fs/exec.c:de_thread: move notify_count write under lock
[linux-2.6/btrfs-unstable.git] / fs / f2fs / file.c
blobdf6a0596eccf210dfefbaaca2cf2f60ca57a7f6b
1 /*
2 * fs/f2fs/file.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
32 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
33 struct vm_fault *vmf)
35 struct page *page = vmf->page;
36 struct inode *inode = file_inode(vma->vm_file);
37 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
38 struct dnode_of_data dn;
39 int err;
41 f2fs_balance_fs(sbi);
43 sb_start_pagefault(inode->i_sb);
45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 /* block allocation */
48 f2fs_lock_op(sbi);
49 set_new_dnode(&dn, inode, NULL, NULL, 0);
50 err = f2fs_reserve_block(&dn, page->index);
51 if (err) {
52 f2fs_unlock_op(sbi);
53 goto out;
55 f2fs_put_dnode(&dn);
56 f2fs_unlock_op(sbi);
58 file_update_time(vma->vm_file);
59 lock_page(page);
60 if (unlikely(page->mapping != inode->i_mapping ||
61 page_offset(page) > i_size_read(inode) ||
62 !PageUptodate(page))) {
63 unlock_page(page);
64 err = -EFAULT;
65 goto out;
69 * check to see if the page is mapped already (no holes)
71 if (PageMappedToDisk(page))
72 goto mapped;
74 /* page is wholly or partially inside EOF */
75 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
76 unsigned offset;
77 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
78 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
80 set_page_dirty(page);
81 SetPageUptodate(page);
83 trace_f2fs_vm_page_mkwrite(page, DATA);
84 mapped:
85 /* fill the page */
86 f2fs_wait_on_page_writeback(page, DATA);
87 out:
88 sb_end_pagefault(inode->i_sb);
89 return block_page_mkwrite_return(err);
92 static const struct vm_operations_struct f2fs_file_vm_ops = {
93 .fault = filemap_fault,
94 .map_pages = filemap_map_pages,
95 .page_mkwrite = f2fs_vm_page_mkwrite,
98 static int get_parent_ino(struct inode *inode, nid_t *pino)
100 struct dentry *dentry;
102 inode = igrab(inode);
103 dentry = d_find_any_alias(inode);
104 iput(inode);
105 if (!dentry)
106 return 0;
108 if (update_dent_inode(inode, &dentry->d_name)) {
109 dput(dentry);
110 return 0;
113 *pino = parent_ino(dentry);
114 dput(dentry);
115 return 1;
118 static inline bool need_do_checkpoint(struct inode *inode)
120 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
121 bool need_cp = false;
123 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
124 need_cp = true;
125 else if (file_wrong_pino(inode))
126 need_cp = true;
127 else if (!space_for_roll_forward(sbi))
128 need_cp = true;
129 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
130 need_cp = true;
131 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
132 need_cp = true;
133 else if (test_opt(sbi, FASTBOOT))
134 need_cp = true;
135 else if (sbi->active_logs == 2)
136 need_cp = true;
138 return need_cp;
141 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
143 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
144 bool ret = false;
145 /* But we need to avoid that there are some inode updates */
146 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
147 ret = true;
148 f2fs_put_page(i, 0);
149 return ret;
152 static void try_to_fix_pino(struct inode *inode)
154 struct f2fs_inode_info *fi = F2FS_I(inode);
155 nid_t pino;
157 down_write(&fi->i_sem);
158 fi->xattr_ver = 0;
159 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
160 get_parent_ino(inode, &pino)) {
161 fi->i_pino = pino;
162 file_got_pino(inode);
163 up_write(&fi->i_sem);
165 mark_inode_dirty_sync(inode);
166 f2fs_write_inode(inode, NULL);
167 } else {
168 up_write(&fi->i_sem);
172 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
174 struct inode *inode = file->f_mapping->host;
175 struct f2fs_inode_info *fi = F2FS_I(inode);
176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
177 nid_t ino = inode->i_ino;
178 int ret = 0;
179 bool need_cp = false;
180 struct writeback_control wbc = {
181 .sync_mode = WB_SYNC_ALL,
182 .nr_to_write = LONG_MAX,
183 .for_reclaim = 0,
186 if (unlikely(f2fs_readonly(inode->i_sb)))
187 return 0;
189 trace_f2fs_sync_file_enter(inode);
191 /* if fdatasync is triggered, let's do in-place-update */
192 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
193 set_inode_flag(fi, FI_NEED_IPU);
194 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
195 clear_inode_flag(fi, FI_NEED_IPU);
197 if (ret) {
198 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
199 return ret;
202 /* if the inode is dirty, let's recover all the time */
203 if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
204 update_inode_page(inode);
205 goto go_write;
209 * if there is no written data, don't waste time to write recovery info.
211 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
212 !exist_written_data(sbi, ino, APPEND_INO)) {
214 /* it may call write_inode just prior to fsync */
215 if (need_inode_page_update(sbi, ino))
216 goto go_write;
218 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
219 exist_written_data(sbi, ino, UPDATE_INO))
220 goto flush_out;
221 goto out;
223 go_write:
224 /* guarantee free sections for fsync */
225 f2fs_balance_fs(sbi);
228 * Both of fdatasync() and fsync() are able to be recovered from
229 * sudden-power-off.
231 down_read(&fi->i_sem);
232 need_cp = need_do_checkpoint(inode);
233 up_read(&fi->i_sem);
235 if (need_cp) {
236 /* all the dirty node pages should be flushed for POR */
237 ret = f2fs_sync_fs(inode->i_sb, 1);
240 * We've secured consistency through sync_fs. Following pino
241 * will be used only for fsynced inodes after checkpoint.
243 try_to_fix_pino(inode);
244 goto out;
246 sync_nodes:
247 sync_node_pages(sbi, ino, &wbc);
249 /* if cp_error was enabled, we should avoid infinite loop */
250 if (unlikely(f2fs_cp_error(sbi)))
251 goto out;
253 if (need_inode_block_update(sbi, ino)) {
254 mark_inode_dirty_sync(inode);
255 f2fs_write_inode(inode, NULL);
256 goto sync_nodes;
259 ret = wait_on_node_pages_writeback(sbi, ino);
260 if (ret)
261 goto out;
263 /* once recovery info is written, don't need to tack this */
264 remove_dirty_inode(sbi, ino, APPEND_INO);
265 clear_inode_flag(fi, FI_APPEND_WRITE);
266 flush_out:
267 remove_dirty_inode(sbi, ino, UPDATE_INO);
268 clear_inode_flag(fi, FI_UPDATE_WRITE);
269 ret = f2fs_issue_flush(sbi);
270 out:
271 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
272 f2fs_trace_ios(NULL, NULL, 1);
273 return ret;
276 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
277 pgoff_t pgofs, int whence)
279 struct pagevec pvec;
280 int nr_pages;
282 if (whence != SEEK_DATA)
283 return 0;
285 /* find first dirty page index */
286 pagevec_init(&pvec, 0);
287 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
288 PAGECACHE_TAG_DIRTY, 1);
289 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
290 pagevec_release(&pvec);
291 return pgofs;
294 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
295 int whence)
297 switch (whence) {
298 case SEEK_DATA:
299 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
300 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
301 return true;
302 break;
303 case SEEK_HOLE:
304 if (blkaddr == NULL_ADDR)
305 return true;
306 break;
308 return false;
311 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
313 struct inode *inode = file->f_mapping->host;
314 loff_t maxbytes = inode->i_sb->s_maxbytes;
315 struct dnode_of_data dn;
316 pgoff_t pgofs, end_offset, dirty;
317 loff_t data_ofs = offset;
318 loff_t isize;
319 int err = 0;
321 mutex_lock(&inode->i_mutex);
323 isize = i_size_read(inode);
324 if (offset >= isize)
325 goto fail;
327 /* handle inline data case */
328 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
329 if (whence == SEEK_HOLE)
330 data_ofs = isize;
331 goto found;
334 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
336 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
338 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
339 set_new_dnode(&dn, inode, NULL, NULL, 0);
340 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
341 if (err && err != -ENOENT) {
342 goto fail;
343 } else if (err == -ENOENT) {
344 /* direct node does not exists */
345 if (whence == SEEK_DATA) {
346 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
347 F2FS_I(inode));
348 continue;
349 } else {
350 goto found;
354 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
356 /* find data/hole in dnode block */
357 for (; dn.ofs_in_node < end_offset;
358 dn.ofs_in_node++, pgofs++,
359 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
360 block_t blkaddr;
361 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
363 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
364 f2fs_put_dnode(&dn);
365 goto found;
368 f2fs_put_dnode(&dn);
371 if (whence == SEEK_DATA)
372 goto fail;
373 found:
374 if (whence == SEEK_HOLE && data_ofs > isize)
375 data_ofs = isize;
376 mutex_unlock(&inode->i_mutex);
377 return vfs_setpos(file, data_ofs, maxbytes);
378 fail:
379 mutex_unlock(&inode->i_mutex);
380 return -ENXIO;
383 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
385 struct inode *inode = file->f_mapping->host;
386 loff_t maxbytes = inode->i_sb->s_maxbytes;
388 switch (whence) {
389 case SEEK_SET:
390 case SEEK_CUR:
391 case SEEK_END:
392 return generic_file_llseek_size(file, offset, whence,
393 maxbytes, i_size_read(inode));
394 case SEEK_DATA:
395 case SEEK_HOLE:
396 if (offset < 0)
397 return -ENXIO;
398 return f2fs_seek_block(file, offset, whence);
401 return -EINVAL;
404 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
406 struct inode *inode = file_inode(file);
408 /* we don't need to use inline_data strictly */
409 if (f2fs_has_inline_data(inode)) {
410 int err = f2fs_convert_inline_inode(inode);
411 if (err)
412 return err;
415 file_accessed(file);
416 vma->vm_ops = &f2fs_file_vm_ops;
417 return 0;
420 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
422 int nr_free = 0, ofs = dn->ofs_in_node;
423 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
424 struct f2fs_node *raw_node;
425 __le32 *addr;
427 raw_node = F2FS_NODE(dn->node_page);
428 addr = blkaddr_in_node(raw_node) + ofs;
430 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
431 block_t blkaddr = le32_to_cpu(*addr);
432 if (blkaddr == NULL_ADDR)
433 continue;
435 dn->data_blkaddr = NULL_ADDR;
436 update_extent_cache(dn);
437 invalidate_blocks(sbi, blkaddr);
438 nr_free++;
440 if (nr_free) {
441 dec_valid_block_count(sbi, dn->inode, nr_free);
442 set_page_dirty(dn->node_page);
443 sync_inode_page(dn);
445 dn->ofs_in_node = ofs;
447 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
448 dn->ofs_in_node, nr_free);
449 return nr_free;
452 void truncate_data_blocks(struct dnode_of_data *dn)
454 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
457 static int truncate_partial_data_page(struct inode *inode, u64 from)
459 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
460 struct page *page;
462 if (!offset)
463 return 0;
465 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
466 if (IS_ERR(page))
467 return 0;
469 lock_page(page);
470 if (unlikely(!PageUptodate(page) ||
471 page->mapping != inode->i_mapping))
472 goto out;
474 f2fs_wait_on_page_writeback(page, DATA);
475 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
476 set_page_dirty(page);
477 out:
478 f2fs_put_page(page, 1);
479 return 0;
482 int truncate_blocks(struct inode *inode, u64 from, bool lock)
484 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
485 unsigned int blocksize = inode->i_sb->s_blocksize;
486 struct dnode_of_data dn;
487 pgoff_t free_from;
488 int count = 0, err = 0;
489 struct page *ipage;
491 trace_f2fs_truncate_blocks_enter(inode, from);
493 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
495 if (lock)
496 f2fs_lock_op(sbi);
498 ipage = get_node_page(sbi, inode->i_ino);
499 if (IS_ERR(ipage)) {
500 err = PTR_ERR(ipage);
501 goto out;
504 if (f2fs_has_inline_data(inode)) {
505 f2fs_put_page(ipage, 1);
506 goto out;
509 set_new_dnode(&dn, inode, ipage, NULL, 0);
510 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
511 if (err) {
512 if (err == -ENOENT)
513 goto free_next;
514 goto out;
517 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
519 count -= dn.ofs_in_node;
520 f2fs_bug_on(sbi, count < 0);
522 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
523 truncate_data_blocks_range(&dn, count);
524 free_from += count;
527 f2fs_put_dnode(&dn);
528 free_next:
529 err = truncate_inode_blocks(inode, free_from);
530 out:
531 if (lock)
532 f2fs_unlock_op(sbi);
534 /* lastly zero out the first data page */
535 if (!err)
536 err = truncate_partial_data_page(inode, from);
538 trace_f2fs_truncate_blocks_exit(inode, err);
539 return err;
542 void f2fs_truncate(struct inode *inode)
544 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
545 S_ISLNK(inode->i_mode)))
546 return;
548 trace_f2fs_truncate(inode);
550 /* we should check inline_data size */
551 if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) {
552 if (f2fs_convert_inline_inode(inode))
553 return;
556 if (!truncate_blocks(inode, i_size_read(inode), true)) {
557 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
558 mark_inode_dirty(inode);
562 int f2fs_getattr(struct vfsmount *mnt,
563 struct dentry *dentry, struct kstat *stat)
565 struct inode *inode = dentry->d_inode;
566 generic_fillattr(inode, stat);
567 stat->blocks <<= 3;
568 return 0;
571 #ifdef CONFIG_F2FS_FS_POSIX_ACL
572 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
574 struct f2fs_inode_info *fi = F2FS_I(inode);
575 unsigned int ia_valid = attr->ia_valid;
577 if (ia_valid & ATTR_UID)
578 inode->i_uid = attr->ia_uid;
579 if (ia_valid & ATTR_GID)
580 inode->i_gid = attr->ia_gid;
581 if (ia_valid & ATTR_ATIME)
582 inode->i_atime = timespec_trunc(attr->ia_atime,
583 inode->i_sb->s_time_gran);
584 if (ia_valid & ATTR_MTIME)
585 inode->i_mtime = timespec_trunc(attr->ia_mtime,
586 inode->i_sb->s_time_gran);
587 if (ia_valid & ATTR_CTIME)
588 inode->i_ctime = timespec_trunc(attr->ia_ctime,
589 inode->i_sb->s_time_gran);
590 if (ia_valid & ATTR_MODE) {
591 umode_t mode = attr->ia_mode;
593 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
594 mode &= ~S_ISGID;
595 set_acl_inode(fi, mode);
598 #else
599 #define __setattr_copy setattr_copy
600 #endif
602 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
604 struct inode *inode = dentry->d_inode;
605 struct f2fs_inode_info *fi = F2FS_I(inode);
606 int err;
608 err = inode_change_ok(inode, attr);
609 if (err)
610 return err;
612 if (attr->ia_valid & ATTR_SIZE) {
613 if (attr->ia_size != i_size_read(inode)) {
614 truncate_setsize(inode, attr->ia_size);
615 f2fs_truncate(inode);
616 f2fs_balance_fs(F2FS_I_SB(inode));
617 } else {
619 * giving a chance to truncate blocks past EOF which
620 * are fallocated with FALLOC_FL_KEEP_SIZE.
622 f2fs_truncate(inode);
626 __setattr_copy(inode, attr);
628 if (attr->ia_valid & ATTR_MODE) {
629 err = posix_acl_chmod(inode, get_inode_mode(inode));
630 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
631 inode->i_mode = fi->i_acl_mode;
632 clear_inode_flag(fi, FI_ACL_MODE);
636 mark_inode_dirty(inode);
637 return err;
640 const struct inode_operations f2fs_file_inode_operations = {
641 .getattr = f2fs_getattr,
642 .setattr = f2fs_setattr,
643 .get_acl = f2fs_get_acl,
644 .set_acl = f2fs_set_acl,
645 #ifdef CONFIG_F2FS_FS_XATTR
646 .setxattr = generic_setxattr,
647 .getxattr = generic_getxattr,
648 .listxattr = f2fs_listxattr,
649 .removexattr = generic_removexattr,
650 #endif
651 .fiemap = f2fs_fiemap,
654 static void fill_zero(struct inode *inode, pgoff_t index,
655 loff_t start, loff_t len)
657 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
658 struct page *page;
660 if (!len)
661 return;
663 f2fs_balance_fs(sbi);
665 f2fs_lock_op(sbi);
666 page = get_new_data_page(inode, NULL, index, false);
667 f2fs_unlock_op(sbi);
669 if (!IS_ERR(page)) {
670 f2fs_wait_on_page_writeback(page, DATA);
671 zero_user(page, start, len);
672 set_page_dirty(page);
673 f2fs_put_page(page, 1);
677 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
679 pgoff_t index;
680 int err;
682 for (index = pg_start; index < pg_end; index++) {
683 struct dnode_of_data dn;
685 set_new_dnode(&dn, inode, NULL, NULL, 0);
686 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
687 if (err) {
688 if (err == -ENOENT)
689 continue;
690 return err;
693 if (dn.data_blkaddr != NULL_ADDR)
694 truncate_data_blocks_range(&dn, 1);
695 f2fs_put_dnode(&dn);
697 return 0;
700 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
702 pgoff_t pg_start, pg_end;
703 loff_t off_start, off_end;
704 int ret = 0;
706 if (!S_ISREG(inode->i_mode))
707 return -EOPNOTSUPP;
709 /* skip punching hole beyond i_size */
710 if (offset >= inode->i_size)
711 return ret;
713 if (f2fs_has_inline_data(inode)) {
714 ret = f2fs_convert_inline_inode(inode);
715 if (ret)
716 return ret;
719 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
720 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
722 off_start = offset & (PAGE_CACHE_SIZE - 1);
723 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
725 if (pg_start == pg_end) {
726 fill_zero(inode, pg_start, off_start,
727 off_end - off_start);
728 } else {
729 if (off_start)
730 fill_zero(inode, pg_start++, off_start,
731 PAGE_CACHE_SIZE - off_start);
732 if (off_end)
733 fill_zero(inode, pg_end, 0, off_end);
735 if (pg_start < pg_end) {
736 struct address_space *mapping = inode->i_mapping;
737 loff_t blk_start, blk_end;
738 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740 f2fs_balance_fs(sbi);
742 blk_start = pg_start << PAGE_CACHE_SHIFT;
743 blk_end = pg_end << PAGE_CACHE_SHIFT;
744 truncate_inode_pages_range(mapping, blk_start,
745 blk_end - 1);
747 f2fs_lock_op(sbi);
748 ret = truncate_hole(inode, pg_start, pg_end);
749 f2fs_unlock_op(sbi);
753 return ret;
756 static int expand_inode_data(struct inode *inode, loff_t offset,
757 loff_t len, int mode)
759 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
760 pgoff_t index, pg_start, pg_end;
761 loff_t new_size = i_size_read(inode);
762 loff_t off_start, off_end;
763 int ret = 0;
765 f2fs_balance_fs(sbi);
767 ret = inode_newsize_ok(inode, (len + offset));
768 if (ret)
769 return ret;
771 if (f2fs_has_inline_data(inode)) {
772 ret = f2fs_convert_inline_inode(inode);
773 if (ret)
774 return ret;
777 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
778 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
780 off_start = offset & (PAGE_CACHE_SIZE - 1);
781 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
783 f2fs_lock_op(sbi);
785 for (index = pg_start; index <= pg_end; index++) {
786 struct dnode_of_data dn;
788 if (index == pg_end && !off_end)
789 goto noalloc;
791 set_new_dnode(&dn, inode, NULL, NULL, 0);
792 ret = f2fs_reserve_block(&dn, index);
793 if (ret)
794 break;
795 noalloc:
796 if (pg_start == pg_end)
797 new_size = offset + len;
798 else if (index == pg_start && off_start)
799 new_size = (index + 1) << PAGE_CACHE_SHIFT;
800 else if (index == pg_end)
801 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
802 else
803 new_size += PAGE_CACHE_SIZE;
806 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
807 i_size_read(inode) < new_size) {
808 i_size_write(inode, new_size);
809 mark_inode_dirty(inode);
810 update_inode_page(inode);
812 f2fs_unlock_op(sbi);
814 return ret;
817 static long f2fs_fallocate(struct file *file, int mode,
818 loff_t offset, loff_t len)
820 struct inode *inode = file_inode(file);
821 long ret;
823 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
824 return -EOPNOTSUPP;
826 mutex_lock(&inode->i_mutex);
828 if (mode & FALLOC_FL_PUNCH_HOLE)
829 ret = punch_hole(inode, offset, len);
830 else
831 ret = expand_inode_data(inode, offset, len, mode);
833 if (!ret) {
834 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
835 mark_inode_dirty(inode);
838 mutex_unlock(&inode->i_mutex);
840 trace_f2fs_fallocate(inode, mode, offset, len, ret);
841 return ret;
844 static int f2fs_release_file(struct inode *inode, struct file *filp)
846 /* some remained atomic pages should discarded */
847 if (f2fs_is_atomic_file(inode))
848 commit_inmem_pages(inode, true);
849 if (f2fs_is_volatile_file(inode)) {
850 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
851 filemap_fdatawrite(inode->i_mapping);
852 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
854 return 0;
857 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
858 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
860 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
862 if (S_ISDIR(mode))
863 return flags;
864 else if (S_ISREG(mode))
865 return flags & F2FS_REG_FLMASK;
866 else
867 return flags & F2FS_OTHER_FLMASK;
870 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
872 struct inode *inode = file_inode(filp);
873 struct f2fs_inode_info *fi = F2FS_I(inode);
874 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
875 return put_user(flags, (int __user *)arg);
878 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
880 struct inode *inode = file_inode(filp);
881 struct f2fs_inode_info *fi = F2FS_I(inode);
882 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
883 unsigned int oldflags;
884 int ret;
886 ret = mnt_want_write_file(filp);
887 if (ret)
888 return ret;
890 if (!inode_owner_or_capable(inode)) {
891 ret = -EACCES;
892 goto out;
895 if (get_user(flags, (int __user *)arg)) {
896 ret = -EFAULT;
897 goto out;
900 flags = f2fs_mask_flags(inode->i_mode, flags);
902 mutex_lock(&inode->i_mutex);
904 oldflags = fi->i_flags;
906 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
907 if (!capable(CAP_LINUX_IMMUTABLE)) {
908 mutex_unlock(&inode->i_mutex);
909 ret = -EPERM;
910 goto out;
914 flags = flags & FS_FL_USER_MODIFIABLE;
915 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
916 fi->i_flags = flags;
917 mutex_unlock(&inode->i_mutex);
919 f2fs_set_inode_flags(inode);
920 inode->i_ctime = CURRENT_TIME;
921 mark_inode_dirty(inode);
922 out:
923 mnt_drop_write_file(filp);
924 return ret;
927 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
929 struct inode *inode = file_inode(filp);
931 return put_user(inode->i_generation, (int __user *)arg);
934 static int f2fs_ioc_start_atomic_write(struct file *filp)
936 struct inode *inode = file_inode(filp);
938 if (!inode_owner_or_capable(inode))
939 return -EACCES;
941 f2fs_balance_fs(F2FS_I_SB(inode));
943 if (f2fs_is_atomic_file(inode))
944 return 0;
946 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
948 return f2fs_convert_inline_inode(inode);
951 static int f2fs_ioc_commit_atomic_write(struct file *filp)
953 struct inode *inode = file_inode(filp);
954 int ret;
956 if (!inode_owner_or_capable(inode))
957 return -EACCES;
959 if (f2fs_is_volatile_file(inode))
960 return 0;
962 ret = mnt_want_write_file(filp);
963 if (ret)
964 return ret;
966 if (f2fs_is_atomic_file(inode))
967 commit_inmem_pages(inode, false);
969 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
970 mnt_drop_write_file(filp);
971 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
972 return ret;
975 static int f2fs_ioc_start_volatile_write(struct file *filp)
977 struct inode *inode = file_inode(filp);
979 if (!inode_owner_or_capable(inode))
980 return -EACCES;
982 if (f2fs_is_volatile_file(inode))
983 return 0;
985 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
987 return f2fs_convert_inline_inode(inode);
990 static int f2fs_ioc_release_volatile_write(struct file *filp)
992 struct inode *inode = file_inode(filp);
994 if (!inode_owner_or_capable(inode))
995 return -EACCES;
997 if (!f2fs_is_volatile_file(inode))
998 return 0;
1000 punch_hole(inode, 0, F2FS_BLKSIZE);
1001 return 0;
1004 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1006 struct inode *inode = file_inode(filp);
1007 int ret;
1009 if (!inode_owner_or_capable(inode))
1010 return -EACCES;
1012 ret = mnt_want_write_file(filp);
1013 if (ret)
1014 return ret;
1016 f2fs_balance_fs(F2FS_I_SB(inode));
1018 if (f2fs_is_atomic_file(inode)) {
1019 commit_inmem_pages(inode, false);
1020 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1023 if (f2fs_is_volatile_file(inode)) {
1024 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1025 filemap_fdatawrite(inode->i_mapping);
1026 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1028 mnt_drop_write_file(filp);
1029 return ret;
1032 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1034 struct inode *inode = file_inode(filp);
1035 struct super_block *sb = inode->i_sb;
1036 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1037 struct fstrim_range range;
1038 int ret;
1040 if (!capable(CAP_SYS_ADMIN))
1041 return -EPERM;
1043 if (!blk_queue_discard(q))
1044 return -EOPNOTSUPP;
1046 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1047 sizeof(range)))
1048 return -EFAULT;
1050 range.minlen = max((unsigned int)range.minlen,
1051 q->limits.discard_granularity);
1052 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1053 if (ret < 0)
1054 return ret;
1056 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1057 sizeof(range)))
1058 return -EFAULT;
1059 return 0;
1062 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1064 switch (cmd) {
1065 case F2FS_IOC_GETFLAGS:
1066 return f2fs_ioc_getflags(filp, arg);
1067 case F2FS_IOC_SETFLAGS:
1068 return f2fs_ioc_setflags(filp, arg);
1069 case F2FS_IOC_GETVERSION:
1070 return f2fs_ioc_getversion(filp, arg);
1071 case F2FS_IOC_START_ATOMIC_WRITE:
1072 return f2fs_ioc_start_atomic_write(filp);
1073 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1074 return f2fs_ioc_commit_atomic_write(filp);
1075 case F2FS_IOC_START_VOLATILE_WRITE:
1076 return f2fs_ioc_start_volatile_write(filp);
1077 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1078 return f2fs_ioc_release_volatile_write(filp);
1079 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1080 return f2fs_ioc_abort_volatile_write(filp);
1081 case FITRIM:
1082 return f2fs_ioc_fitrim(filp, arg);
1083 default:
1084 return -ENOTTY;
1088 #ifdef CONFIG_COMPAT
1089 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1091 switch (cmd) {
1092 case F2FS_IOC32_GETFLAGS:
1093 cmd = F2FS_IOC_GETFLAGS;
1094 break;
1095 case F2FS_IOC32_SETFLAGS:
1096 cmd = F2FS_IOC_SETFLAGS;
1097 break;
1098 default:
1099 return -ENOIOCTLCMD;
1101 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1103 #endif
1105 const struct file_operations f2fs_file_operations = {
1106 .llseek = f2fs_llseek,
1107 .read_iter = generic_file_read_iter,
1108 .write_iter = generic_file_write_iter,
1109 .open = generic_file_open,
1110 .release = f2fs_release_file,
1111 .mmap = f2fs_file_mmap,
1112 .fsync = f2fs_sync_file,
1113 .fallocate = f2fs_fallocate,
1114 .unlocked_ioctl = f2fs_ioctl,
1115 #ifdef CONFIG_COMPAT
1116 .compat_ioctl = f2fs_compat_ioctl,
1117 #endif
1118 .splice_read = generic_file_splice_read,
1119 .splice_write = iter_file_splice_write,