mfd: menelaus: Use macro for magic number
[linux-2.6/btrfs-unstable.git] / fs / nilfs2 / super.c
blob5bc2a1cf73c35311013a3e97636f5366ee131a8e
1 /*
2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
30 * from
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 "(NILFS)");
68 MODULE_LICENSE("GPL");
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78 static void nilfs_set_error(struct super_block *sb)
80 struct the_nilfs *nilfs = sb->s_fs_info;
81 struct nilfs_super_block **sbp;
83 down_write(&nilfs->ns_sem);
84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 sbp = nilfs_prepare_super(sb, 0);
87 if (likely(sbp)) {
88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 if (sbp[1])
90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
94 up_write(&nilfs->ns_sem);
97 /**
98 * nilfs_error() - report failure condition on a filesystem
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message. It should be called when NILFS detects
102 * incoherences or defects of meta data on disk. As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
106 * The segment constructor must not call this function because it can
107 * kill itself.
109 void nilfs_error(struct super_block *sb, const char *function,
110 const char *fmt, ...)
112 struct the_nilfs *nilfs = sb->s_fs_info;
113 struct va_format vaf;
114 va_list args;
116 va_start(args, fmt);
118 vaf.fmt = fmt;
119 vaf.va = &args;
121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 sb->s_id, function, &vaf);
124 va_end(args);
126 if (!(sb->s_flags & MS_RDONLY)) {
127 nilfs_set_error(sb);
129 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 printk(KERN_CRIT "Remounting filesystem read-only\n");
131 sb->s_flags |= MS_RDONLY;
135 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 panic("NILFS (device %s): panic forced after error\n",
137 sb->s_id);
140 void nilfs_warning(struct super_block *sb, const char *function,
141 const char *fmt, ...)
143 struct va_format vaf;
144 va_list args;
146 va_start(args, fmt);
148 vaf.fmt = fmt;
149 vaf.va = &args;
151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 sb->s_id, function, &vaf);
154 va_end(args);
158 struct inode *nilfs_alloc_inode(struct super_block *sb)
160 struct nilfs_inode_info *ii;
162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 if (!ii)
164 return NULL;
165 ii->i_bh = NULL;
166 ii->i_state = 0;
167 ii->i_cno = 0;
168 ii->vfs_inode.i_version = 1;
169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
170 return &ii->vfs_inode;
173 static void nilfs_i_callback(struct rcu_head *head)
175 struct inode *inode = container_of(head, struct inode, i_rcu);
176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
178 if (mdi) {
179 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 kfree(mdi);
182 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
185 void nilfs_destroy_inode(struct inode *inode)
187 call_rcu(&inode->i_rcu, nilfs_i_callback);
190 static int nilfs_sync_super(struct super_block *sb, int flag)
192 struct the_nilfs *nilfs = sb->s_fs_info;
193 int err;
195 retry:
196 set_buffer_dirty(nilfs->ns_sbh[0]);
197 if (nilfs_test_opt(nilfs, BARRIER)) {
198 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 WRITE_SYNC | WRITE_FLUSH_FUA);
200 } else {
201 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
204 if (unlikely(err)) {
205 printk(KERN_ERR
206 "NILFS: unable to write superblock (err=%d)\n", err);
207 if (err == -EIO && nilfs->ns_sbh[1]) {
209 * sbp[0] points to newer log than sbp[1],
210 * so copy sbp[0] to sbp[1] to take over sbp[0].
212 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 nilfs->ns_sbsize);
214 nilfs_fall_back_super_block(nilfs);
215 goto retry;
217 } else {
218 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
220 nilfs->ns_sbwcount++;
223 * The latest segment becomes trailable from the position
224 * written in superblock.
226 clear_nilfs_discontinued(nilfs);
228 /* update GC protection for recent segments */
229 if (nilfs->ns_sbh[1]) {
230 if (flag == NILFS_SB_COMMIT_ALL) {
231 set_buffer_dirty(nilfs->ns_sbh[1]);
232 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 goto out;
235 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 sbp = nilfs->ns_sbp[1];
240 spin_lock(&nilfs->ns_last_segment_lock);
241 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 spin_unlock(&nilfs->ns_last_segment_lock);
244 out:
245 return err;
248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 struct the_nilfs *nilfs)
251 sector_t nfreeblocks;
253 /* nilfs->ns_sem must be locked by the caller. */
254 nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
257 spin_lock(&nilfs->ns_last_segment_lock);
258 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 spin_unlock(&nilfs->ns_last_segment_lock);
264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 int flip)
267 struct the_nilfs *nilfs = sb->s_fs_info;
268 struct nilfs_super_block **sbp = nilfs->ns_sbp;
270 /* nilfs->ns_sem must be locked by the caller. */
271 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 if (sbp[1] &&
273 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 } else {
276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 sb->s_id);
278 return NULL;
280 } else if (sbp[1] &&
281 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
285 if (flip && sbp[1])
286 nilfs_swap_super_block(nilfs);
288 return sbp;
291 int nilfs_commit_super(struct super_block *sb, int flag)
293 struct the_nilfs *nilfs = sb->s_fs_info;
294 struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 time_t t;
297 /* nilfs->ns_sem must be locked by the caller. */
298 t = get_seconds();
299 nilfs->ns_sbwtime = t;
300 sbp[0]->s_wtime = cpu_to_le64(t);
301 sbp[0]->s_sum = 0;
302 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 (unsigned char *)sbp[0],
304 nilfs->ns_sbsize));
305 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 sbp[1]->s_wtime = sbp[0]->s_wtime;
307 sbp[1]->s_sum = 0;
308 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 (unsigned char *)sbp[1],
310 nilfs->ns_sbsize));
312 clear_nilfs_sb_dirty(nilfs);
313 nilfs->ns_flushed_device = 1;
314 /* make sure store to ns_flushed_device cannot be reordered */
315 smp_wmb();
316 return nilfs_sync_super(sb, flag);
320 * nilfs_cleanup_super() - write filesystem state for cleanup
321 * @sb: super block instance to be unmounted or degraded to read-only
323 * This function restores state flags in the on-disk super block.
324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
325 * filesystem was not clean previously.
327 int nilfs_cleanup_super(struct super_block *sb)
329 struct the_nilfs *nilfs = sb->s_fs_info;
330 struct nilfs_super_block **sbp;
331 int flag = NILFS_SB_COMMIT;
332 int ret = -EIO;
334 sbp = nilfs_prepare_super(sb, 0);
335 if (sbp) {
336 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
337 nilfs_set_log_cursor(sbp[0], nilfs);
338 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
340 * make the "clean" flag also to the opposite
341 * super block if both super blocks point to
342 * the same checkpoint.
344 sbp[1]->s_state = sbp[0]->s_state;
345 flag = NILFS_SB_COMMIT_ALL;
347 ret = nilfs_commit_super(sb, flag);
349 return ret;
353 * nilfs_move_2nd_super - relocate secondary super block
354 * @sb: super block instance
355 * @sb2off: new offset of the secondary super block (in bytes)
357 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
359 struct the_nilfs *nilfs = sb->s_fs_info;
360 struct buffer_head *nsbh;
361 struct nilfs_super_block *nsbp;
362 sector_t blocknr, newblocknr;
363 unsigned long offset;
364 int sb2i = -1; /* array index of the secondary superblock */
365 int ret = 0;
367 /* nilfs->ns_sem must be locked by the caller. */
368 if (nilfs->ns_sbh[1] &&
369 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
370 sb2i = 1;
371 blocknr = nilfs->ns_sbh[1]->b_blocknr;
372 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
373 sb2i = 0;
374 blocknr = nilfs->ns_sbh[0]->b_blocknr;
376 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
377 goto out; /* super block location is unchanged */
379 /* Get new super block buffer */
380 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
381 offset = sb2off & (nilfs->ns_blocksize - 1);
382 nsbh = sb_getblk(sb, newblocknr);
383 if (!nsbh) {
384 printk(KERN_WARNING
385 "NILFS warning: unable to move secondary superblock "
386 "to block %llu\n", (unsigned long long)newblocknr);
387 ret = -EIO;
388 goto out;
390 nsbp = (void *)nsbh->b_data + offset;
391 memset(nsbp, 0, nilfs->ns_blocksize);
393 if (sb2i >= 0) {
394 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
395 brelse(nilfs->ns_sbh[sb2i]);
396 nilfs->ns_sbh[sb2i] = nsbh;
397 nilfs->ns_sbp[sb2i] = nsbp;
398 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
399 /* secondary super block will be restored to index 1 */
400 nilfs->ns_sbh[1] = nsbh;
401 nilfs->ns_sbp[1] = nsbp;
402 } else {
403 brelse(nsbh);
405 out:
406 return ret;
410 * nilfs_resize_fs - resize the filesystem
411 * @sb: super block instance
412 * @newsize: new size of the filesystem (in bytes)
414 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
416 struct the_nilfs *nilfs = sb->s_fs_info;
417 struct nilfs_super_block **sbp;
418 __u64 devsize, newnsegs;
419 loff_t sb2off;
420 int ret;
422 ret = -ERANGE;
423 devsize = i_size_read(sb->s_bdev->bd_inode);
424 if (newsize > devsize)
425 goto out;
428 * Write lock is required to protect some functions depending
429 * on the number of segments, the number of reserved segments,
430 * and so forth.
432 down_write(&nilfs->ns_segctor_sem);
434 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
435 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
436 do_div(newnsegs, nilfs->ns_blocks_per_segment);
438 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
439 up_write(&nilfs->ns_segctor_sem);
440 if (ret < 0)
441 goto out;
443 ret = nilfs_construct_segment(sb);
444 if (ret < 0)
445 goto out;
447 down_write(&nilfs->ns_sem);
448 nilfs_move_2nd_super(sb, sb2off);
449 ret = -EIO;
450 sbp = nilfs_prepare_super(sb, 0);
451 if (likely(sbp)) {
452 nilfs_set_log_cursor(sbp[0], nilfs);
454 * Drop NILFS_RESIZE_FS flag for compatibility with
455 * mount-time resize which may be implemented in a
456 * future release.
458 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
459 ~NILFS_RESIZE_FS);
460 sbp[0]->s_dev_size = cpu_to_le64(newsize);
461 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
462 if (sbp[1])
463 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
464 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
466 up_write(&nilfs->ns_sem);
469 * Reset the range of allocatable segments last. This order
470 * is important in the case of expansion because the secondary
471 * superblock must be protected from log write until migration
472 * completes.
474 if (!ret)
475 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
476 out:
477 return ret;
480 static void nilfs_put_super(struct super_block *sb)
482 struct the_nilfs *nilfs = sb->s_fs_info;
484 nilfs_detach_log_writer(sb);
486 if (!(sb->s_flags & MS_RDONLY)) {
487 down_write(&nilfs->ns_sem);
488 nilfs_cleanup_super(sb);
489 up_write(&nilfs->ns_sem);
492 iput(nilfs->ns_sufile);
493 iput(nilfs->ns_cpfile);
494 iput(nilfs->ns_dat);
496 destroy_nilfs(nilfs);
497 sb->s_fs_info = NULL;
500 static int nilfs_sync_fs(struct super_block *sb, int wait)
502 struct the_nilfs *nilfs = sb->s_fs_info;
503 struct nilfs_super_block **sbp;
504 int err = 0;
506 /* This function is called when super block should be written back */
507 if (wait)
508 err = nilfs_construct_segment(sb);
510 down_write(&nilfs->ns_sem);
511 if (nilfs_sb_dirty(nilfs)) {
512 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
513 if (likely(sbp)) {
514 nilfs_set_log_cursor(sbp[0], nilfs);
515 nilfs_commit_super(sb, NILFS_SB_COMMIT);
518 up_write(&nilfs->ns_sem);
520 if (!err)
521 err = nilfs_flush_device(nilfs);
523 return err;
526 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
527 struct nilfs_root **rootp)
529 struct the_nilfs *nilfs = sb->s_fs_info;
530 struct nilfs_root *root;
531 struct nilfs_checkpoint *raw_cp;
532 struct buffer_head *bh_cp;
533 int err = -ENOMEM;
535 root = nilfs_find_or_create_root(
536 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
537 if (!root)
538 return err;
540 if (root->ifile)
541 goto reuse; /* already attached checkpoint */
543 down_read(&nilfs->ns_segctor_sem);
544 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
545 &bh_cp);
546 up_read(&nilfs->ns_segctor_sem);
547 if (unlikely(err)) {
548 if (err == -ENOENT || err == -EINVAL) {
549 printk(KERN_ERR
550 "NILFS: Invalid checkpoint "
551 "(checkpoint number=%llu)\n",
552 (unsigned long long)cno);
553 err = -EINVAL;
555 goto failed;
558 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
559 &raw_cp->cp_ifile_inode, &root->ifile);
560 if (err)
561 goto failed_bh;
563 atomic64_set(&root->inodes_count,
564 le64_to_cpu(raw_cp->cp_inodes_count));
565 atomic64_set(&root->blocks_count,
566 le64_to_cpu(raw_cp->cp_blocks_count));
568 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
570 reuse:
571 *rootp = root;
572 return 0;
574 failed_bh:
575 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
576 failed:
577 nilfs_put_root(root);
579 return err;
582 static int nilfs_freeze(struct super_block *sb)
584 struct the_nilfs *nilfs = sb->s_fs_info;
585 int err;
587 if (sb->s_flags & MS_RDONLY)
588 return 0;
590 /* Mark super block clean */
591 down_write(&nilfs->ns_sem);
592 err = nilfs_cleanup_super(sb);
593 up_write(&nilfs->ns_sem);
594 return err;
597 static int nilfs_unfreeze(struct super_block *sb)
599 struct the_nilfs *nilfs = sb->s_fs_info;
601 if (sb->s_flags & MS_RDONLY)
602 return 0;
604 down_write(&nilfs->ns_sem);
605 nilfs_setup_super(sb, false);
606 up_write(&nilfs->ns_sem);
607 return 0;
610 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
612 struct super_block *sb = dentry->d_sb;
613 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
614 struct the_nilfs *nilfs = root->nilfs;
615 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
616 unsigned long long blocks;
617 unsigned long overhead;
618 unsigned long nrsvblocks;
619 sector_t nfreeblocks;
620 u64 nmaxinodes, nfreeinodes;
621 int err;
624 * Compute all of the segment blocks
626 * The blocks before first segment and after last segment
627 * are excluded.
629 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
630 - nilfs->ns_first_data_block;
631 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
634 * Compute the overhead
636 * When distributing meta data blocks outside segment structure,
637 * We must count them as the overhead.
639 overhead = 0;
641 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
642 if (unlikely(err))
643 return err;
645 err = nilfs_ifile_count_free_inodes(root->ifile,
646 &nmaxinodes, &nfreeinodes);
647 if (unlikely(err)) {
648 printk(KERN_WARNING
649 "NILFS warning: fail to count free inodes: err %d.\n",
650 err);
651 if (err == -ERANGE) {
653 * If nilfs_palloc_count_max_entries() returns
654 * -ERANGE error code then we simply treat
655 * curent inodes count as maximum possible and
656 * zero as free inodes value.
658 nmaxinodes = atomic64_read(&root->inodes_count);
659 nfreeinodes = 0;
660 err = 0;
661 } else
662 return err;
665 buf->f_type = NILFS_SUPER_MAGIC;
666 buf->f_bsize = sb->s_blocksize;
667 buf->f_blocks = blocks - overhead;
668 buf->f_bfree = nfreeblocks;
669 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
670 (buf->f_bfree - nrsvblocks) : 0;
671 buf->f_files = nmaxinodes;
672 buf->f_ffree = nfreeinodes;
673 buf->f_namelen = NILFS_NAME_LEN;
674 buf->f_fsid.val[0] = (u32)id;
675 buf->f_fsid.val[1] = (u32)(id >> 32);
677 return 0;
680 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
682 struct super_block *sb = dentry->d_sb;
683 struct the_nilfs *nilfs = sb->s_fs_info;
684 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
686 if (!nilfs_test_opt(nilfs, BARRIER))
687 seq_puts(seq, ",nobarrier");
688 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
689 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
690 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
691 seq_puts(seq, ",errors=panic");
692 if (nilfs_test_opt(nilfs, ERRORS_CONT))
693 seq_puts(seq, ",errors=continue");
694 if (nilfs_test_opt(nilfs, STRICT_ORDER))
695 seq_puts(seq, ",order=strict");
696 if (nilfs_test_opt(nilfs, NORECOVERY))
697 seq_puts(seq, ",norecovery");
698 if (nilfs_test_opt(nilfs, DISCARD))
699 seq_puts(seq, ",discard");
701 return 0;
704 static const struct super_operations nilfs_sops = {
705 .alloc_inode = nilfs_alloc_inode,
706 .destroy_inode = nilfs_destroy_inode,
707 .dirty_inode = nilfs_dirty_inode,
708 .evict_inode = nilfs_evict_inode,
709 .put_super = nilfs_put_super,
710 .sync_fs = nilfs_sync_fs,
711 .freeze_fs = nilfs_freeze,
712 .unfreeze_fs = nilfs_unfreeze,
713 .statfs = nilfs_statfs,
714 .remount_fs = nilfs_remount,
715 .show_options = nilfs_show_options
718 enum {
719 Opt_err_cont, Opt_err_panic, Opt_err_ro,
720 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
721 Opt_discard, Opt_nodiscard, Opt_err,
724 static match_table_t tokens = {
725 {Opt_err_cont, "errors=continue"},
726 {Opt_err_panic, "errors=panic"},
727 {Opt_err_ro, "errors=remount-ro"},
728 {Opt_barrier, "barrier"},
729 {Opt_nobarrier, "nobarrier"},
730 {Opt_snapshot, "cp=%u"},
731 {Opt_order, "order=%s"},
732 {Opt_norecovery, "norecovery"},
733 {Opt_discard, "discard"},
734 {Opt_nodiscard, "nodiscard"},
735 {Opt_err, NULL}
738 static int parse_options(char *options, struct super_block *sb, int is_remount)
740 struct the_nilfs *nilfs = sb->s_fs_info;
741 char *p;
742 substring_t args[MAX_OPT_ARGS];
744 if (!options)
745 return 1;
747 while ((p = strsep(&options, ",")) != NULL) {
748 int token;
749 if (!*p)
750 continue;
752 token = match_token(p, tokens, args);
753 switch (token) {
754 case Opt_barrier:
755 nilfs_set_opt(nilfs, BARRIER);
756 break;
757 case Opt_nobarrier:
758 nilfs_clear_opt(nilfs, BARRIER);
759 break;
760 case Opt_order:
761 if (strcmp(args[0].from, "relaxed") == 0)
762 /* Ordered data semantics */
763 nilfs_clear_opt(nilfs, STRICT_ORDER);
764 else if (strcmp(args[0].from, "strict") == 0)
765 /* Strict in-order semantics */
766 nilfs_set_opt(nilfs, STRICT_ORDER);
767 else
768 return 0;
769 break;
770 case Opt_err_panic:
771 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
772 break;
773 case Opt_err_ro:
774 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
775 break;
776 case Opt_err_cont:
777 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
778 break;
779 case Opt_snapshot:
780 if (is_remount) {
781 printk(KERN_ERR
782 "NILFS: \"%s\" option is invalid "
783 "for remount.\n", p);
784 return 0;
786 break;
787 case Opt_norecovery:
788 nilfs_set_opt(nilfs, NORECOVERY);
789 break;
790 case Opt_discard:
791 nilfs_set_opt(nilfs, DISCARD);
792 break;
793 case Opt_nodiscard:
794 nilfs_clear_opt(nilfs, DISCARD);
795 break;
796 default:
797 printk(KERN_ERR
798 "NILFS: Unrecognized mount option \"%s\"\n", p);
799 return 0;
802 return 1;
805 static inline void
806 nilfs_set_default_options(struct super_block *sb,
807 struct nilfs_super_block *sbp)
809 struct the_nilfs *nilfs = sb->s_fs_info;
811 nilfs->ns_mount_opt =
812 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
815 static int nilfs_setup_super(struct super_block *sb, int is_mount)
817 struct the_nilfs *nilfs = sb->s_fs_info;
818 struct nilfs_super_block **sbp;
819 int max_mnt_count;
820 int mnt_count;
822 /* nilfs->ns_sem must be locked by the caller. */
823 sbp = nilfs_prepare_super(sb, 0);
824 if (!sbp)
825 return -EIO;
827 if (!is_mount)
828 goto skip_mount_setup;
830 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
831 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
833 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
834 printk(KERN_WARNING
835 "NILFS warning: mounting fs with errors\n");
836 #if 0
837 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
838 printk(KERN_WARNING
839 "NILFS warning: maximal mount count reached\n");
840 #endif
842 if (!max_mnt_count)
843 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
845 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
846 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
848 skip_mount_setup:
849 sbp[0]->s_state =
850 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
851 /* synchronize sbp[1] with sbp[0] */
852 if (sbp[1])
853 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
854 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
857 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
858 u64 pos, int blocksize,
859 struct buffer_head **pbh)
861 unsigned long long sb_index = pos;
862 unsigned long offset;
864 offset = do_div(sb_index, blocksize);
865 *pbh = sb_bread(sb, sb_index);
866 if (!*pbh)
867 return NULL;
868 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
871 int nilfs_store_magic_and_option(struct super_block *sb,
872 struct nilfs_super_block *sbp,
873 char *data)
875 struct the_nilfs *nilfs = sb->s_fs_info;
877 sb->s_magic = le16_to_cpu(sbp->s_magic);
879 /* FS independent flags */
880 #ifdef NILFS_ATIME_DISABLE
881 sb->s_flags |= MS_NOATIME;
882 #endif
884 nilfs_set_default_options(sb, sbp);
886 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
887 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
888 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
889 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
891 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
894 int nilfs_check_feature_compatibility(struct super_block *sb,
895 struct nilfs_super_block *sbp)
897 __u64 features;
899 features = le64_to_cpu(sbp->s_feature_incompat) &
900 ~NILFS_FEATURE_INCOMPAT_SUPP;
901 if (features) {
902 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
903 "optional features (%llx)\n",
904 (unsigned long long)features);
905 return -EINVAL;
907 features = le64_to_cpu(sbp->s_feature_compat_ro) &
908 ~NILFS_FEATURE_COMPAT_RO_SUPP;
909 if (!(sb->s_flags & MS_RDONLY) && features) {
910 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
911 "unsupported optional features (%llx)\n",
912 (unsigned long long)features);
913 return -EINVAL;
915 return 0;
918 static int nilfs_get_root_dentry(struct super_block *sb,
919 struct nilfs_root *root,
920 struct dentry **root_dentry)
922 struct inode *inode;
923 struct dentry *dentry;
924 int ret = 0;
926 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
927 if (IS_ERR(inode)) {
928 printk(KERN_ERR "NILFS: get root inode failed\n");
929 ret = PTR_ERR(inode);
930 goto out;
932 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
933 iput(inode);
934 printk(KERN_ERR "NILFS: corrupt root inode.\n");
935 ret = -EINVAL;
936 goto out;
939 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
940 dentry = d_find_alias(inode);
941 if (!dentry) {
942 dentry = d_make_root(inode);
943 if (!dentry) {
944 ret = -ENOMEM;
945 goto failed_dentry;
947 } else {
948 iput(inode);
950 } else {
951 dentry = d_obtain_root(inode);
952 if (IS_ERR(dentry)) {
953 ret = PTR_ERR(dentry);
954 goto failed_dentry;
957 *root_dentry = dentry;
958 out:
959 return ret;
961 failed_dentry:
962 printk(KERN_ERR "NILFS: get root dentry failed\n");
963 goto out;
966 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
967 struct dentry **root_dentry)
969 struct the_nilfs *nilfs = s->s_fs_info;
970 struct nilfs_root *root;
971 int ret;
973 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
975 down_read(&nilfs->ns_segctor_sem);
976 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
977 up_read(&nilfs->ns_segctor_sem);
978 if (ret < 0) {
979 ret = (ret == -ENOENT) ? -EINVAL : ret;
980 goto out;
981 } else if (!ret) {
982 printk(KERN_ERR "NILFS: The specified checkpoint is "
983 "not a snapshot (checkpoint number=%llu).\n",
984 (unsigned long long)cno);
985 ret = -EINVAL;
986 goto out;
989 ret = nilfs_attach_checkpoint(s, cno, false, &root);
990 if (ret) {
991 printk(KERN_ERR "NILFS: error loading snapshot "
992 "(checkpoint number=%llu).\n",
993 (unsigned long long)cno);
994 goto out;
996 ret = nilfs_get_root_dentry(s, root, root_dentry);
997 nilfs_put_root(root);
998 out:
999 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1000 return ret;
1004 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1005 * @root_dentry: root dentry of the tree to be shrunk
1007 * This function returns true if the tree was in-use.
1009 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1011 shrink_dcache_parent(root_dentry);
1012 return d_count(root_dentry) > 1;
1015 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1017 struct the_nilfs *nilfs = sb->s_fs_info;
1018 struct nilfs_root *root;
1019 struct inode *inode;
1020 struct dentry *dentry;
1021 int ret;
1023 if (cno < 0 || cno > nilfs->ns_cno)
1024 return false;
1026 if (cno >= nilfs_last_cno(nilfs))
1027 return true; /* protect recent checkpoints */
1029 ret = false;
1030 root = nilfs_lookup_root(nilfs, cno);
1031 if (root) {
1032 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1033 if (inode) {
1034 dentry = d_find_alias(inode);
1035 if (dentry) {
1036 ret = nilfs_tree_is_busy(dentry);
1037 dput(dentry);
1039 iput(inode);
1041 nilfs_put_root(root);
1043 return ret;
1047 * nilfs_fill_super() - initialize a super block instance
1048 * @sb: super_block
1049 * @data: mount options
1050 * @silent: silent mode flag
1052 * This function is called exclusively by nilfs->ns_mount_mutex.
1053 * So, the recovery process is protected from other simultaneous mounts.
1055 static int
1056 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1058 struct the_nilfs *nilfs;
1059 struct nilfs_root *fsroot;
1060 __u64 cno;
1061 int err;
1063 nilfs = alloc_nilfs(sb->s_bdev);
1064 if (!nilfs)
1065 return -ENOMEM;
1067 sb->s_fs_info = nilfs;
1069 err = init_nilfs(nilfs, sb, (char *)data);
1070 if (err)
1071 goto failed_nilfs;
1073 sb->s_op = &nilfs_sops;
1074 sb->s_export_op = &nilfs_export_ops;
1075 sb->s_root = NULL;
1076 sb->s_time_gran = 1;
1077 sb->s_max_links = NILFS_LINK_MAX;
1079 sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1081 err = load_nilfs(nilfs, sb);
1082 if (err)
1083 goto failed_nilfs;
1085 cno = nilfs_last_cno(nilfs);
1086 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1087 if (err) {
1088 printk(KERN_ERR "NILFS: error loading last checkpoint "
1089 "(checkpoint number=%llu).\n", (unsigned long long)cno);
1090 goto failed_unload;
1093 if (!(sb->s_flags & MS_RDONLY)) {
1094 err = nilfs_attach_log_writer(sb, fsroot);
1095 if (err)
1096 goto failed_checkpoint;
1099 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1100 if (err)
1101 goto failed_segctor;
1103 nilfs_put_root(fsroot);
1105 if (!(sb->s_flags & MS_RDONLY)) {
1106 down_write(&nilfs->ns_sem);
1107 nilfs_setup_super(sb, true);
1108 up_write(&nilfs->ns_sem);
1111 return 0;
1113 failed_segctor:
1114 nilfs_detach_log_writer(sb);
1116 failed_checkpoint:
1117 nilfs_put_root(fsroot);
1119 failed_unload:
1120 iput(nilfs->ns_sufile);
1121 iput(nilfs->ns_cpfile);
1122 iput(nilfs->ns_dat);
1124 failed_nilfs:
1125 destroy_nilfs(nilfs);
1126 return err;
1129 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1131 struct the_nilfs *nilfs = sb->s_fs_info;
1132 unsigned long old_sb_flags;
1133 unsigned long old_mount_opt;
1134 int err;
1136 sync_filesystem(sb);
1137 old_sb_flags = sb->s_flags;
1138 old_mount_opt = nilfs->ns_mount_opt;
1140 if (!parse_options(data, sb, 1)) {
1141 err = -EINVAL;
1142 goto restore_opts;
1144 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1146 err = -EINVAL;
1148 if (!nilfs_valid_fs(nilfs)) {
1149 printk(KERN_WARNING "NILFS (device %s): couldn't "
1150 "remount because the filesystem is in an "
1151 "incomplete recovery state.\n", sb->s_id);
1152 goto restore_opts;
1155 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1156 goto out;
1157 if (*flags & MS_RDONLY) {
1158 /* Shutting down log writer */
1159 nilfs_detach_log_writer(sb);
1160 sb->s_flags |= MS_RDONLY;
1163 * Remounting a valid RW partition RDONLY, so set
1164 * the RDONLY flag and then mark the partition as valid again.
1166 down_write(&nilfs->ns_sem);
1167 nilfs_cleanup_super(sb);
1168 up_write(&nilfs->ns_sem);
1169 } else {
1170 __u64 features;
1171 struct nilfs_root *root;
1174 * Mounting a RDONLY partition read-write, so reread and
1175 * store the current valid flag. (It may have been changed
1176 * by fsck since we originally mounted the partition.)
1178 down_read(&nilfs->ns_sem);
1179 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1180 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1181 up_read(&nilfs->ns_sem);
1182 if (features) {
1183 printk(KERN_WARNING "NILFS (device %s): couldn't "
1184 "remount RDWR because of unsupported optional "
1185 "features (%llx)\n",
1186 sb->s_id, (unsigned long long)features);
1187 err = -EROFS;
1188 goto restore_opts;
1191 sb->s_flags &= ~MS_RDONLY;
1193 root = NILFS_I(sb->s_root->d_inode)->i_root;
1194 err = nilfs_attach_log_writer(sb, root);
1195 if (err)
1196 goto restore_opts;
1198 down_write(&nilfs->ns_sem);
1199 nilfs_setup_super(sb, true);
1200 up_write(&nilfs->ns_sem);
1202 out:
1203 return 0;
1205 restore_opts:
1206 sb->s_flags = old_sb_flags;
1207 nilfs->ns_mount_opt = old_mount_opt;
1208 return err;
1211 struct nilfs_super_data {
1212 struct block_device *bdev;
1213 __u64 cno;
1214 int flags;
1218 * nilfs_identify - pre-read mount options needed to identify mount instance
1219 * @data: mount options
1220 * @sd: nilfs_super_data
1222 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1224 char *p, *options = data;
1225 substring_t args[MAX_OPT_ARGS];
1226 int token;
1227 int ret = 0;
1229 do {
1230 p = strsep(&options, ",");
1231 if (p != NULL && *p) {
1232 token = match_token(p, tokens, args);
1233 if (token == Opt_snapshot) {
1234 if (!(sd->flags & MS_RDONLY)) {
1235 ret++;
1236 } else {
1237 sd->cno = simple_strtoull(args[0].from,
1238 NULL, 0);
1240 * No need to see the end pointer;
1241 * match_token() has done syntax
1242 * checking.
1244 if (sd->cno == 0)
1245 ret++;
1248 if (ret)
1249 printk(KERN_ERR
1250 "NILFS: invalid mount option: %s\n", p);
1252 if (!options)
1253 break;
1254 BUG_ON(options == data);
1255 *(options - 1) = ',';
1256 } while (!ret);
1257 return ret;
1260 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1262 s->s_bdev = data;
1263 s->s_dev = s->s_bdev->bd_dev;
1264 return 0;
1267 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1269 return (void *)s->s_bdev == data;
1272 static struct dentry *
1273 nilfs_mount(struct file_system_type *fs_type, int flags,
1274 const char *dev_name, void *data)
1276 struct nilfs_super_data sd;
1277 struct super_block *s;
1278 fmode_t mode = FMODE_READ | FMODE_EXCL;
1279 struct dentry *root_dentry;
1280 int err, s_new = false;
1282 if (!(flags & MS_RDONLY))
1283 mode |= FMODE_WRITE;
1285 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1286 if (IS_ERR(sd.bdev))
1287 return ERR_CAST(sd.bdev);
1289 sd.cno = 0;
1290 sd.flags = flags;
1291 if (nilfs_identify((char *)data, &sd)) {
1292 err = -EINVAL;
1293 goto failed;
1297 * once the super is inserted into the list by sget, s_umount
1298 * will protect the lockfs code from trying to start a snapshot
1299 * while we are mounting
1301 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1302 if (sd.bdev->bd_fsfreeze_count > 0) {
1303 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1304 err = -EBUSY;
1305 goto failed;
1307 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1308 sd.bdev);
1309 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1310 if (IS_ERR(s)) {
1311 err = PTR_ERR(s);
1312 goto failed;
1315 if (!s->s_root) {
1316 char b[BDEVNAME_SIZE];
1318 s_new = true;
1320 /* New superblock instance created */
1321 s->s_mode = mode;
1322 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1323 sb_set_blocksize(s, block_size(sd.bdev));
1325 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1326 if (err)
1327 goto failed_super;
1329 s->s_flags |= MS_ACTIVE;
1330 } else if (!sd.cno) {
1331 if (nilfs_tree_is_busy(s->s_root)) {
1332 if ((flags ^ s->s_flags) & MS_RDONLY) {
1333 printk(KERN_ERR "NILFS: the device already "
1334 "has a %s mount.\n",
1335 (s->s_flags & MS_RDONLY) ?
1336 "read-only" : "read/write");
1337 err = -EBUSY;
1338 goto failed_super;
1340 } else {
1342 * Try remount to setup mount states if the current
1343 * tree is not mounted and only snapshots use this sb.
1345 err = nilfs_remount(s, &flags, data);
1346 if (err)
1347 goto failed_super;
1351 if (sd.cno) {
1352 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1353 if (err)
1354 goto failed_super;
1355 } else {
1356 root_dentry = dget(s->s_root);
1359 if (!s_new)
1360 blkdev_put(sd.bdev, mode);
1362 return root_dentry;
1364 failed_super:
1365 deactivate_locked_super(s);
1367 failed:
1368 if (!s_new)
1369 blkdev_put(sd.bdev, mode);
1370 return ERR_PTR(err);
1373 struct file_system_type nilfs_fs_type = {
1374 .owner = THIS_MODULE,
1375 .name = "nilfs2",
1376 .mount = nilfs_mount,
1377 .kill_sb = kill_block_super,
1378 .fs_flags = FS_REQUIRES_DEV,
1380 MODULE_ALIAS_FS("nilfs2");
1382 static void nilfs_inode_init_once(void *obj)
1384 struct nilfs_inode_info *ii = obj;
1386 INIT_LIST_HEAD(&ii->i_dirty);
1387 #ifdef CONFIG_NILFS_XATTR
1388 init_rwsem(&ii->xattr_sem);
1389 #endif
1390 address_space_init_once(&ii->i_btnode_cache);
1391 ii->i_bmap = &ii->i_bmap_data;
1392 inode_init_once(&ii->vfs_inode);
1395 static void nilfs_segbuf_init_once(void *obj)
1397 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1400 static void nilfs_destroy_cachep(void)
1403 * Make sure all delayed rcu free inodes are flushed before we
1404 * destroy cache.
1406 rcu_barrier();
1408 if (nilfs_inode_cachep)
1409 kmem_cache_destroy(nilfs_inode_cachep);
1410 if (nilfs_transaction_cachep)
1411 kmem_cache_destroy(nilfs_transaction_cachep);
1412 if (nilfs_segbuf_cachep)
1413 kmem_cache_destroy(nilfs_segbuf_cachep);
1414 if (nilfs_btree_path_cache)
1415 kmem_cache_destroy(nilfs_btree_path_cache);
1418 static int __init nilfs_init_cachep(void)
1420 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421 sizeof(struct nilfs_inode_info), 0,
1422 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1423 if (!nilfs_inode_cachep)
1424 goto fail;
1426 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1427 sizeof(struct nilfs_transaction_info), 0,
1428 SLAB_RECLAIM_ACCOUNT, NULL);
1429 if (!nilfs_transaction_cachep)
1430 goto fail;
1432 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1433 sizeof(struct nilfs_segment_buffer), 0,
1434 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1435 if (!nilfs_segbuf_cachep)
1436 goto fail;
1438 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1439 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1440 0, 0, NULL);
1441 if (!nilfs_btree_path_cache)
1442 goto fail;
1444 return 0;
1446 fail:
1447 nilfs_destroy_cachep();
1448 return -ENOMEM;
1451 static int __init init_nilfs_fs(void)
1453 int err;
1455 err = nilfs_init_cachep();
1456 if (err)
1457 goto fail;
1459 err = nilfs_sysfs_init();
1460 if (err)
1461 goto free_cachep;
1463 err = register_filesystem(&nilfs_fs_type);
1464 if (err)
1465 goto deinit_sysfs_entry;
1467 printk(KERN_INFO "NILFS version 2 loaded\n");
1468 return 0;
1470 deinit_sysfs_entry:
1471 nilfs_sysfs_exit();
1472 free_cachep:
1473 nilfs_destroy_cachep();
1474 fail:
1475 return err;
1478 static void __exit exit_nilfs_fs(void)
1480 nilfs_destroy_cachep();
1481 nilfs_sysfs_exit();
1482 unregister_filesystem(&nilfs_fs_type);
1485 module_init(init_nilfs_fs)
1486 module_exit(exit_nilfs_fs)