Merge remote-tracking branch 'asoc/topic/tlv320aic23' into asoc-next
[linux-2.6/btrfs-unstable.git] / drivers / pci / pci.c
blobbdd64b1b4817f7223fa31db19a118db5a9caaaa5
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
33 EXPORT_SYMBOL_GPL(pci_power_names);
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
41 unsigned int pci_pm_d3_delay;
43 static void pci_pme_list_scan(struct work_struct *work);
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
58 unsigned int delay = dev->d3_delay;
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
63 msleep(delay);
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
97 unsigned int pcibios_max_latency = 255;
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
111 struct list_head *tmp;
112 unsigned char max, n;
114 max = bus->busn_res.end;
115 list_for_each(tmp, &bus->children) {
116 n = pci_bus_max_busnr(pci_bus_b(tmp));
117 if(n > max)
118 max = n;
120 return max;
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 * Make sure the BAR is actually a memory resource, not an IO resource
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
140 #define PCI_FIND_CAP_TTL 48
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
145 u8 id;
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
160 return 0;
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
166 int ttl = PCI_FIND_CAP_TTL;
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
181 u16 status;
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
197 return 0;
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
219 int pci_find_capability(struct pci_dev *dev, int cap)
221 int pos;
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
227 return pos;
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 int pos;
246 u8 hdr_type;
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
254 return pos;
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
280 if (start)
281 pos = start;
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
290 if (header == 0)
291 return 0;
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
305 return 0;
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
325 return pci_find_next_ext_capability(dev, 0, cap);
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
346 if ((cap & mask) == ht_cap)
347 return pos;
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
354 return 0;
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
388 int pos;
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
394 return pos;
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in or where
405 * it should be allocated from.
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
410 const struct pci_bus *bus = dev->bus;
411 int i;
412 struct resource *best = NULL, *r;
414 pci_bus_for_each_resource(bus, r, i) {
415 if (!r)
416 continue;
417 if (res->start && !(res->start >= r->start && res->end <= r->end))
418 continue; /* Not contained */
419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 continue; /* Wrong type */
421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 return r; /* Exact match */
423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 if (r->flags & IORESOURCE_PREFETCH)
425 continue;
426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 if (!best)
428 best = r;
430 return best;
434 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
435 * @dev: PCI device to have its BARs restored
437 * Restore the BAR values for a given device, so as to make it
438 * accessible by its driver.
440 static void
441 pci_restore_bars(struct pci_dev *dev)
443 int i;
445 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
446 pci_update_resource(dev, i);
449 static struct pci_platform_pm_ops *pci_platform_pm;
451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
453 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
454 || !ops->sleep_wake)
455 return -EINVAL;
456 pci_platform_pm = ops;
457 return 0;
460 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
462 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
465 static inline int platform_pci_set_power_state(struct pci_dev *dev,
466 pci_power_t t)
468 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
473 return pci_platform_pm ?
474 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
479 return pci_platform_pm ?
480 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
485 return pci_platform_pm ?
486 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
490 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
491 * given PCI device
492 * @dev: PCI device to handle.
493 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
495 * RETURN VALUE:
496 * -EINVAL if the requested state is invalid.
497 * -EIO if device does not support PCI PM or its PM capabilities register has a
498 * wrong version, or device doesn't support the requested state.
499 * 0 if device already is in the requested state.
500 * 0 if device's power state has been successfully changed.
502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
504 u16 pmcsr;
505 bool need_restore = false;
507 /* Check if we're already there */
508 if (dev->current_state == state)
509 return 0;
511 if (!dev->pm_cap)
512 return -EIO;
514 if (state < PCI_D0 || state > PCI_D3hot)
515 return -EINVAL;
517 /* Validate current state:
518 * Can enter D0 from any state, but if we can only go deeper
519 * to sleep if we're already in a low power state
521 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
522 && dev->current_state > state) {
523 dev_err(&dev->dev, "invalid power transition "
524 "(from state %d to %d)\n", dev->current_state, state);
525 return -EINVAL;
528 /* check if this device supports the desired state */
529 if ((state == PCI_D1 && !dev->d1_support)
530 || (state == PCI_D2 && !dev->d2_support))
531 return -EIO;
533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
535 /* If we're (effectively) in D3, force entire word to 0.
536 * This doesn't affect PME_Status, disables PME_En, and
537 * sets PowerState to 0.
539 switch (dev->current_state) {
540 case PCI_D0:
541 case PCI_D1:
542 case PCI_D2:
543 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
544 pmcsr |= state;
545 break;
546 case PCI_D3hot:
547 case PCI_D3cold:
548 case PCI_UNKNOWN: /* Boot-up */
549 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
550 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
551 need_restore = true;
552 /* Fall-through: force to D0 */
553 default:
554 pmcsr = 0;
555 break;
558 /* enter specified state */
559 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
561 /* Mandatory power management transition delays */
562 /* see PCI PM 1.1 5.6.1 table 18 */
563 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
564 pci_dev_d3_sleep(dev);
565 else if (state == PCI_D2 || dev->current_state == PCI_D2)
566 udelay(PCI_PM_D2_DELAY);
568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
570 if (dev->current_state != state && printk_ratelimit())
571 dev_info(&dev->dev, "Refused to change power state, "
572 "currently in D%d\n", dev->current_state);
575 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
576 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
577 * from D3hot to D0 _may_ perform an internal reset, thereby
578 * going to "D0 Uninitialized" rather than "D0 Initialized".
579 * For example, at least some versions of the 3c905B and the
580 * 3c556B exhibit this behaviour.
582 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
583 * devices in a D3hot state at boot. Consequently, we need to
584 * restore at least the BARs so that the device will be
585 * accessible to its driver.
587 if (need_restore)
588 pci_restore_bars(dev);
590 if (dev->bus->self)
591 pcie_aspm_pm_state_change(dev->bus->self);
593 return 0;
597 * pci_update_current_state - Read PCI power state of given device from its
598 * PCI PM registers and cache it
599 * @dev: PCI device to handle.
600 * @state: State to cache in case the device doesn't have the PM capability
602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
604 if (dev->pm_cap) {
605 u16 pmcsr;
608 * Configuration space is not accessible for device in
609 * D3cold, so just keep or set D3cold for safety
611 if (dev->current_state == PCI_D3cold)
612 return;
613 if (state == PCI_D3cold) {
614 dev->current_state = PCI_D3cold;
615 return;
617 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
618 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
619 } else {
620 dev->current_state = state;
625 * pci_power_up - Put the given device into D0 forcibly
626 * @dev: PCI device to power up
628 void pci_power_up(struct pci_dev *dev)
630 if (platform_pci_power_manageable(dev))
631 platform_pci_set_power_state(dev, PCI_D0);
633 pci_raw_set_power_state(dev, PCI_D0);
634 pci_update_current_state(dev, PCI_D0);
638 * pci_platform_power_transition - Use platform to change device power state
639 * @dev: PCI device to handle.
640 * @state: State to put the device into.
642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
644 int error;
646 if (platform_pci_power_manageable(dev)) {
647 error = platform_pci_set_power_state(dev, state);
648 if (!error)
649 pci_update_current_state(dev, state);
650 } else
651 error = -ENODEV;
653 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
654 dev->current_state = PCI_D0;
656 return error;
660 * __pci_start_power_transition - Start power transition of a PCI device
661 * @dev: PCI device to handle.
662 * @state: State to put the device into.
664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
666 if (state == PCI_D0) {
667 pci_platform_power_transition(dev, PCI_D0);
669 * Mandatory power management transition delays, see
670 * PCI Express Base Specification Revision 2.0 Section
671 * 6.6.1: Conventional Reset. Do not delay for
672 * devices powered on/off by corresponding bridge,
673 * because have already delayed for the bridge.
675 if (dev->runtime_d3cold) {
676 msleep(dev->d3cold_delay);
678 * When powering on a bridge from D3cold, the
679 * whole hierarchy may be powered on into
680 * D0uninitialized state, resume them to give
681 * them a chance to suspend again
683 pci_wakeup_bus(dev->subordinate);
689 * __pci_dev_set_current_state - Set current state of a PCI device
690 * @dev: Device to handle
691 * @data: pointer to state to be set
693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
695 pci_power_t state = *(pci_power_t *)data;
697 dev->current_state = state;
698 return 0;
702 * __pci_bus_set_current_state - Walk given bus and set current state of devices
703 * @bus: Top bus of the subtree to walk.
704 * @state: state to be set
706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
708 if (bus)
709 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
713 * __pci_complete_power_transition - Complete power transition of a PCI device
714 * @dev: PCI device to handle.
715 * @state: State to put the device into.
717 * This function should not be called directly by device drivers.
719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
721 int ret;
723 if (state <= PCI_D0)
724 return -EINVAL;
725 ret = pci_platform_power_transition(dev, state);
726 /* Power off the bridge may power off the whole hierarchy */
727 if (!ret && state == PCI_D3cold)
728 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
729 return ret;
731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
734 * pci_set_power_state - Set the power state of a PCI device
735 * @dev: PCI device to handle.
736 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
738 * Transition a device to a new power state, using the platform firmware and/or
739 * the device's PCI PM registers.
741 * RETURN VALUE:
742 * -EINVAL if the requested state is invalid.
743 * -EIO if device does not support PCI PM or its PM capabilities register has a
744 * wrong version, or device doesn't support the requested state.
745 * 0 if device already is in the requested state.
746 * 0 if device's power state has been successfully changed.
748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
750 int error;
752 /* bound the state we're entering */
753 if (state > PCI_D3cold)
754 state = PCI_D3cold;
755 else if (state < PCI_D0)
756 state = PCI_D0;
757 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
759 * If the device or the parent bridge do not support PCI PM,
760 * ignore the request if we're doing anything other than putting
761 * it into D0 (which would only happen on boot).
763 return 0;
765 /* Check if we're already there */
766 if (dev->current_state == state)
767 return 0;
769 __pci_start_power_transition(dev, state);
771 /* This device is quirked not to be put into D3, so
772 don't put it in D3 */
773 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
774 return 0;
777 * To put device in D3cold, we put device into D3hot in native
778 * way, then put device into D3cold with platform ops
780 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
781 PCI_D3hot : state);
783 if (!__pci_complete_power_transition(dev, state))
784 error = 0;
786 * When aspm_policy is "powersave" this call ensures
787 * that ASPM is configured.
789 if (!error && dev->bus->self)
790 pcie_aspm_powersave_config_link(dev->bus->self);
792 return error;
796 * pci_choose_state - Choose the power state of a PCI device
797 * @dev: PCI device to be suspended
798 * @state: target sleep state for the whole system. This is the value
799 * that is passed to suspend() function.
801 * Returns PCI power state suitable for given device and given system
802 * message.
805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
807 pci_power_t ret;
809 if (!dev->pm_cap)
810 return PCI_D0;
812 ret = platform_pci_choose_state(dev);
813 if (ret != PCI_POWER_ERROR)
814 return ret;
816 switch (state.event) {
817 case PM_EVENT_ON:
818 return PCI_D0;
819 case PM_EVENT_FREEZE:
820 case PM_EVENT_PRETHAW:
821 /* REVISIT both freeze and pre-thaw "should" use D0 */
822 case PM_EVENT_SUSPEND:
823 case PM_EVENT_HIBERNATE:
824 return PCI_D3hot;
825 default:
826 dev_info(&dev->dev, "unrecognized suspend event %d\n",
827 state.event);
828 BUG();
830 return PCI_D0;
833 EXPORT_SYMBOL(pci_choose_state);
835 #define PCI_EXP_SAVE_REGS 7
838 static struct pci_cap_saved_state *pci_find_saved_cap(
839 struct pci_dev *pci_dev, char cap)
841 struct pci_cap_saved_state *tmp;
843 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
844 if (tmp->cap.cap_nr == cap)
845 return tmp;
847 return NULL;
850 static int pci_save_pcie_state(struct pci_dev *dev)
852 int i = 0;
853 struct pci_cap_saved_state *save_state;
854 u16 *cap;
856 if (!pci_is_pcie(dev))
857 return 0;
859 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
860 if (!save_state) {
861 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
862 return -ENOMEM;
865 cap = (u16 *)&save_state->cap.data[0];
866 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
867 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
868 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
869 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
870 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
871 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
872 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
874 return 0;
877 static void pci_restore_pcie_state(struct pci_dev *dev)
879 int i = 0;
880 struct pci_cap_saved_state *save_state;
881 u16 *cap;
883 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
884 if (!save_state)
885 return;
887 cap = (u16 *)&save_state->cap.data[0];
888 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
889 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
890 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
891 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
892 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
893 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
894 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
898 static int pci_save_pcix_state(struct pci_dev *dev)
900 int pos;
901 struct pci_cap_saved_state *save_state;
903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 if (pos <= 0)
905 return 0;
907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 if (!save_state) {
909 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 return -ENOMEM;
913 pci_read_config_word(dev, pos + PCI_X_CMD,
914 (u16 *)save_state->cap.data);
916 return 0;
919 static void pci_restore_pcix_state(struct pci_dev *dev)
921 int i = 0, pos;
922 struct pci_cap_saved_state *save_state;
923 u16 *cap;
925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 if (!save_state || pos <= 0)
928 return;
929 cap = (u16 *)&save_state->cap.data[0];
931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
936 * pci_save_state - save the PCI configuration space of a device before suspending
937 * @dev: - PCI device that we're dealing with
940 pci_save_state(struct pci_dev *dev)
942 int i;
943 /* XXX: 100% dword access ok here? */
944 for (i = 0; i < 16; i++)
945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 dev->state_saved = true;
947 if ((i = pci_save_pcie_state(dev)) != 0)
948 return i;
949 if ((i = pci_save_pcix_state(dev)) != 0)
950 return i;
951 return 0;
954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
955 u32 saved_val, int retry)
957 u32 val;
959 pci_read_config_dword(pdev, offset, &val);
960 if (val == saved_val)
961 return;
963 for (;;) {
964 dev_dbg(&pdev->dev, "restoring config space at offset "
965 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
966 pci_write_config_dword(pdev, offset, saved_val);
967 if (retry-- <= 0)
968 return;
970 pci_read_config_dword(pdev, offset, &val);
971 if (val == saved_val)
972 return;
974 mdelay(1);
978 static void pci_restore_config_space_range(struct pci_dev *pdev,
979 int start, int end, int retry)
981 int index;
983 for (index = end; index >= start; index--)
984 pci_restore_config_dword(pdev, 4 * index,
985 pdev->saved_config_space[index],
986 retry);
989 static void pci_restore_config_space(struct pci_dev *pdev)
991 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
992 pci_restore_config_space_range(pdev, 10, 15, 0);
993 /* Restore BARs before the command register. */
994 pci_restore_config_space_range(pdev, 4, 9, 10);
995 pci_restore_config_space_range(pdev, 0, 3, 0);
996 } else {
997 pci_restore_config_space_range(pdev, 0, 15, 0);
1001 /**
1002 * pci_restore_state - Restore the saved state of a PCI device
1003 * @dev: - PCI device that we're dealing with
1005 void pci_restore_state(struct pci_dev *dev)
1007 if (!dev->state_saved)
1008 return;
1010 /* PCI Express register must be restored first */
1011 pci_restore_pcie_state(dev);
1012 pci_restore_ats_state(dev);
1014 pci_restore_config_space(dev);
1016 pci_restore_pcix_state(dev);
1017 pci_restore_msi_state(dev);
1018 pci_restore_iov_state(dev);
1020 dev->state_saved = false;
1023 struct pci_saved_state {
1024 u32 config_space[16];
1025 struct pci_cap_saved_data cap[0];
1029 * pci_store_saved_state - Allocate and return an opaque struct containing
1030 * the device saved state.
1031 * @dev: PCI device that we're dealing with
1033 * Rerturn NULL if no state or error.
1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1037 struct pci_saved_state *state;
1038 struct pci_cap_saved_state *tmp;
1039 struct pci_cap_saved_data *cap;
1040 size_t size;
1042 if (!dev->state_saved)
1043 return NULL;
1045 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1047 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1048 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1050 state = kzalloc(size, GFP_KERNEL);
1051 if (!state)
1052 return NULL;
1054 memcpy(state->config_space, dev->saved_config_space,
1055 sizeof(state->config_space));
1057 cap = state->cap;
1058 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1059 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1060 memcpy(cap, &tmp->cap, len);
1061 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1063 /* Empty cap_save terminates list */
1065 return state;
1067 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1070 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1071 * @dev: PCI device that we're dealing with
1072 * @state: Saved state returned from pci_store_saved_state()
1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1076 struct pci_cap_saved_data *cap;
1078 dev->state_saved = false;
1080 if (!state)
1081 return 0;
1083 memcpy(dev->saved_config_space, state->config_space,
1084 sizeof(state->config_space));
1086 cap = state->cap;
1087 while (cap->size) {
1088 struct pci_cap_saved_state *tmp;
1090 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1091 if (!tmp || tmp->cap.size != cap->size)
1092 return -EINVAL;
1094 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1095 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1096 sizeof(struct pci_cap_saved_data) + cap->size);
1099 dev->state_saved = true;
1100 return 0;
1102 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1105 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1106 * and free the memory allocated for it.
1107 * @dev: PCI device that we're dealing with
1108 * @state: Pointer to saved state returned from pci_store_saved_state()
1110 int pci_load_and_free_saved_state(struct pci_dev *dev,
1111 struct pci_saved_state **state)
1113 int ret = pci_load_saved_state(dev, *state);
1114 kfree(*state);
1115 *state = NULL;
1116 return ret;
1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1120 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1122 int err;
1124 err = pci_set_power_state(dev, PCI_D0);
1125 if (err < 0 && err != -EIO)
1126 return err;
1127 err = pcibios_enable_device(dev, bars);
1128 if (err < 0)
1129 return err;
1130 pci_fixup_device(pci_fixup_enable, dev);
1132 return 0;
1136 * pci_reenable_device - Resume abandoned device
1137 * @dev: PCI device to be resumed
1139 * Note this function is a backend of pci_default_resume and is not supposed
1140 * to be called by normal code, write proper resume handler and use it instead.
1142 int pci_reenable_device(struct pci_dev *dev)
1144 if (pci_is_enabled(dev))
1145 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1146 return 0;
1149 static void pci_enable_bridge(struct pci_dev *dev)
1151 int retval;
1153 if (!dev)
1154 return;
1156 pci_enable_bridge(dev->bus->self);
1158 if (pci_is_enabled(dev)) {
1159 if (!dev->is_busmaster) {
1160 dev_warn(&dev->dev, "driver skip pci_set_master, fix it!\n");
1161 pci_set_master(dev);
1163 return;
1166 retval = pci_enable_device(dev);
1167 if (retval)
1168 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1169 retval);
1170 pci_set_master(dev);
1173 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1175 int err;
1176 int i, bars = 0;
1179 * Power state could be unknown at this point, either due to a fresh
1180 * boot or a device removal call. So get the current power state
1181 * so that things like MSI message writing will behave as expected
1182 * (e.g. if the device really is in D0 at enable time).
1184 if (dev->pm_cap) {
1185 u16 pmcsr;
1186 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1187 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1190 if (atomic_inc_return(&dev->enable_cnt) > 1)
1191 return 0; /* already enabled */
1193 pci_enable_bridge(dev->bus->self);
1195 /* only skip sriov related */
1196 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1197 if (dev->resource[i].flags & flags)
1198 bars |= (1 << i);
1199 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1200 if (dev->resource[i].flags & flags)
1201 bars |= (1 << i);
1203 err = do_pci_enable_device(dev, bars);
1204 if (err < 0)
1205 atomic_dec(&dev->enable_cnt);
1206 return err;
1210 * pci_enable_device_io - Initialize a device for use with IO space
1211 * @dev: PCI device to be initialized
1213 * Initialize device before it's used by a driver. Ask low-level code
1214 * to enable I/O resources. Wake up the device if it was suspended.
1215 * Beware, this function can fail.
1217 int pci_enable_device_io(struct pci_dev *dev)
1219 return pci_enable_device_flags(dev, IORESOURCE_IO);
1223 * pci_enable_device_mem - Initialize a device for use with Memory space
1224 * @dev: PCI device to be initialized
1226 * Initialize device before it's used by a driver. Ask low-level code
1227 * to enable Memory resources. Wake up the device if it was suspended.
1228 * Beware, this function can fail.
1230 int pci_enable_device_mem(struct pci_dev *dev)
1232 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1236 * pci_enable_device - Initialize device before it's used by a driver.
1237 * @dev: PCI device to be initialized
1239 * Initialize device before it's used by a driver. Ask low-level code
1240 * to enable I/O and memory. Wake up the device if it was suspended.
1241 * Beware, this function can fail.
1243 * Note we don't actually enable the device many times if we call
1244 * this function repeatedly (we just increment the count).
1246 int pci_enable_device(struct pci_dev *dev)
1248 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1252 * Managed PCI resources. This manages device on/off, intx/msi/msix
1253 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1254 * there's no need to track it separately. pci_devres is initialized
1255 * when a device is enabled using managed PCI device enable interface.
1257 struct pci_devres {
1258 unsigned int enabled:1;
1259 unsigned int pinned:1;
1260 unsigned int orig_intx:1;
1261 unsigned int restore_intx:1;
1262 u32 region_mask;
1265 static void pcim_release(struct device *gendev, void *res)
1267 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1268 struct pci_devres *this = res;
1269 int i;
1271 if (dev->msi_enabled)
1272 pci_disable_msi(dev);
1273 if (dev->msix_enabled)
1274 pci_disable_msix(dev);
1276 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1277 if (this->region_mask & (1 << i))
1278 pci_release_region(dev, i);
1280 if (this->restore_intx)
1281 pci_intx(dev, this->orig_intx);
1283 if (this->enabled && !this->pinned)
1284 pci_disable_device(dev);
1287 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1289 struct pci_devres *dr, *new_dr;
1291 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1292 if (dr)
1293 return dr;
1295 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1296 if (!new_dr)
1297 return NULL;
1298 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1301 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1303 if (pci_is_managed(pdev))
1304 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1305 return NULL;
1309 * pcim_enable_device - Managed pci_enable_device()
1310 * @pdev: PCI device to be initialized
1312 * Managed pci_enable_device().
1314 int pcim_enable_device(struct pci_dev *pdev)
1316 struct pci_devres *dr;
1317 int rc;
1319 dr = get_pci_dr(pdev);
1320 if (unlikely(!dr))
1321 return -ENOMEM;
1322 if (dr->enabled)
1323 return 0;
1325 rc = pci_enable_device(pdev);
1326 if (!rc) {
1327 pdev->is_managed = 1;
1328 dr->enabled = 1;
1330 return rc;
1334 * pcim_pin_device - Pin managed PCI device
1335 * @pdev: PCI device to pin
1337 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1338 * driver detach. @pdev must have been enabled with
1339 * pcim_enable_device().
1341 void pcim_pin_device(struct pci_dev *pdev)
1343 struct pci_devres *dr;
1345 dr = find_pci_dr(pdev);
1346 WARN_ON(!dr || !dr->enabled);
1347 if (dr)
1348 dr->pinned = 1;
1352 * pcibios_add_device - provide arch specific hooks when adding device dev
1353 * @dev: the PCI device being added
1355 * Permits the platform to provide architecture specific functionality when
1356 * devices are added. This is the default implementation. Architecture
1357 * implementations can override this.
1359 int __weak pcibios_add_device (struct pci_dev *dev)
1361 return 0;
1365 * pcibios_release_device - provide arch specific hooks when releasing device dev
1366 * @dev: the PCI device being released
1368 * Permits the platform to provide architecture specific functionality when
1369 * devices are released. This is the default implementation. Architecture
1370 * implementations can override this.
1372 void __weak pcibios_release_device(struct pci_dev *dev) {}
1375 * pcibios_disable_device - disable arch specific PCI resources for device dev
1376 * @dev: the PCI device to disable
1378 * Disables architecture specific PCI resources for the device. This
1379 * is the default implementation. Architecture implementations can
1380 * override this.
1382 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1384 static void do_pci_disable_device(struct pci_dev *dev)
1386 u16 pci_command;
1388 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1389 if (pci_command & PCI_COMMAND_MASTER) {
1390 pci_command &= ~PCI_COMMAND_MASTER;
1391 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1394 pcibios_disable_device(dev);
1398 * pci_disable_enabled_device - Disable device without updating enable_cnt
1399 * @dev: PCI device to disable
1401 * NOTE: This function is a backend of PCI power management routines and is
1402 * not supposed to be called drivers.
1404 void pci_disable_enabled_device(struct pci_dev *dev)
1406 if (pci_is_enabled(dev))
1407 do_pci_disable_device(dev);
1411 * pci_disable_device - Disable PCI device after use
1412 * @dev: PCI device to be disabled
1414 * Signal to the system that the PCI device is not in use by the system
1415 * anymore. This only involves disabling PCI bus-mastering, if active.
1417 * Note we don't actually disable the device until all callers of
1418 * pci_enable_device() have called pci_disable_device().
1420 void
1421 pci_disable_device(struct pci_dev *dev)
1423 struct pci_devres *dr;
1425 dr = find_pci_dr(dev);
1426 if (dr)
1427 dr->enabled = 0;
1429 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1430 "disabling already-disabled device");
1432 if (atomic_dec_return(&dev->enable_cnt) != 0)
1433 return;
1435 do_pci_disable_device(dev);
1437 dev->is_busmaster = 0;
1441 * pcibios_set_pcie_reset_state - set reset state for device dev
1442 * @dev: the PCIe device reset
1443 * @state: Reset state to enter into
1446 * Sets the PCIe reset state for the device. This is the default
1447 * implementation. Architecture implementations can override this.
1449 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1450 enum pcie_reset_state state)
1452 return -EINVAL;
1456 * pci_set_pcie_reset_state - set reset state for device dev
1457 * @dev: the PCIe device reset
1458 * @state: Reset state to enter into
1461 * Sets the PCI reset state for the device.
1463 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1465 return pcibios_set_pcie_reset_state(dev, state);
1469 * pci_check_pme_status - Check if given device has generated PME.
1470 * @dev: Device to check.
1472 * Check the PME status of the device and if set, clear it and clear PME enable
1473 * (if set). Return 'true' if PME status and PME enable were both set or
1474 * 'false' otherwise.
1476 bool pci_check_pme_status(struct pci_dev *dev)
1478 int pmcsr_pos;
1479 u16 pmcsr;
1480 bool ret = false;
1482 if (!dev->pm_cap)
1483 return false;
1485 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1486 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1487 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1488 return false;
1490 /* Clear PME status. */
1491 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1492 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1493 /* Disable PME to avoid interrupt flood. */
1494 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1495 ret = true;
1498 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1500 return ret;
1504 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1505 * @dev: Device to handle.
1506 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1508 * Check if @dev has generated PME and queue a resume request for it in that
1509 * case.
1511 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1513 if (pme_poll_reset && dev->pme_poll)
1514 dev->pme_poll = false;
1516 if (pci_check_pme_status(dev)) {
1517 pci_wakeup_event(dev);
1518 pm_request_resume(&dev->dev);
1520 return 0;
1524 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1525 * @bus: Top bus of the subtree to walk.
1527 void pci_pme_wakeup_bus(struct pci_bus *bus)
1529 if (bus)
1530 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1534 * pci_wakeup - Wake up a PCI device
1535 * @pci_dev: Device to handle.
1536 * @ign: ignored parameter
1538 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1540 pci_wakeup_event(pci_dev);
1541 pm_request_resume(&pci_dev->dev);
1542 return 0;
1546 * pci_wakeup_bus - Walk given bus and wake up devices on it
1547 * @bus: Top bus of the subtree to walk.
1549 void pci_wakeup_bus(struct pci_bus *bus)
1551 if (bus)
1552 pci_walk_bus(bus, pci_wakeup, NULL);
1556 * pci_pme_capable - check the capability of PCI device to generate PME#
1557 * @dev: PCI device to handle.
1558 * @state: PCI state from which device will issue PME#.
1560 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1562 if (!dev->pm_cap)
1563 return false;
1565 return !!(dev->pme_support & (1 << state));
1568 static void pci_pme_list_scan(struct work_struct *work)
1570 struct pci_pme_device *pme_dev, *n;
1572 mutex_lock(&pci_pme_list_mutex);
1573 if (!list_empty(&pci_pme_list)) {
1574 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1575 if (pme_dev->dev->pme_poll) {
1576 struct pci_dev *bridge;
1578 bridge = pme_dev->dev->bus->self;
1580 * If bridge is in low power state, the
1581 * configuration space of subordinate devices
1582 * may be not accessible
1584 if (bridge && bridge->current_state != PCI_D0)
1585 continue;
1586 pci_pme_wakeup(pme_dev->dev, NULL);
1587 } else {
1588 list_del(&pme_dev->list);
1589 kfree(pme_dev);
1592 if (!list_empty(&pci_pme_list))
1593 schedule_delayed_work(&pci_pme_work,
1594 msecs_to_jiffies(PME_TIMEOUT));
1596 mutex_unlock(&pci_pme_list_mutex);
1600 * pci_pme_active - enable or disable PCI device's PME# function
1601 * @dev: PCI device to handle.
1602 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1604 * The caller must verify that the device is capable of generating PME# before
1605 * calling this function with @enable equal to 'true'.
1607 void pci_pme_active(struct pci_dev *dev, bool enable)
1609 u16 pmcsr;
1611 if (!dev->pme_support)
1612 return;
1614 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1615 /* Clear PME_Status by writing 1 to it and enable PME# */
1616 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1617 if (!enable)
1618 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1620 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1623 * PCI (as opposed to PCIe) PME requires that the device have
1624 * its PME# line hooked up correctly. Not all hardware vendors
1625 * do this, so the PME never gets delivered and the device
1626 * remains asleep. The easiest way around this is to
1627 * periodically walk the list of suspended devices and check
1628 * whether any have their PME flag set. The assumption is that
1629 * we'll wake up often enough anyway that this won't be a huge
1630 * hit, and the power savings from the devices will still be a
1631 * win.
1633 * Although PCIe uses in-band PME message instead of PME# line
1634 * to report PME, PME does not work for some PCIe devices in
1635 * reality. For example, there are devices that set their PME
1636 * status bits, but don't really bother to send a PME message;
1637 * there are PCI Express Root Ports that don't bother to
1638 * trigger interrupts when they receive PME messages from the
1639 * devices below. So PME poll is used for PCIe devices too.
1642 if (dev->pme_poll) {
1643 struct pci_pme_device *pme_dev;
1644 if (enable) {
1645 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1646 GFP_KERNEL);
1647 if (!pme_dev)
1648 goto out;
1649 pme_dev->dev = dev;
1650 mutex_lock(&pci_pme_list_mutex);
1651 list_add(&pme_dev->list, &pci_pme_list);
1652 if (list_is_singular(&pci_pme_list))
1653 schedule_delayed_work(&pci_pme_work,
1654 msecs_to_jiffies(PME_TIMEOUT));
1655 mutex_unlock(&pci_pme_list_mutex);
1656 } else {
1657 mutex_lock(&pci_pme_list_mutex);
1658 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1659 if (pme_dev->dev == dev) {
1660 list_del(&pme_dev->list);
1661 kfree(pme_dev);
1662 break;
1665 mutex_unlock(&pci_pme_list_mutex);
1669 out:
1670 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1674 * __pci_enable_wake - enable PCI device as wakeup event source
1675 * @dev: PCI device affected
1676 * @state: PCI state from which device will issue wakeup events
1677 * @runtime: True if the events are to be generated at run time
1678 * @enable: True to enable event generation; false to disable
1680 * This enables the device as a wakeup event source, or disables it.
1681 * When such events involves platform-specific hooks, those hooks are
1682 * called automatically by this routine.
1684 * Devices with legacy power management (no standard PCI PM capabilities)
1685 * always require such platform hooks.
1687 * RETURN VALUE:
1688 * 0 is returned on success
1689 * -EINVAL is returned if device is not supposed to wake up the system
1690 * Error code depending on the platform is returned if both the platform and
1691 * the native mechanism fail to enable the generation of wake-up events
1693 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1694 bool runtime, bool enable)
1696 int ret = 0;
1698 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1699 return -EINVAL;
1701 /* Don't do the same thing twice in a row for one device. */
1702 if (!!enable == !!dev->wakeup_prepared)
1703 return 0;
1706 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1707 * Anderson we should be doing PME# wake enable followed by ACPI wake
1708 * enable. To disable wake-up we call the platform first, for symmetry.
1711 if (enable) {
1712 int error;
1714 if (pci_pme_capable(dev, state))
1715 pci_pme_active(dev, true);
1716 else
1717 ret = 1;
1718 error = runtime ? platform_pci_run_wake(dev, true) :
1719 platform_pci_sleep_wake(dev, true);
1720 if (ret)
1721 ret = error;
1722 if (!ret)
1723 dev->wakeup_prepared = true;
1724 } else {
1725 if (runtime)
1726 platform_pci_run_wake(dev, false);
1727 else
1728 platform_pci_sleep_wake(dev, false);
1729 pci_pme_active(dev, false);
1730 dev->wakeup_prepared = false;
1733 return ret;
1735 EXPORT_SYMBOL(__pci_enable_wake);
1738 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1739 * @dev: PCI device to prepare
1740 * @enable: True to enable wake-up event generation; false to disable
1742 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1743 * and this function allows them to set that up cleanly - pci_enable_wake()
1744 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1745 * ordering constraints.
1747 * This function only returns error code if the device is not capable of
1748 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1749 * enable wake-up power for it.
1751 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1753 return pci_pme_capable(dev, PCI_D3cold) ?
1754 pci_enable_wake(dev, PCI_D3cold, enable) :
1755 pci_enable_wake(dev, PCI_D3hot, enable);
1759 * pci_target_state - find an appropriate low power state for a given PCI dev
1760 * @dev: PCI device
1762 * Use underlying platform code to find a supported low power state for @dev.
1763 * If the platform can't manage @dev, return the deepest state from which it
1764 * can generate wake events, based on any available PME info.
1766 pci_power_t pci_target_state(struct pci_dev *dev)
1768 pci_power_t target_state = PCI_D3hot;
1770 if (platform_pci_power_manageable(dev)) {
1772 * Call the platform to choose the target state of the device
1773 * and enable wake-up from this state if supported.
1775 pci_power_t state = platform_pci_choose_state(dev);
1777 switch (state) {
1778 case PCI_POWER_ERROR:
1779 case PCI_UNKNOWN:
1780 break;
1781 case PCI_D1:
1782 case PCI_D2:
1783 if (pci_no_d1d2(dev))
1784 break;
1785 default:
1786 target_state = state;
1788 } else if (!dev->pm_cap) {
1789 target_state = PCI_D0;
1790 } else if (device_may_wakeup(&dev->dev)) {
1792 * Find the deepest state from which the device can generate
1793 * wake-up events, make it the target state and enable device
1794 * to generate PME#.
1796 if (dev->pme_support) {
1797 while (target_state
1798 && !(dev->pme_support & (1 << target_state)))
1799 target_state--;
1803 return target_state;
1807 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1808 * @dev: Device to handle.
1810 * Choose the power state appropriate for the device depending on whether
1811 * it can wake up the system and/or is power manageable by the platform
1812 * (PCI_D3hot is the default) and put the device into that state.
1814 int pci_prepare_to_sleep(struct pci_dev *dev)
1816 pci_power_t target_state = pci_target_state(dev);
1817 int error;
1819 if (target_state == PCI_POWER_ERROR)
1820 return -EIO;
1822 /* D3cold during system suspend/hibernate is not supported */
1823 if (target_state > PCI_D3hot)
1824 target_state = PCI_D3hot;
1826 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1828 error = pci_set_power_state(dev, target_state);
1830 if (error)
1831 pci_enable_wake(dev, target_state, false);
1833 return error;
1837 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1838 * @dev: Device to handle.
1840 * Disable device's system wake-up capability and put it into D0.
1842 int pci_back_from_sleep(struct pci_dev *dev)
1844 pci_enable_wake(dev, PCI_D0, false);
1845 return pci_set_power_state(dev, PCI_D0);
1849 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1850 * @dev: PCI device being suspended.
1852 * Prepare @dev to generate wake-up events at run time and put it into a low
1853 * power state.
1855 int pci_finish_runtime_suspend(struct pci_dev *dev)
1857 pci_power_t target_state = pci_target_state(dev);
1858 int error;
1860 if (target_state == PCI_POWER_ERROR)
1861 return -EIO;
1863 dev->runtime_d3cold = target_state == PCI_D3cold;
1865 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1867 error = pci_set_power_state(dev, target_state);
1869 if (error) {
1870 __pci_enable_wake(dev, target_state, true, false);
1871 dev->runtime_d3cold = false;
1874 return error;
1878 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1879 * @dev: Device to check.
1881 * Return true if the device itself is cabable of generating wake-up events
1882 * (through the platform or using the native PCIe PME) or if the device supports
1883 * PME and one of its upstream bridges can generate wake-up events.
1885 bool pci_dev_run_wake(struct pci_dev *dev)
1887 struct pci_bus *bus = dev->bus;
1889 if (device_run_wake(&dev->dev))
1890 return true;
1892 if (!dev->pme_support)
1893 return false;
1895 while (bus->parent) {
1896 struct pci_dev *bridge = bus->self;
1898 if (device_run_wake(&bridge->dev))
1899 return true;
1901 bus = bus->parent;
1904 /* We have reached the root bus. */
1905 if (bus->bridge)
1906 return device_run_wake(bus->bridge);
1908 return false;
1910 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1912 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1914 struct device *dev = &pdev->dev;
1915 struct device *parent = dev->parent;
1917 if (parent)
1918 pm_runtime_get_sync(parent);
1919 pm_runtime_get_noresume(dev);
1921 * pdev->current_state is set to PCI_D3cold during suspending,
1922 * so wait until suspending completes
1924 pm_runtime_barrier(dev);
1926 * Only need to resume devices in D3cold, because config
1927 * registers are still accessible for devices suspended but
1928 * not in D3cold.
1930 if (pdev->current_state == PCI_D3cold)
1931 pm_runtime_resume(dev);
1934 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1936 struct device *dev = &pdev->dev;
1937 struct device *parent = dev->parent;
1939 pm_runtime_put(dev);
1940 if (parent)
1941 pm_runtime_put_sync(parent);
1945 * pci_pm_init - Initialize PM functions of given PCI device
1946 * @dev: PCI device to handle.
1948 void pci_pm_init(struct pci_dev *dev)
1950 int pm;
1951 u16 pmc;
1953 pm_runtime_forbid(&dev->dev);
1954 pm_runtime_set_active(&dev->dev);
1955 pm_runtime_enable(&dev->dev);
1956 device_enable_async_suspend(&dev->dev);
1957 dev->wakeup_prepared = false;
1959 dev->pm_cap = 0;
1960 dev->pme_support = 0;
1962 /* find PCI PM capability in list */
1963 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1964 if (!pm)
1965 return;
1966 /* Check device's ability to generate PME# */
1967 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1969 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1970 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1971 pmc & PCI_PM_CAP_VER_MASK);
1972 return;
1975 dev->pm_cap = pm;
1976 dev->d3_delay = PCI_PM_D3_WAIT;
1977 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1978 dev->d3cold_allowed = true;
1980 dev->d1_support = false;
1981 dev->d2_support = false;
1982 if (!pci_no_d1d2(dev)) {
1983 if (pmc & PCI_PM_CAP_D1)
1984 dev->d1_support = true;
1985 if (pmc & PCI_PM_CAP_D2)
1986 dev->d2_support = true;
1988 if (dev->d1_support || dev->d2_support)
1989 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1990 dev->d1_support ? " D1" : "",
1991 dev->d2_support ? " D2" : "");
1994 pmc &= PCI_PM_CAP_PME_MASK;
1995 if (pmc) {
1996 dev_printk(KERN_DEBUG, &dev->dev,
1997 "PME# supported from%s%s%s%s%s\n",
1998 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1999 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2000 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2001 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2002 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2003 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2004 dev->pme_poll = true;
2006 * Make device's PM flags reflect the wake-up capability, but
2007 * let the user space enable it to wake up the system as needed.
2009 device_set_wakeup_capable(&dev->dev, true);
2010 /* Disable the PME# generation functionality */
2011 pci_pme_active(dev, false);
2015 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2016 struct pci_cap_saved_state *new_cap)
2018 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2022 * pci_add_cap_save_buffer - allocate buffer for saving given capability registers
2023 * @dev: the PCI device
2024 * @cap: the capability to allocate the buffer for
2025 * @size: requested size of the buffer
2027 static int pci_add_cap_save_buffer(
2028 struct pci_dev *dev, char cap, unsigned int size)
2030 int pos;
2031 struct pci_cap_saved_state *save_state;
2033 pos = pci_find_capability(dev, cap);
2034 if (pos <= 0)
2035 return 0;
2037 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2038 if (!save_state)
2039 return -ENOMEM;
2041 save_state->cap.cap_nr = cap;
2042 save_state->cap.size = size;
2043 pci_add_saved_cap(dev, save_state);
2045 return 0;
2049 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2050 * @dev: the PCI device
2052 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2054 int error;
2056 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2057 PCI_EXP_SAVE_REGS * sizeof(u16));
2058 if (error)
2059 dev_err(&dev->dev,
2060 "unable to preallocate PCI Express save buffer\n");
2062 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2063 if (error)
2064 dev_err(&dev->dev,
2065 "unable to preallocate PCI-X save buffer\n");
2068 void pci_free_cap_save_buffers(struct pci_dev *dev)
2070 struct pci_cap_saved_state *tmp;
2071 struct hlist_node *n;
2073 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2074 kfree(tmp);
2078 * pci_configure_ari - enable or disable ARI forwarding
2079 * @dev: the PCI device
2081 * If @dev and its upstream bridge both support ARI, enable ARI in the
2082 * bridge. Otherwise, disable ARI in the bridge.
2084 void pci_configure_ari(struct pci_dev *dev)
2086 u32 cap;
2087 struct pci_dev *bridge;
2089 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2090 return;
2092 bridge = dev->bus->self;
2093 if (!bridge)
2094 return;
2096 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2097 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2098 return;
2100 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2101 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2102 PCI_EXP_DEVCTL2_ARI);
2103 bridge->ari_enabled = 1;
2104 } else {
2105 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2106 PCI_EXP_DEVCTL2_ARI);
2107 bridge->ari_enabled = 0;
2112 * pci_enable_ido - enable ID-based Ordering on a device
2113 * @dev: the PCI device
2114 * @type: which types of IDO to enable
2116 * Enable ID-based ordering on @dev. @type can contain the bits
2117 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2118 * which types of transactions are allowed to be re-ordered.
2120 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2122 u16 ctrl = 0;
2124 if (type & PCI_EXP_IDO_REQUEST)
2125 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2126 if (type & PCI_EXP_IDO_COMPLETION)
2127 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2128 if (ctrl)
2129 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2131 EXPORT_SYMBOL(pci_enable_ido);
2134 * pci_disable_ido - disable ID-based ordering on a device
2135 * @dev: the PCI device
2136 * @type: which types of IDO to disable
2138 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2140 u16 ctrl = 0;
2142 if (type & PCI_EXP_IDO_REQUEST)
2143 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2144 if (type & PCI_EXP_IDO_COMPLETION)
2145 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2146 if (ctrl)
2147 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2149 EXPORT_SYMBOL(pci_disable_ido);
2152 * pci_enable_obff - enable optimized buffer flush/fill
2153 * @dev: PCI device
2154 * @type: type of signaling to use
2156 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2157 * signaling if possible, falling back to message signaling only if
2158 * WAKE# isn't supported. @type should indicate whether the PCIe link
2159 * be brought out of L0s or L1 to send the message. It should be either
2160 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2162 * If your device can benefit from receiving all messages, even at the
2163 * power cost of bringing the link back up from a low power state, use
2164 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2165 * preferred type).
2167 * RETURNS:
2168 * Zero on success, appropriate error number on failure.
2170 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2172 u32 cap;
2173 u16 ctrl;
2174 int ret;
2176 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2177 if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK))
2178 return -ENOTSUPP; /* no OBFF support at all */
2180 /* Make sure the topology supports OBFF as well */
2181 if (dev->bus->self) {
2182 ret = pci_enable_obff(dev->bus->self, type);
2183 if (ret)
2184 return ret;
2187 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2188 if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE)
2189 ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2190 else {
2191 switch (type) {
2192 case PCI_EXP_OBFF_SIGNAL_L0:
2193 if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN))
2194 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN;
2195 break;
2196 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2197 ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2198 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN;
2199 break;
2200 default:
2201 WARN(1, "bad OBFF signal type\n");
2202 return -ENOTSUPP;
2205 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2207 return 0;
2209 EXPORT_SYMBOL(pci_enable_obff);
2212 * pci_disable_obff - disable optimized buffer flush/fill
2213 * @dev: PCI device
2215 * Disable OBFF on @dev.
2217 void pci_disable_obff(struct pci_dev *dev)
2219 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2220 PCI_EXP_DEVCTL2_OBFF_WAKE_EN);
2222 EXPORT_SYMBOL(pci_disable_obff);
2225 * pci_ltr_supported - check whether a device supports LTR
2226 * @dev: PCI device
2228 * RETURNS:
2229 * True if @dev supports latency tolerance reporting, false otherwise.
2231 static bool pci_ltr_supported(struct pci_dev *dev)
2233 u32 cap;
2235 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2237 return cap & PCI_EXP_DEVCAP2_LTR;
2241 * pci_enable_ltr - enable latency tolerance reporting
2242 * @dev: PCI device
2244 * Enable LTR on @dev if possible, which means enabling it first on
2245 * upstream ports.
2247 * RETURNS:
2248 * Zero on success, errno on failure.
2250 int pci_enable_ltr(struct pci_dev *dev)
2252 int ret;
2254 /* Only primary function can enable/disable LTR */
2255 if (PCI_FUNC(dev->devfn) != 0)
2256 return -EINVAL;
2258 if (!pci_ltr_supported(dev))
2259 return -ENOTSUPP;
2261 /* Enable upstream ports first */
2262 if (dev->bus->self) {
2263 ret = pci_enable_ltr(dev->bus->self);
2264 if (ret)
2265 return ret;
2268 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
2269 PCI_EXP_DEVCTL2_LTR_EN);
2271 EXPORT_SYMBOL(pci_enable_ltr);
2274 * pci_disable_ltr - disable latency tolerance reporting
2275 * @dev: PCI device
2277 void pci_disable_ltr(struct pci_dev *dev)
2279 /* Only primary function can enable/disable LTR */
2280 if (PCI_FUNC(dev->devfn) != 0)
2281 return;
2283 if (!pci_ltr_supported(dev))
2284 return;
2286 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2287 PCI_EXP_DEVCTL2_LTR_EN);
2289 EXPORT_SYMBOL(pci_disable_ltr);
2291 static int __pci_ltr_scale(int *val)
2293 int scale = 0;
2295 while (*val > 1023) {
2296 *val = (*val + 31) / 32;
2297 scale++;
2299 return scale;
2303 * pci_set_ltr - set LTR latency values
2304 * @dev: PCI device
2305 * @snoop_lat_ns: snoop latency in nanoseconds
2306 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2308 * Figure out the scale and set the LTR values accordingly.
2310 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2312 int pos, ret, snoop_scale, nosnoop_scale;
2313 u16 val;
2315 if (!pci_ltr_supported(dev))
2316 return -ENOTSUPP;
2318 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2319 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2321 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2322 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2323 return -EINVAL;
2325 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2326 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2327 return -EINVAL;
2329 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2330 if (!pos)
2331 return -ENOTSUPP;
2333 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2334 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2335 if (ret != 4)
2336 return -EIO;
2338 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2339 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2340 if (ret != 4)
2341 return -EIO;
2343 return 0;
2345 EXPORT_SYMBOL(pci_set_ltr);
2347 static int pci_acs_enable;
2350 * pci_request_acs - ask for ACS to be enabled if supported
2352 void pci_request_acs(void)
2354 pci_acs_enable = 1;
2358 * pci_enable_acs - enable ACS if hardware support it
2359 * @dev: the PCI device
2361 void pci_enable_acs(struct pci_dev *dev)
2363 int pos;
2364 u16 cap;
2365 u16 ctrl;
2367 if (!pci_acs_enable)
2368 return;
2370 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2371 if (!pos)
2372 return;
2374 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2375 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2377 /* Source Validation */
2378 ctrl |= (cap & PCI_ACS_SV);
2380 /* P2P Request Redirect */
2381 ctrl |= (cap & PCI_ACS_RR);
2383 /* P2P Completion Redirect */
2384 ctrl |= (cap & PCI_ACS_CR);
2386 /* Upstream Forwarding */
2387 ctrl |= (cap & PCI_ACS_UF);
2389 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2392 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2394 int pos;
2395 u16 cap, ctrl;
2397 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2398 if (!pos)
2399 return false;
2402 * Except for egress control, capabilities are either required
2403 * or only required if controllable. Features missing from the
2404 * capability field can therefore be assumed as hard-wired enabled.
2406 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2407 acs_flags &= (cap | PCI_ACS_EC);
2409 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2410 return (ctrl & acs_flags) == acs_flags;
2414 * pci_acs_enabled - test ACS against required flags for a given device
2415 * @pdev: device to test
2416 * @acs_flags: required PCI ACS flags
2418 * Return true if the device supports the provided flags. Automatically
2419 * filters out flags that are not implemented on multifunction devices.
2421 * Note that this interface checks the effective ACS capabilities of the
2422 * device rather than the actual capabilities. For instance, most single
2423 * function endpoints are not required to support ACS because they have no
2424 * opportunity for peer-to-peer access. We therefore return 'true'
2425 * regardless of whether the device exposes an ACS capability. This makes
2426 * it much easier for callers of this function to ignore the actual type
2427 * or topology of the device when testing ACS support.
2429 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2431 int ret;
2433 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2434 if (ret >= 0)
2435 return ret > 0;
2438 * Conventional PCI and PCI-X devices never support ACS, either
2439 * effectively or actually. The shared bus topology implies that
2440 * any device on the bus can receive or snoop DMA.
2442 if (!pci_is_pcie(pdev))
2443 return false;
2445 switch (pci_pcie_type(pdev)) {
2447 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2448 * but since their primary inteface is PCI/X, we conservatively
2449 * handle them as we would a non-PCIe device.
2451 case PCI_EXP_TYPE_PCIE_BRIDGE:
2453 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2454 * applicable... must never implement an ACS Extended Capability...".
2455 * This seems arbitrary, but we take a conservative interpretation
2456 * of this statement.
2458 case PCI_EXP_TYPE_PCI_BRIDGE:
2459 case PCI_EXP_TYPE_RC_EC:
2460 return false;
2462 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2463 * implement ACS in order to indicate their peer-to-peer capabilities,
2464 * regardless of whether they are single- or multi-function devices.
2466 case PCI_EXP_TYPE_DOWNSTREAM:
2467 case PCI_EXP_TYPE_ROOT_PORT:
2468 return pci_acs_flags_enabled(pdev, acs_flags);
2470 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2471 * implemented by the remaining PCIe types to indicate peer-to-peer
2472 * capabilities, but only when they are part of a multifunciton
2473 * device. The footnote for section 6.12 indicates the specific
2474 * PCIe types included here.
2476 case PCI_EXP_TYPE_ENDPOINT:
2477 case PCI_EXP_TYPE_UPSTREAM:
2478 case PCI_EXP_TYPE_LEG_END:
2479 case PCI_EXP_TYPE_RC_END:
2480 if (!pdev->multifunction)
2481 break;
2483 return pci_acs_flags_enabled(pdev, acs_flags);
2487 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilties are applicable
2488 * to single function devices with the exception of downstream ports.
2490 return true;
2494 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2495 * @start: starting downstream device
2496 * @end: ending upstream device or NULL to search to the root bus
2497 * @acs_flags: required flags
2499 * Walk up a device tree from start to end testing PCI ACS support. If
2500 * any step along the way does not support the required flags, return false.
2502 bool pci_acs_path_enabled(struct pci_dev *start,
2503 struct pci_dev *end, u16 acs_flags)
2505 struct pci_dev *pdev, *parent = start;
2507 do {
2508 pdev = parent;
2510 if (!pci_acs_enabled(pdev, acs_flags))
2511 return false;
2513 if (pci_is_root_bus(pdev->bus))
2514 return (end == NULL);
2516 parent = pdev->bus->self;
2517 } while (pdev != end);
2519 return true;
2523 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2524 * @dev: the PCI device
2525 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2527 * Perform INTx swizzling for a device behind one level of bridge. This is
2528 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2529 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2530 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2531 * the PCI Express Base Specification, Revision 2.1)
2533 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2535 int slot;
2537 if (pci_ari_enabled(dev->bus))
2538 slot = 0;
2539 else
2540 slot = PCI_SLOT(dev->devfn);
2542 return (((pin - 1) + slot) % 4) + 1;
2546 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2548 u8 pin;
2550 pin = dev->pin;
2551 if (!pin)
2552 return -1;
2554 while (!pci_is_root_bus(dev->bus)) {
2555 pin = pci_swizzle_interrupt_pin(dev, pin);
2556 dev = dev->bus->self;
2558 *bridge = dev;
2559 return pin;
2563 * pci_common_swizzle - swizzle INTx all the way to root bridge
2564 * @dev: the PCI device
2565 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2567 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2568 * bridges all the way up to a PCI root bus.
2570 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2572 u8 pin = *pinp;
2574 while (!pci_is_root_bus(dev->bus)) {
2575 pin = pci_swizzle_interrupt_pin(dev, pin);
2576 dev = dev->bus->self;
2578 *pinp = pin;
2579 return PCI_SLOT(dev->devfn);
2583 * pci_release_region - Release a PCI bar
2584 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2585 * @bar: BAR to release
2587 * Releases the PCI I/O and memory resources previously reserved by a
2588 * successful call to pci_request_region. Call this function only
2589 * after all use of the PCI regions has ceased.
2591 void pci_release_region(struct pci_dev *pdev, int bar)
2593 struct pci_devres *dr;
2595 if (pci_resource_len(pdev, bar) == 0)
2596 return;
2597 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2598 release_region(pci_resource_start(pdev, bar),
2599 pci_resource_len(pdev, bar));
2600 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2601 release_mem_region(pci_resource_start(pdev, bar),
2602 pci_resource_len(pdev, bar));
2604 dr = find_pci_dr(pdev);
2605 if (dr)
2606 dr->region_mask &= ~(1 << bar);
2610 * __pci_request_region - Reserved PCI I/O and memory resource
2611 * @pdev: PCI device whose resources are to be reserved
2612 * @bar: BAR to be reserved
2613 * @res_name: Name to be associated with resource.
2614 * @exclusive: whether the region access is exclusive or not
2616 * Mark the PCI region associated with PCI device @pdev BR @bar as
2617 * being reserved by owner @res_name. Do not access any
2618 * address inside the PCI regions unless this call returns
2619 * successfully.
2621 * If @exclusive is set, then the region is marked so that userspace
2622 * is explicitly not allowed to map the resource via /dev/mem or
2623 * sysfs MMIO access.
2625 * Returns 0 on success, or %EBUSY on error. A warning
2626 * message is also printed on failure.
2628 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2629 int exclusive)
2631 struct pci_devres *dr;
2633 if (pci_resource_len(pdev, bar) == 0)
2634 return 0;
2636 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2637 if (!request_region(pci_resource_start(pdev, bar),
2638 pci_resource_len(pdev, bar), res_name))
2639 goto err_out;
2641 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2642 if (!__request_mem_region(pci_resource_start(pdev, bar),
2643 pci_resource_len(pdev, bar), res_name,
2644 exclusive))
2645 goto err_out;
2648 dr = find_pci_dr(pdev);
2649 if (dr)
2650 dr->region_mask |= 1 << bar;
2652 return 0;
2654 err_out:
2655 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2656 &pdev->resource[bar]);
2657 return -EBUSY;
2661 * pci_request_region - Reserve PCI I/O and memory resource
2662 * @pdev: PCI device whose resources are to be reserved
2663 * @bar: BAR to be reserved
2664 * @res_name: Name to be associated with resource
2666 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2667 * being reserved by owner @res_name. Do not access any
2668 * address inside the PCI regions unless this call returns
2669 * successfully.
2671 * Returns 0 on success, or %EBUSY on error. A warning
2672 * message is also printed on failure.
2674 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2676 return __pci_request_region(pdev, bar, res_name, 0);
2680 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2681 * @pdev: PCI device whose resources are to be reserved
2682 * @bar: BAR to be reserved
2683 * @res_name: Name to be associated with resource.
2685 * Mark the PCI region associated with PCI device @pdev BR @bar as
2686 * being reserved by owner @res_name. Do not access any
2687 * address inside the PCI regions unless this call returns
2688 * successfully.
2690 * Returns 0 on success, or %EBUSY on error. A warning
2691 * message is also printed on failure.
2693 * The key difference that _exclusive makes it that userspace is
2694 * explicitly not allowed to map the resource via /dev/mem or
2695 * sysfs.
2697 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2699 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2702 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2703 * @pdev: PCI device whose resources were previously reserved
2704 * @bars: Bitmask of BARs to be released
2706 * Release selected PCI I/O and memory resources previously reserved.
2707 * Call this function only after all use of the PCI regions has ceased.
2709 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2711 int i;
2713 for (i = 0; i < 6; i++)
2714 if (bars & (1 << i))
2715 pci_release_region(pdev, i);
2718 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2719 const char *res_name, int excl)
2721 int i;
2723 for (i = 0; i < 6; i++)
2724 if (bars & (1 << i))
2725 if (__pci_request_region(pdev, i, res_name, excl))
2726 goto err_out;
2727 return 0;
2729 err_out:
2730 while(--i >= 0)
2731 if (bars & (1 << i))
2732 pci_release_region(pdev, i);
2734 return -EBUSY;
2739 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2740 * @pdev: PCI device whose resources are to be reserved
2741 * @bars: Bitmask of BARs to be requested
2742 * @res_name: Name to be associated with resource
2744 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2745 const char *res_name)
2747 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2750 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2751 int bars, const char *res_name)
2753 return __pci_request_selected_regions(pdev, bars, res_name,
2754 IORESOURCE_EXCLUSIVE);
2758 * pci_release_regions - Release reserved PCI I/O and memory resources
2759 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2761 * Releases all PCI I/O and memory resources previously reserved by a
2762 * successful call to pci_request_regions. Call this function only
2763 * after all use of the PCI regions has ceased.
2766 void pci_release_regions(struct pci_dev *pdev)
2768 pci_release_selected_regions(pdev, (1 << 6) - 1);
2772 * pci_request_regions - Reserved PCI I/O and memory resources
2773 * @pdev: PCI device whose resources are to be reserved
2774 * @res_name: Name to be associated with resource.
2776 * Mark all PCI regions associated with PCI device @pdev as
2777 * being reserved by owner @res_name. Do not access any
2778 * address inside the PCI regions unless this call returns
2779 * successfully.
2781 * Returns 0 on success, or %EBUSY on error. A warning
2782 * message is also printed on failure.
2784 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2786 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2790 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2791 * @pdev: PCI device whose resources are to be reserved
2792 * @res_name: Name to be associated with resource.
2794 * Mark all PCI regions associated with PCI device @pdev as
2795 * being reserved by owner @res_name. Do not access any
2796 * address inside the PCI regions unless this call returns
2797 * successfully.
2799 * pci_request_regions_exclusive() will mark the region so that
2800 * /dev/mem and the sysfs MMIO access will not be allowed.
2802 * Returns 0 on success, or %EBUSY on error. A warning
2803 * message is also printed on failure.
2805 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2807 return pci_request_selected_regions_exclusive(pdev,
2808 ((1 << 6) - 1), res_name);
2811 static void __pci_set_master(struct pci_dev *dev, bool enable)
2813 u16 old_cmd, cmd;
2815 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2816 if (enable)
2817 cmd = old_cmd | PCI_COMMAND_MASTER;
2818 else
2819 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2820 if (cmd != old_cmd) {
2821 dev_dbg(&dev->dev, "%s bus mastering\n",
2822 enable ? "enabling" : "disabling");
2823 pci_write_config_word(dev, PCI_COMMAND, cmd);
2825 dev->is_busmaster = enable;
2829 * pcibios_setup - process "pci=" kernel boot arguments
2830 * @str: string used to pass in "pci=" kernel boot arguments
2832 * Process kernel boot arguments. This is the default implementation.
2833 * Architecture specific implementations can override this as necessary.
2835 char * __weak __init pcibios_setup(char *str)
2837 return str;
2841 * pcibios_set_master - enable PCI bus-mastering for device dev
2842 * @dev: the PCI device to enable
2844 * Enables PCI bus-mastering for the device. This is the default
2845 * implementation. Architecture specific implementations can override
2846 * this if necessary.
2848 void __weak pcibios_set_master(struct pci_dev *dev)
2850 u8 lat;
2852 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2853 if (pci_is_pcie(dev))
2854 return;
2856 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2857 if (lat < 16)
2858 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2859 else if (lat > pcibios_max_latency)
2860 lat = pcibios_max_latency;
2861 else
2862 return;
2863 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2864 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2868 * pci_set_master - enables bus-mastering for device dev
2869 * @dev: the PCI device to enable
2871 * Enables bus-mastering on the device and calls pcibios_set_master()
2872 * to do the needed arch specific settings.
2874 void pci_set_master(struct pci_dev *dev)
2876 __pci_set_master(dev, true);
2877 pcibios_set_master(dev);
2881 * pci_clear_master - disables bus-mastering for device dev
2882 * @dev: the PCI device to disable
2884 void pci_clear_master(struct pci_dev *dev)
2886 __pci_set_master(dev, false);
2890 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2891 * @dev: the PCI device for which MWI is to be enabled
2893 * Helper function for pci_set_mwi.
2894 * Originally copied from drivers/net/acenic.c.
2895 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2897 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2899 int pci_set_cacheline_size(struct pci_dev *dev)
2901 u8 cacheline_size;
2903 if (!pci_cache_line_size)
2904 return -EINVAL;
2906 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2907 equal to or multiple of the right value. */
2908 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2909 if (cacheline_size >= pci_cache_line_size &&
2910 (cacheline_size % pci_cache_line_size) == 0)
2911 return 0;
2913 /* Write the correct value. */
2914 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2915 /* Read it back. */
2916 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2917 if (cacheline_size == pci_cache_line_size)
2918 return 0;
2920 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2921 "supported\n", pci_cache_line_size << 2);
2923 return -EINVAL;
2925 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2927 #ifdef PCI_DISABLE_MWI
2928 int pci_set_mwi(struct pci_dev *dev)
2930 return 0;
2933 int pci_try_set_mwi(struct pci_dev *dev)
2935 return 0;
2938 void pci_clear_mwi(struct pci_dev *dev)
2942 #else
2945 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2946 * @dev: the PCI device for which MWI is enabled
2948 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2950 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2953 pci_set_mwi(struct pci_dev *dev)
2955 int rc;
2956 u16 cmd;
2958 rc = pci_set_cacheline_size(dev);
2959 if (rc)
2960 return rc;
2962 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2963 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2964 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2965 cmd |= PCI_COMMAND_INVALIDATE;
2966 pci_write_config_word(dev, PCI_COMMAND, cmd);
2969 return 0;
2973 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2974 * @dev: the PCI device for which MWI is enabled
2976 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2977 * Callers are not required to check the return value.
2979 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2981 int pci_try_set_mwi(struct pci_dev *dev)
2983 int rc = pci_set_mwi(dev);
2984 return rc;
2988 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2989 * @dev: the PCI device to disable
2991 * Disables PCI Memory-Write-Invalidate transaction on the device
2993 void
2994 pci_clear_mwi(struct pci_dev *dev)
2996 u16 cmd;
2998 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2999 if (cmd & PCI_COMMAND_INVALIDATE) {
3000 cmd &= ~PCI_COMMAND_INVALIDATE;
3001 pci_write_config_word(dev, PCI_COMMAND, cmd);
3004 #endif /* ! PCI_DISABLE_MWI */
3007 * pci_intx - enables/disables PCI INTx for device dev
3008 * @pdev: the PCI device to operate on
3009 * @enable: boolean: whether to enable or disable PCI INTx
3011 * Enables/disables PCI INTx for device dev
3013 void
3014 pci_intx(struct pci_dev *pdev, int enable)
3016 u16 pci_command, new;
3018 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3020 if (enable) {
3021 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3022 } else {
3023 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3026 if (new != pci_command) {
3027 struct pci_devres *dr;
3029 pci_write_config_word(pdev, PCI_COMMAND, new);
3031 dr = find_pci_dr(pdev);
3032 if (dr && !dr->restore_intx) {
3033 dr->restore_intx = 1;
3034 dr->orig_intx = !enable;
3040 * pci_intx_mask_supported - probe for INTx masking support
3041 * @dev: the PCI device to operate on
3043 * Check if the device dev support INTx masking via the config space
3044 * command word.
3046 bool pci_intx_mask_supported(struct pci_dev *dev)
3048 bool mask_supported = false;
3049 u16 orig, new;
3051 if (dev->broken_intx_masking)
3052 return false;
3054 pci_cfg_access_lock(dev);
3056 pci_read_config_word(dev, PCI_COMMAND, &orig);
3057 pci_write_config_word(dev, PCI_COMMAND,
3058 orig ^ PCI_COMMAND_INTX_DISABLE);
3059 pci_read_config_word(dev, PCI_COMMAND, &new);
3062 * There's no way to protect against hardware bugs or detect them
3063 * reliably, but as long as we know what the value should be, let's
3064 * go ahead and check it.
3066 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3067 dev_err(&dev->dev, "Command register changed from "
3068 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
3069 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3070 mask_supported = true;
3071 pci_write_config_word(dev, PCI_COMMAND, orig);
3074 pci_cfg_access_unlock(dev);
3075 return mask_supported;
3077 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3079 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3081 struct pci_bus *bus = dev->bus;
3082 bool mask_updated = true;
3083 u32 cmd_status_dword;
3084 u16 origcmd, newcmd;
3085 unsigned long flags;
3086 bool irq_pending;
3089 * We do a single dword read to retrieve both command and status.
3090 * Document assumptions that make this possible.
3092 BUILD_BUG_ON(PCI_COMMAND % 4);
3093 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3095 raw_spin_lock_irqsave(&pci_lock, flags);
3097 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3099 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3102 * Check interrupt status register to see whether our device
3103 * triggered the interrupt (when masking) or the next IRQ is
3104 * already pending (when unmasking).
3106 if (mask != irq_pending) {
3107 mask_updated = false;
3108 goto done;
3111 origcmd = cmd_status_dword;
3112 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3113 if (mask)
3114 newcmd |= PCI_COMMAND_INTX_DISABLE;
3115 if (newcmd != origcmd)
3116 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3118 done:
3119 raw_spin_unlock_irqrestore(&pci_lock, flags);
3121 return mask_updated;
3125 * pci_check_and_mask_intx - mask INTx on pending interrupt
3126 * @dev: the PCI device to operate on
3128 * Check if the device dev has its INTx line asserted, mask it and
3129 * return true in that case. False is returned if not interrupt was
3130 * pending.
3132 bool pci_check_and_mask_intx(struct pci_dev *dev)
3134 return pci_check_and_set_intx_mask(dev, true);
3136 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3139 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3140 * @dev: the PCI device to operate on
3142 * Check if the device dev has its INTx line asserted, unmask it if not
3143 * and return true. False is returned and the mask remains active if
3144 * there was still an interrupt pending.
3146 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3148 return pci_check_and_set_intx_mask(dev, false);
3150 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3153 * pci_msi_off - disables any MSI or MSI-X capabilities
3154 * @dev: the PCI device to operate on
3156 * If you want to use MSI, see pci_enable_msi() and friends.
3157 * This is a lower-level primitive that allows us to disable
3158 * MSI operation at the device level.
3160 void pci_msi_off(struct pci_dev *dev)
3162 int pos;
3163 u16 control;
3166 * This looks like it could go in msi.c, but we need it even when
3167 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3168 * dev->msi_cap or dev->msix_cap here.
3170 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3171 if (pos) {
3172 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3173 control &= ~PCI_MSI_FLAGS_ENABLE;
3174 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3176 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3177 if (pos) {
3178 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3179 control &= ~PCI_MSIX_FLAGS_ENABLE;
3180 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3183 EXPORT_SYMBOL_GPL(pci_msi_off);
3185 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3187 return dma_set_max_seg_size(&dev->dev, size);
3189 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3191 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3193 return dma_set_seg_boundary(&dev->dev, mask);
3195 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3198 * pci_wait_for_pending_transaction - waits for pending transaction
3199 * @dev: the PCI device to operate on
3201 * Return 0 if transaction is pending 1 otherwise.
3203 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3205 int i;
3206 u16 status;
3208 /* Wait for Transaction Pending bit clean */
3209 for (i = 0; i < 4; i++) {
3210 if (i)
3211 msleep((1 << (i - 1)) * 100);
3213 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3214 if (!(status & PCI_EXP_DEVSTA_TRPND))
3215 return 1;
3218 return 0;
3220 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3222 static int pcie_flr(struct pci_dev *dev, int probe)
3224 u32 cap;
3226 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3227 if (!(cap & PCI_EXP_DEVCAP_FLR))
3228 return -ENOTTY;
3230 if (probe)
3231 return 0;
3233 if (!pci_wait_for_pending_transaction(dev))
3234 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3236 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3238 msleep(100);
3240 return 0;
3243 static int pci_af_flr(struct pci_dev *dev, int probe)
3245 int i;
3246 int pos;
3247 u8 cap;
3248 u8 status;
3250 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3251 if (!pos)
3252 return -ENOTTY;
3254 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3255 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3256 return -ENOTTY;
3258 if (probe)
3259 return 0;
3261 /* Wait for Transaction Pending bit clean */
3262 for (i = 0; i < 4; i++) {
3263 if (i)
3264 msleep((1 << (i - 1)) * 100);
3266 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3267 if (!(status & PCI_AF_STATUS_TP))
3268 goto clear;
3271 dev_err(&dev->dev, "transaction is not cleared; "
3272 "proceeding with reset anyway\n");
3274 clear:
3275 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3276 msleep(100);
3278 return 0;
3282 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3283 * @dev: Device to reset.
3284 * @probe: If set, only check if the device can be reset this way.
3286 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3287 * unset, it will be reinitialized internally when going from PCI_D3hot to
3288 * PCI_D0. If that's the case and the device is not in a low-power state
3289 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3291 * NOTE: This causes the caller to sleep for twice the device power transition
3292 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3293 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3294 * Moreover, only devices in D0 can be reset by this function.
3296 static int pci_pm_reset(struct pci_dev *dev, int probe)
3298 u16 csr;
3300 if (!dev->pm_cap)
3301 return -ENOTTY;
3303 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3304 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3305 return -ENOTTY;
3307 if (probe)
3308 return 0;
3310 if (dev->current_state != PCI_D0)
3311 return -EINVAL;
3313 csr &= ~PCI_PM_CTRL_STATE_MASK;
3314 csr |= PCI_D3hot;
3315 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3316 pci_dev_d3_sleep(dev);
3318 csr &= ~PCI_PM_CTRL_STATE_MASK;
3319 csr |= PCI_D0;
3320 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3321 pci_dev_d3_sleep(dev);
3323 return 0;
3327 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3328 * @dev: Bridge device
3330 * Use the bridge control register to assert reset on the secondary bus.
3331 * Devices on the secondary bus are left in power-on state.
3333 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3335 u16 ctrl;
3337 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3338 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3339 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3341 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3342 * this to 2ms to ensure that we meet the minium requirement.
3344 msleep(2);
3346 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3347 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3350 * Trhfa for conventional PCI is 2^25 clock cycles.
3351 * Assuming a minimum 33MHz clock this results in a 1s
3352 * delay before we can consider subordinate devices to
3353 * be re-initialized. PCIe has some ways to shorten this,
3354 * but we don't make use of them yet.
3356 ssleep(1);
3358 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3360 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3362 struct pci_dev *pdev;
3364 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3365 return -ENOTTY;
3367 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3368 if (pdev != dev)
3369 return -ENOTTY;
3371 if (probe)
3372 return 0;
3374 pci_reset_bridge_secondary_bus(dev->bus->self);
3376 return 0;
3379 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3381 int rc = -ENOTTY;
3383 if (!hotplug || !try_module_get(hotplug->ops->owner))
3384 return rc;
3386 if (hotplug->ops->reset_slot)
3387 rc = hotplug->ops->reset_slot(hotplug, probe);
3389 module_put(hotplug->ops->owner);
3391 return rc;
3394 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3396 struct pci_dev *pdev;
3398 if (dev->subordinate || !dev->slot)
3399 return -ENOTTY;
3401 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3402 if (pdev != dev && pdev->slot == dev->slot)
3403 return -ENOTTY;
3405 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3408 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3410 int rc;
3412 might_sleep();
3414 rc = pci_dev_specific_reset(dev, probe);
3415 if (rc != -ENOTTY)
3416 goto done;
3418 rc = pcie_flr(dev, probe);
3419 if (rc != -ENOTTY)
3420 goto done;
3422 rc = pci_af_flr(dev, probe);
3423 if (rc != -ENOTTY)
3424 goto done;
3426 rc = pci_pm_reset(dev, probe);
3427 if (rc != -ENOTTY)
3428 goto done;
3430 rc = pci_dev_reset_slot_function(dev, probe);
3431 if (rc != -ENOTTY)
3432 goto done;
3434 rc = pci_parent_bus_reset(dev, probe);
3435 done:
3436 return rc;
3439 static void pci_dev_lock(struct pci_dev *dev)
3441 pci_cfg_access_lock(dev);
3442 /* block PM suspend, driver probe, etc. */
3443 device_lock(&dev->dev);
3446 static void pci_dev_unlock(struct pci_dev *dev)
3448 device_unlock(&dev->dev);
3449 pci_cfg_access_unlock(dev);
3452 static void pci_dev_save_and_disable(struct pci_dev *dev)
3455 * Wake-up device prior to save. PM registers default to D0 after
3456 * reset and a simple register restore doesn't reliably return
3457 * to a non-D0 state anyway.
3459 pci_set_power_state(dev, PCI_D0);
3461 pci_save_state(dev);
3463 * Disable the device by clearing the Command register, except for
3464 * INTx-disable which is set. This not only disables MMIO and I/O port
3465 * BARs, but also prevents the device from being Bus Master, preventing
3466 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3467 * compliant devices, INTx-disable prevents legacy interrupts.
3469 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3472 static void pci_dev_restore(struct pci_dev *dev)
3474 pci_restore_state(dev);
3477 static int pci_dev_reset(struct pci_dev *dev, int probe)
3479 int rc;
3481 if (!probe)
3482 pci_dev_lock(dev);
3484 rc = __pci_dev_reset(dev, probe);
3486 if (!probe)
3487 pci_dev_unlock(dev);
3489 return rc;
3492 * __pci_reset_function - reset a PCI device function
3493 * @dev: PCI device to reset
3495 * Some devices allow an individual function to be reset without affecting
3496 * other functions in the same device. The PCI device must be responsive
3497 * to PCI config space in order to use this function.
3499 * The device function is presumed to be unused when this function is called.
3500 * Resetting the device will make the contents of PCI configuration space
3501 * random, so any caller of this must be prepared to reinitialise the
3502 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3503 * etc.
3505 * Returns 0 if the device function was successfully reset or negative if the
3506 * device doesn't support resetting a single function.
3508 int __pci_reset_function(struct pci_dev *dev)
3510 return pci_dev_reset(dev, 0);
3512 EXPORT_SYMBOL_GPL(__pci_reset_function);
3515 * __pci_reset_function_locked - reset a PCI device function while holding
3516 * the @dev mutex lock.
3517 * @dev: PCI device to reset
3519 * Some devices allow an individual function to be reset without affecting
3520 * other functions in the same device. The PCI device must be responsive
3521 * to PCI config space in order to use this function.
3523 * The device function is presumed to be unused and the caller is holding
3524 * the device mutex lock when this function is called.
3525 * Resetting the device will make the contents of PCI configuration space
3526 * random, so any caller of this must be prepared to reinitialise the
3527 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3528 * etc.
3530 * Returns 0 if the device function was successfully reset or negative if the
3531 * device doesn't support resetting a single function.
3533 int __pci_reset_function_locked(struct pci_dev *dev)
3535 return __pci_dev_reset(dev, 0);
3537 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3540 * pci_probe_reset_function - check whether the device can be safely reset
3541 * @dev: PCI device to reset
3543 * Some devices allow an individual function to be reset without affecting
3544 * other functions in the same device. The PCI device must be responsive
3545 * to PCI config space in order to use this function.
3547 * Returns 0 if the device function can be reset or negative if the
3548 * device doesn't support resetting a single function.
3550 int pci_probe_reset_function(struct pci_dev *dev)
3552 return pci_dev_reset(dev, 1);
3556 * pci_reset_function - quiesce and reset a PCI device function
3557 * @dev: PCI device to reset
3559 * Some devices allow an individual function to be reset without affecting
3560 * other functions in the same device. The PCI device must be responsive
3561 * to PCI config space in order to use this function.
3563 * This function does not just reset the PCI portion of a device, but
3564 * clears all the state associated with the device. This function differs
3565 * from __pci_reset_function in that it saves and restores device state
3566 * over the reset.
3568 * Returns 0 if the device function was successfully reset or negative if the
3569 * device doesn't support resetting a single function.
3571 int pci_reset_function(struct pci_dev *dev)
3573 int rc;
3575 rc = pci_dev_reset(dev, 1);
3576 if (rc)
3577 return rc;
3579 pci_dev_save_and_disable(dev);
3581 rc = pci_dev_reset(dev, 0);
3583 pci_dev_restore(dev);
3585 return rc;
3587 EXPORT_SYMBOL_GPL(pci_reset_function);
3589 /* Lock devices from the top of the tree down */
3590 static void pci_bus_lock(struct pci_bus *bus)
3592 struct pci_dev *dev;
3594 list_for_each_entry(dev, &bus->devices, bus_list) {
3595 pci_dev_lock(dev);
3596 if (dev->subordinate)
3597 pci_bus_lock(dev->subordinate);
3601 /* Unlock devices from the bottom of the tree up */
3602 static void pci_bus_unlock(struct pci_bus *bus)
3604 struct pci_dev *dev;
3606 list_for_each_entry(dev, &bus->devices, bus_list) {
3607 if (dev->subordinate)
3608 pci_bus_unlock(dev->subordinate);
3609 pci_dev_unlock(dev);
3613 /* Lock devices from the top of the tree down */
3614 static void pci_slot_lock(struct pci_slot *slot)
3616 struct pci_dev *dev;
3618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3619 if (!dev->slot || dev->slot != slot)
3620 continue;
3621 pci_dev_lock(dev);
3622 if (dev->subordinate)
3623 pci_bus_lock(dev->subordinate);
3627 /* Unlock devices from the bottom of the tree up */
3628 static void pci_slot_unlock(struct pci_slot *slot)
3630 struct pci_dev *dev;
3632 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3633 if (!dev->slot || dev->slot != slot)
3634 continue;
3635 if (dev->subordinate)
3636 pci_bus_unlock(dev->subordinate);
3637 pci_dev_unlock(dev);
3641 /* Save and disable devices from the top of the tree down */
3642 static void pci_bus_save_and_disable(struct pci_bus *bus)
3644 struct pci_dev *dev;
3646 list_for_each_entry(dev, &bus->devices, bus_list) {
3647 pci_dev_save_and_disable(dev);
3648 if (dev->subordinate)
3649 pci_bus_save_and_disable(dev->subordinate);
3654 * Restore devices from top of the tree down - parent bridges need to be
3655 * restored before we can get to subordinate devices.
3657 static void pci_bus_restore(struct pci_bus *bus)
3659 struct pci_dev *dev;
3661 list_for_each_entry(dev, &bus->devices, bus_list) {
3662 pci_dev_restore(dev);
3663 if (dev->subordinate)
3664 pci_bus_restore(dev->subordinate);
3668 /* Save and disable devices from the top of the tree down */
3669 static void pci_slot_save_and_disable(struct pci_slot *slot)
3671 struct pci_dev *dev;
3673 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3674 if (!dev->slot || dev->slot != slot)
3675 continue;
3676 pci_dev_save_and_disable(dev);
3677 if (dev->subordinate)
3678 pci_bus_save_and_disable(dev->subordinate);
3683 * Restore devices from top of the tree down - parent bridges need to be
3684 * restored before we can get to subordinate devices.
3686 static void pci_slot_restore(struct pci_slot *slot)
3688 struct pci_dev *dev;
3690 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3691 if (!dev->slot || dev->slot != slot)
3692 continue;
3693 pci_dev_restore(dev);
3694 if (dev->subordinate)
3695 pci_bus_restore(dev->subordinate);
3699 static int pci_slot_reset(struct pci_slot *slot, int probe)
3701 int rc;
3703 if (!slot)
3704 return -ENOTTY;
3706 if (!probe)
3707 pci_slot_lock(slot);
3709 might_sleep();
3711 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3713 if (!probe)
3714 pci_slot_unlock(slot);
3716 return rc;
3720 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3721 * @slot: PCI slot to probe
3723 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3725 int pci_probe_reset_slot(struct pci_slot *slot)
3727 return pci_slot_reset(slot, 1);
3729 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3732 * pci_reset_slot - reset a PCI slot
3733 * @slot: PCI slot to reset
3735 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3736 * independent of other slots. For instance, some slots may support slot power
3737 * control. In the case of a 1:1 bus to slot architecture, this function may
3738 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3739 * Generally a slot reset should be attempted before a bus reset. All of the
3740 * function of the slot and any subordinate buses behind the slot are reset
3741 * through this function. PCI config space of all devices in the slot and
3742 * behind the slot is saved before and restored after reset.
3744 * Return 0 on success, non-zero on error.
3746 int pci_reset_slot(struct pci_slot *slot)
3748 int rc;
3750 rc = pci_slot_reset(slot, 1);
3751 if (rc)
3752 return rc;
3754 pci_slot_save_and_disable(slot);
3756 rc = pci_slot_reset(slot, 0);
3758 pci_slot_restore(slot);
3760 return rc;
3762 EXPORT_SYMBOL_GPL(pci_reset_slot);
3764 static int pci_bus_reset(struct pci_bus *bus, int probe)
3766 if (!bus->self)
3767 return -ENOTTY;
3769 if (probe)
3770 return 0;
3772 pci_bus_lock(bus);
3774 might_sleep();
3776 pci_reset_bridge_secondary_bus(bus->self);
3778 pci_bus_unlock(bus);
3780 return 0;
3784 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3785 * @bus: PCI bus to probe
3787 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3789 int pci_probe_reset_bus(struct pci_bus *bus)
3791 return pci_bus_reset(bus, 1);
3793 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3796 * pci_reset_bus - reset a PCI bus
3797 * @bus: top level PCI bus to reset
3799 * Do a bus reset on the given bus and any subordinate buses, saving
3800 * and restoring state of all devices.
3802 * Return 0 on success, non-zero on error.
3804 int pci_reset_bus(struct pci_bus *bus)
3806 int rc;
3808 rc = pci_bus_reset(bus, 1);
3809 if (rc)
3810 return rc;
3812 pci_bus_save_and_disable(bus);
3814 rc = pci_bus_reset(bus, 0);
3816 pci_bus_restore(bus);
3818 return rc;
3820 EXPORT_SYMBOL_GPL(pci_reset_bus);
3823 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3824 * @dev: PCI device to query
3826 * Returns mmrbc: maximum designed memory read count in bytes
3827 * or appropriate error value.
3829 int pcix_get_max_mmrbc(struct pci_dev *dev)
3831 int cap;
3832 u32 stat;
3834 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3835 if (!cap)
3836 return -EINVAL;
3838 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3839 return -EINVAL;
3841 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3843 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3846 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3847 * @dev: PCI device to query
3849 * Returns mmrbc: maximum memory read count in bytes
3850 * or appropriate error value.
3852 int pcix_get_mmrbc(struct pci_dev *dev)
3854 int cap;
3855 u16 cmd;
3857 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3858 if (!cap)
3859 return -EINVAL;
3861 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3862 return -EINVAL;
3864 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3866 EXPORT_SYMBOL(pcix_get_mmrbc);
3869 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3870 * @dev: PCI device to query
3871 * @mmrbc: maximum memory read count in bytes
3872 * valid values are 512, 1024, 2048, 4096
3874 * If possible sets maximum memory read byte count, some bridges have erratas
3875 * that prevent this.
3877 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3879 int cap;
3880 u32 stat, v, o;
3881 u16 cmd;
3883 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3884 return -EINVAL;
3886 v = ffs(mmrbc) - 10;
3888 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3889 if (!cap)
3890 return -EINVAL;
3892 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3893 return -EINVAL;
3895 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3896 return -E2BIG;
3898 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3899 return -EINVAL;
3901 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3902 if (o != v) {
3903 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3904 return -EIO;
3906 cmd &= ~PCI_X_CMD_MAX_READ;
3907 cmd |= v << 2;
3908 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3909 return -EIO;
3911 return 0;
3913 EXPORT_SYMBOL(pcix_set_mmrbc);
3916 * pcie_get_readrq - get PCI Express read request size
3917 * @dev: PCI device to query
3919 * Returns maximum memory read request in bytes
3920 * or appropriate error value.
3922 int pcie_get_readrq(struct pci_dev *dev)
3924 u16 ctl;
3926 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3928 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3930 EXPORT_SYMBOL(pcie_get_readrq);
3933 * pcie_set_readrq - set PCI Express maximum memory read request
3934 * @dev: PCI device to query
3935 * @rq: maximum memory read count in bytes
3936 * valid values are 128, 256, 512, 1024, 2048, 4096
3938 * If possible sets maximum memory read request in bytes
3940 int pcie_set_readrq(struct pci_dev *dev, int rq)
3942 u16 v;
3944 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3945 return -EINVAL;
3948 * If using the "performance" PCIe config, we clamp the
3949 * read rq size to the max packet size to prevent the
3950 * host bridge generating requests larger than we can
3951 * cope with
3953 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3954 int mps = pcie_get_mps(dev);
3956 if (mps < rq)
3957 rq = mps;
3960 v = (ffs(rq) - 8) << 12;
3962 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3963 PCI_EXP_DEVCTL_READRQ, v);
3965 EXPORT_SYMBOL(pcie_set_readrq);
3968 * pcie_get_mps - get PCI Express maximum payload size
3969 * @dev: PCI device to query
3971 * Returns maximum payload size in bytes
3973 int pcie_get_mps(struct pci_dev *dev)
3975 u16 ctl;
3977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3979 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3983 * pcie_set_mps - set PCI Express maximum payload size
3984 * @dev: PCI device to query
3985 * @mps: maximum payload size in bytes
3986 * valid values are 128, 256, 512, 1024, 2048, 4096
3988 * If possible sets maximum payload size
3990 int pcie_set_mps(struct pci_dev *dev, int mps)
3992 u16 v;
3994 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3995 return -EINVAL;
3997 v = ffs(mps) - 8;
3998 if (v > dev->pcie_mpss)
3999 return -EINVAL;
4000 v <<= 5;
4002 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4003 PCI_EXP_DEVCTL_PAYLOAD, v);
4007 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4008 * @dev: PCI device to query
4009 * @speed: storage for minimum speed
4010 * @width: storage for minimum width
4012 * This function will walk up the PCI device chain and determine the minimum
4013 * link width and speed of the device.
4015 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4016 enum pcie_link_width *width)
4018 int ret;
4020 *speed = PCI_SPEED_UNKNOWN;
4021 *width = PCIE_LNK_WIDTH_UNKNOWN;
4023 while (dev) {
4024 u16 lnksta;
4025 enum pci_bus_speed next_speed;
4026 enum pcie_link_width next_width;
4028 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4029 if (ret)
4030 return ret;
4032 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4033 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4034 PCI_EXP_LNKSTA_NLW_SHIFT;
4036 if (next_speed < *speed)
4037 *speed = next_speed;
4039 if (next_width < *width)
4040 *width = next_width;
4042 dev = dev->bus->self;
4045 return 0;
4047 EXPORT_SYMBOL(pcie_get_minimum_link);
4050 * pci_select_bars - Make BAR mask from the type of resource
4051 * @dev: the PCI device for which BAR mask is made
4052 * @flags: resource type mask to be selected
4054 * This helper routine makes bar mask from the type of resource.
4056 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4058 int i, bars = 0;
4059 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4060 if (pci_resource_flags(dev, i) & flags)
4061 bars |= (1 << i);
4062 return bars;
4066 * pci_resource_bar - get position of the BAR associated with a resource
4067 * @dev: the PCI device
4068 * @resno: the resource number
4069 * @type: the BAR type to be filled in
4071 * Returns BAR position in config space, or 0 if the BAR is invalid.
4073 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4075 int reg;
4077 if (resno < PCI_ROM_RESOURCE) {
4078 *type = pci_bar_unknown;
4079 return PCI_BASE_ADDRESS_0 + 4 * resno;
4080 } else if (resno == PCI_ROM_RESOURCE) {
4081 *type = pci_bar_mem32;
4082 return dev->rom_base_reg;
4083 } else if (resno < PCI_BRIDGE_RESOURCES) {
4084 /* device specific resource */
4085 reg = pci_iov_resource_bar(dev, resno, type);
4086 if (reg)
4087 return reg;
4090 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4091 return 0;
4094 /* Some architectures require additional programming to enable VGA */
4095 static arch_set_vga_state_t arch_set_vga_state;
4097 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4099 arch_set_vga_state = func; /* NULL disables */
4102 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4103 unsigned int command_bits, u32 flags)
4105 if (arch_set_vga_state)
4106 return arch_set_vga_state(dev, decode, command_bits,
4107 flags);
4108 return 0;
4112 * pci_set_vga_state - set VGA decode state on device and parents if requested
4113 * @dev: the PCI device
4114 * @decode: true = enable decoding, false = disable decoding
4115 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4116 * @flags: traverse ancestors and change bridges
4117 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4119 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4120 unsigned int command_bits, u32 flags)
4122 struct pci_bus *bus;
4123 struct pci_dev *bridge;
4124 u16 cmd;
4125 int rc;
4127 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4129 /* ARCH specific VGA enables */
4130 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4131 if (rc)
4132 return rc;
4134 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4135 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4136 if (decode == true)
4137 cmd |= command_bits;
4138 else
4139 cmd &= ~command_bits;
4140 pci_write_config_word(dev, PCI_COMMAND, cmd);
4143 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4144 return 0;
4146 bus = dev->bus;
4147 while (bus) {
4148 bridge = bus->self;
4149 if (bridge) {
4150 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4151 &cmd);
4152 if (decode == true)
4153 cmd |= PCI_BRIDGE_CTL_VGA;
4154 else
4155 cmd &= ~PCI_BRIDGE_CTL_VGA;
4156 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4157 cmd);
4159 bus = bus->parent;
4161 return 0;
4164 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4165 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4166 static DEFINE_SPINLOCK(resource_alignment_lock);
4169 * pci_specified_resource_alignment - get resource alignment specified by user.
4170 * @dev: the PCI device to get
4172 * RETURNS: Resource alignment if it is specified.
4173 * Zero if it is not specified.
4175 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4177 int seg, bus, slot, func, align_order, count;
4178 resource_size_t align = 0;
4179 char *p;
4181 spin_lock(&resource_alignment_lock);
4182 p = resource_alignment_param;
4183 while (*p) {
4184 count = 0;
4185 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4186 p[count] == '@') {
4187 p += count + 1;
4188 } else {
4189 align_order = -1;
4191 if (sscanf(p, "%x:%x:%x.%x%n",
4192 &seg, &bus, &slot, &func, &count) != 4) {
4193 seg = 0;
4194 if (sscanf(p, "%x:%x.%x%n",
4195 &bus, &slot, &func, &count) != 3) {
4196 /* Invalid format */
4197 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4199 break;
4202 p += count;
4203 if (seg == pci_domain_nr(dev->bus) &&
4204 bus == dev->bus->number &&
4205 slot == PCI_SLOT(dev->devfn) &&
4206 func == PCI_FUNC(dev->devfn)) {
4207 if (align_order == -1) {
4208 align = PAGE_SIZE;
4209 } else {
4210 align = 1 << align_order;
4212 /* Found */
4213 break;
4215 if (*p != ';' && *p != ',') {
4216 /* End of param or invalid format */
4217 break;
4219 p++;
4221 spin_unlock(&resource_alignment_lock);
4222 return align;
4226 * This function disables memory decoding and releases memory resources
4227 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4228 * It also rounds up size to specified alignment.
4229 * Later on, the kernel will assign page-aligned memory resource back
4230 * to the device.
4232 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4234 int i;
4235 struct resource *r;
4236 resource_size_t align, size;
4237 u16 command;
4239 /* check if specified PCI is target device to reassign */
4240 align = pci_specified_resource_alignment(dev);
4241 if (!align)
4242 return;
4244 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4245 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4246 dev_warn(&dev->dev,
4247 "Can't reassign resources to host bridge.\n");
4248 return;
4251 dev_info(&dev->dev,
4252 "Disabling memory decoding and releasing memory resources.\n");
4253 pci_read_config_word(dev, PCI_COMMAND, &command);
4254 command &= ~PCI_COMMAND_MEMORY;
4255 pci_write_config_word(dev, PCI_COMMAND, command);
4257 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4258 r = &dev->resource[i];
4259 if (!(r->flags & IORESOURCE_MEM))
4260 continue;
4261 size = resource_size(r);
4262 if (size < align) {
4263 size = align;
4264 dev_info(&dev->dev,
4265 "Rounding up size of resource #%d to %#llx.\n",
4266 i, (unsigned long long)size);
4268 r->end = size - 1;
4269 r->start = 0;
4271 /* Need to disable bridge's resource window,
4272 * to enable the kernel to reassign new resource
4273 * window later on.
4275 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4276 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4277 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4278 r = &dev->resource[i];
4279 if (!(r->flags & IORESOURCE_MEM))
4280 continue;
4281 r->end = resource_size(r) - 1;
4282 r->start = 0;
4284 pci_disable_bridge_window(dev);
4288 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4290 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4291 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4292 spin_lock(&resource_alignment_lock);
4293 strncpy(resource_alignment_param, buf, count);
4294 resource_alignment_param[count] = '\0';
4295 spin_unlock(&resource_alignment_lock);
4296 return count;
4299 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4301 size_t count;
4302 spin_lock(&resource_alignment_lock);
4303 count = snprintf(buf, size, "%s", resource_alignment_param);
4304 spin_unlock(&resource_alignment_lock);
4305 return count;
4308 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4310 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4313 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4314 const char *buf, size_t count)
4316 return pci_set_resource_alignment_param(buf, count);
4319 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4320 pci_resource_alignment_store);
4322 static int __init pci_resource_alignment_sysfs_init(void)
4324 return bus_create_file(&pci_bus_type,
4325 &bus_attr_resource_alignment);
4328 late_initcall(pci_resource_alignment_sysfs_init);
4330 static void pci_no_domains(void)
4332 #ifdef CONFIG_PCI_DOMAINS
4333 pci_domains_supported = 0;
4334 #endif
4338 * pci_ext_cfg_avail - can we access extended PCI config space?
4340 * Returns 1 if we can access PCI extended config space (offsets
4341 * greater than 0xff). This is the default implementation. Architecture
4342 * implementations can override this.
4344 int __weak pci_ext_cfg_avail(void)
4346 return 1;
4349 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4352 EXPORT_SYMBOL(pci_fixup_cardbus);
4354 static int __init pci_setup(char *str)
4356 while (str) {
4357 char *k = strchr(str, ',');
4358 if (k)
4359 *k++ = 0;
4360 if (*str && (str = pcibios_setup(str)) && *str) {
4361 if (!strcmp(str, "nomsi")) {
4362 pci_no_msi();
4363 } else if (!strcmp(str, "noaer")) {
4364 pci_no_aer();
4365 } else if (!strncmp(str, "realloc=", 8)) {
4366 pci_realloc_get_opt(str + 8);
4367 } else if (!strncmp(str, "realloc", 7)) {
4368 pci_realloc_get_opt("on");
4369 } else if (!strcmp(str, "nodomains")) {
4370 pci_no_domains();
4371 } else if (!strncmp(str, "noari", 5)) {
4372 pcie_ari_disabled = true;
4373 } else if (!strncmp(str, "cbiosize=", 9)) {
4374 pci_cardbus_io_size = memparse(str + 9, &str);
4375 } else if (!strncmp(str, "cbmemsize=", 10)) {
4376 pci_cardbus_mem_size = memparse(str + 10, &str);
4377 } else if (!strncmp(str, "resource_alignment=", 19)) {
4378 pci_set_resource_alignment_param(str + 19,
4379 strlen(str + 19));
4380 } else if (!strncmp(str, "ecrc=", 5)) {
4381 pcie_ecrc_get_policy(str + 5);
4382 } else if (!strncmp(str, "hpiosize=", 9)) {
4383 pci_hotplug_io_size = memparse(str + 9, &str);
4384 } else if (!strncmp(str, "hpmemsize=", 10)) {
4385 pci_hotplug_mem_size = memparse(str + 10, &str);
4386 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4387 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4388 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4389 pcie_bus_config = PCIE_BUS_SAFE;
4390 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4391 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4392 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4393 pcie_bus_config = PCIE_BUS_PEER2PEER;
4394 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4395 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4396 } else {
4397 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4398 str);
4401 str = k;
4403 return 0;
4405 early_param("pci", pci_setup);
4407 EXPORT_SYMBOL(pci_reenable_device);
4408 EXPORT_SYMBOL(pci_enable_device_io);
4409 EXPORT_SYMBOL(pci_enable_device_mem);
4410 EXPORT_SYMBOL(pci_enable_device);
4411 EXPORT_SYMBOL(pcim_enable_device);
4412 EXPORT_SYMBOL(pcim_pin_device);
4413 EXPORT_SYMBOL(pci_disable_device);
4414 EXPORT_SYMBOL(pci_find_capability);
4415 EXPORT_SYMBOL(pci_bus_find_capability);
4416 EXPORT_SYMBOL(pci_release_regions);
4417 EXPORT_SYMBOL(pci_request_regions);
4418 EXPORT_SYMBOL(pci_request_regions_exclusive);
4419 EXPORT_SYMBOL(pci_release_region);
4420 EXPORT_SYMBOL(pci_request_region);
4421 EXPORT_SYMBOL(pci_request_region_exclusive);
4422 EXPORT_SYMBOL(pci_release_selected_regions);
4423 EXPORT_SYMBOL(pci_request_selected_regions);
4424 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4425 EXPORT_SYMBOL(pci_set_master);
4426 EXPORT_SYMBOL(pci_clear_master);
4427 EXPORT_SYMBOL(pci_set_mwi);
4428 EXPORT_SYMBOL(pci_try_set_mwi);
4429 EXPORT_SYMBOL(pci_clear_mwi);
4430 EXPORT_SYMBOL_GPL(pci_intx);
4431 EXPORT_SYMBOL(pci_assign_resource);
4432 EXPORT_SYMBOL(pci_find_parent_resource);
4433 EXPORT_SYMBOL(pci_select_bars);
4435 EXPORT_SYMBOL(pci_set_power_state);
4436 EXPORT_SYMBOL(pci_save_state);
4437 EXPORT_SYMBOL(pci_restore_state);
4438 EXPORT_SYMBOL(pci_pme_capable);
4439 EXPORT_SYMBOL(pci_pme_active);
4440 EXPORT_SYMBOL(pci_wake_from_d3);
4441 EXPORT_SYMBOL(pci_target_state);
4442 EXPORT_SYMBOL(pci_prepare_to_sleep);
4443 EXPORT_SYMBOL(pci_back_from_sleep);
4444 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);