppage_migratetype(page, migratetype);
1793 return page;
1796 return NULL;
1801 * This array describes the order lists are fallen back to when
1802 * the free lists for the desirable migrate type are depleted
1804 static int fallbacks[MIGRATE_TYPES][4] = {
1805 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1807 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1808 #ifdef CONFIG_CMA
1809 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1810 #endif
1811 #ifdef CONFIG_MEMORY_ISOLATION
1812 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1813 #endif
1816 #ifdef CONFIG_CMA
1817 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1818 unsigned int order)
1820 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1822 #else
1823 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1824 unsigned int order) { return NULL; }
1825 #endif
1828 * Move the free pages in a range to the free lists of the requested type.
1829 * Note that start_page and end_pages are not aligned on a pageblock
1830 * boundary. If alignment is required, use move_freepages_block()
1832 int move_freepages(struct zone *zone,
1833 struct page *start_page, struct page *end_page,
1834 int migratetype)
1836 struct page *page;
1837 unsigned int order;
1838 int pages_moved = 0;
1840 #ifndef CONFIG_HOLES_IN_ZONE
1842 * page_zone is not safe to call in this context when
1843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1844 * anyway as we check zone boundaries in move_freepages_block().
1845 * Remove at a later date when no bug reports exist related to
1846 * grouping pages by mobility
1848 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1849 #endif
1851 for (page = start_page; page <= end_page;) {
1852 /* Make sure we are not inadvertently changing nodes */
1853 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1855 if (!pfn_valid_within(page_to_pfn(page))) {
1856 page++;
1857 continue;
1860 if (!PageBuddy(page)) {
1861 page++;
1862 continue;
1865 order = page_order(page);
1866 list_move(&page->lru,
1867 &zone->free_area[order].free_list[migratetype]);
1868 page += 1 << order;
1869 pages_moved += 1 << order;
1872 return pages_moved;
1875 int move_freepages_block(struct zone *zone, struct page *page,
1876 int migratetype)
1878 unsigned long start_pfn, end_pfn;
1879 struct page *start_page, *end_page;
1881 start_pfn = page_to_pfn(page);
1882 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1883 start_page = pfn_to_page(start_pfn);
1884 end_page = start_page + pageblock_nr_pages - 1;
1885 end_pfn = start_pfn + pageblock_nr_pages - 1;
1887 /* Do not cross zone boundaries */
1888 if (!zone_spans_pfn(zone, start_pfn))
1889 start_page = page;
1890 if (!zone_spans_pfn(zone, end_pfn))
1891 return 0;
1893 return move_freepages(zone, start_page, end_page, migratetype);
1896 static void change_pageblock_range(struct page *pageblock_page,
1897 int start_order, int migratetype)
1899 int nr_pageblocks = 1 << (start_order - pageblock_order);
1901 while (nr_pageblocks--) {
1902 set_pageblock_migratetype(pageblock_page, migratetype);
1903 pageblock_page += pageblock_nr_pages;
1908 * When we are falling back to another migratetype during allocation, try to
1909 * steal extra free pages from the same pageblocks to satisfy further
1910 * allocations, instead of polluting multiple pageblocks.
1912 * If we are stealing a relatively large buddy page, it is likely there will
1913 * be more free pages in the pageblock, so try to steal them all. For
1914 * reclaimable and unmovable allocations, we steal regardless of page size,
1915 * as fragmentation caused by those allocations polluting movable pageblocks
1916 * is worse than movable allocations stealing from unmovable and reclaimable
1917 * pageblocks.
1919 static bool can_steal_fallback(unsigned int order, int start_mt)
1922 * Leaving this order check is intended, although there is
1923 * relaxed order check in next check. The reason is that
1924 * we can actually steal whole pageblock if this condition met,
1925 * but, below check doesn't guarantee it and that is just heuristic
1926 * so could be changed anytime.
1928 if (order >= pageblock_order)
1929 return true;
1931 if (order >= pageblock_order / 2 ||
1932 start_mt == MIGRATE_RECLAIMABLE ||
1933 start_mt == MIGRATE_UNMOVABLE ||
1934 page_group_by_mobility_disabled)
1935 return true;
1937 return false;
1941 * This function implements actual steal behaviour. If order is large enough,
1942 * we can steal whole pageblock. If not, we first move freepages in this
1943 * pageblock and check whether half of pages are moved or not. If half of
1944 * pages are moved, we can change migratetype of pageblock and permanently
1945 * use it's pages as requested migratetype in the future.
1947 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1948 int start_type)
1950 unsigned int current_order = page_order(page);
1951 int pages;
1953 /* Take ownership for orders >= pageblock_order */
1954 if (current_order >= pageblock_order) {
1955 change_pageblock_range(page, current_order, start_type);
1956 return;
1959 pages = move_freepages_block(zone, page, start_type);
1961 /* Claim the whole block if over half of it is free */
1962 if (pages >= (1 << (pageblock_order-1)) ||
1963 page_group_by_mobility_disabled)
1964 set_pageblock_migratetype(page, start_type);
1968 * Check whether there is a suitable fallback freepage with requested order.
1969 * If only_stealable is true, this function returns fallback_mt only if
1970 * we can steal other freepages all together. This would help to reduce
1971 * fragmentation due to mixed migratetype pages in one pageblock.
1973 int find_suitable_fallback(struct free_area *area, unsigned int order,
1974 int migratetype, bool only_stealable, bool *can_steal)
1976 int i;
1977 int fallback_mt;
1979 if (area->nr_free == 0)
1980 return -1;
1982 *can_steal = false;
1983 for (i = 0;; i++) {
1984 fallback_mt = fallbacks[migratetype][i];
1985 if (fallback_mt == MIGRATE_TYPES)
1986 break;
1988 if (list_empty(&area->free_list[fallback_mt]))
1989 continue;
1991 if (can_steal_fallback(order, migratetype))
1992 *can_steal = true;
1994 if (!only_stealable)
1995 return fallback_mt;
1997 if (*can_steal)
1998 return fallback_mt;
2001 return -1;
2005 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2006 * there are no empty page blocks that contain a page with a suitable order
2008 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2009 unsigned int alloc_order)
2011 int mt;
2012 unsigned long max_managed, flags;
2015 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2016 * Check is race-prone but harmless.
2018 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2019 if (zone->nr_reserved_highatomic >= max_managed)
2020 return;
2022 spin_lock_irqsave(&zone->lock, flags);
2024 /* Recheck the nr_reserved_highatomic limit under the lock */
2025 if (zone->nr_reserved_highatomic >= max_managed)
2026 goto out_unlock;
2028 /* Yoink! */
2029 mt = get_pageblock_migratetype(page);
2030 if (mt != MIGRATE_HIGHATOMIC &&
2031 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2032 zone->nr_reserved_highatomic += pageblock_nr_pages;
2033 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2034 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2037 out_unlock:
2038 spin_unlock_irqrestore(&zone->lock, flags);
2042 * Used when an allocation is about to fail under memory pressure. This
2043 * potentially hurts the reliability of high-order allocations when under
2044 * intense memory pressure but failed atomic allocations should be easier
2045 * to recover from than an OOM.
2047 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2049 struct zonelist *zonelist = ac->zonelist;
2050 unsigned long flags;
2051 struct zoneref *z;
2052 struct zone *zone;
2053 struct page *page;
2054 int order;
2056 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2057 ac->nodemask) {
2058 /* Preserve at least one pageblock */
2059 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2060 continue;
2062 spin_lock_irqsave(&zone->lock, flags);
2063 for (order = 0; order < MAX_ORDER; order++) {
2064 struct free_area *area = &(zone->free_area[order]);
2066 page = list_first_entry_or_null(
2067 &area->free_list[MIGRATE_HIGHATOMIC],
2068 struct page, lru);
2069 if (!page)
2070 continue;
2073 * It should never happen but changes to locking could
2074 * inadvertently allow a per-cpu drain to add pages
2075 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2076 * and watch for underflows.
2078 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2079 zone->nr_reserved_highatomic);
2082 * Convert to ac->migratetype and avoid the normal
2083 * pageblock stealing heuristics. Minimally, the caller
2084 * is doing the work and needs the pages. More
2085 * importantly, if the block was always converted to
2086 * MIGRATE_UNMOVABLE or another type then the number
2087 * of pageblocks that cannot be completely freed
2088 * may increase.
2090 set_pageblock_migratetype(page, ac->migratetype);
2091 move_freepages_block(zone, page, ac->migratetype);
2092 spin_unlock_irqrestore(&zone->lock, flags);
2093 return;
2095 spin_unlock_irqrestore(&zone->lock, flags);
2099 /* Remove an element from the buddy allocator from the fallback list */
2100 static inline struct page *
2101 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2103 struct free_area *area;
2104 unsigned int current_order;
2105 struct page *page;
2106 int fallback_mt;
2107 bool can_steal;
2109 /* Find the largest possible block of pages in the other list */
2110 for (current_order = MAX_ORDER-1;
2111 current_order >= order && current_order <= MAX_ORDER-1;
2112 --current_order) {
2113 area = &(zone->free_area[current_order]);
2114 fallback_mt = find_suitable_fallback(area, current_order,
2115 start_migratetype, false, &can_steal);
2116 if (fallback_mt == -1)
2117 continue;
2119 page = list_first_entry(&area->free_list[fallback_mt],
2120 struct page, lru);
2121 if (can_steal)
2122 steal_suitable_fallback(zone, page, start_migratetype);
2124 /* Remove the page from the freelists */
2125 area->nr_free--;
2126 list_del(&page->lru);
2127 rmv_page_order(page);
2129 expand(zone, page, order, current_order, area,
2130 start_migratetype);
2132 * The pcppage_migratetype may differ from pageblock's
2133 * migratetype depending on the decisions in
2134 * find_suitable_fallback(). This is OK as long as it does not
2135 * differ for MIGRATE_CMA pageblocks. Those can be used as
2136 * fallback only via special __rmqueue_cma_fallback() function
2138 set_pcppage_migratetype(page, start_migratetype);
2140 trace_mm_page_alloc_extfrag(page, order, current_order,
2141 start_migratetype, fallback_mt);
2143 return page;
2146 return NULL;
2150 * Do the hard work of removing an element from the buddy allocator.
2151 * Call me with the zone->lock already held.
2153 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2154 int migratetype)
2156 struct page *page;
2158 page = __rmqueue_smallest(zone, order, migratetype);
2159 if (unlikely(!page)) {
2160 if (migratetype == MIGRATE_MOVABLE)
2161 page = __rmqueue_cma_fallback(zone, order);
2163 if (!page)
2164 page = __rmqueue_fallback(zone, order, migratetype);
2167 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2168 return page;
2172 * Obtain a specified number of elements from the buddy allocator, all under
2173 * a single hold of the lock, for efficiency. Add them to the supplied list.
2174 * Returns the number of new pages which were placed at *list.
2176 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2177 unsigned long count, struct list_head *list,
2178 int migratetype, bool cold)
2180 int i;
2182 spin_lock(&zone->lock);
2183 for (i = 0; i < count; ++i) {
2184 struct page *page = __rmqueue(zone, order, migratetype);
2185 if (unlikely(page == NULL))
2186 break;
2188 if (unlikely(check_pcp_refill(page)))
2189 continue;
2192 * Split buddy pages returned by expand() are received here
2193 * in physical page order. The page is added to the callers and
2194 * list and the list head then moves forward. From the callers
2195 * perspective, the linked list is ordered by page number in
2196 * some conditions. This is useful for IO devices that can
2197 * merge IO requests if the physical pages are ordered
2198 * properly.
2200 if (likely(!cold))
2201 list_add(&page->lru, list);
2202 else
2203 list_add_tail(&page->lru, list);
2204 list = &page->lru;
2205 if (is_migrate_cma(get_pcppage_migratetype(page)))
2206 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2207 -(1 << order));
2209 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2210 spin_unlock(&zone->lock);
2211 return i;
2214 #ifdef CONFIG_NUMA
2216 * Called from the vmstat counter updater to drain pagesets of this
2217 * currently executing processor on remote nodes after they have
2218 * expired.
2220 * Note that this function must be called with the thread pinned to
2221 * a single processor.
2223 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2225 unsigned long flags;
2226 int to_drain, batch;
2228 local_irq_save(flags);
2229 batch = READ_ONCE(pcp->batch);
2230 to_drain = min(pcp->count, batch);
2231 if (to_drain > 0) {
2232 free_pcppages_bulk(zone, to_drain, pcp);
2233 pcp->count -= to_drain;
2235 local_irq_restore(flags);
2237 #endif
2240 * Drain pcplists of the indicated processor and zone.
2242 * The processor must either be the current processor and the
2243 * thread pinned to the current processor or a processor that
2244 * is not online.
2246 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2248 unsigned long flags;
2249 struct per_cpu_pageset *pset;
2250 struct per_cpu_pages *pcp;
2252 local_irq_save(flags);
2253 pset = per_cpu_ptr(zone->pageset, cpu);
2255 pcp = &pset->pcp;
2256 if (pcp->count) {
2257 free_pcppages_bulk(zone, pcp->count, pcp);
2258 pcp->count = 0;
2260 local_irq_restore(flags);
2264 * Drain pcplists of all zones on the indicated processor.
2266 * The processor must either be the current processor and the
2267 * thread pinned to the current processor or a processor that
2268 * is not online.
2270 static void drain_pages(unsigned int cpu)
2272 struct zone *zone;
2274 for_each_populated_zone(zone) {
2275 drain_pages_zone(cpu, zone);
2280 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2282 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2283 * the single zone's pages.
2285 void drain_local_pages(struct zone *zone)
2287 int cpu = smp_processor_id();
2289 if (zone)
2290 drain_pages_zone(cpu, zone);
2291 else
2292 drain_pages(cpu);
2296 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2298 * When zone parameter is non-NULL, spill just the single zone's pages.
2300 * Note that this code is protected against sending an IPI to an offline
2301 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2302 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2303 * nothing keeps CPUs from showing up after we populated the cpumask and
2304 * before the call to on_each_cpu_mask().
2306 void drain_all_pages(struct zone *zone)
2308 int cpu;
2311 * Allocate in the BSS so we wont require allocation in
2312 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2314 static cpumask_t cpus_with_pcps;
2317 * We don't care about racing with CPU hotplug event
2318 * as offline notification will cause the notified
2319 * cpu to drain that CPU pcps and on_each_cpu_mask
2320 * disables preemption as part of its processing
2322 for_each_online_cpu(cpu) {
2323 struct per_cpu_pageset *pcp;
2324 struct zone *z;
2325 bool has_pcps = false;
2327 if (zone) {
2328 pcp = per_cpu_ptr(zone->pageset, cpu);
2329 if (pcp->pcp.count)
2330 has_pcps = true;
2331 } else {
2332 for_each_populated_zone(z) {
2333 pcp = per_cpu_ptr(z->pageset, cpu);
2334 if (pcp->pcp.count) {
2335 has_pcps = true;
2336 break;
2341 if (has_pcps)
2342 cpumask_set_cpu(cpu, &cpus_with_pcps);
2343 else
2344 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2346 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2347 zone, 1);
2350 #ifdef CONFIG_HIBERNATION
2352 void mark_free_pages(struct zone *zone)
2354 unsigned long pfn, max_zone_pfn;
2355 unsigned long flags;
2356 unsigned int order, t;
2357 struct page *page;
2359 if (zone_is_empty(zone))
2360 return;
2362 spin_lock_irqsave(&zone->lock, flags);
2364 max_zone_pfn = zone_end_pfn(zone);
2365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2366 if (pfn_valid(pfn)) {
2367 page = pfn_to_page(pfn);
2369 if (page_zone(page) != zone)
2370 continue;
2372 if (!swsusp_page_is_forbidden(page))
2373 swsusp_unset_page_free(page);
2376 for_each_migratetype_order(order, t) {
2377 list_for_each_entry(page,
2378 &zone->free_area[order].free_list[t], lru) {
2379 unsigned long i;
2381 pfn = page_to_pfn(page);
2382 for (i = 0; i < (1UL << order); i++)
2383 swsusp_set_page_free(pfn_to_page(pfn + i));
2386 spin_unlock_irqrestore(&zone->lock, flags);
2388 #endif /* CONFIG_PM */
2391 * Free a 0-order page
2392 * cold == true ? free a cold page : free a hot page
2394 void free_hot_cold_page(struct page *page, bool cold)
2396 struct zone *zone = page_zone(page);
2397 struct per_cpu_pages *pcp;
2398 unsigned long flags;
2399 unsigned long pfn = page_to_pfn(page);
2400 int migratetype;
2402 if (!free_pcp_prepare(page))
2403 return;
2405 migratetype = get_pfnblock_migratetype(page, pfn);
2406 set_pcppage_migratetype(page, migratetype);
2407 local_irq_save(flags);
2408 __count_vm_event(PGFREE);
2411 * We only track unmovable, reclaimable and movable on pcp lists.
2412 * Free ISOLATE pages back to the allocator because they are being
2413 * offlined but treat RESERVE as movable pages so we can get those
2414 * areas back if necessary. Otherwise, we may have to free
2415 * excessively into the page allocator
2417 if (migratetype >= MIGRATE_PCPTYPES) {
2418 if (unlikely(is_migrate_isolate(migratetype))) {
2419 free_one_page(zone, page, pfn, 0, migratetype);
2420 goto out;
2422 migratetype = MIGRATE_MOVABLE;
2425 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2426 if (!cold)
2427 list_add(&page->lru, &pcp->lists[migratetype]);
2428 else
2429 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2430 pcp->count++;
2431 if (pcp->count >= pcp->high) {
2432 unsigned long batch = READ_ONCE(pcp->batch);
2433 free_pcppages_bulk(zone, batch, pcp);
2434 pcp->count -= batch;
2437 out:
2438 local_irq_restore(flags);
2442 * Free a list of 0-order pages
2444 void free_hot_cold_page_list(struct list_head *list, bool cold)
2446 struct page *page, *next;
2448 list_for_each_entry_safe(page, next, list, lru) {
2449 trace_mm_page_free_batched(page, cold);
2450 free_hot_cold_page(page, cold);
2455 * split_page takes a non-compound higher-order page, and splits it into
2456 * n (1<<order) sub-pages: page[0..n]
2457 * Each sub-page must be freed individually.
2459 * Note: this is probably too low level an operation for use in drivers.
2460 * Please consult with lkml before using this in your driver.
2462 void split_page(struct page *page, unsigned int order)
2464 int i;
2465 gfp_t gfp_mask;
2467 VM_BUG_ON_PAGE(PageCompound(page), page);
2468 VM_BUG_ON_PAGE(!page_count(page), page);
2470 #ifdef CONFIG_KMEMCHECK
2472 * Split shadow pages too, because free(page[0]) would
2473 * otherwise free the whole shadow.
2475 if (kmemcheck_page_is_tracked(page))
2476 split_page(virt_to_page(page[0].shadow), order);
2477 #endif
2479 gfp_mask = get_page_owner_gfp(page);
2480 set_page_owner(page, 0, gfp_mask);
2481 for (i = 1; i < (1 << order); i++) {
2482 set_page_refcounted(page + i);
2483 set_page_owner(page + i, 0, gfp_mask);
2486 EXPORT_SYMBOL_GPL(split_page);
2488 int __isolate_free_page(struct page *page, unsigned int order)
2490 unsigned long watermark;
2491 struct zone *zone;
2492 int mt;
2494 BUG_ON(!PageBuddy(page));
2496 zone = page_zone(page);
2497 mt = get_pageblock_migratetype(page);
2499 if (!is_migrate_isolate(mt)) {
2500 /* Obey watermarks as if the page was being allocated */
2501 watermark = low_wmark_pages(zone) + (1 << order);
2502 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2503 return 0;
2505 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2508 /* Remove page from free list */
2509 list_del(&page->lru);
2510 zone->free_area[order].nr_free--;
2511 rmv_page_order(page);
2513 set_page_owner(page, order, __GFP_MOVABLE);
2515 /* Set the pageblock if the isolated page is at least a pageblock */
2516 if (order >= pageblock_order - 1) {
2517 struct page *endpage = page + (1 << order) - 1;
2518 for (; page < endpage; page += pageblock_nr_pages) {
2519 int mt = get_pageblock_migratetype(page);
2520 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2521 set_pageblock_migratetype(page,
2522 MIGRATE_MOVABLE);
2527 return 1UL << order;
2531 * Similar to split_page except the page is already free. As this is only
2532 * being used for migration, the migratetype of the block also changes.
2533 * As this is called with interrupts disabled, the caller is responsible
2534 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2535 * are enabled.
2537 * Note: this is probably too low level an operation for use in drivers.
2538 * Please consult with lkml before using this in your driver.
2540 int split_free_page(struct page *page)
2542 unsigned int order;
2543 int nr_pages;
2545 order = page_order(page);
2547 nr_pages = __isolate_free_page(page, order);
2548 if (!nr_pages)
2549 return 0;
2551 /* Split into individual pages */
2552 set_page_refcounted(page);
2553 split_page(page, order);
2554 return nr_pages;
2558 * Update NUMA hit/miss statistics
2560 * Must be called with interrupts disabled.
2562 * When __GFP_OTHER_NODE is set assume the node of the preferred
2563 * zone is the local node. This is useful for daemons who allocate
2564 * memory on behalf of other processes.
2566 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2567 gfp_t flags)
2569 #ifdef CONFIG_NUMA
2570 int local_nid = numa_node_id();
2571 enum zone_stat_item local_stat = NUMA_LOCAL;
2573 if (unlikely(flags & __GFP_OTHER_NODE)) {
2574 local_stat = NUMA_OTHER;
2575 local_nid = preferred_zone->node;
2578 if (z->node == local_nid) {
2579 __inc_zone_state(z, NUMA_HIT);
2580 __inc_zone_state(z, local_stat);
2581 } else {
2582 __inc_zone_state(z, NUMA_MISS);
2583 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2585 #endif
2589 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2591 static inline
2592 struct page *buffered_rmqueue(struct zone *preferred_zone,
2593 struct zone *zone, unsigned int order,
2594 gfp_t gfp_flags, unsigned int alloc_flags,
2595 int migratetype)
2597 unsigned long flags;
2598 struct page *page;
2599 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2601 if (likely(order == 0)) {
2602 struct per_cpu_pages *pcp;
2603 struct list_head *list;
2605 local_irq_save(flags);
2606 do {
2607 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2608 list = &pcp->lists[migratetype];
2609 if (list_empty(list)) {
2610 pcp->count += rmqueue_bulk(zone, 0,
2611 pcp->batch, list,
2612 migratetype, cold);
2613 if (unlikely(list_empty(list)))
2614 goto failed;
2617 if (cold)
2618 page = list_last_entry(list, struct page, lru);
2619 else
2620 page = list_first_entry(list, struct page, lru);
2621 } while (page && check_new_pcp(page));
2623 __dec_zone_state(zone, NR_ALLOC_BATCH);
2624 list_del(&page->lru);
2625 pcp->count--;
2626 } else {
2628 * We most definitely don't want callers attempting to
2629 * allocate greater than order-1 page units with __GFP_NOFAIL.
2631 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2632 spin_lock_irqsave(&zone->lock, flags);
2634 do {
2635 page = NULL;
2636 if (alloc_flags & ALLOC_HARDER) {
2637 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2638 if (page)
2639 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2641 if (!page)
2642 page = __rmqueue(zone, order, migratetype);
2643 } while (page && check_new_pages(page, order));
2644 spin_unlock(&zone->lock);
2645 if (!page)
2646 goto failed;
2647 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2648 __mod_zone_freepage_state(zone, -(1 << order),
2649 get_pcppage_migratetype(page));
2652 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2653 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2654 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2656 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2657 zone_statistics(preferred_zone, zone, gfp_flags);
2658 local_irq_restore(flags);
2660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2661 return page;
2663 failed:
2664 local_irq_restore(flags);
2665 return NULL;
2668 #ifdef CONFIG_FAIL_PAGE_ALLOC
2670 static struct {
2671 struct fault_attr attr;
2673 bool ignore_gfp_highmem;
2674 bool ignore_gfp_reclaim;
2675 u32 min_order;
2676 } fail_page_alloc = {
2677 .attr = FAULT_ATTR_INITIALIZER,
2678 .ignore_gfp_reclaim = true,
2679 .ignore_gfp_highmem = true,
2680 .min_order = 1,
2683 static int __init setup_fail_page_alloc(char *str)
2685 return setup_fault_attr(&fail_page_alloc.attr, str);
2687 __setup("fail_page_alloc=", setup_fail_page_alloc);
2689 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2691 if (order < fail_page_alloc.min_order)
2692 return false;
2693 if (gfp_mask & __GFP_NOFAIL)
2694 return false;
2695 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2696 return false;
2697 if (fail_page_alloc.ignore_gfp_reclaim &&
2698 (gfp_mask & __GFP_DIRECT_RECLAIM))
2699 return false;
2701 return should_fail(&fail_page_alloc.attr, 1 << order);
2704 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2706 static int __init fail_page_alloc_debugfs(void)
2708 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2709 struct dentry *dir;
2711 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2712 &fail_page_alloc.attr);
2713 if (IS_ERR(dir))
2714 return PTR_ERR(dir);
2716 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2717 &fail_page_alloc.ignore_gfp_reclaim))
2718 goto fail;
2719 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2720 &fail_page_alloc.ignore_gfp_highmem))
2721 goto fail;
2722 if (!debugfs_create_u32("min-order", mode, dir,
2723 &fail_page_alloc.min_order))
2724 goto fail;
2726 return 0;
2727 fail:
2728 debugfs_remove_recursive(dir);
2730 return -ENOMEM;
2733 late_initcall(fail_page_alloc_debugfs);
2735 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2737 #else /* CONFIG_FAIL_PAGE_ALLOC */
2739 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2741 return false;
2744 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2747 * Return true if free base pages are above 'mark'. For high-order checks it
2748 * will return true of the order-0 watermark is reached and there is at least
2749 * one free page of a suitable size. Checking now avoids taking the zone lock
2750 * to check in the allocation paths if no pages are free.
2752 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2753 unsigned long mark, int classzone_idx,
2754 unsigned int alloc_flags,
2755 long free_pages)
2757 long min = mark;
2758 int o;
2759 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2761 /* free_pages may go negative - that's OK */
2762 free_pages -= (1 << order) - 1;
2764 if (alloc_flags & ALLOC_HIGH)
2765 min -= min / 2;
2768 * If the caller does not have rights to ALLOC_HARDER then subtract
2769 * the high-atomic reserves. This will over-estimate the size of the
2770 * atomic reserve but it avoids a search.
2772 if (likely(!alloc_harder))
2773 free_pages -= z->nr_reserved_highatomic;
2774 else
2775 min -= min / 4;
2777 #ifdef CONFIG_CMA
2778 /* If allocation can't use CMA areas don't use free CMA pages */
2779 if (!(alloc_flags & ALLOC_CMA))
2780 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2781 #endif
2784 * Check watermarks for an order-0 allocation request. If these
2785 * are not met, then a high-order request also cannot go ahead
2786 * even if a suitable page happened to be free.
2788 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2789 return false;
2791 /* If this is an order-0 request then the watermark is fine */
2792 if (!order)
2793 return true;
2795 /* For a high-order request, check at least one suitable page is free */
2796 for (o = order; o < MAX_ORDER; o++) {
2797 struct free_area *area = &z->free_area[o];
2798 int mt;
2800 if (!area->nr_free)
2801 continue;
2803 if (alloc_harder)
2804 return true;
2806 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2807 if (!list_empty(&area->free_list[mt]))
2808 return true;
2811 #ifdef CONFIG_CMA
2812 if ((alloc_flags & ALLOC_CMA) &&
2813 !list_empty(&area->free_list[MIGRATE_CMA])) {
2814 return true;
2816 #endif
2818 return false;
2821 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2822 int classzone_idx, unsigned int alloc_flags)
2824 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2825 zone_page_state(z, NR_FREE_PAGES));
2828 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2829 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2831 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2832 long cma_pages = 0;
2834 #ifdef CONFIG_CMA
2835 /* If allocation can't use CMA areas don't use free CMA pages */
2836 if (!(alloc_flags & ALLOC_CMA))
2837 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2838 #endif
2841 * Fast check for order-0 only. If this fails then the reserves
2842 * need to be calculated. There is a corner case where the check
2843 * passes but only the high-order atomic reserve are free. If
2844 * the caller is !atomic then it'll uselessly search the free
2845 * list. That corner case is then slower but it is harmless.
2847 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2848 return true;
2850 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2851 free_pages);
2854 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2855 unsigned long mark, int classzone_idx)
2857 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2859 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2860 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2862 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2863 free_pages);
2866 #ifdef CONFIG_NUMA
2867 static bool zone_local(struct zone *local_zone, struct zone *zone)
2869 return local_zone->node == zone->node;
2872 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2874 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2875 RECLAIM_DISTANCE;
2877 #else /* CONFIG_NUMA */
2878 static bool zone_local(struct zone *local_zone, struct zone *zone)
2880 return true;
2883 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 return true;
2887 #endif /* CONFIG_NUMA */
2889 static void reset_alloc_batches(struct zone *preferred_zone)
2891 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2893 do {
2894 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2895 high_wmark_pages(zone) - low_wmark_pages(zone) -
2896 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2897 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2898 } while (zone++ != preferred_zone);
2902 * get_page_from_freelist goes through the zonelist trying to allocate
2903 * a page.
2905 static struct page *
2906 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2907 const struct alloc_context *ac)
2909 struct zoneref *z = ac->preferred_zoneref;
2910 struct zone *zone;
2911 bool fair_skipped = false;
2912 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2914 zonelist_scan:
2916 * Scan zonelist, looking for a zone with enough free.
2917 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2919 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2920 ac->nodemask) {
2921 struct page *page;
2922 unsigned long mark;
2924 if (cpusets_enabled() &&
2925 (alloc_flags & ALLOC_CPUSET) &&
2926 !__cpuset_zone_allowed(zone, gfp_mask))
2927 continue;
2929 * Distribute pages in proportion to the individual
2930 * zone size to ensure fair page aging. The zone a
2931 * page was allocated in should have no effect on the
2932 * time the page has in memory before being reclaimed.
2934 if (apply_fair) {
2935 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2936 fair_skipped = true;
2937 continue;
2939 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2940 if (fair_skipped)
2941 goto reset_fair;
2942 apply_fair = false;
2946 * When allocating a page cache page for writing, we
2947 * want to get it from a zone that is within its dirty
2948 * limit, such that no single zone holds more than its
2949 * proportional share of globally allowed dirty pages.
2950 * The dirty limits take into account the zone's
2951 * lowmem reserves and high watermark so that kswapd
2952 * should be able to balance it without having to
2953 * write pages from its LRU list.
2955 * This may look like it could increase pressure on
2956 * lower zones by failing allocations in higher zones
2957 * before they are full. But the pages that do spill
2958 * over are limited as the lower zones are protected
2959 * by this very same mechanism. It should not become
2960 * a practical burden to them.
2962 * XXX: For now, allow allocations to potentially
2963 * exceed the per-zone dirty limit in the slowpath
2964 * (spread_dirty_pages unset) before going into reclaim,
2965 * which is important when on a NUMA setup the allowed
2966 * zones are together not big enough to reach the
2967 * global limit. The proper fix for these situations
2968 * will require awareness of zones in the
2969 * dirty-throttling and the flusher threads.
2971 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2972 continue;
2974 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2975 if (!zone_watermark_fast(zone, order, mark,
2976 ac_classzone_idx(ac), alloc_flags)) {
2977 int ret;
2979 /* Checked here to keep the fast path fast */
2980 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2981 if (alloc_flags & ALLOC_NO_WATERMARKS)
2982 goto try_this_zone;
2984 if (zone_reclaim_mode == 0 ||
2985 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2986 continue;
2988 ret = zone_reclaim(zone, gfp_mask, order);
2989 switch (ret) {
2990 case ZONE_RECLAIM_NOSCAN:
2991 /* did not scan */
2992 continue;
2993 case ZONE_RECLAIM_FULL:
2994 /* scanned but unreclaimable */
2995 continue;
2996 default:
2997 /* did we reclaim enough */
2998 if (zone_watermark_ok(zone, order, mark,
2999 ac_classzone_idx(ac), alloc_flags))
3000 goto try_this_zone;
3002 continue;
3006 try_this_zone:
3007 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3008 gfp_mask, alloc_flags, ac->migratetype);
3009 if (page) {
3010 prep_new_page(page, order, gfp_mask, alloc_flags);
3013 * If this is a high-order atomic allocation then check
3014 * if the pageblock should be reserved for the future
3016 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3017 reserve_highatomic_pageblock(page, zone, order);
3019 return page;
3024 * The first pass makes sure allocations are spread fairly within the
3025 * local node. However, the local node might have free pages left
3026 * after the fairness batches are exhausted, and remote zones haven't
3027 * even been considered yet. Try once more without fairness, and
3028 * include remote zones now, before entering the slowpath and waking
3029 * kswapd: prefer spilling to a remote zone over swapping locally.
3031 if (fair_skipped) {
3032 reset_fair:
3033 apply_fair = false;
3034 fair_skipped = false;
3035 reset_alloc_batches(ac->preferred_zoneref->zone);
3036 goto zonelist_scan;
3039 return NULL;
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3046 static inline bool should_suppress_show_mem(void)
3048 bool ret = false;
3050 #if NODES_SHIFT > 8
3051 ret = in_interrupt();
3052 #endif
3053 return ret;
3056 static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 DEFAULT_RATELIMIT_INTERVAL,
3058 DEFAULT_RATELIMIT_BURST);
3060 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3062 unsigned int filter = SHOW_MEM_FILTER_NODES;
3064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 debug_guardpage_minorder() > 0)
3066 return;
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3071 * of allowed nodes.
3073 if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 if (test_thread_flag(TIF_MEMDIE) ||
3075 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
3077 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3078 filter &= ~SHOW_MEM_FILTER_NODES;
3080 if (fmt) {
3081 struct va_format vaf;
3082 va_list args;
3084 va_start(args, fmt);
3086 vaf.fmt = fmt;
3087 vaf.va = &args;
3089 pr_warn("%pV", &vaf);
3091 va_end(args);
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current->comm, order, gfp_mask, &gfp_mask);
3096 dump_stack();
3097 if (!should_suppress_show_mem())
3098 show_mem(filter);
3101 static inline struct page *
3102 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3103 const struct alloc_context *ac, unsigned long *did_some_progress)
3105 struct oom_control oc = {
3106 .zonelist = ac->zonelist,
3107 .nodemask = ac->nodemask,
3108 .gfp_mask = gfp_mask,
3109 .order = order,
3111 struct page *page;
3113 *did_some_progress = 0;
3116 * Acquire the oom lock. If that fails, somebody else is
3117 * making progress for us.
3119 if (!mutex_trylock(&oom_lock)) {
3120 *did_some_progress = 1;
3121 schedule_timeout_uninterruptible(1);
3122 return NULL;
3126 * Go through the zonelist yet one more time, keep very high watermark
3127 * here, this is only to catch a parallel oom killing, we must fail if
3128 * we're still under heavy pressure.
3130 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3131 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3132 if (page)
3133 goto out;
3135 if (!(gfp_mask & __GFP_NOFAIL)) {
3136 /* Coredumps can quickly deplete all memory reserves */
3137 if (current->flags & PF_DUMPCORE)
3138 goto out;
3139 /* The OOM killer will not help higher order allocs */
3140 if (order > PAGE_ALLOC_COSTLY_ORDER)
3141 goto out;
3142 /* The OOM killer does not needlessly kill tasks for lowmem */
3143 if (ac->high_zoneidx < ZONE_NORMAL)
3144 goto out;
3145 if (pm_suspended_storage())
3146 goto out;
3148 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 * other request to make a forward progress.
3150 * We are in an unfortunate situation where out_of_memory cannot
3151 * do much for this context but let's try it to at least get
3152 * access to memory reserved if the current task is killed (see
3153 * out_of_memory). Once filesystems are ready to handle allocation
3154 * failures more gracefully we should just bail out here.
3157 /* The OOM killer may not free memory on a specific node */
3158 if (gfp_mask & __GFP_THISNODE)
3159 goto out;
3161 /* Exhausted what can be done so it's blamo time */
3162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3163 *did_some_progress = 1;
3165 if (gfp_mask & __GFP_NOFAIL) {
3166 page = get_page_from_freelist(gfp_mask, order,
3167 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3169 * fallback to ignore cpuset restriction if our nodes
3170 * are depleted
3172 if (!page)
3173 page = get_page_from_freelist(gfp_mask, order,
3174 ALLOC_NO_WATERMARKS, ac);
3177 out:
3178 mutex_unlock(&oom_lock);
3179 return page;
3182 #ifdef CONFIG_COMPACTION
3183 /* Try memory compaction for high-order allocations before reclaim */
3184 static struct page *
3185 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3186 unsigned int alloc_flags, const struct alloc_context *ac,
3187 enum migrate_mode mode, int *contended_compaction,
3188 bool *deferred_compaction)
3190 unsigned long compact_result;
3191 struct page *page;
3193 if (!order)
3194 return NULL;
3196 current->flags |= PF_MEMALLOC;
3197 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3198 mode, contended_compaction);
3199 current->flags &= ~PF_MEMALLOC;
3201 switch (compact_result) {
3202 case COMPACT_DEFERRED:
3203 *deferred_compaction = true;
3204 /* fall-through */
3205 case COMPACT_SKIPPED:
3206 return NULL;
3207 default:
3208 break;
3212 * At least in one zone compaction wasn't deferred or skipped, so let's
3213 * count a compaction stall
3215 count_vm_event(COMPACTSTALL);
3217 page = get_page_from_freelist(gfp_mask, order,
3218 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3220 if (page) {
3221 struct zone *zone = page_zone(page);
3223 zone->compact_blockskip_flush = false;
3224 compaction_defer_reset(zone, order, true);
3225 count_vm_event(COMPACTSUCCESS);
3226 return page;
3230 * It's bad if compaction run occurs and fails. The most likely reason
3231 * is that pages exist, but not enough to satisfy watermarks.
3233 count_vm_event(COMPACTFAIL);
3235 cond_resched();
3237 return NULL;
3239 #else
3240 static inline struct page *
3241 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3242 unsigned int alloc_flags, const struct alloc_context *ac,
3243 enum migrate_mode mode, int *contended_compaction,
3244 bool *deferred_compaction)
3246 return NULL;
3248 #endif /* CONFIG_COMPACTION */
3250 /* Perform direct synchronous page reclaim */
3251 static int
3252 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3253 const struct alloc_context *ac)
3255 struct reclaim_state reclaim_state;
3256 int progress;
3258 cond_resched();
3260 /* We now go into synchronous reclaim */
3261 cpuset_memory_pressure_bump();
3262 current->flags |= PF_MEMALLOC;
3263 lockdep_set_current_reclaim_state(gfp_mask);
3264 reclaim_state.reclaimed_slab = 0;
3265 current->reclaim_state = &reclaim_state;
3267 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3268 ac->nodemask);
3270 current->reclaim_state = NULL;
3271 lockdep_clear_current_reclaim_state();
3272 current->flags &= ~PF_MEMALLOC;
3274 cond_resched();
3276 return progress;
3279 /* The really slow allocator path where we enter direct reclaim */
3280 static inline struct page *
3281 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3282 unsigned int alloc_flags, const struct alloc_context *ac,
3283 unsigned long *did_some_progress)
3285 struct page *page = NULL;
3286 bool drained = false;
3288 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3289 if (unlikely(!(*did_some_progress)))
3290 return NULL;
3292 retry:
3293 page = get_page_from_freelist(gfp_mask, order,
3294 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3297 * If an allocation failed after direct reclaim, it could be because
3298 * pages are pinned on the per-cpu lists or in high alloc reserves.
3299 * Shrink them them and try again
3301 if (!page && !drained) {
3302 unreserve_highatomic_pageblock(ac);
3303 drain_all_pages(NULL);
3304 drained = true;
3305 goto retry;
3308 return page;
3311 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3313 struct zoneref *z;
3314 struct zone *zone;
3316 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3317 ac->high_zoneidx, ac->nodemask)
3318 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3321 static inline unsigned int
3322 gfp_to_alloc_flags(gfp_t gfp_mask)
3324 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3326 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3327 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3330 * The caller may dip into page reserves a bit more if the caller
3331 * cannot run direct reclaim, or if the caller has realtime scheduling
3332 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3333 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3335 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3337 if (gfp_mask & __GFP_ATOMIC) {
3339 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3340 * if it can't schedule.
3342 if (!(gfp_mask & __GFP_NOMEMALLOC))
3343 alloc_flags |= ALLOC_HARDER;
3345 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3346 * comment for __cpuset_node_allowed().
3348 alloc_flags &= ~ALLOC_CPUSET;
3349 } else if (unlikely(rt_task(current)) && !in_interrupt())
3350 alloc_flags |= ALLOC_HARDER;
3352 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3353 if (gfp_mask & __GFP_MEMALLOC)
3354 alloc_flags |= ALLOC_NO_WATERMARKS;
3355 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3356 alloc_flags |= ALLOC_NO_WATERMARKS;
3357 else if (!in_interrupt() &&
3358 ((current->flags & PF_MEMALLOC) ||
3359 unlikely(test_thread_flag(TIF_MEMDIE))))
3360 alloc_flags |= ALLOC_NO_WATERMARKS;
3362 #ifdef CONFIG_CMA
3363 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3364 alloc_flags |= ALLOC_CMA;
3365 #endif
3366 return alloc_flags;
3369 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3371 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3374 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3376 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3379 static inline struct page *
3380 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3381 struct alloc_context *ac)
3383 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3384 struct page *page = NULL;
3385 unsigned int alloc_flags;
3386 unsigned long pages_reclaimed = 0;
3387 unsigned long did_some_progress;
3388 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3389 bool deferred_compaction = false;
3390 int contended_compaction = COMPACT_CONTENDED_NONE;
3393 * In the slowpath, we sanity check order to avoid ever trying to
3394 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3395 * be using allocators in order of preference for an area that is
3396 * too large.
3398 if (order >= MAX_ORDER) {
3399 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3400 return NULL;
3404 * We also sanity check to catch abuse of atomic reserves being used by
3405 * callers that are not in atomic context.
3407 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3408 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3409 gfp_mask &= ~__GFP_ATOMIC;
3411 retry:
3412 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3413 wake_all_kswapds(order, ac);
3416 * OK, we're below the kswapd watermark and have kicked background
3417 * reclaim. Now things get more complex, so set up alloc_flags according
3418 * to how we want to proceed.
3420 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3422 /* This is the last chance, in general, before the goto nopage. */
3423 page = get_page_from_freelist(gfp_mask, order,
3424 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3425 if (page)
3426 goto got_pg;
3428 /* Allocate without watermarks if the context allows */
3429 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3431 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3432 * the allocation is high priority and these type of
3433 * allocations are system rather than user orientated
3435 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3436 page = get_page_from_freelist(gfp_mask, order,
3437 ALLOC_NO_WATERMARKS, ac);
3438 if (page)
3439 goto got_pg;
3442 /* Caller is not willing to reclaim, we can't balance anything */
3443 if (!can_direct_reclaim) {
3445 * All existing users of the __GFP_NOFAIL are blockable, so warn
3446 * of any new users that actually allow this type of allocation
3447 * to fail.
3449 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3450 goto nopage;
3453 /* Avoid recursion of direct reclaim */
3454 if (current->flags & PF_MEMALLOC) {
3456 * __GFP_NOFAIL request from this context is rather bizarre
3457 * because we cannot reclaim anything and only can loop waiting
3458 * for somebody to do a work for us.
3460 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3461 cond_resched();
3462 goto retry;
3464 goto nopage;
3467 /* Avoid allocations with no watermarks from looping endlessly */
3468 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3469 goto nopage;
3472 * Try direct compaction. The first pass is asynchronous. Subsequent
3473 * attempts after direct reclaim are synchronous
3475 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3476 migration_mode,
3477 &contended_compaction,
3478 &deferred_compaction);
3479 if (page)
3480 goto got_pg;
3482 /* Checks for THP-specific high-order allocations */
3483 if (is_thp_gfp_mask(gfp_mask)) {
3485 * If compaction is deferred for high-order allocations, it is
3486 * because sync compaction recently failed. If this is the case
3487 * and the caller requested a THP allocation, we do not want
3488 * to heavily disrupt the system, so we fail the allocation
3489 * instead of entering direct reclaim.
3491 if (deferred_compaction)
3492 goto nopage;
3495 * In all zones where compaction was attempted (and not
3496 * deferred or skipped), lock contention has been detected.
3497 * For THP allocation we do not want to disrupt the others
3498 * so we fallback to base pages instead.
3500 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3501 goto nopage;
3504 * If compaction was aborted due to need_resched(), we do not
3505 * want to further increase allocation latency, unless it is
3506 * khugepaged trying to collapse.
3508 if (contended_compaction == COMPACT_CONTENDED_SCHED
3509 && !(current->flags & PF_KTHREAD))
3510 goto nopage;
3514 * It can become very expensive to allocate transparent hugepages at
3515 * fault, so use asynchronous memory compaction for THP unless it is
3516 * khugepaged trying to collapse.
3518 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3519 migration_mode = MIGRATE_SYNC_LIGHT;
3521 /* Try direct reclaim and then allocating */
3522 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3523 &did_some_progress);
3524 if (page)
3525 goto got_pg;
3527 /* Do not loop if specifically requested */
3528 if (gfp_mask & __GFP_NORETRY)
3529 goto noretry;
3531 /* Keep reclaiming pages as long as there is reasonable progress */
3532 pages_reclaimed += did_some_progress;
3533 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3534 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3535 /* Wait for some write requests to complete then retry */
3536 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
3537 goto retry;
3540 /* Reclaim has failed us, start killing things */
3541 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3542 if (page)
3543 goto got_pg;
3545 /* Retry as long as the OOM killer is making progress */
3546 if (did_some_progress)
3547 goto retry;
3549 noretry:
3551 * High-order allocations do not necessarily loop after
3552 * direct reclaim and reclaim/compaction depends on compaction
3553 * being called after reclaim so call directly if necessary
3555 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3556 ac, migration_mode,
3557 &contended_compaction,
3558 &deferred_compaction);
3559 if (page)
3560 goto got_pg;
3561 nopage:
3562 warn_alloc_failed(gfp_mask, order, NULL);
3563 got_pg:
3564 return page;
3568 * This is the 'heart' of the zoned buddy allocator.
3570 struct page *
3571 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3572 struct zonelist *zonelist, nodemask_t *nodemask)
3574 struct page *page;
3575 unsigned int cpuset_mems_cookie;
3576 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3577 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3578 struct alloc_context ac = {
3579 .high_zoneidx = gfp_zone(gfp_mask),
3580 .zonelist = zonelist,
3581 .nodemask = nodemask,
3582 .migratetype = gfpflags_to_migratetype(gfp_mask),
3585 if (cpusets_enabled()) {
3586 alloc_mask |= __GFP_HARDWALL;
3587 alloc_flags |= ALLOC_CPUSET;
3588 if (!ac.nodemask)
3589 ac.nodemask = &cpuset_current_mems_allowed;
3592 gfp_mask &= gfp_allowed_mask;
3594 lockdep_trace_alloc(gfp_mask);
3596 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3598 if (should_fail_alloc_page(gfp_mask, order))
3599 return NULL;
3602 * Check the zones suitable for the gfp_mask contain at least one
3603 * valid zone. It's possible to have an empty zonelist as a result
3604 * of __GFP_THISNODE and a memoryless node
3606 if (unlikely(!zonelist->_zonerefs->zone))
3607 return NULL;
3609 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3610 alloc_flags |= ALLOC_CMA;
3612 retry_cpuset:
3613 cpuset_mems_cookie = read_mems_allowed_begin();
3615 /* Dirty zone balancing only done in the fast path */
3616 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3618 /* The preferred zone is used for statistics later */
3619 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3620 ac.high_zoneidx, ac.nodemask);
3621 if (!ac.preferred_zoneref) {
3622 page = NULL;
3623 goto no_zone;
3626 /* First allocation attempt */
3627 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3628 if (likely(page))
3629 goto out;
3632 * Runtime PM, block IO and its error handling path can deadlock
3633 * because I/O on the device might not complete.
3635 alloc_mask = memalloc_noio_flags(gfp_mask);
3636 ac.spread_dirty_pages = false;
3638 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3640 no_zone:
3642 * When updating a task's mems_allowed, it is possible to race with
3643 * parallel threads in such a way that an allocation can fail while
3644 * the mask is being updated. If a page allocation is about to fail,
3645 * check if the cpuset changed during allocation and if so, retry.
3647 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3648 alloc_mask = gfp_mask;
3649 goto retry_cpuset;
3652 out:
3653 if (kmemcheck_enabled && page)
3654 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3656 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3658 return page;
3660 EXPORT_SYMBOL(__alloc_pages_nodemask);
3663 * Common helper functions.
3665 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3667 struct page *page;
3670 * __get_free_pages() returns a 32-bit address, which cannot represent
3671 * a highmem page
3673 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3675 page = alloc_pages(gfp_mask, order);
3676 if (!page)
3677 return 0;
3678 return (unsigned long) page_address(page);
3680 EXPORT_SYMBOL(__get_free_pages);
3682 unsigned long get_zeroed_page(gfp_t gfp_mask)
3684 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3686 EXPORT_SYMBOL(get_zeroed_page);
3688 void __free_pages(struct page *page, unsigned int order)
3690 if (put_page_testzero(page)) {
3691 if (order == 0)
3692 free_hot_cold_page(page, false);
3693 else
3694 __free_pages_ok(page, order);
3698 EXPORT_SYMBOL(__free_pages);
3700 void free_pages(unsigned long addr, unsigned int order)
3702 if (addr != 0) {
3703 VM_BUG_ON(!virt_addr_valid((void *)addr));
3704 __free_pages(virt_to_page((void *)addr), order);
3708 EXPORT_SYMBOL(free_pages);
3711 * Page Fragment:
3712 * An arbitrary-length arbitrary-offset area of memory which resides
3713 * within a 0 or higher order page. Multiple fragments within that page
3714 * are individually refcounted, in the page's reference counter.
3716 * The page_frag functions below provide a simple allocation framework for
3717 * page fragments. This is used by the network stack and network device
3718 * drivers to provide a backing region of memory for use as either an
3719 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3721 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3722 gfp_t gfp_mask)
3724 struct page *page = NULL;
3725 gfp_t gfp = gfp_mask;
3727 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3728 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3729 __GFP_NOMEMALLOC;
3730 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3731 PAGE_FRAG_CACHE_MAX_ORDER);
3732 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3733 #endif
3734 if (unlikely(!page))
3735 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3737 nc->va = page ? page_address(page) : NULL;
3739 return page;
3742 void *__alloc_page_frag(struct page_frag_cache *nc,
3743 unsigned int fragsz, gfp_t gfp_mask)
3745 unsigned int size = PAGE_SIZE;
3746 struct page *page;
3747 int offset;
3749 if (unlikely(!nc->va)) {
3750 refill:
3751 page = __page_frag_refill(nc, gfp_mask);
3752 if (!page)
3753 return NULL;
3755 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3756 /* if size can vary use size else just use PAGE_SIZE */
3757 size = nc->size;
3758 #endif
3759 /* Even if we own the page, we do not use atomic_set().
3760 * This would break get_page_unless_zero() users.
3762 page_ref_add(page, size - 1);
3764 /* reset page count bias and offset to start of new frag */
3765 nc->pfmemalloc = page_is_pfmemalloc(page);
3766 nc->pagecnt_bias = size;
3767 nc->offset = size;
3770 offset = nc->offset - fragsz;
3771 if (unlikely(offset < 0)) {
3772 page = virt_to_page(nc->va);
3774 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3775 goto refill;
3777 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3778 /* if size can vary use size else just use PAGE_SIZE */
3779 size = nc->size;
3780 #endif
3781 /* OK, page count is 0, we can safely set it */
3782 set_page_count(page, size);
3784 /* reset page count bias and offset to start of new frag */
3785 nc->pagecnt_bias = size;
3786 offset = size - fragsz;
3789 nc->pagecnt_bias--;
3790 nc->offset = offset;
3792 return nc->va + offset;
3794 EXPORT_SYMBOL(__alloc_page_frag);
3797 * Frees a page fragment allocated out of either a compound or order 0 page.
3799 void __free_page_frag(void *addr)
3801 struct page *page = virt_to_head_page(addr);
3803 if (unlikely(put_page_testzero(page)))
3804 __free_pages_ok(page, compound_order(page));
3806 EXPORT_SYMBOL(__free_page_frag);
3809 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3810 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3811 * equivalent to alloc_pages.
3813 * It should be used when the caller would like to use kmalloc, but since the
3814 * allocation is large, it has to fall back to the page allocator.
3816 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3818 struct page *page;
3820 page = alloc_pages(gfp_mask, order);
3821 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3822 __free_pages(page, order);
3823 page = NULL;
3825 return page;
3828 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3830 struct page *page;
3832 page = alloc_pages_node(nid, gfp_mask, order);
3833 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3834 __free_pages(page, order);
3835 page = NULL;
3837 return page;
3841 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3842 * alloc_kmem_pages.
3844 void __free_kmem_pages(struct page *page, unsigned int order)
3846 memcg_kmem_uncharge(page, order);
3847 __free_pages(page, order);
3850 void free_kmem_pages(unsigned long addr, unsigned int order)
3852 if (addr != 0) {
3853 VM_BUG_ON(!virt_addr_valid((void *)addr));
3854 __free_kmem_pages(virt_to_page((void *)addr), order);
3858 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3859 size_t size)
3861 if (addr) {
3862 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3863 unsigned long used = addr + PAGE_ALIGN(size);
3865 split_page(virt_to_page((void *)addr), order);
3866 while (used < alloc_end) {
3867 free_page(used);
3868 used += PAGE_SIZE;
3871 return (void *)addr;
3875 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3876 * @size: the number of bytes to allocate
3877 * @gfp_mask: GFP flags for the allocation
3879 * This function is similar to alloc_pages(), except that it allocates the
3880 * minimum number of pages to satisfy the request. alloc_pages() can only
3881 * allocate memory in power-of-two pages.
3883 * This function is also limited by MAX_ORDER.
3885 * Memory allocated by this function must be released by free_pages_exact().
3887 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3889 unsigned int order = get_order(size);
3890 unsigned long addr;
3892 addr = __get_free_pages(gfp_mask, order);
3893 return make_alloc_exact(addr, order, size);
3895 EXPORT_SYMBOL(alloc_pages_exact);
3898 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3899 * pages on a node.
3900 * @nid: the preferred node ID where memory should be allocated
3901 * @size: the number of bytes to allocate
3902 * @gfp_mask: GFP flags for the allocation
3904 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3905 * back.
3907 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3909 unsigned int order = get_order(size);
3910 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3911 if (!p)
3912 return NULL;
3913 return make_alloc_exact((unsigned long)page_address(p), order, size);
3917 * free_pages_exact - release memory allocated via alloc_pages_exact()
3918 * @virt: the value returned by alloc_pages_exact.
3919 * @size: size of allocation, same value as passed to alloc_pages_exact().
3921 * Release the memory allocated by a previous call to alloc_pages_exact.
3923 void free_pages_exact(void *virt, size_t size)
3925 unsigned long addr = (unsigned long)virt;
3926 unsigned long end = addr + PAGE_ALIGN(size);
3928 while (addr < end) {
3929 free_page(addr);
3930 addr += PAGE_SIZE;
3933 EXPORT_SYMBOL(free_pages_exact);
3936 * nr_free_zone_pages - count number of pages beyond high watermark
3937 * @offset: The zone index of the highest zone
3939 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3940 * high watermark within all zones at or below a given zone index. For each
3941 * zone, the number of pages is calculated as:
3942 * managed_pages - high_pages
3944 static unsigned long nr_free_zone_pages(int offset)
3946 struct zoneref *z;
3947 struct zone *zone;
3949 /* Just pick one node, since fallback list is circular */
3950 unsigned long sum = 0;
3952 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3954 for_each_zone_zonelist(zone, z, zonelist, offset) {
3955 unsigned long size = zone->managed_pages;
3956 unsigned long high = high_wmark_pages(zone);
3957 if (size > high)
3958 sum += size - high;
3961 return sum;
3965 * nr_free_buffer_pages - count number of pages beyond high watermark
3967 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3968 * watermark within ZONE_DMA and ZONE_NORMAL.
3970 unsigned long nr_free_buffer_pages(void)
3972 return nr_free_zone_pages(gfp_zone(GFP_USER));
3974 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3977 * nr_free_pagecache_pages - count number of pages beyond high watermark
3979 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3980 * high watermark within all zones.
3982 unsigned long nr_free_pagecache_pages(void)
3984 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3987 static inline void show_node(struct zone *zone)
3989 if (IS_ENABLED(CONFIG_NUMA))
3990 printk("Node %d ", zone_to_nid(zone));
3993 long si_mem_available(void)
3995 long available;
3996 unsigned long pagecache;
3997 unsigned long wmark_low = 0;
3998 unsigned long pages[NR_LRU_LISTS];
3999 struct zone *zone;
4000 int lru;
4002 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4003 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4005 for_each_zone(zone)
4006 wmark_low += zone->watermark[WMARK_LOW];
4009 * Estimate the amount of memory available for userspace allocations,
4010 * without causing swapping.
4012 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4015 * Not all the page cache can be freed, otherwise the system will
4016 * start swapping. Assume at least half of the page cache, or the
4017 * low watermark worth of cache, needs to stay.
4019 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4020 pagecache -= min(pagecache / 2, wmark_low);
4021 available += pagecache;
4024 * Part of the reclaimable slab consists of items that are in use,
4025 * and cannot be freed. Cap this estimate at the low watermark.
4027 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4028 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4030 if (available < 0)
4031 available = 0;
4032 return available;
4034 EXPORT_SYMBOL_GPL(si_mem_available);
4036 void si_meminfo(struct sysinfo *val)
4038 val->totalram = totalram_pages;
4039 val->sharedram = global_page_state(NR_SHMEM);
4040 val->freeram = global_page_state(NR_FREE_PAGES);
4041 val->bufferram = nr_blockdev_pages();
4042 val->totalhigh = totalhigh_pages;
4043 val->freehigh = nr_free_highpages();
4044 val->mem_unit = PAGE_SIZE;
4047 EXPORT_SYMBOL(si_meminfo);
4049 #ifdef CONFIG_NUMA
4050 void si_meminfo_node(struct sysinfo *val, int nid)
4052 int zone_type; /* needs to be signed */
4053 unsigned long managed_pages = 0;
4054 unsigned long managed_highpages = 0;
4055 unsigned long free_highpages = 0;
4056 pg_data_t *pgdat = NODE_DATA(nid);
4058 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4059 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4060 val->totalram = managed_pages;
4061 val->sharedram = node_page_state(nid, NR_SHMEM);
4062 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4063 #ifdef CONFIG_HIGHMEM
4064 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4065 struct zone *zone = &pgdat->node_zones[zone_type];
4067 if (is_highmem(zone)) {
4068 managed_highpages += zone->managed_pages;
4069 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4072 val->totalhigh = managed_highpages;
4073 val->freehigh = free_highpages;
4074 #else
4075 val->totalhigh = managed_highpages;
4076 val->freehigh = free_highpages;
4077 #endif
4078 val->mem_unit = PAGE_SIZE;
4080 #endif
4083 * Determine whether the node should be displayed or not, depending on whether
4084 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4086 bool skip_free_areas_node(unsigned int flags, int nid)
4088 bool ret = false;
4089 unsigned int cpuset_mems_cookie;
4091 if (!(flags & SHOW_MEM_FILTER_NODES))
4092 goto out;
4094 do {
4095 cpuset_mems_cookie = read_mems_allowed_begin();
4096 ret = !node_isset(nid, cpuset_current_mems_allowed);
4097 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4098 out:
4099 return ret;
4102 #define K(x) ((x) << (PAGE_SHIFT-10))
4104 static void show_migration_types(unsigned char type)
4106 static const char types[MIGRATE_TYPES] = {
4107 [MIGRATE_UNMOVABLE] = 'U',
4108 [MIGRATE_MOVABLE] = 'M',
4109 [MIGRATE_RECLAIMABLE] = 'E',
4110 [MIGRATE_HIGHATOMIC] = 'H',
4111 #ifdef CONFIG_CMA
4112 [MIGRATE_CMA] = 'C',
4113 #endif
4114 #ifdef CONFIG_MEMORY_ISOLATION
4115 [MIGRATE_ISOLATE] = 'I',
4116 #endif
4118 char tmp[MIGRATE_TYPES + 1];
4119 char *p = tmp;
4120 int i;
4122 for (i = 0; i < MIGRATE_TYPES; i++) {
4123 if (type & (1 << i))
4124 *p++ = types[i];
4127 *p = '\0';
4128 printk("(%s) ", tmp);
4132 * Show free area list (used inside shift_scroll-lock stuff)
4133 * We also calculate the percentage fragmentation. We do this by counting the
4134 * memory on each free list with the exception of the first item on the list.
4136 * Bits in @filter:
4137 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4138 * cpuset.
4140 void show_free_areas(unsigned int filter)
4142 unsigned long free_pcp = 0;
4143 int cpu;
4144 struct zone *zone;
4146 for_each_populated_zone(zone) {
4147 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4148 continue;
4150 for_each_online_cpu(cpu)
4151 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4154 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4155 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4156 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4157 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4158 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4159 " free:%lu free_pcp:%lu free_cma:%lu\n",
4160 global_page_state(NR_ACTIVE_ANON),
4161 global_page_state(NR_INACTIVE_ANON),
4162 global_page_state(NR_ISOLATED_ANON),
4163 global_page_state(NR_ACTIVE_FILE),
4164 global_page_state(NR_INACTIVE_FILE),
4165 global_page_state(NR_ISOLATED_FILE),
4166 global_page_state(NR_UNEVICTABLE),
4167 global_page_state(NR_FILE_DIRTY),
4168 global_page_state(NR_WRITEBACK),
4169 global_page_state(NR_UNSTABLE_NFS),
4170 global_page_state(NR_SLAB_RECLAIMABLE),
4171 global_page_state(NR_SLAB_UNRECLAIMABLE),
4172 global_page_state(NR_FILE_MAPPED),
4173 global_page_state(NR_SHMEM),
4174 global_page_state(NR_PAGETABLE),
4175 global_page_state(NR_BOUNCE),
4176 global_page_state(NR_FREE_PAGES),
4177 free_pcp,
4178 global_page_state(NR_FREE_CMA_PAGES));
4180 for_each_populated_zone(zone) {
4181 int i;
4183 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4184 continue;
4186 free_pcp = 0;
4187 for_each_online_cpu(cpu)
4188 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4190 show_node(zone);
4191 printk("%s"
4192 " free:%lukB"
4193 " min:%lukB"
4194 " low:%lukB"
4195 " high:%lukB"
4196 " active_anon:%lukB"
4197 " inactive_anon:%lukB"
4198 " active_file:%lukB"
4199 " inactive_file:%lukB"
4200 " unevictable:%lukB"
4201 " isolated(anon):%lukB"
4202 " isolated(file):%lukB"
4203 " present:%lukB"
4204 " managed:%lukB"
4205 " mlocked:%lukB"
4206 " dirty:%lukB"
4207 " writeback:%lukB"
4208 " mapped:%lukB"
4209 " shmem:%lukB"
4210 " slab_reclaimable:%lukB"
4211 " slab_unreclaimable:%lukB"
4212 " kernel_stack:%lukB"
4213 " pagetables:%lukB"
4214 " unstable:%lukB"
4215 " bounce:%lukB"
4216 " free_pcp:%lukB"
4217 " local_pcp:%ukB"
4218 " free_cma:%lukB"
4219 " writeback_tmp:%lukB"
4220 " pages_scanned:%lu"
4221 " all_unreclaimable? %s"
4222 "\n",
4223 zone->name,
4224 K(zone_page_state(zone, NR_FREE_PAGES)),
4225 K(min_wmark_pages(zone)),
4226 K(low_wmark_pages(zone)),
4227 K(high_wmark_pages(zone)),
4228 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4229 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4230 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4231 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4232 K(zone_page_state(zone, NR_UNEVICTABLE)),
4233 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4234 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4235 K(zone->present_pages),
4236 K(zone->managed_pages),
4237 K(zone_page_state(zone, NR_MLOCK)),
4238 K(zone_page_state(zone, NR_FILE_DIRTY)),
4239 K(zone_page_state(zone, NR_WRITEBACK)),
4240 K(zone_page_state(zone, NR_FILE_MAPPED)),
4241 K(zone_page_state(zone, NR_SHMEM)),
4242 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4243 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4244 zone_page_state(zone, NR_KERNEL_STACK) *
4245 THREAD_SIZE / 1024,
4246 K(zone_page_state(zone, NR_PAGETABLE)),
4247 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4248 K(zone_page_state(zone, NR_BOUNCE)),
4249 K(free_pcp),
4250 K(this_cpu_read(zone->pageset->pcp.count)),
4251 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4252 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4253 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4254 (!zone_reclaimable(zone) ? "yes" : "no")
4256 printk("lowmem_reserve[]:");
4257 for (i = 0; i < MAX_NR_ZONES; i++)
4258 printk(" %ld", zone->lowmem_reserve[i]);
4259 printk("\n");
4262 for_each_populated_zone(zone) {
4263 unsigned int order;
4264 unsigned long nr[MAX_ORDER], flags, total = 0;
4265 unsigned char types[MAX_ORDER];
4267 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4268 continue;
4269 show_node(zone);
4270 printk("%s: ", zone->name);
4272 spin_lock_irqsave(&zone->lock, flags);
4273 for (order = 0; order < MAX_ORDER; order++) {
4274 struct free_area *area = &zone->free_area[order];
4275 int type;
4277 nr[order] = area->nr_free;
4278 total += nr[order] << order;
4280 types[order] = 0;
4281 for (type = 0; type < MIGRATE_TYPES; type++) {
4282 if (!list_empty(&area->free_list[type]))
4283 types[order] |= 1 << type;
4286 spin_unlock_irqrestore(&zone->lock, flags);
4287 for (order = 0; order < MAX_ORDER; order++) {
4288 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4289 if (nr[order])
4290 show_migration_types(types[order]);
4292 printk("= %lukB\n", K(total));
4295 hugetlb_show_meminfo();
4297 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4299 show_swap_cache_info();
4302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4304 zoneref->zone = zone;
4305 zoneref->zone_idx = zone_idx(zone);
4309 * Builds allocation fallback zone lists.
4311 * Add all populated zones of a node to the zonelist.
4313 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4314 int nr_zones)
4316 struct zone *zone;
4317 enum zone_type zone_type = MAX_NR_ZONES;
4319 do {
4320 zone_type--;
4321 zone = pgdat->node_zones + zone_type;
4322 if (populated_zone(zone)) {
4323 zoneref_set_zone(zone,
4324 &zonelist->_zonerefs[nr_zones++]);
4325 check_highest_zone(zone_type);
4327 } while (zone_type);
4329 return nr_zones;
4334 * zonelist_order:
4335 * 0 = automatic detection of better ordering.
4336 * 1 = order by ([node] distance, -zonetype)
4337 * 2 = order by (-zonetype, [node] distance)
4339 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4340 * the same zonelist. So only NUMA can configure this param.
4342 #define ZONELIST_ORDER_DEFAULT 0
4343 #define ZONELIST_ORDER_NODE 1
4344 #define ZONELIST_ORDER_ZONE 2
4346 /* zonelist order in the kernel.
4347 * set_zonelist_order() will set this to NODE or ZONE.
4349 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4350 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4353 #ifdef CONFIG_NUMA
4354 /* The value user specified ....changed by config */
4355 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4356 /* string for sysctl */
4357 #define NUMA_ZONELIST_ORDER_LEN 16
4358 char numa_zonelist_order[16] = "default";
4361 * interface for configure zonelist ordering.
4362 * command line option "numa_zonelist_order"
4363 * = "[dD]efault - default, automatic configuration.
4364 * = "[nN]ode - order by node locality, then by zone within node
4365 * = "[zZ]one - order by zone, then by locality within zone
4368 static int __parse_numa_zonelist_order(char *s)
4370 if (*s == 'd' || *s == 'D') {
4371 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4372 } else if (*s == 'n' || *s == 'N') {
4373 user_zonelist_order = ZONELIST_ORDER_NODE;
4374 } else if (*s == 'z' || *s == 'Z') {
4375 user_zonelist_order = ZONELIST_ORDER_ZONE;
4376 } else {
4377 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4378 return -EINVAL;
4380 return 0;
4383 static __init int setup_numa_zonelist_order(char *s)
4385 int ret;
4387 if (!s)
4388 return 0;
4390 ret = __parse_numa_zonelist_order(s);
4391 if (ret == 0)
4392 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4394 return ret;
4396 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4399 * sysctl handler for numa_zonelist_order
4401 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4402 void __user *buffer, size_t *length,
4403 loff_t *ppos)
4405 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4406 int ret;
4407 static DEFINE_MUTEX(zl_order_mutex);
4409 mutex_lock(&zl_order_mutex);
4410 if (write) {
4411 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4412 ret = -EINVAL;
4413 goto out;
4415 strcpy(saved_string, (char *)table->data);
4417 ret = proc_dostring(table, write, buffer, length, ppos);
4418 if (ret)
4419 goto out;
4420 if (write) {
4421 int oldval = user_zonelist_order;
4423 ret = __parse_numa_zonelist_order((char *)table->data);
4424 if (ret) {
4426 * bogus value. restore saved string
4428 strncpy((char *)table->data, saved_string,
4429 NUMA_ZONELIST_ORDER_LEN);
4430 user_zonelist_order = oldval;
4431 } else if (oldval != user_zonelist_order) {
4432 mutex_lock(&zonelists_mutex);
4433 build_all_zonelists(NULL, NULL);
4434 mutex_unlock(&zonelists_mutex);
4437 out:
4438 mutex_unlock(&zl_order_mutex);
4439 return ret;
4443 #define MAX_NODE_LOAD (nr_online_nodes)
4444 static int node_load[MAX_NUMNODES];
4447 * find_next_best_node - find the next node that should appear in a given node's fallback list
4448 * @node: node whose fallback list we're appending
4449 * @used_node_mask: nodemask_t of already used nodes
4451 * We use a number of factors to determine which is the next node that should
4452 * appear on a given node's fallback list. The node should not have appeared
4453 * already in @node's fallback list, and it should be the next closest node
4454 * according to the distance array (which contains arbitrary distance values
4455 * from each node to each node in the system), and should also prefer nodes
4456 * with no CPUs, since presumably they'll have very little allocation pressure
4457 * on them otherwise.
4458 * It returns -1 if no node is found.
4460 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4462 int n, val;
4463 int min_val = INT_MAX;
4464 int best_node = NUMA_NO_NODE;
4465 const struct cpumask *tmp = cpumask_of_node(0);
4467 /* Use the local node if we haven't already */
4468 if (!node_isset(node, *used_node_mask)) {
4469 node_set(node, *used_node_mask);
4470 return node;
4473 for_each_node_state(n, N_MEMORY) {
4475 /* Don't want a node to appear more than once */
4476 if (node_isset(n, *used_node_mask))
4477 continue;
4479 /* Use the distance array to find the distance */
4480 val = node_distance(node, n);
4482 /* Penalize nodes under us ("prefer the next node") */
4483 val += (n < node);
4485 /* Give preference to headless and unused nodes */
4486 tmp = cpumask_of_node(n);
4487 if (!cpumask_empty(tmp))
4488 val += PENALTY_FOR_NODE_WITH_CPUS;
4490 /* Slight preference for less loaded node */
4491 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4492 val += node_load[n];
4494 if (val < min_val) {
4495 min_val = val;
4496 best_node = n;
4500 if (best_node >= 0)
4501 node_set(best_node, *used_node_mask);
4503 return best_node;
4508 * Build zonelists ordered by node and zones within node.
4509 * This results in maximum locality--normal zone overflows into local
4510 * DMA zone, if any--but risks exhausting DMA zone.
4512 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4514 int j;
4515 struct zonelist *zonelist;
4517 zonelist = &pgdat->node_zonelists[0];
4518 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4520 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4521 zonelist->_zonerefs[j].zone = NULL;
4522 zonelist->_zonerefs[j].zone_idx = 0;
4526 * Build gfp_thisnode zonelists
4528 static void build_thisnode_zonelists(pg_data_t *pgdat)
4530 int j;
4531 struct zonelist *zonelist;
4533 zonelist = &pgdat->node_zonelists[1];
4534 j = build_zonelists_node(pgdat, zonelist, 0);
4535 zonelist->_zonerefs[j].zone = NULL;
4536 zonelist->_zonerefs[j].zone_idx = 0;
4540 * Build zonelists ordered by zone and nodes within zones.
4541 * This results in conserving DMA zone[s] until all Normal memory is
4542 * exhausted, but results in overflowing to remote node while memory
4543 * may still exist in local DMA zone.
4545 static int node_order[MAX_NUMNODES];
4547 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4549 int pos, j, node;
4550 int zone_type; /* needs to be signed */
4551 struct zone *z;
4552 struct zonelist *zonelist;
4554 zonelist = &pgdat->node_zonelists[0];
4555 pos = 0;
4556 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4557 for (j = 0; j < nr_nodes; j++) {
4558 node = node_order[j];
4559 z = &NODE_DATA(node)->node_zones[zone_type];
4560 if (populated_zone(z)) {
4561 zoneref_set_zone(z,
4562 &zonelist->_zonerefs[pos++]);
4563 check_highest_zone(zone_type);
4567 zonelist->_zonerefs[pos].zone = NULL;
4568 zonelist->_zonerefs[pos].zone_idx = 0;
4571 #if defined(CONFIG_64BIT)
4573 * Devices that require DMA32/DMA are relatively rare and do not justify a
4574 * penalty to every machine in case the specialised case applies. Default
4575 * to Node-ordering on 64-bit NUMA machines
4577 static int default_zonelist_order(void)
4579 return ZONELIST_ORDER_NODE;
4581 #else
4583 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4584 * by the kernel. If processes running on node 0 deplete the low memory zone
4585 * then reclaim will occur more frequency increasing stalls and potentially
4586 * be easier to OOM if a large percentage of the zone is under writeback or
4587 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4588 * Hence, default to zone ordering on 32-bit.
4590 static int default_zonelist_order(void)
4592 return ZONELIST_ORDER_ZONE;
4594 #endif /* CONFIG_64BIT */
4596 static void set_zonelist_order(void)
4598 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4599 current_zonelist_order = default_zonelist_order();
4600 else
4601 current_zonelist_order = user_zonelist_order;
4604 static void build_zonelists(pg_data_t *pgdat)
4606 int i, node, load;
4607 nodemask_t used_mask;
4608 int local_node, prev_node;
4609 struct zonelist *zonelist;
4610 unsigned int order = current_zonelist_order;
4612 /* initialize zonelists */
4613 for (i = 0; i < MAX_ZONELISTS; i++) {
4614 zonelist = pgdat->node_zonelists + i;
4615 zonelist->_zonerefs[0].zone = NULL;
4616 zonelist->_zonerefs[0].zone_idx = 0;
4619 /* NUMA-aware ordering of nodes */
4620 local_node = pgdat->node_id;
4621 load = nr_online_nodes;
4622 prev_node = local_node;
4623 nodes_clear(used_mask);
4625 memset(node_order, 0, sizeof(node_order));
4626 i = 0;
4628 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4630 * We don't want to pressure a particular node.
4631 * So adding penalty to the first node in same
4632 * distance group to make it round-robin.
4634 if (node_distance(local_node, node) !=
4635 node_distance(local_node, prev_node))
4636 node_load[node] = load;
4638 prev_node = node;
4639 load--;
4640 if (order == ZONELIST_ORDER_NODE)
4641 build_zonelists_in_node_order(pgdat, node);
4642 else
4643 node_order[i++] = node; /* remember order */
4646 if (order == ZONELIST_ORDER_ZONE) {
4647 /* calculate node order -- i.e., DMA last! */
4648 build_zonelists_in_zone_order(pgdat, i);
4651 build_thisnode_zonelists(pgdat);
4654 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4656 * Return node id of node used for "local" allocations.
4657 * I.e., first node id of first zone in arg node's generic zonelist.
4658 * Used for initializing percpu 'numa_mem', which is used primarily
4659 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4661 int local_memory_node(int node)
4663 struct zoneref *z;
4665 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4666 gfp_zone(GFP_KERNEL),
4667 NULL);
4668 return z->zone->node;
4670 #endif
4672 #else /* CONFIG_NUMA */
4674 static void set_zonelist_order(void)
4676 current_zonelist_order = ZONELIST_ORDER_ZONE;
4679 static void build_zonelists(pg_data_t *pgdat)
4681 int node, local_node;
4682 enum zone_type j;
4683 struct zonelist *zonelist;
4685 local_node = pgdat->node_id;
4687 zonelist = &pgdat->node_zonelists[0];
4688 j = build_zonelists_node(pgdat, zonelist, 0);
4691 * Now we build the zonelist so that it contains the zones
4692 * of all the other nodes.
4693 * We don't want to pressure a particular node, so when
4694 * building the zones for node N, we make sure that the
4695 * zones coming right after the local ones are those from
4696 * node N+1 (modulo N)
4698 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4699 if (!node_online(node))
4700 continue;
4701 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4703 for (node = 0; node < local_node; node++) {
4704 if (!node_online(node))
4705 continue;
4706 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4709 zonelist->_zonerefs[j].zone = NULL;
4710 zonelist->_zonerefs[j].zone_idx = 0;
4713 #endif /* CONFIG_NUMA */
4716 * Boot pageset table. One per cpu which is going to be used for all
4717 * zones and all nodes. The parameters will be set in such a way
4718 * that an item put on a list will immediately be handed over to
4719 * the buddy list. This is safe since pageset manipulation is done
4720 * with interrupts disabled.
4722 * The boot_pagesets must be kept even after bootup is complete for
4723 * unused processors and/or zones. They do play a role for bootstrapping
4724 * hotplugged processors.
4726 * zoneinfo_show() and maybe other functions do
4727 * not check if the processor is online before following the pageset pointer.
4728 * Other parts of the kernel may not check if the zone is available.
4730 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4731 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4732 static void setup_zone_pageset(struct zone *zone);
4735 * Global mutex to protect against size modification of zonelists
4736 * as well as to serialize pageset setup for the new populated zone.
4738 DEFINE_MUTEX(zonelists_mutex);
4740 /* return values int ....just for stop_machine() */
4741 static int __build_all_zonelists(void *data)
4743 int nid;
4744 int cpu;
4745 pg_data_t *self = data;
4747 #ifdef CONFIG_NUMA
4748 memset(node_load, 0, sizeof(node_load));
4749 #endif
4751 if (self && !node_online(self->node_id)) {
4752 build_zonelists(self);
4755 for_each_online_node(nid) {
4756 pg_data_t *pgdat = NODE_DATA(nid);
4758 build_zonelists(pgdat);
4762 * Initialize the boot_pagesets that are going to be used
4763 * for bootstrapping processors. The real pagesets for
4764 * each zone will be allocated later when the per cpu
4765 * allocator is available.
4767 * boot_pagesets are used also for bootstrapping offline
4768 * cpus if the system is already booted because the pagesets
4769 * are needed to initialize allocators on a specific cpu too.
4770 * F.e. the percpu allocator needs the page allocator which
4771 * needs the percpu allocator in order to allocate its pagesets
4772 * (a chicken-egg dilemma).
4774 for_each_possible_cpu(cpu) {
4775 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4777 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4779 * We now know the "local memory node" for each node--
4780 * i.e., the node of the first zone in the generic zonelist.
4781 * Set up numa_mem percpu variable for on-line cpus. During
4782 * boot, only the boot cpu should be on-line; we'll init the
4783 * secondary cpus' numa_mem as they come on-line. During
4784 * node/memory hotplug, we'll fixup all on-line cpus.
4786 if (cpu_online(cpu))
4787 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4788 #endif
4791 return 0;
4794 static noinline void __init
4795 build_all_zonelists_init(void)
4797 __build_all_zonelists(NULL);
4798 mminit_verify_zonelist();
4799 cpuset_init_current_mems_allowed();
4803 * Called with zonelists_mutex held always
4804 * unless system_state == SYSTEM_BOOTING.
4806 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4807 * [we're only called with non-NULL zone through __meminit paths] and
4808 * (2) call of __init annotated helper build_all_zonelists_init
4809 * [protected by SYSTEM_BOOTING].
4811 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4813 set_zonelist_order();
4815 if (system_state == SYSTEM_BOOTING) {
4816 build_all_zonelists_init();
4817 } else {
4818 #ifdef CONFIG_MEMORY_HOTPLUG
4819 if (zone)
4820 setup_zone_pageset(zone);
4821 #endif
4822 /* we have to stop all cpus to guarantee there is no user
4823 of zonelist */
4824 stop_machine(__build_all_zonelists, pgdat, NULL);
4825 /* cpuset refresh routine should be here */
4827 vm_total_pages = nr_free_pagecache_pages();
4829 * Disable grouping by mobility if the number of pages in the
4830 * system is too low to allow the mechanism to work. It would be
4831 * more accurate, but expensive to check per-zone. This check is
4832 * made on memory-hotadd so a system can start with mobility
4833 * disabled and enable it later
4835 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4836 page_group_by_mobility_disabled = 1;
4837 else
4838 page_group_by_mobility_disabled = 0;
4840 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4841 nr_online_nodes,
4842 zonelist_order_name[current_zonelist_order],
4843 page_group_by_mobility_disabled ? "off" : "on",
4844 vm_total_pages);
4845 #ifdef CONFIG_NUMA
4846 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4847 #endif
4851 * Helper functions to size the waitqueue hash table.
4852 * Essentially these want to choose hash table sizes sufficiently
4853 * large so that collisions trying to wait on pages are rare.
4854 * But in fact, the number of active page waitqueues on typical
4855 * systems is ridiculously low, less than 200. So this is even
4856 * conservative, even though it seems large.
4858 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4859 * waitqueues, i.e. the size of the waitq table given the number of pages.
4861 #define PAGES_PER_WAITQUEUE 256
4863 #ifndef CONFIG_MEMORY_HOTPLUG
4864 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4866 unsigned long size = 1;
4868 pages /= PAGES_PER_WAITQUEUE;
4870 while (size < pages)
4871 size <<= 1;
4874 * Once we have dozens or even hundreds of threads sleeping
4875 * on IO we've got bigger problems than wait queue collision.
4876 * Limit the size of the wait table to a reasonable size.
4878 size = min(size, 4096UL);
4880 return max(size, 4UL);
4882 #else
4884 * A zone's size might be changed by hot-add, so it is not possible to determine
4885 * a suitable size for its wait_table. So we use the maximum size now.
4887 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4889 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4890 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4891 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4893 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4894 * or more by the traditional way. (See above). It equals:
4896 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4897 * ia64(16K page size) : = ( 8G + 4M)byte.
4898 * powerpc (64K page size) : = (32G +16M)byte.
4900 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4902 return 4096UL;
4904 #endif
4907 * This is an integer logarithm so that shifts can be used later
4908 * to extract the more random high bits from the multiplicative
4909 * hash function before the remainder is taken.
4911 static inline unsigned long wait_table_bits(unsigned long size)
4913 return ffz(~size);
4917 * Initially all pages are reserved - free ones are freed
4918 * up by free_all_bootmem() once the early boot process is
4919 * done. Non-atomic initialization, single-pass.
4921 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4922 unsigned long start_pfn, enum memmap_context context)
4924 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4925 unsigned long end_pfn = start_pfn + size;
4926 pg_data_t *pgdat = NODE_DATA(nid);
4927 unsigned long pfn;
4928 unsigned long nr_initialised = 0;
4929 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4930 struct memblock_region *r = NULL, *tmp;
4931 #endif
4933 if (highest_memmap_pfn < end_pfn - 1)
4934 highest_memmap_pfn = end_pfn - 1;
4937 * Honor reservation requested by the driver for this ZONE_DEVICE
4938 * memory
4940 if (altmap && start_pfn == altmap->base_pfn)
4941 start_pfn += altmap->reserve;
4943 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4945 * There can be holes in boot-time mem_map[]s handed to this
4946 * function. They do not exist on hotplugged memory.
4948 if (context != MEMMAP_EARLY)
4949 goto not_early;
4951 if (!early_pfn_valid(pfn))
4952 continue;
4953 if (!early_pfn_in_nid(pfn, nid))
4954 continue;
4955 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4956 break;
4958 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4960 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4961 * from zone_movable_pfn[nid] to end of each node should be
4962 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4964 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4965 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4966 continue;
4969 * Check given memblock attribute by firmware which can affect
4970 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4971 * mirrored, it's an overlapped memmap init. skip it.
4973 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4974 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4975 for_each_memblock(memory, tmp)
4976 if (pfn < memblock_region_memory_end_pfn(tmp))
4977 break;
4978 r = tmp;
4980 if (pfn >= memblock_region_memory_base_pfn(r) &&
4981 memblock_is_mirror(r)) {
4982 /* already initialized as NORMAL */
4983 pfn = memblock_region_memory_end_pfn(r);
4984 continue;
4987 #endif
4989 not_early:
4991 * Mark the block movable so that blocks are reserved for
4992 * movable at startup. This will force kernel allocations
4993 * to reserve their blocks rather than leaking throughout
4994 * the address space during boot when many long-lived
4995 * kernel allocations are made.
4997 * bitmap is created for zone's valid pfn range. but memmap
4998 * can be created for invalid pages (for alignment)
4999 * check here not to call set_pageblock_migratetype() against
5000 * pfn out of zone.
5002 if (!(pfn & (pageblock_nr_pages - 1))) {
5003 struct page *page = pfn_to_page(pfn);
5005 __init_single_page(page, pfn, zone, nid);
5006 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5007 } else {
5008 __init_single_pfn(pfn, zone, nid);
5013 static void __meminit zone_init_free_lists(struct zone *zone)
5015 unsigned int order, t;
5016 for_each_migratetype_order(order, t) {
5017 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5018 zone->free_area[order].nr_free = 0;
5022 #ifndef __HAVE_ARCH_MEMMAP_INIT
5023 #define memmap_init(size, nid, zone, start_pfn) \
5024 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5025 #endif
5027 static int zone_batchsize(struct zone *zone)
5029 #ifdef CONFIG_MMU
5030 int batch;
5033 * The per-cpu-pages pools are set to around 1000th of the
5034 * size of the zone. But no more than 1/2 of a meg.
5036 * OK, so we don't know how big the cache is. So guess.
5038 batch = zone->managed_pages / 1024;
5039 if (batch * PAGE_SIZE > 512 * 1024)
5040 batch = (512 * 1024) / PAGE_SIZE;
5041 batch /= 4; /* We effectively *= 4 below */
5042 if (batch < 1)
5043 batch = 1;
5046 * Clamp the batch to a 2^n - 1 value. Having a power
5047 * of 2 value was found to be more likely to have
5048 * suboptimal cache aliasing properties in some cases.
5050 * For example if 2 tasks are alternately allocating
5051 * batches of pages, one task can end up with a lot
5052 * of pages of one half of the possible page colors
5053 * and the other with pages of the other colors.
5055 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5057 return batch;
5059 #else
5060 /* The deferral and batching of frees should be suppressed under NOMMU
5061 * conditions.
5063 * The problem is that NOMMU needs to be able to allocate large chunks
5064 * of contiguous memory as there's no hardware page translation to
5065 * assemble apparent contiguous memory from discontiguous pages.
5067 * Queueing large contiguous runs of pages for batching, however,
5068 * causes the pages to actually be freed in smaller chunks. As there
5069 * can be a significant delay between the individual batches being
5070 * recycled, this leads to the once large chunks of space being
5071 * fragmented and becoming unavailable for high-order allocations.
5073 return 0;
5074 #endif
5078 * pcp->high and pcp->batch values are related and dependent on one another:
5079 * ->batch must never be higher then ->high.
5080 * The following function updates them in a safe manner without read side
5081 * locking.
5083 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5084 * those fields changing asynchronously (acording the the above rule).
5086 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5087 * outside of boot time (or some other assurance that no concurrent updaters
5088 * exist).
5090 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5091 unsigned long batch)
5093 /* start with a fail safe value for batch */
5094 pcp->batch = 1;
5095 smp_wmb();
5097 /* Update high, then batch, in order */
5098 pcp->high = high;
5099 smp_wmb();
5101 pcp->batch = batch;
5104 /* a companion to pageset_set_high() */
5105 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5107 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5110 static void pageset_init(struct per_cpu_pageset *p)
5112 struct per_cpu_pages *pcp;
5113 int migratetype;
5115 memset(p, 0, sizeof(*p));
5117 pcp = &p->pcp;
5118 pcp->count = 0;
5119 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5120 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5123 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5125 pageset_init(p);
5126 pageset_set_batch(p, batch);
5130 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5131 * to the value high for the pageset p.
5133 static void pageset_set_high(struct per_cpu_pageset *p,
5134 unsigned long high)
5136 unsigned long batch = max(1UL, high / 4);
5137 if ((high / 4) > (PAGE_SHIFT * 8))
5138 batch = PAGE_SHIFT * 8;
5140 pageset_update(&p->pcp, high, batch);
5143 static void pageset_set_high_and_batch(struct zone *zone,
5144 struct per_cpu_pageset *pcp)
5146 if (percpu_pagelist_fraction)
5147 pageset_set_high(pcp,
5148 (zone->managed_pages /
5149 percpu_pagelist_fraction));
5150 else
5151 pageset_set_batch(pcp, zone_batchsize(zone));
5154 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5156 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5158 pageset_init(pcp);
5159 pageset_set_high_and_batch(zone, pcp);
5162 static void __meminit setup_zone_pageset(struct zone *zone)
5164 int cpu;
5165 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5166 for_each_possible_cpu(cpu)
5167 zone_pageset_init(zone, cpu);
5171 * Allocate per cpu pagesets and initialize them.
5172 * Before this call only boot pagesets were available.
5174 void __init setup_per_cpu_pageset(void)
5176 struct zone *zone;
5178 for_each_populated_zone(zone)
5179 setup_zone_pageset(zone);
5182 static noinline __init_refok
5183 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5185 int i;
5186 size_t alloc_size;
5189 * The per-page waitqueue mechanism uses hashed waitqueues
5190 * per zone.
5192 zone->wait_table_hash_nr_entries =
5193 wait_table_hash_nr_entries(zone_size_pages);
5194 zone->wait_table_bits =
5195 wait_table_bits(zone->wait_table_hash_nr_entries);
5196 alloc_size = zone->wait_table_hash_nr_entries
5197 * sizeof(wait_queue_head_t);
5199 if (!slab_is_available()) {
5200 zone->wait_table = (wait_queue_head_t *)
5201 memblock_virt_alloc_node_nopanic(
5202 alloc_size, zone->zone_pgdat->node_id);
5203 } else {
5205 * This case means that a zone whose size was 0 gets new memory
5206 * via memory hot-add.
5207 * But it may be the case that a new node was hot-added. In
5208 * this case vmalloc() will not be able to use this new node's
5209 * memory - this wait_table must be initialized to use this new
5210 * node itself as well.
5211 * To use this new node's memory, further consideration will be
5212 * necessary.
5214 zone->wait_table = vmalloc(alloc_size);
5216 if (!zone->wait_table)
5217 return -ENOMEM;
5219 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5220 init_waitqueue_head(zone->wait_table + i);
5222 return 0;
5225 static __meminit void zone_pcp_init(struct zone *zone)
5228 * per cpu subsystem is not up at this point. The following code
5229 * relies on the ability of the linker to provide the
5230 * offset of a (static) per cpu variable into the per cpu area.
5232 zone->pageset = &boot_pageset;
5234 if (populated_zone(zone))
5235 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5236 zone->name, zone->present_pages,
5237 zone_batchsize(zone));
5240 int __meminit init_currently_empty_zone(struct zone *zone,
5241 unsigned long zone_start_pfn,
5242 unsigned long size)
5244 struct pglist_data *pgdat = zone->zone_pgdat;
5245 int ret;
5246 ret = zone_wait_table_init(zone, size);
5247 if (ret)
5248 return ret;
5249 pgdat->nr_zones = zone_idx(zone) + 1;
5251 zone->zone_start_pfn = zone_start_pfn;
5253 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5254 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5255 pgdat->node_id,
5256 (unsigned long)zone_idx(zone),
5257 zone_start_pfn, (zone_start_pfn + size));
5259 zone_init_free_lists(zone);
5261 return 0;
5264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5265 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5268 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5270 int __meminit __early_pfn_to_nid(unsigned long pfn,
5271 struct mminit_pfnnid_cache *state)
5273 unsigned long start_pfn, end_pfn;
5274 int nid;
5276 if (state->last_start <= pfn && pfn < state->last_end)
5277 return state->last_nid;
5279 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5280 if (nid != -1) {
5281 state->last_start = start_pfn;
5282 state->last_end = end_pfn;
5283 state->last_nid = nid;
5286 return nid;
5288 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5291 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5292 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5293 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5295 * If an architecture guarantees that all ranges registered contain no holes
5296 * and may be freed, this this function may be used instead of calling
5297 * memblock_free_early_nid() manually.
5299 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5301 unsigned long start_pfn, end_pfn;
5302 int i, this_nid;
5304 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5305 start_pfn = min(start_pfn, max_low_pfn);
5306 end_pfn = min(end_pfn, max_low_pfn);
5308 if (start_pfn < end_pfn)
5309 memblock_free_early_nid(PFN_PHYS(start_pfn),
5310 (end_pfn - start_pfn) << PAGE_SHIFT,
5311 this_nid);
5316 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5317 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5319 * If an architecture guarantees that all ranges registered contain no holes and may
5320 * be freed, this function may be used instead of calling memory_present() manually.
5322 void __init sparse_memory_present_with_active_regions(int nid)
5324 unsigned long start_pfn, end_pfn;
5325 int i, this_nid;
5327 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5328 memory_present(this_nid, start_pfn, end_pfn);
5332 * get_pfn_range_for_nid - Return the start and end page frames for a node
5333 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5334 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5335 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5337 * It returns the start and end page frame of a node based on information
5338 * provided by memblock_set_node(). If called for a node
5339 * with no available memory, a warning is printed and the start and end
5340 * PFNs will be 0.
5342 void __meminit get_pfn_range_for_nid(unsigned int nid,
5343 unsigned long *start_pfn, unsigned long *end_pfn)
5345 unsigned long this_start_pfn, this_end_pfn;
5346 int i;
5348 *start_pfn = -1UL;
5349 *end_pfn = 0;
5351 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5352 *start_pfn = min(*start_pfn, this_start_pfn);
5353 *end_pfn = max(*end_pfn, this_end_pfn);
5356 if (*start_pfn == -1UL)
5357 *start_pfn = 0;
5361 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5362 * assumption is made that zones within a node are ordered in monotonic
5363 * increasing memory addresses so that the "highest" populated zone is used
5365 static void __init find_usable_zone_for_movable(void)
5367 int zone_index;
5368 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5369 if (zone_index == ZONE_MOVABLE)
5370 continue;
5372 if (arch_zone_highest_possible_pfn[zone_index] >
5373 arch_zone_lowest_possible_pfn[zone_index])
5374 break;
5377 VM_BUG_ON(zone_index == -1);
5378 movable_zone = zone_index;
5382 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5383 * because it is sized independent of architecture. Unlike the other zones,
5384 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5385 * in each node depending on the size of each node and how evenly kernelcore
5386 * is distributed. This helper function adjusts the zone ranges
5387 * provided by the architecture for a given node by using the end of the
5388 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5389 * zones within a node are in order of monotonic increases memory addresses
5391 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5392 unsigned long zone_type,
5393 unsigned long node_start_pfn,
5394 unsigned long node_end_pfn,
5395 unsigned long *zone_start_pfn,
5396 unsigned long *zone_end_pfn)
5398 /* Only adjust if ZONE_MOVABLE is on this node */
5399 if (zone_movable_pfn[nid]) {
5400 /* Size ZONE_MOVABLE */
5401 if (zone_type == ZONE_MOVABLE) {
5402 *zone_start_pfn = zone_movable_pfn[nid];
5403 *zone_end_pfn = min(node_end_pfn,
5404 arch_zone_highest_possible_pfn[movable_zone]);
5406 /* Check if this whole range is within ZONE_MOVABLE */
5407 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5408 *zone_start_pfn = *zone_end_pfn;
5413 * Return the number of pages a zone spans in a node, including holes
5414 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5416 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5417 unsigned long zone_type,
5418 unsigned long node_start_pfn,
5419 unsigned long node_end_pfn,
5420 unsigned long *zone_start_pfn,
5421 unsigned long *zone_end_pfn,
5422 unsigned long *ignored)
5424 /* When hotadd a new node from cpu_up(), the node should be empty */
5425 if (!node_start_pfn && !node_end_pfn)
5426 return 0;
5428 /* Get the start and end of the zone */
5429 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5430 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5431 adjust_zone_range_for_zone_movable(nid, zone_type,
5432 node_start_pfn, node_end_pfn,
5433 zone_start_pfn, zone_end_pfn);
5435 /* Check that this node has pages within the zone's required range */
5436 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5437 return 0;
5439 /* Move the zone boundaries inside the node if necessary */
5440 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5441 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5443 /* Return the spanned pages */
5444 return *zone_end_pfn - *zone_start_pfn;
5448 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5449 * then all holes in the requested range will be accounted for.
5451 unsigned long __meminit __absent_pages_in_range(int nid,
5452 unsigned long range_start_pfn,
5453 unsigned long range_end_pfn)
5455 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5456 unsigned long start_pfn, end_pfn;
5457 int i;
5459 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5460 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5461 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5462 nr_absent -= end_pfn - start_pfn;
5464 return nr_absent;
5468 * absent_pages_in_range - Return number of page frames in holes within a range
5469 * @start_pfn: The start PFN to start searching for holes
5470 * @end_pfn: The end PFN to stop searching for holes
5472 * It returns the number of pages frames in memory holes within a range.
5474 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5475 unsigned long end_pfn)
5477 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5480 /* Return the number of page frames in holes in a zone on a node */
5481 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5482 unsigned long zone_type,
5483 unsigned long node_start_pfn,
5484 unsigned long node_end_pfn,
5485 unsigned long *ignored)
5487 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5488 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5489 unsigned long zone_start_pfn, zone_end_pfn;
5490 unsigned long nr_absent;
5492 /* When hotadd a new node from cpu_up(), the node should be empty */
5493 if (!node_start_pfn && !node_end_pfn)
5494 return 0;
5496 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5497 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5499 adjust_zone_range_for_zone_movable(nid, zone_type,
5500 node_start_pfn, node_end_pfn,
5501 &zone_start_pfn, &zone_end_pfn);
5502 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5505 * ZONE_MOVABLE handling.
5506 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5507 * and vice versa.
5509 if (zone_movable_pfn[nid]) {
5510 if (mirrored_kernelcore) {
5511 unsigned long start_pfn, end_pfn;
5512 struct memblock_region *r;
5514 for_each_memblock(memory, r) {
5515 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5516 zone_start_pfn, zone_end_pfn);
5517 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5518 zone_start_pfn, zone_end_pfn);
5520 if (zone_type == ZONE_MOVABLE &&
5521 memblock_is_mirror(r))
5522 nr_absent += end_pfn - start_pfn;
5524 if (zone_type == ZONE_NORMAL &&
5525 !memblock_is_mirror(r))
5526 nr_absent += end_pfn - start_pfn;
5528 } else {
5529 if (zone_type == ZONE_NORMAL)
5530 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5534 return nr_absent;
5537 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5538 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5539 unsigned long zone_type,
5540 unsigned long node_start_pfn,
5541 unsigned long node_end_pfn,
5542 unsigned long *zone_start_pfn,
5543 unsigned long *zone_end_pfn,
5544 unsigned long *zones_size)
5546 unsigned int zone;
5548 *zone_start_pfn = node_start_pfn;
5549 for (zone = 0; zone < zone_type; zone++)
5550 *zone_start_pfn += zones_size[zone];
5552 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5554 return zones_size[zone_type];
5557 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5558 unsigned long zone_type,
5559 unsigned long node_start_pfn,
5560 unsigned long node_end_pfn,
5561 unsigned long *zholes_size)
5563 if (!zholes_size)
5564 return 0;
5566 return zholes_size[zone_type];
5569 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5571 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5572 unsigned long node_start_pfn,
5573 unsigned long node_end_pfn,
5574 unsigned long *zones_size,
5575 unsigned long *zholes_size)
5577 unsigned long realtotalpages = 0, totalpages = 0;
5578 enum zone_type i;
5580 for (i = 0; i < MAX_NR_ZONES; i++) {
5581 struct zone *zone = pgdat->node_zones + i;
5582 unsigned long zone_start_pfn, zone_end_pfn;
5583 unsigned long size, real_size;
5585 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5586 node_start_pfn,
5587 node_end_pfn,
5588 &zone_start_pfn,
5589 &zone_end_pfn,
5590 zones_size);
5591 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5592 node_start_pfn, node_end_pfn,
5593 zholes_size);
5594 if (size)
5595 zone->zone_start_pfn = zone_start_pfn;
5596 else
5597 zone->zone_start_pfn = 0;
5598 zone->spanned_pages = size;
5599 zone->present_pages = real_size;
5601 totalpages += size;
5602 realtotalpages += real_size;
5605 pgdat->node_spanned_pages = totalpages;
5606 pgdat->node_present_pages = realtotalpages;
5607 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5608 realtotalpages);
5611 #ifndef CONFIG_SPARSEMEM
5613 * Calculate the size of the zone->blockflags rounded to an unsigned long
5614 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5615 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5616 * round what is now in bits to nearest long in bits, then return it in
5617 * bytes.
5619 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5621 unsigned long usemapsize;
5623 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5624 usemapsize = roundup(zonesize, pageblock_nr_pages);
5625 usemapsize = usemapsize >> pageblock_order;
5626 usemapsize *= NR_PAGEBLOCK_BITS;
5627 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5629 return usemapsize / 8;
5632 static void __init setup_usemap(struct pglist_data *pgdat,
5633 struct zone *zone,
5634 unsigned long zone_start_pfn,
5635 unsigned long zonesize)
5637 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5638 zone->pageblock_flags = NULL;
5639 if (usemapsize)
5640 zone->pageblock_flags =
5641 memblock_virt_alloc_node_nopanic(usemapsize,
5642 pgdat->node_id);
5644 #else
5645 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5646 unsigned long zone_start_pfn, unsigned long zonesize) {}
5647 #endif /* CONFIG_SPARSEMEM */
5649 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5651 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5652 void __paginginit set_pageblock_order(void)
5654 unsigned int order;
5656 /* Check that pageblock_nr_pages has not already been setup */
5657 if (pageblock_order)
5658 return;
5660 if (HPAGE_SHIFT > PAGE_SHIFT)
5661 order = HUGETLB_PAGE_ORDER;
5662 else
5663 order = MAX_ORDER - 1;
5666 * Assume the largest contiguous order of interest is a huge page.
5667 * This value may be variable depending on boot parameters on IA64 and
5668 * powerpc.
5670 pageblock_order = order;
5672 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5675 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5676 * is unused as pageblock_order is set at compile-time. See
5677 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5678 * the kernel config
5680 void __paginginit set_pageblock_order(void)
5684 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5686 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5687 unsigned long present_pages)
5689 unsigned long pages = spanned_pages;
5692 * Provide a more accurate estimation if there are holes within
5693 * the zone and SPARSEMEM is in use. If there are holes within the
5694 * zone, each populated memory region may cost us one or two extra
5695 * memmap pages due to alignment because memmap pages for each
5696 * populated regions may not naturally algined on page boundary.
5697 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5699 if (spanned_pages > present_pages + (present_pages >> 4) &&
5700 IS_ENABLED(CONFIG_SPARSEMEM))
5701 pages = present_pages;
5703 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5707 * Set up the zone data structures:
5708 * - mark all pages reserved
5709 * - mark all memory queues empty
5710 * - clear the memory bitmaps
5712 * NOTE: pgdat should get zeroed by caller.
5714 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5716 enum zone_type j;
5717 int nid = pgdat->node_id;
5718 int ret;
5720 pgdat_resize_init(pgdat);
5721 #ifdef CONFIG_NUMA_BALANCING
5722 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5723 pgdat->numabalancing_migrate_nr_pages = 0;
5724 pgdat->numabalancing_migrate_next_window = jiffies;
5725 #endif
5726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5727 spin_lock_init(&pgdat->split_queue_lock);
5728 INIT_LIST_HEAD(&pgdat->split_queue);
5729 pgdat->split_queue_len = 0;
5730 #endif
5731 init_waitqueue_head(&pgdat->kswapd_wait);
5732 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5733 #ifdef CONFIG_COMPACTION
5734 init_waitqueue_head(&pgdat->kcompactd_wait);
5735 #endif
5736 pgdat_page_ext_init(pgdat);
5738 for (j = 0; j < MAX_NR_ZONES; j++) {
5739 struct zone *zone = pgdat->node_zones + j;
5740 unsigned long size, realsize, freesize, memmap_pages;
5741 unsigned long zone_start_pfn = zone->zone_start_pfn;
5743 size = zone->spanned_pages;
5744 realsize = freesize = zone->present_pages;
5747 * Adjust freesize so that it accounts for how much memory
5748 * is used by this zone for memmap. This affects the watermark
5749 * and per-cpu initialisations
5751 memmap_pages = calc_memmap_size(size, realsize);
5752 if (!is_highmem_idx(j)) {
5753 if (freesize >= memmap_pages) {
5754 freesize -= memmap_pages;
5755 if (memmap_pages)
5756 printk(KERN_DEBUG
5757 " %s zone: %lu pages used for memmap\n",
5758 zone_names[j], memmap_pages);
5759 } else
5760 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5761 zone_names[j], memmap_pages, freesize);
5764 /* Account for reserved pages */
5765 if (j == 0 && freesize > dma_reserve) {
5766 freesize -= dma_reserve;
5767 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5768 zone_names[0], dma_reserve);
5771 if (!is_highmem_idx(j))
5772 nr_kernel_pages += freesize;
5773 /* Charge for highmem memmap if there are enough kernel pages */
5774 else if (nr_kernel_pages > memmap_pages * 2)
5775 nr_kernel_pages -= memmap_pages;
5776 nr_all_pages += freesize;
5779 * Set an approximate value for lowmem here, it will be adjusted
5780 * when the bootmem allocator frees pages into the buddy system.
5781 * And all highmem pages will be managed by the buddy system.
5783 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5784 #ifdef CONFIG_NUMA
5785 zone->node = nid;
5786 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5787 / 100;
5788 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5789 #endif
5790 zone->name = zone_names[j];
5791 spin_lock_init(&zone->lock);
5792 spin_lock_init(&zone->lru_lock);
5793 zone_seqlock_init(zone);
5794 zone->zone_pgdat = pgdat;
5795 zone_pcp_init(zone);
5797 /* For bootup, initialized properly in watermark setup */
5798 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5800 lruvec_init(&zone->lruvec);
5801 if (!size)
5802 continue;
5804 set_pageblock_order();
5805 setup_usemap(pgdat, zone, zone_start_pfn, size);
5806 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5807 BUG_ON(ret);
5808 memmap_init(size, nid, j, zone_start_pfn);
5812 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5814 unsigned long __maybe_unused start = 0;
5815 unsigned long __maybe_unused offset = 0;
5817 /* Skip empty nodes */
5818 if (!pgdat->node_spanned_pages)
5819 return;
5821 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5822 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5823 offset = pgdat->node_start_pfn - start;
5824 /* ia64 gets its own node_mem_map, before this, without bootmem */
5825 if (!pgdat->node_mem_map) {
5826 unsigned long size, end;
5827 struct page *map;
5830 * The zone's endpoints aren't required to be MAX_ORDER
5831 * aligned but the node_mem_map endpoints must be in order
5832 * for the buddy allocator to function correctly.
5834 end = pgdat_end_pfn(pgdat);
5835 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5836 size = (end - start) * sizeof(struct page);
5837 map = alloc_remap(pgdat->node_id, size);
5838 if (!map)
5839 map = memblock_virt_alloc_node_nopanic(size,
5840 pgdat->node_id);
5841 pgdat->node_mem_map = map + offset;
5843 #ifndef CONFIG_NEED_MULTIPLE_NODES
5845 * With no DISCONTIG, the global mem_map is just set as node 0's
5847 if (pgdat == NODE_DATA(0)) {
5848 mem_map = NODE_DATA(0)->node_mem_map;
5849 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5850 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5851 mem_map -= offset;
5852 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5854 #endif
5855 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5858 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5859 unsigned long node_start_pfn, unsigned long *zholes_size)
5861 pg_data_t *pgdat = NODE_DATA(nid);
5862 unsigned long start_pfn = 0;
5863 unsigned long end_pfn = 0;
5865 /* pg_data_t should be reset to zero when it's allocated */
5866 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5868 reset_deferred_meminit(pgdat);
5869 pgdat->node_id = nid;
5870 pgdat->node_start_pfn = node_start_pfn;
5871 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5873 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5874 (u64)start_pfn << PAGE_SHIFT,
5875 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5876 #else
5877 start_pfn = node_start_pfn;
5878 #endif
5879 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5880 zones_size, zholes_size);
5882 alloc_node_mem_map(pgdat);
5883 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5884 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5885 nid, (unsigned long)pgdat,
5886 (unsigned long)pgdat->node_mem_map);
5887 #endif
5889 free_area_init_core(pgdat);
5892 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5894 #if MAX_NUMNODES > 1
5896 * Figure out the number of possible node ids.
5898 void __init setup_nr_node_ids(void)
5900 unsigned int highest;
5902 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5903 nr_node_ids = highest + 1;
5905 #endif
5908 * node_map_pfn_alignment - determine the maximum internode alignment
5910 * This function should be called after node map is populated and sorted.
5911 * It calculates the maximum power of two alignment which can distinguish
5912 * all the nodes.
5914 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5915 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5916 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5917 * shifted, 1GiB is enough and this function will indicate so.
5919 * This is used to test whether pfn -> nid mapping of the chosen memory
5920 * model has fine enough granularity to avoid incorrect mapping for the
5921 * populated node map.
5923 * Returns the determined alignment in pfn's. 0 if there is no alignment
5924 * requirement (single node).
5926 unsigned long __init node_map_pfn_alignment(void)
5928 unsigned long accl_mask = 0, last_end = 0;
5929 unsigned long start, end, mask;
5930 int last_nid = -1;
5931 int i, nid;
5933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5934 if (!start || last_nid < 0 || last_nid == nid) {
5935 last_nid = nid;
5936 last_end = end;
5937 continue;
5941 * Start with a mask granular enough to pin-point to the
5942 * start pfn and tick off bits one-by-one until it becomes
5943 * too coarse to separate the current node from the last.
5945 mask = ~((1 << __ffs(start)) - 1);
5946 while (mask && last_end <= (start & (mask << 1)))
5947 mask <<= 1;
5949 /* accumulate all internode masks */
5950 accl_mask |= mask;
5953 /* convert mask to number of pages */
5954 return ~accl_mask + 1;
5957 /* Find the lowest pfn for a node */
5958 static unsigned long __init find_min_pfn_for_node(int nid)
5960 unsigned long min_pfn = ULONG_MAX;
5961 unsigned long start_pfn;
5962 int i;
5964 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5965 min_pfn = min(min_pfn, start_pfn);
5967 if (min_pfn == ULONG_MAX) {
5968 pr_warn("Could not find start_pfn for node %d\n", nid);
5969 return 0;
5972 return min_pfn;
5976 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5978 * It returns the minimum PFN based on information provided via
5979 * memblock_set_node().
5981 unsigned long __init find_min_pfn_with_active_regions(void)
5983 return find_min_pfn_for_node(MAX_NUMNODES);
5987 * early_calculate_totalpages()
5988 * Sum pages in active regions for movable zone.
5989 * Populate N_MEMORY for calculating usable_nodes.
5991 static unsigned long __init early_calculate_totalpages(void)
5993 unsigned long totalpages = 0;
5994 unsigned long start_pfn, end_pfn;
5995 int i, nid;
5997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5998 unsigned long pages = end_pfn - start_pfn;
6000 totalpages += pages;
6001 if (pages)
6002 node_set_state(nid, N_MEMORY);
6004 return totalpages;
6008 * Find the PFN the Movable zone begins in each node. Kernel memory
6009 * is spread evenly between nodes as long as the nodes have enough
6010 * memory. When they don't, some nodes will have more kernelcore than
6011 * others
6013 static void __init find_zone_movable_pfns_for_nodes(void)
6015 int i, nid;
6016 unsigned long usable_startpfn;
6017 unsigned long kernelcore_node, kernelcore_remaining;
6018 /* save the state before borrow the nodemask */
6019 nodemask_t saved_node_state = node_states[N_MEMORY];
6020 unsigned long totalpages = early_calculate_totalpages();
6021 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6022 struct memblock_region *r;
6024 /* Need to find movable_zone earlier when movable_node is specified. */
6025 find_usable_zone_for_movable();
6028 * If movable_node is specified, ignore kernelcore and movablecore
6029 * options.
6031 if (movable_node_is_enabled()) {
6032 for_each_memblock(memory, r) {
6033 if (!memblock_is_hotpluggable(r))
6034 continue;
6036 nid = r->nid;
6038 usable_startpfn = PFN_DOWN(r->base);
6039 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6040 min(usable_startpfn, zone_movable_pfn[nid]) :
6041 usable_startpfn;
6044 goto out2;
6048 * If kernelcore=mirror is specified, ignore movablecore option
6050 if (mirrored_kernelcore) {
6051 bool mem_below_4gb_not_mirrored = false;
6053 for_each_memblock(memory, r) {
6054 if (memblock_is_mirror(r))
6055 continue;
6057 nid = r->nid;
6059 usable_startpfn = memblock_region_memory_base_pfn(r);
6061 if (usable_startpfn < 0x100000) {
6062 mem_below_4gb_not_mirrored = true;
6063 continue;
6066 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6067 min(usable_startpfn, zone_movable_pfn[nid]) :
6068 usable_startpfn;
6071 if (mem_below_4gb_not_mirrored)
6072 pr_warn("This configuration results in unmirrored kernel memory.");
6074 goto out2;
6078 * If movablecore=nn[KMG] was specified, calculate what size of
6079 * kernelcore that corresponds so that memory usable for
6080 * any allocation type is evenly spread. If both kernelcore
6081 * and movablecore are specified, then the value of kernelcore
6082 * will be used for required_kernelcore if it's greater than
6083 * what movablecore would have allowed.
6085 if (required_movablecore) {
6086 unsigned long corepages;
6089 * Round-up so that ZONE_MOVABLE is at least as large as what
6090 * was requested by the user
6092 required_movablecore =
6093 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6094 required_movablecore = min(totalpages, required_movablecore);
6095 corepages = totalpages - required_movablecore;
6097 required_kernelcore = max(required_kernelcore, corepages);
6101 * If kernelcore was not specified or kernelcore size is larger
6102 * than totalpages, there is no ZONE_MOVABLE.
6104 if (!required_kernelcore || required_kernelcore >= totalpages)
6105 goto out;
6107 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6108 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6110 restart:
6111 /* Spread kernelcore memory as evenly as possible throughout nodes */
6112 kernelcore_node = required_kernelcore / usable_nodes;
6113 for_each_node_state(nid, N_MEMORY) {
6114 unsigned long start_pfn, end_pfn;
6117 * Recalculate kernelcore_node if the division per node
6118 * now exceeds what is necessary to satisfy the requested
6119 * amount of memory for the kernel
6121 if (required_kernelcore < kernelcore_node)
6122 kernelcore_node = required_kernelcore / usable_nodes;
6125 * As the map is walked, we track how much memory is usable
6126 * by the kernel using kernelcore_remaining. When it is
6127 * 0, the rest of the node is usable by ZONE_MOVABLE
6129 kernelcore_remaining = kernelcore_node;
6131 /* Go through each range of PFNs within this node */
6132 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6133 unsigned long size_pages;
6135 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6136 if (start_pfn >= end_pfn)
6137 continue;
6139 /* Account for what is only usable for kernelcore */
6140 if (start_pfn < usable_startpfn) {
6141 unsigned long kernel_pages;
6142 kernel_pages = min(end_pfn, usable_startpfn)
6143 - start_pfn;
6145 kernelcore_remaining -= min(kernel_pages,
6146 kernelcore_remaining);
6147 required_kernelcore -= min(kernel_pages,
6148 required_kernelcore);
6150 /* Continue if range is now fully accounted */
6151 if (end_pfn <= usable_startpfn) {
6154 * Push zone_movable_pfn to the end so
6155 * that if we have to rebalance
6156 * kernelcore across nodes, we will
6157 * not double account here
6159 zone_movable_pfn[nid] = end_pfn;
6160 continue;
6162 start_pfn = usable_startpfn;
6166 * The usable PFN range for ZONE_MOVABLE is from
6167 * start_pfn->end_pfn. Calculate size_pages as the
6168 * number of pages used as kernelcore
6170 size_pages = end_pfn - start_pfn;
6171 if (size_pages > kernelcore_remaining)
6172 size_pages = kernelcore_remaining;
6173 zone_movable_pfn[nid] = start_pfn + size_pages;
6176 * Some kernelcore has been met, update counts and
6177 * break if the kernelcore for this node has been
6178 * satisfied
6180 required_kernelcore -= min(required_kernelcore,
6181 size_pages);
6182 kernelcore_remaining -= size_pages;
6183 if (!kernelcore_remaining)
6184 break;
6189 * If there is still required_kernelcore, we do another pass with one
6190 * less node in the count. This will push zone_movable_pfn[nid] further
6191 * along on the nodes that still have memory until kernelcore is
6192 * satisfied
6194 usable_nodes--;
6195 if (usable_nodes && required_kernelcore > usable_nodes)
6196 goto restart;
6198 out2:
6199 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6200 for (nid = 0; nid < MAX_NUMNODES; nid++)
6201 zone_movable_pfn[nid] =
6202 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6204 out:
6205 /* restore the node_state */
6206 node_states[N_MEMORY] = saved_node_state;
6209 /* Any regular or high memory on that node ? */
6210 static void check_for_memory(pg_data_t *pgdat, int nid)
6212 enum zone_type zone_type;
6214 if (N_MEMORY == N_NORMAL_MEMORY)
6215 return;
6217 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6218 struct zone *zone = &pgdat->node_zones[zone_type];
6219 if (populated_zone(zone)) {
6220 node_set_state(nid, N_HIGH_MEMORY);
6221 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6222 zone_type <= ZONE_NORMAL)
6223 node_set_state(nid, N_NORMAL_MEMORY);
6224 break;
6230 * free_area_init_nodes - Initialise all pg_data_t and zone data
6231 * @max_zone_pfn: an array of max PFNs for each zone
6233 * This will call free_area_init_node() for each active node in the system.
6234 * Using the page ranges provided by memblock_set_node(), the size of each
6235 * zone in each node and their holes is calculated. If the maximum PFN
6236 * between two adjacent zones match, it is assumed that the zone is empty.
6237 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6238 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6239 * starts where the previous one ended. For example, ZONE_DMA32 starts
6240 * at arch_max_dma_pfn.
6242 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6244 unsigned long start_pfn, end_pfn;
6245 int i, nid;
6247 /* Record where the zone boundaries are */
6248 memset(arch_zone_lowest_possible_pfn, 0,
6249 sizeof(arch_zone_lowest_possible_pfn));
6250 memset(arch_zone_highest_possible_pfn, 0,
6251 sizeof(arch_zone_highest_possible_pfn));
6252 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6253 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6254 for (i = 1; i < MAX_NR_ZONES; i++) {
6255 if (i == ZONE_MOVABLE)
6256 continue;
6257 arch_zone_lowest_possible_pfn[i] =
6258 arch_zone_highest_possible_pfn[i-1];
6259 arch_zone_highest_possible_pfn[i] =
6260 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6262 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6263 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6265 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6266 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6267 find_zone_movable_pfns_for_nodes();
6269 /* Print out the zone ranges */
6270 pr_info("Zone ranges:\n");
6271 for (i = 0; i < MAX_NR_ZONES; i++) {
6272 if (i == ZONE_MOVABLE)
6273 continue;
6274 pr_info(" %-8s ", zone_names[i]);
6275 if (arch_zone_lowest_possible_pfn[i] ==
6276 arch_zone_highest_possible_pfn[i])
6277 pr_cont("empty\n");
6278 else
6279 pr_cont("[mem %#018Lx-%#018Lx]\n",
6280 (u64)arch_zone_lowest_possible_pfn[i]
6281 << PAGE_SHIFT,
6282 ((u64)arch_zone_highest_possible_pfn[i]
6283 << PAGE_SHIFT) - 1);
6286 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6287 pr_info("Movable zone start for each node\n");
6288 for (i = 0; i < MAX_NUMNODES; i++) {
6289 if (zone_movable_pfn[i])
6290 pr_info(" Node %d: %#018Lx\n", i,
6291 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6294 /* Print out the early node map */
6295 pr_info("Early memory node ranges\n");
6296 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6297 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6298 (u64)start_pfn << PAGE_SHIFT,
6299 ((u64)end_pfn << PAGE_SHIFT) - 1);
6301 /* Initialise every node */
6302 mminit_verify_pageflags_layout();
6303 setup_nr_node_ids();
6304 for_each_online_node(nid) {
6305 pg_data_t *pgdat = NODE_DATA(nid);
6306 free_area_init_node(nid, NULL,
6307 find_min_pfn_for_node(nid), NULL);
6309 /* Any memory on that node */
6310 if (pgdat->node_present_pages)
6311 node_set_state(nid, N_MEMORY);
6312 check_for_memory(pgdat, nid);
6316 static int __init cmdline_parse_core(char *p, unsigned long *core)
6318 unsigned long long coremem;
6319 if (!p)
6320 return -EINVAL;
6322 coremem = memparse(p, &p);
6323 *core = coremem >> PAGE_SHIFT;
6325 /* Paranoid check that UL is enough for the coremem value */
6326 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6328 return 0;
6332 * kernelcore=size sets the amount of memory for use for allocations that
6333 * cannot be reclaimed or migrated.
6335 static int __init cmdline_parse_kernelcore(char *p)
6337 /* parse kernelcore=mirror */
6338 if (parse_option_str(p, "mirror")) {
6339 mirrored_kernelcore = true;
6340 return 0;
6343 return cmdline_parse_core(p, &required_kernelcore);
6347 * movablecore=size sets the amount of memory for use for allocations that
6348 * can be reclaimed or migrated.
6350 static int __init cmdline_parse_movablecore(char *p)
6352 return cmdline_parse_core(p, &required_movablecore);
6355 early_param("kernelcore", cmdline_parse_kernelcore);
6356 early_param("movablecore", cmdline_parse_movablecore);
6358 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6360 void adjust_managed_page_count(struct page *page, long count)
6362 spin_lock(&managed_page_count_lock);
6363 page_zone(page)->managed_pages += count;
6364 totalram_pages += count;
6365 #ifdef CONFIG_HIGHMEM
6366 if (PageHighMem(page))
6367 totalhigh_pages += count;
6368 #endif
6369 spin_unlock(&managed_page_count_lock);
6371 EXPORT_SYMBOL(adjust_managed_page_count);
6373 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6375 void *pos;
6376 unsigned long pages = 0;
6378 start = (void *)PAGE_ALIGN((unsigned long)start);
6379 end = (void *)((unsigned long)end & PAGE_MASK);
6380 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6381 if ((unsigned int)poison <= 0xFF)
6382 memset(pos, poison, PAGE_SIZE);
6383 free_reserved_page(virt_to_page(pos));
6386 if (pages && s)
6387 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6388 s, pages << (PAGE_SHIFT - 10), start, end);
6390 return pages;
6392 EXPORT_SYMBOL(free_reserved_area);
6394 #ifdef CONFIG_HIGHMEM
6395 void free_highmem_page(struct page *page)
6397 __free_reserved_page(page);
6398 totalram_pages++;
6399 page_zone(page)->managed_pages++;
6400 totalhigh_pages++;
6402 #endif
6405 void __init mem_init_print_info(const char *str)
6407 unsigned long physpages, codesize, datasize, rosize, bss_size;
6408 unsigned long init_code_size, init_data_size;
6410 physpages = get_num_physpages();
6411 codesize = _etext - _stext;
6412 datasize = _edata - _sdata;
6413 rosize = __end_rodata - __start_rodata;
6414 bss_size = __bss_stop - __bss_start;
6415 init_data_size = __init_end - __init_begin;
6416 init_code_size = _einittext - _sinittext;
6419 * Detect special cases and adjust section sizes accordingly:
6420 * 1) .init.* may be embedded into .data sections
6421 * 2) .init.text.* may be out of [__init_begin, __init_end],
6422 * please refer to arch/tile/kernel/vmlinux.lds.S.
6423 * 3) .rodata.* may be embedded into .text or .data sections.
6425 #define adj_init_size(start, end, size, pos, adj) \
6426 do { \
6427 if (start <= pos && pos < end && size > adj) \
6428 size -= adj; \
6429 } while (0)
6431 adj_init_size(__init_begin, __init_end, init_data_size,
6432 _sinittext, init_code_size);
6433 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6434 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6435 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6436 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6438 #undef adj_init_size
6440 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6441 #ifdef CONFIG_HIGHMEM
6442 ", %luK highmem"
6443 #endif
6444 "%s%s)\n",
6445 nr_free_pages() << (PAGE_SHIFT - 10),
6446 physpages << (PAGE_SHIFT - 10),
6447 codesize >> 10, datasize >> 10, rosize >> 10,
6448 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6449 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6450 totalcma_pages << (PAGE_SHIFT - 10),
6451 #ifdef CONFIG_HIGHMEM
6452 totalhigh_pages << (PAGE_SHIFT - 10),
6453 #endif
6454 str ? ", " : "", str ? str : "");
6458 * set_dma_reserve - set the specified number of pages reserved in the first zone
6459 * @new_dma_reserve: The number of pages to mark reserved
6461 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6462 * In the DMA zone, a significant percentage may be consumed by kernel image
6463 * and other unfreeable allocations which can skew the watermarks badly. This
6464 * function may optionally be used to account for unfreeable pages in the
6465 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6466 * smaller per-cpu batchsize.
6468 void __init set_dma_reserve(unsigned long new_dma_reserve)
6470 dma_reserve = new_dma_reserve;
6473 void __init free_area_init(unsigned long *zones_size)
6475 free_area_init_node(0, zones_size,
6476 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6479 static int page_alloc_cpu_notify(struct notifier_block *self,
6480 unsigned long action, void *hcpu)
6482 int cpu = (unsigned long)hcpu;
6484 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6485 lru_add_drain_cpu(cpu);
6486 drain_pages(cpu);
6489 * Spill the event counters of the dead processor
6490 * into the current processors event counters.
6491 * This artificially elevates the count of the current
6492 * processor.
6494 vm_events_fold_cpu(cpu);
6497 * Zero the differential counters of the dead processor
6498 * so that the vm statistics are consistent.
6500 * This is only okay since the processor is dead and cannot
6501 * race with what we are doing.
6503 cpu_vm_stats_fold(cpu);
6505 return NOTIFY_OK;
6508 void __init page_alloc_init(void)
6510 hotcpu_notifier(page_alloc_cpu_notify, 0);
6514 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6515 * or min_free_kbytes changes.
6517 static void calculate_totalreserve_pages(void)
6519 struct pglist_data *pgdat;
6520 unsigned long reserve_pages = 0;
6521 enum zone_type i, j;
6523 for_each_online_pgdat(pgdat) {
6524 for (i = 0; i < MAX_NR_ZONES; i++) {
6525 struct zone *zone = pgdat->node_zones + i;
6526 long max = 0;
6528 /* Find valid and maximum lowmem_reserve in the zone */
6529 for (j = i; j < MAX_NR_ZONES; j++) {
6530 if (zone->lowmem_reserve[j] > max)
6531 max = zone->lowmem_reserve[j];
6534 /* we treat the high watermark as reserved pages. */
6535 max += high_wmark_pages(zone);
6537 if (max > zone->managed_pages)
6538 max = zone->managed_pages;
6540 zone->totalreserve_pages = max;
6542 reserve_pages += max;
6545 totalreserve_pages = reserve_pages;
6549 * setup_per_zone_lowmem_reserve - called whenever
6550 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6551 * has a correct pages reserved value, so an adequate number of
6552 * pages are left in the zone after a successful __alloc_pages().
6554 static void setup_per_zone_lowmem_reserve(void)
6556 struct pglist_data *pgdat;
6557 enum zone_type j, idx;
6559 for_each_online_pgdat(pgdat) {
6560 for (j = 0; j < MAX_NR_ZONES; j++) {
6561 struct zone *zone = pgdat->node_zones + j;
6562 unsigned long managed_pages = zone->managed_pages;
6564 zone->lowmem_reserve[j] = 0;
6566 idx = j;
6567 while (idx) {
6568 struct zone *lower_zone;
6570 idx--;
6572 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6573 sysctl_lowmem_reserve_ratio[idx] = 1;
6575 lower_zone = pgdat->node_zones + idx;
6576 lower_zone->lowmem_reserve[j] = managed_pages /
6577 sysctl_lowmem_reserve_ratio[idx];
6578 managed_pages += lower_zone->managed_pages;
6583 /* update totalreserve_pages */
6584 calculate_totalreserve_pages();
6587 static void __setup_per_zone_wmarks(void)
6589 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6590 unsigned long lowmem_pages = 0;
6591 struct zone *zone;
6592 unsigned long flags;
6594 /* Calculate total number of !ZONE_HIGHMEM pages */
6595 for_each_zone(zone) {
6596 if (!is_highmem(zone))
6597 lowmem_pages += zone->managed_pages;
6600 for_each_zone(zone) {
6601 u64 tmp;
6603 spin_lock_irqsave(&zone->lock, flags);
6604 tmp = (u64)pages_min * zone->managed_pages;
6605 do_div(tmp, lowmem_pages);
6606 if (is_highmem(zone)) {
6608 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6609 * need highmem pages, so cap pages_min to a small
6610 * value here.
6612 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6613 * deltas control asynch page reclaim, and so should
6614 * not be capped for highmem.
6616 unsigned long min_pages;
6618 min_pages = zone->managed_pages / 1024;
6619 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6620 zone->watermark[WMARK_MIN] = min_pages;
6621 } else {
6623 * If it's a lowmem zone, reserve a number of pages
6624 * proportionate to the zone's size.
6626 zone->watermark[WMARK_MIN] = tmp;
6630 * Set the kswapd watermarks distance according to the
6631 * scale factor in proportion to available memory, but
6632 * ensure a minimum size on small systems.
6634 tmp = max_t(u64, tmp >> 2,
6635 mult_frac(zone->managed_pages,
6636 watermark_scale_factor, 10000));
6638 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6639 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6641 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6642 high_wmark_pages(zone) - low_wmark_pages(zone) -
6643 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6645 spin_unlock_irqrestore(&zone->lock, flags);
6648 /* update totalreserve_pages */
6649 calculate_totalreserve_pages();
6653 * setup_per_zone_wmarks - called when min_free_kbytes changes
6654 * or when memory is hot-{added|removed}
6656 * Ensures that the watermark[min,low,high] values for each zone are set
6657 * correctly with respect to min_free_kbytes.
6659 void setup_per_zone_wmarks(void)
6661 mutex_lock(&zonelists_mutex);
6662 __setup_per_zone_wmarks();
6663 mutex_unlock(&zonelists_mutex);
6667 * The inactive anon list should be small enough that the VM never has to
6668 * do too much work, but large enough that each inactive page has a chance
6669 * to be referenced again before it is swapped out.
6671 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6672 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6673 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6674 * the anonymous pages are kept on the inactive list.
6676 * total target max
6677 * memory ratio inactive anon
6678 * -------------------------------------
6679 * 10MB 1 5MB
6680 * 100MB 1 50MB
6681 * 1GB 3 250MB
6682 * 10GB 10 0.9GB
6683 * 100GB 31 3GB
6684 * 1TB 101 10GB
6685 * 10TB 320 32GB
6687 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6689 unsigned int gb, ratio;
6691 /* Zone size in gigabytes */
6692 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6693 if (gb)
6694 ratio = int_sqrt(10 * gb);
6695 else
6696 ratio = 1;
6698 zone->inactive_ratio = ratio;
6701 static void __meminit setup_per_zone_inactive_ratio(void)
6703 struct zone *zone;
6705 for_each_zone(zone)
6706 calculate_zone_inactive_ratio(zone);
6710 * Initialise min_free_kbytes.
6712 * For small machines we want it small (128k min). For large machines
6713 * we want it large (64MB max). But it is not linear, because network
6714 * bandwidth does not increase linearly with machine size. We use
6716 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6717 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6719 * which yields
6721 * 16MB: 512k
6722 * 32MB: 724k
6723 * 64MB: 1024k
6724 * 128MB: 1448k
6725 * 256MB: 2048k
6726 * 512MB: 2896k
6727 * 1024MB: 4096k
6728 * 2048MB: 5792k
6729 * 4096MB: 8192k
6730 * 8192MB: 11584k
6731 * 16384MB: 16384k
6733 int __meminit init_per_zone_wmark_min(void)
6735 unsigned long lowmem_kbytes;
6736 int new_min_free_kbytes;
6738 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6739 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6741 if (new_min_free_kbytes > user_min_free_kbytes) {
6742 min_free_kbytes = new_min_free_kbytes;
6743 if (min_free_kbytes < 128)
6744 min_free_kbytes = 128;
6745 if (min_free_kbytes > 65536)
6746 min_free_kbytes = 65536;
6747 } else {
6748 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6749 new_min_free_kbytes, user_min_free_kbytes);
6751 setup_per_zone_wmarks();
6752 refresh_zone_stat_thresholds();
6753 setup_per_zone_lowmem_reserve();
6754 setup_per_zone_inactive_ratio();
6755 return 0;
6757 core_initcall(init_per_zone_wmark_min)
6760 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6761 * that we can call two helper functions whenever min_free_kbytes
6762 * changes.
6764 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6765 void __user *buffer, size_t *length, loff_t *ppos)
6767 int rc;
6769 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6770 if (rc)
6771 return rc;
6773 if (write) {
6774 user_min_free_kbytes = min_free_kbytes;
6775 setup_per_zone_wmarks();
6777 return 0;
6780 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6781 void __user *buffer, size_t *length, loff_t *ppos)
6783 int rc;
6785 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6786 if (rc)
6787 return rc;
6789 if (write)
6790 setup_per_zone_wmarks();
6792 return 0;
6795 #ifdef CONFIG_NUMA
6796 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6797 void __user *buffer, size_t *length, loff_t *ppos)
6799 struct zone *zone;
6800 int rc;
6802 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6803 if (rc)
6804 return rc;
6806 for_each_zone(zone)
6807 zone->min_unmapped_pages = (zone->managed_pages *
6808 sysctl_min_unmapped_ratio) / 100;
6809 return 0;
6812 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6813 void __user *buffer, size_t *length, loff_t *ppos)
6815 struct zone *zone;
6816 int rc;
6818 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6819 if (rc)
6820 return rc;
6822 for_each_zone(zone)
6823 zone->min_slab_pages = (zone->managed_pages *
6824 sysctl_min_slab_ratio) / 100;
6825 return 0;
6827 #endif
6830 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6831 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6832 * whenever sysctl_lowmem_reserve_ratio changes.
6834 * The reserve ratio obviously has absolutely no relation with the
6835 * minimum watermarks. The lowmem reserve ratio can only make sense
6836 * if in function of the boot time zone sizes.
6838 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6839 void __user *buffer, size_t *length, loff_t *ppos)
6841 proc_dointvec_minmax(table, write, buffer, length, ppos);
6842 setup_per_zone_lowmem_reserve();
6843 return 0;
6847 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6848 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6849 * pagelist can have before it gets flushed back to buddy allocator.
6851 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6852 void __user *buffer, size_t *length, loff_t *ppos)
6854 struct zone *zone;
6855 int old_percpu_pagelist_fraction;
6856 int ret;
6858 mutex_lock(&pcp_batch_high_lock);
6859 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6861 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6862 if (!write || ret < 0)
6863 goto out;
6865 /* Sanity checking to avoid pcp imbalance */
6866 if (percpu_pagelist_fraction &&
6867 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6868 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6869 ret = -EINVAL;
6870 goto out;
6873 /* No change? */
6874 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6875 goto out;
6877 for_each_populated_zone(zone) {
6878 unsigned int cpu;
6880 for_each_possible_cpu(cpu)
6881 pageset_set_high_and_batch(zone,
6882 per_cpu_ptr(zone->pageset, cpu));
6884 out:
6885 mutex_unlock(&pcp_batch_high_lock);
6886 return ret;
6889 #ifdef CONFIG_NUMA
6890 int hashdist = HASHDIST_DEFAULT;
6892 static int __init set_hashdist(char *str)
6894 if (!str)
6895 return 0;
6896 hashdist = simple_strtoul(str, &str, 0);
6897 return 1;
6899 __setup("hashdist=", set_hashdist);
6900 #endif
6903 * allocate a large system hash table from bootmem
6904 * - it is assumed that the hash table must contain an exact power-of-2
6905 * quantity of entries
6906 * - limit is the number of hash buckets, not the total allocation size
6908 void *__init alloc_large_system_hash(const char *tablename,
6909 unsigned long bucketsize,
6910 unsigned long numentries,
6911 int scale,
6912 int flags,
6913 unsigned int *_hash_shift,
6914 unsigned int *_hash_mask,
6915 unsigned long low_limit,
6916 unsigned long high_limit)
6918 unsigned long long max = high_limit;
6919 unsigned long log2qty, size;
6920 void *table = NULL;
6922 /* allow the kernel cmdline to have a say */
6923 if (!numentries) {
6924 /* round applicable memory size up to nearest megabyte */
6925 numentries = nr_kernel_pages;
6927 /* It isn't necessary when PAGE_SIZE >= 1MB */
6928 if (PAGE_SHIFT < 20)
6929 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6931 /* limit to 1 bucket per 2^scale bytes of low memory */
6932 if (scale > PAGE_SHIFT)
6933 numentries >>= (scale - PAGE_SHIFT);
6934 else
6935 numentries <<= (PAGE_SHIFT - scale);
6937 /* Make sure we've got at least a 0-order allocation.. */
6938 if (unlikely(flags & HASH_SMALL)) {
6939 /* Makes no sense without HASH_EARLY */
6940 WARN_ON(!(flags & HASH_EARLY));
6941 if (!(numentries >> *_hash_shift)) {
6942 numentries = 1UL << *_hash_shift;
6943 BUG_ON(!numentries);
6945 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6946 numentries = PAGE_SIZE / bucketsize;
6948 numentries = roundup_pow_of_two(numentries);
6950 /* limit allocation size to 1/16 total memory by default */
6951 if (max == 0) {
6952 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6953 do_div(max, bucketsize);
6955 max = min(max, 0x80000000ULL);
6957 if (numentries < low_limit)
6958 numentries = low_limit;
6959 if (numentries > max)
6960 numentries = max;
6962 log2qty = ilog2(numentries);
6964 do {
6965 size = bucketsize << log2qty;
6966 if (flags & HASH_EARLY)
6967 table = memblock_virt_alloc_nopanic(size, 0);
6968 else if (hashdist)
6969 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6970 else {
6972 * If bucketsize is not a power-of-two, we may free
6973 * some pages at the end of hash table which
6974 * alloc_pages_exact() automatically does
6976 if (get_order(size) < MAX_ORDER) {
6977 table = alloc_pages_exact(size, GFP_ATOMIC);
6978 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6981 } while (!table && size > PAGE_SIZE && --log2qty);
6983 if (!table)
6984 panic("Failed to allocate %s hash table\n", tablename);
6986 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6987 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6989 if (_hash_shift)
6990 *_hash_shift = log2qty;
6991 if (_hash_mask)
6992 *_hash_mask = (1 << log2qty) - 1;
6994 return table;
6998 * This function checks whether pageblock includes unmovable pages or not.
6999 * If @count is not zero, it is okay to include less @count unmovable pages
7001 * PageLRU check without isolation or lru_lock could race so that
7002 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7003 * expect this function should be exact.
7005 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7006 bool skip_hwpoisoned_pages)
7008 unsigned long pfn, iter, found;
7009 int mt;
7012 * For avoiding noise data, lru_add_drain_all() should be called
7013 * If ZONE_MOVABLE, the zone never contains unmovable pages
7015 if (zone_idx(zone) == ZONE_MOVABLE)
7016 return false;
7017 mt = get_pageblock_migratetype(page);
7018 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7019 return false;
7021 pfn = page_to_pfn(page);
7022 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7023 unsigned long check = pfn + iter;
7025 if (!pfn_valid_within(check))
7026 continue;
7028 page = pfn_to_page(check);
7031 * Hugepages are not in LRU lists, but they're movable.
7032 * We need not scan over tail pages bacause we don't
7033 * handle each tail page individually in migration.
7035 if (PageHuge(page)) {
7036 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7037 continue;
7041 * We can't use page_count without pin a page
7042 * because another CPU can free compound page.
7043 * This check already skips compound tails of THP
7044 * because their page->_refcount is zero at all time.
7046 if (!page_ref_count(page)) {
7047 if (PageBuddy(page))
7048 iter += (1 << page_order(page)) - 1;
7049 continue;
7053 * The HWPoisoned page may be not in buddy system, and
7054 * page_count() is not 0.
7056 if (skip_hwpoisoned_pages && PageHWPoison(page))
7057 continue;
7059 if (!PageLRU(page))
7060 found++;
7062 * If there are RECLAIMABLE pages, we need to check
7063 * it. But now, memory offline itself doesn't call
7064 * shrink_node_slabs() and it still to be fixed.
7067 * If the page is not RAM, page_count()should be 0.
7068 * we don't need more check. This is an _used_ not-movable page.
7070 * The problematic thing here is PG_reserved pages. PG_reserved
7071 * is set to both of a memory hole page and a _used_ kernel
7072 * page at boot.
7074 if (found > count)
7075 return true;
7077 return false;
7080 bool is_pageblock_removable_nolock(struct page *page)
7082 struct zone *zone;
7083 unsigned long pfn;
7086 * We have to be careful here because we are iterating over memory
7087 * sections which are not zone aware so we might end up outside of
7088 * the zone but still within the section.
7089 * We have to take care about the node as well. If the node is offline
7090 * its NODE_DATA will be NULL - see page_zone.
7092 if (!node_online(page_to_nid(page)))
7093 return false;
7095 zone = page_zone(page);
7096 pfn = page_to_pfn(page);
7097 if (!zone_spans_pfn(zone, pfn))
7098 return false;
7100 return !has_unmovable_pages(zone, page, 0, true);
7103 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7105 static unsigned long pfn_max_align_down(unsigned long pfn)
7107 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7108 pageblock_nr_pages) - 1);
7111 static unsigned long pfn_max_align_up(unsigned long pfn)
7113 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7114 pageblock_nr_pages));
7117 /* [start, end) must belong to a single zone. */
7118 static int __alloc_contig_migrate_range(struct compact_control *cc,
7119 unsigned long start, unsigned long end)
7121 /* This function is based on compact_zone() from compaction.c. */
7122 unsigned long nr_reclaimed;
7123 unsigned long pfn = start;
7124 unsigned int tries = 0;
7125 int ret = 0;
7127 migrate_prep();
7129 while (pfn < end || !list_empty(&cc->migratepages)) {
7130 if (fatal_signal_pending(current)) {
7131 ret = -EINTR;
7132 break;
7135 if (list_empty(&cc->migratepages)) {
7136 cc->nr_migratepages = 0;
7137 pfn = isolate_migratepages_range(cc, pfn, end);
7138 if (!pfn) {
7139 ret = -EINTR;
7140 break;
7142 tries = 0;
7143 } else if (++tries == 5) {
7144 ret = ret < 0 ? ret : -EBUSY;
7145 break;
7148 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7149 &cc->migratepages);
7150 cc->nr_migratepages -= nr_reclaimed;
7152 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7153 NULL, 0, cc->mode, MR_CMA);
7155 if (ret < 0) {
7156 putback_movable_pages(&cc->migratepages);
7157 return ret;
7159 return 0;
7163 * alloc_contig_range() -- tries to allocate given range of pages
7164 * @start: start PFN to allocate
7165 * @end: one-past-the-last PFN to allocate
7166 * @migratetype: migratetype of the underlaying pageblocks (either
7167 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7168 * in range must have the same migratetype and it must
7169 * be either of the two.
7171 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7172 * aligned, however it's the caller's responsibility to guarantee that
7173 * we are the only thread that changes migrate type of pageblocks the
7174 * pages fall in.
7176 * The PFN range must belong to a single zone.
7178 * Returns zero on success or negative error code. On success all
7179 * pages which PFN is in [start, end) are allocated for the caller and
7180 * need to be freed with free_contig_range().
7182 int alloc_contig_range(unsigned long start, unsigned long end,
7183 unsigned migratetype)
7185 unsigned long outer_start, outer_end;
7186 unsigned int order;
7187 int ret = 0;
7189 struct compact_control cc = {
7190 .nr_migratepages = 0,
7191 .order = -1,
7192 .zone = page_zone(pfn_to_page(start)),
7193 .mode = MIGRATE_SYNC,
7194 .ignore_skip_hint = true,
7196 INIT_LIST_HEAD(&cc.migratepages);
7199 * What we do here is we mark all pageblocks in range as
7200 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7201 * have different sizes, and due to the way page allocator
7202 * work, we align the range to biggest of the two pages so
7203 * that page allocator won't try to merge buddies from
7204 * different pageblocks and change MIGRATE_ISOLATE to some
7205 * other migration type.
7207 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7208 * migrate the pages from an unaligned range (ie. pages that
7209 * we are interested in). This will put all the pages in
7210 * range back to page allocator as MIGRATE_ISOLATE.
7212 * When this is done, we take the pages in range from page
7213 * allocator removing them from the buddy system. This way
7214 * page allocator will never consider using them.
7216 * This lets us mark the pageblocks back as
7217 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7218 * aligned range but not in the unaligned, original range are
7219 * put back to page allocator so that buddy can use them.
7222 ret = start_isolate_page_range(pfn_max_align_down(start),
7223 pfn_max_align_up(end), migratetype,
7224 false);
7225 if (ret)
7226 return ret;
7229 * In case of -EBUSY, we'd like to know which page causes problem.
7230 * So, just fall through. We will check it in test_pages_isolated().
7232 ret = __alloc_contig_migrate_range(&cc, start, end);
7233 if (ret && ret != -EBUSY)
7234 goto done;
7237 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7238 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7239 * more, all pages in [start, end) are free in page allocator.
7240 * What we are going to do is to allocate all pages from
7241 * [start, end) (that is remove them from page allocator).
7243 * The only problem is that pages at the beginning and at the
7244 * end of interesting range may be not aligned with pages that
7245 * page allocator holds, ie. they can be part of higher order
7246 * pages. Because of this, we reserve the bigger range and
7247 * once this is done free the pages we are not interested in.
7249 * We don't have to hold zone->lock here because the pages are
7250 * isolated thus they won't get removed from buddy.
7253 lru_add_drain_all();
7254 drain_all_pages(cc.zone);
7256 order = 0;
7257 outer_start = start;
7258 while (!PageBuddy(pfn_to_page(outer_start))) {
7259 if (++order >= MAX_ORDER) {
7260 outer_start = start;
7261 break;
7263 outer_start &= ~0UL << order;
7266 if (outer_start != start) {
7267 order = page_order(pfn_to_page(outer_start));
7270 * outer_start page could be small order buddy page and
7271 * it doesn't include start page. Adjust outer_start
7272 * in this case to report failed page properly
7273 * on tracepoint in test_pages_isolated()
7275 if (outer_start + (1UL << order) <= start)
7276 outer_start = start;
7279 /* Make sure the range is really isolated. */
7280 if (test_pages_isolated(outer_start, end, false)) {
7281 pr_info("%s: [%lx, %lx) PFNs busy\n",
7282 __func__, outer_start, end);
7283 ret = -EBUSY;
7284 goto done;
7287 /* Grab isolated pages from freelists. */
7288 outer_end = isolate_freepages_range(&cc, outer_start, end);
7289 if (!outer_end) {
7290 ret = -EBUSY;
7291 goto done;
7294 /* Free head and tail (if any) */
7295 if (start != outer_start)
7296 free_contig_range(outer_start, start - outer_start);
7297 if (end != outer_end)
7298 free_contig_range(end, outer_end - end);
7300 done:
7301 undo_isolate_page_range(pfn_max_align_down(start),
7302 pfn_max_align_up(end), migratetype);
7303 return ret;
7306 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7308 unsigned int count = 0;
7310 for (; nr_pages--; pfn++) {
7311 struct page *page = pfn_to_page(pfn);
7313 count += page_count(page) != 1;
7314 __free_page(page);
7316 WARN(count != 0, "%d pages are still in use!\n", count);
7318 #endif
7320 #ifdef CONFIG_MEMORY_HOTPLUG
7322 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7323 * page high values need to be recalulated.
7325 void __meminit zone_pcp_update(struct zone *zone)
7327 unsigned cpu;
7328 mutex_lock(&pcp_batch_high_lock);
7329 for_each_possible_cpu(cpu)
7330 pageset_set_high_and_batch(zone,
7331 per_cpu_ptr(zone->pageset, cpu));
7332 mutex_unlock(&pcp_batch_high_lock);
7334 #endif
7336 void zone_pcp_reset(struct zone *zone)
7338 unsigned long flags;
7339 int cpu;
7340 struct per_cpu_pageset *pset;
7342 /* avoid races with drain_pages() */
7343 local_irq_save(flags);
7344 if (zone->pageset != &boot_pageset) {
7345 for_each_online_cpu(cpu) {
7346 pset = per_cpu_ptr(zone->pageset, cpu);
7347 drain_zonestat(zone, pset);
7349 free_percpu(zone->pageset);
7350 zone->pageset = &boot_pageset;
7352 local_irq_restore(flags);
7355 #ifdef CONFIG_MEMORY_HOTREMOVE
7357 * All pages in the range must be in a single zone and isolated
7358 * before calling this.
7360 void
7361 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7363 struct page *page;
7364 struct zone *zone;
7365 unsigned int order, i;
7366 unsigned long pfn;
7367 unsigned long flags;
7368 /* find the first valid pfn */
7369 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7370 if (pfn_valid(pfn))
7371 break;
7372 if (pfn == end_pfn)
7373 return;
7374 zone = page_zone(pfn_to_page(pfn));
7375 spin_lock_irqsave(&zone->lock, flags);
7376 pfn = start_pfn;
7377 while (pfn < end_pfn) {
7378 if (!pfn_valid(pfn)) {
7379 pfn++;
7380 continue;
7382 page = pfn_to_page(pfn);
7384 * The HWPoisoned page may be not in buddy system, and
7385 * page_count() is not 0.
7387 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7388 pfn++;
7389 SetPageReserved(page);
7390 continue;
7393 BUG_ON(page_count(page));
7394 BUG_ON(!PageBuddy(page));
7395 order = page_order(page);
7396 #ifdef CONFIG_DEBUG_VM
7397 pr_info("remove from free list %lx %d %lx\n",
7398 pfn, 1 << order, end_pfn);
7399 #endif
7400 list_del(&page->lru);
7401 rmv_page_order(page);
7402 zone->free_area[order].nr_free--;
7403 for (i = 0; i < (1 << order); i++)
7404 SetPageReserved((page+i));
7405 pfn += (1 << order);
7407 spin_unlock_irqrestore(&zone->lock, flags);
7409 #endif
7411 bool is_free_buddy_page(struct page *page)
7413 struct zone *zone = page_zone(page);
7414 unsigned long pfn = page_to_pfn(page);
7415 unsigned long flags;
7416 unsigned int order;
7418 spin_lock_irqsave(&zone->lock, flags);
7419 for (order = 0; order < MAX_ORDER; order++) {
7420 struct page *page_head = page - (pfn & ((1 << order) - 1));
7422 if (PageBuddy(page_head) && page_order(page_head) >= order)
7423 break;
7425 spin_unlock_irqrestore(&zone->lock, flags);
7427 return order < MAX_ORDER;