ath9k_hw: remove antenna configuration eeprom ops and variables
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blob088f141f20064fffaf21849978d1efb5b51ac47c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9002_phy.h"
20 static void ath9k_get_txgain_index(struct ath_hw *ah,
21 struct ath9k_channel *chan,
22 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 u8 pcdac, i = 0;
26 u16 idxL = 0, idxR = 0, numPiers;
27 bool match;
28 struct chan_centers centers;
30 ath9k_hw_get_channel_centers(ah, chan, &centers);
32 for (numPiers = 0; numPiers < availPiers; numPiers++)
33 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 break;
36 match = ath9k_hw_get_lower_upper_index(
37 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 calChans, numPiers, &idxL, &idxR);
39 if (match) {
40 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 } else {
43 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
48 while (pcdac > ah->originalGain[i] &&
49 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 i++;
52 *pcdacIdx = i;
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 u32 initTxGain,
57 int txPower,
58 u8 *pPDADCValues)
60 u32 i;
61 u32 offset;
63 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 offset = txPower;
72 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 if (i < offset)
74 pPDADCValues[i] = 0x0;
75 else
76 pPDADCValues[i] = 0xFF;
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 struct ath_common *common = ath9k_hw_common(ah);
93 u16 *eep_data = (u16 *)&ah->eeprom.def;
94 int addr, ar5416_eep_start_loc = 0x100;
96 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
97 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
98 eep_data)) {
99 ath_err(ath9k_hw_common(ah),
100 "Unable to read eeprom region\n");
101 return false;
103 eep_data++;
105 return true;
106 #undef SIZE_EEPROM_DEF
109 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
111 struct ar5416_eeprom_def *eep =
112 (struct ar5416_eeprom_def *) &ah->eeprom.def;
113 struct ath_common *common = ath9k_hw_common(ah);
114 u16 *eepdata, temp, magic, magic2;
115 u32 sum = 0, el;
116 bool need_swap = false;
117 int i, addr, size;
119 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
120 ath_err(common, "Reading Magic # failed\n");
121 return false;
124 if (!ath9k_hw_use_flash(ah)) {
125 ath_dbg(common, ATH_DBG_EEPROM,
126 "Read Magic = 0x%04X\n", magic);
128 if (magic != AR5416_EEPROM_MAGIC) {
129 magic2 = swab16(magic);
131 if (magic2 == AR5416_EEPROM_MAGIC) {
132 size = sizeof(struct ar5416_eeprom_def);
133 need_swap = true;
134 eepdata = (u16 *) (&ah->eeprom);
136 for (addr = 0; addr < size / sizeof(u16); addr++) {
137 temp = swab16(*eepdata);
138 *eepdata = temp;
139 eepdata++;
141 } else {
142 ath_err(common,
143 "Invalid EEPROM Magic. Endianness mismatch.\n");
144 return -EINVAL;
149 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
150 need_swap ? "True" : "False");
152 if (need_swap)
153 el = swab16(ah->eeprom.def.baseEepHeader.length);
154 else
155 el = ah->eeprom.def.baseEepHeader.length;
157 if (el > sizeof(struct ar5416_eeprom_def))
158 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
159 else
160 el = el / sizeof(u16);
162 eepdata = (u16 *)(&ah->eeprom);
164 for (i = 0; i < el; i++)
165 sum ^= *eepdata++;
167 if (need_swap) {
168 u32 integer, j;
169 u16 word;
171 ath_dbg(common, ATH_DBG_EEPROM,
172 "EEPROM Endianness is not native.. Changing.\n");
174 word = swab16(eep->baseEepHeader.length);
175 eep->baseEepHeader.length = word;
177 word = swab16(eep->baseEepHeader.checksum);
178 eep->baseEepHeader.checksum = word;
180 word = swab16(eep->baseEepHeader.version);
181 eep->baseEepHeader.version = word;
183 word = swab16(eep->baseEepHeader.regDmn[0]);
184 eep->baseEepHeader.regDmn[0] = word;
186 word = swab16(eep->baseEepHeader.regDmn[1]);
187 eep->baseEepHeader.regDmn[1] = word;
189 word = swab16(eep->baseEepHeader.rfSilent);
190 eep->baseEepHeader.rfSilent = word;
192 word = swab16(eep->baseEepHeader.blueToothOptions);
193 eep->baseEepHeader.blueToothOptions = word;
195 word = swab16(eep->baseEepHeader.deviceCap);
196 eep->baseEepHeader.deviceCap = word;
198 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
199 struct modal_eep_header *pModal =
200 &eep->modalHeader[j];
201 integer = swab32(pModal->antCtrlCommon);
202 pModal->antCtrlCommon = integer;
204 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
205 integer = swab32(pModal->antCtrlChain[i]);
206 pModal->antCtrlChain[i] = integer;
209 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
210 word = swab16(pModal->spurChans[i].spurChan);
211 pModal->spurChans[i].spurChan = word;
216 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
217 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
218 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
219 sum, ah->eep_ops->get_eeprom_ver(ah));
220 return -EINVAL;
223 /* Enable fixup for AR_AN_TOP2 if necessary */
224 if (AR_SREV_9280_20_OR_LATER(ah) &&
225 (eep->baseEepHeader.version & 0xff) > 0x0a &&
226 eep->baseEepHeader.pwdclkind == 0)
227 ah->need_an_top2_fixup = 1;
229 return 0;
232 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
233 enum eeprom_param param)
235 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
236 struct modal_eep_header *pModal = eep->modalHeader;
237 struct base_eep_header *pBase = &eep->baseEepHeader;
239 switch (param) {
240 case EEP_NFTHRESH_5:
241 return pModal[0].noiseFloorThreshCh[0];
242 case EEP_NFTHRESH_2:
243 return pModal[1].noiseFloorThreshCh[0];
244 case EEP_MAC_LSW:
245 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
246 case EEP_MAC_MID:
247 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
248 case EEP_MAC_MSW:
249 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
250 case EEP_REG_0:
251 return pBase->regDmn[0];
252 case EEP_REG_1:
253 return pBase->regDmn[1];
254 case EEP_OP_CAP:
255 return pBase->deviceCap;
256 case EEP_OP_MODE:
257 return pBase->opCapFlags;
258 case EEP_RF_SILENT:
259 return pBase->rfSilent;
260 case EEP_OB_5:
261 return pModal[0].ob;
262 case EEP_DB_5:
263 return pModal[0].db;
264 case EEP_OB_2:
265 return pModal[1].ob;
266 case EEP_DB_2:
267 return pModal[1].db;
268 case EEP_MINOR_REV:
269 return AR5416_VER_MASK;
270 case EEP_TX_MASK:
271 return pBase->txMask;
272 case EEP_RX_MASK:
273 return pBase->rxMask;
274 case EEP_FSTCLK_5G:
275 return pBase->fastClk5g;
276 case EEP_RXGAIN_TYPE:
277 return pBase->rxGainType;
278 case EEP_TXGAIN_TYPE:
279 return pBase->txGainType;
280 case EEP_OL_PWRCTRL:
281 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
282 return pBase->openLoopPwrCntl ? true : false;
283 else
284 return false;
285 case EEP_RC_CHAIN_MASK:
286 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
287 return pBase->rcChainMask;
288 else
289 return 0;
290 case EEP_DAC_HPWR_5G:
291 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
292 return pBase->dacHiPwrMode_5G;
293 else
294 return 0;
295 case EEP_FRAC_N_5G:
296 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
297 return pBase->frac_n_5g;
298 else
299 return 0;
300 case EEP_PWR_TABLE_OFFSET:
301 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
302 return pBase->pwr_table_offset;
303 else
304 return AR5416_PWR_TABLE_OFFSET_DB;
305 default:
306 return 0;
310 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
311 struct modal_eep_header *pModal,
312 struct ar5416_eeprom_def *eep,
313 u8 txRxAttenLocal, int regChainOffset, int i)
315 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
316 txRxAttenLocal = pModal->txRxAttenCh[i];
318 if (AR_SREV_9280_20_OR_LATER(ah)) {
319 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
320 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
321 pModal->bswMargin[i]);
322 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
323 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
324 pModal->bswAtten[i]);
325 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
326 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
327 pModal->xatten2Margin[i]);
328 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
329 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
330 pModal->xatten2Db[i]);
331 } else {
332 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
333 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
334 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
335 | SM(pModal-> bswMargin[i],
336 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
337 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
338 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
339 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
340 | SM(pModal->bswAtten[i],
341 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
345 if (AR_SREV_9280_20_OR_LATER(ah)) {
346 REG_RMW_FIELD(ah,
347 AR_PHY_RXGAIN + regChainOffset,
348 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
349 REG_RMW_FIELD(ah,
350 AR_PHY_RXGAIN + regChainOffset,
351 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
352 } else {
353 REG_WRITE(ah,
354 AR_PHY_RXGAIN + regChainOffset,
355 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
356 ~AR_PHY_RXGAIN_TXRX_ATTEN)
357 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
358 REG_WRITE(ah,
359 AR_PHY_GAIN_2GHZ + regChainOffset,
360 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
361 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
362 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
366 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
367 struct ath9k_channel *chan)
369 struct modal_eep_header *pModal;
370 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
371 int i, regChainOffset;
372 u8 txRxAttenLocal;
374 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
375 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
377 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
379 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
380 if (AR_SREV_9280(ah)) {
381 if (i >= 2)
382 break;
385 if (AR_SREV_5416_20_OR_LATER(ah) &&
386 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
387 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
388 else
389 regChainOffset = i * 0x1000;
391 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
392 pModal->antCtrlChain[i]);
394 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
395 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
396 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
397 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
398 SM(pModal->iqCalICh[i],
399 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
400 SM(pModal->iqCalQCh[i],
401 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
403 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
404 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
405 regChainOffset, i);
408 if (AR_SREV_9280_20_OR_LATER(ah)) {
409 if (IS_CHAN_2GHZ(chan)) {
410 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
411 AR_AN_RF2G1_CH0_OB,
412 AR_AN_RF2G1_CH0_OB_S,
413 pModal->ob);
414 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
415 AR_AN_RF2G1_CH0_DB,
416 AR_AN_RF2G1_CH0_DB_S,
417 pModal->db);
418 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
419 AR_AN_RF2G1_CH1_OB,
420 AR_AN_RF2G1_CH1_OB_S,
421 pModal->ob_ch1);
422 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
423 AR_AN_RF2G1_CH1_DB,
424 AR_AN_RF2G1_CH1_DB_S,
425 pModal->db_ch1);
426 } else {
427 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
428 AR_AN_RF5G1_CH0_OB5,
429 AR_AN_RF5G1_CH0_OB5_S,
430 pModal->ob);
431 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
432 AR_AN_RF5G1_CH0_DB5,
433 AR_AN_RF5G1_CH0_DB5_S,
434 pModal->db);
435 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
436 AR_AN_RF5G1_CH1_OB5,
437 AR_AN_RF5G1_CH1_OB5_S,
438 pModal->ob_ch1);
439 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
440 AR_AN_RF5G1_CH1_DB5,
441 AR_AN_RF5G1_CH1_DB5_S,
442 pModal->db_ch1);
444 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
445 AR_AN_TOP2_XPABIAS_LVL,
446 AR_AN_TOP2_XPABIAS_LVL_S,
447 pModal->xpaBiasLvl);
448 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
449 AR_AN_TOP2_LOCALBIAS,
450 AR_AN_TOP2_LOCALBIAS_S,
451 !!(pModal->lna_ctl &
452 LNA_CTL_LOCAL_BIAS));
453 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
454 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
457 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
458 pModal->switchSettling);
459 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
460 pModal->adcDesiredSize);
462 if (!AR_SREV_9280_20_OR_LATER(ah))
463 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
464 AR_PHY_DESIRED_SZ_PGA,
465 pModal->pgaDesiredSize);
467 REG_WRITE(ah, AR_PHY_RF_CTL4,
468 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
469 | SM(pModal->txEndToXpaOff,
470 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
471 | SM(pModal->txFrameToXpaOn,
472 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
473 | SM(pModal->txFrameToXpaOn,
474 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
476 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
477 pModal->txEndToRxOn);
479 if (AR_SREV_9280_20_OR_LATER(ah)) {
480 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
481 pModal->thresh62);
482 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
483 AR_PHY_EXT_CCA0_THRESH62,
484 pModal->thresh62);
485 } else {
486 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
487 pModal->thresh62);
488 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
489 AR_PHY_EXT_CCA_THRESH62,
490 pModal->thresh62);
493 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
494 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
495 AR_PHY_TX_END_DATA_START,
496 pModal->txFrameToDataStart);
497 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
498 pModal->txFrameToPaOn);
501 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
502 if (IS_CHAN_HT40(chan))
503 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
504 AR_PHY_SETTLING_SWITCH,
505 pModal->swSettleHt40);
508 if (AR_SREV_9280_20_OR_LATER(ah) &&
509 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
510 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
511 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
512 pModal->miscBits);
515 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
516 if (IS_CHAN_2GHZ(chan))
517 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
518 eep->baseEepHeader.dacLpMode);
519 else if (eep->baseEepHeader.dacHiPwrMode_5G)
520 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
521 else
522 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
523 eep->baseEepHeader.dacLpMode);
525 udelay(100);
527 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
528 pModal->miscBits >> 2);
530 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
531 AR_PHY_TX_DESIRED_SCALE_CCK,
532 eep->baseEepHeader.desiredScaleCCK);
536 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
537 struct ath9k_channel *chan)
539 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
540 struct modal_eep_header *pModal;
541 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
542 u8 biaslevel;
544 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
545 return;
547 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
548 return;
550 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
552 if (pModal->xpaBiasLvl != 0xff) {
553 biaslevel = pModal->xpaBiasLvl;
554 } else {
555 u16 resetFreqBin, freqBin, freqCount = 0;
556 struct chan_centers centers;
558 ath9k_hw_get_channel_centers(ah, chan, &centers);
560 resetFreqBin = FREQ2FBIN(centers.synth_center,
561 IS_CHAN_2GHZ(chan));
562 freqBin = XPA_LVL_FREQ(0) & 0xff;
563 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
565 freqCount++;
567 while (freqCount < 3) {
568 if (XPA_LVL_FREQ(freqCount) == 0x0)
569 break;
571 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
572 if (resetFreqBin >= freqBin)
573 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
574 else
575 break;
576 freqCount++;
580 if (IS_CHAN_2GHZ(chan)) {
581 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
582 7, 1) & (~0x18)) | biaslevel << 3;
583 } else {
584 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
585 6, 1) & (~0xc0)) | biaslevel << 6;
587 #undef XPA_LVL_FREQ
590 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
591 u16 *gb,
592 u16 numXpdGain,
593 u16 pdGainOverlap_t2,
594 int8_t pwr_table_offset,
595 int16_t *diff)
598 u16 k;
600 /* Prior to writing the boundaries or the pdadc vs. power table
601 * into the chip registers the default starting point on the pdadc
602 * vs. power table needs to be checked and the curve boundaries
603 * adjusted accordingly
605 if (AR_SREV_9280_20_OR_LATER(ah)) {
606 u16 gb_limit;
608 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
609 /* get the difference in dB */
610 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
611 /* get the number of half dB steps */
612 *diff *= 2;
613 /* change the original gain boundary settings
614 * by the number of half dB steps
616 for (k = 0; k < numXpdGain; k++)
617 gb[k] = (u16)(gb[k] - *diff);
619 /* Because of a hardware limitation, ensure the gain boundary
620 * is not larger than (63 - overlap)
622 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
624 for (k = 0; k < numXpdGain; k++)
625 gb[k] = (u16)min(gb_limit, gb[k]);
628 return *diff;
631 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
632 int8_t pwr_table_offset,
633 int16_t diff,
634 u8 *pdadcValues)
636 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
637 u16 k;
639 /* If this is a board that has a pwrTableOffset that differs from
640 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
641 * pdadc vs pwr table needs to be adjusted prior to writing to the
642 * chip.
644 if (AR_SREV_9280_20_OR_LATER(ah)) {
645 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
646 /* shift the table to start at the new offset */
647 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
648 pdadcValues[k] = pdadcValues[k + diff];
651 /* fill the back of the table */
652 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
653 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
657 #undef NUM_PDADC
660 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
661 struct ath9k_channel *chan,
662 int16_t *pTxPowerIndexOffset)
664 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
665 #define SM_PDGAIN_B(x, y) \
666 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
667 struct ath_common *common = ath9k_hw_common(ah);
668 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
669 struct cal_data_per_freq *pRawDataset;
670 u8 *pCalBChans = NULL;
671 u16 pdGainOverlap_t2;
672 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
673 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
674 u16 numPiers, i, j;
675 int16_t diff = 0;
676 u16 numXpdGain, xpdMask;
677 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
678 u32 reg32, regOffset, regChainOffset;
679 int16_t modalIdx;
680 int8_t pwr_table_offset;
682 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
683 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
685 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
687 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
688 AR5416_EEP_MINOR_VER_2) {
689 pdGainOverlap_t2 =
690 pEepData->modalHeader[modalIdx].pdGainOverlap;
691 } else {
692 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
693 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
696 if (IS_CHAN_2GHZ(chan)) {
697 pCalBChans = pEepData->calFreqPier2G;
698 numPiers = AR5416_NUM_2G_CAL_PIERS;
699 } else {
700 pCalBChans = pEepData->calFreqPier5G;
701 numPiers = AR5416_NUM_5G_CAL_PIERS;
704 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
705 pRawDataset = pEepData->calPierData2G[0];
706 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
707 pRawDataset)->vpdPdg[0][0];
710 numXpdGain = 0;
712 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
713 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
714 if (numXpdGain >= AR5416_NUM_PD_GAINS)
715 break;
716 xpdGainValues[numXpdGain] =
717 (u16)(AR5416_PD_GAINS_IN_MASK - i);
718 numXpdGain++;
722 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
723 (numXpdGain - 1) & 0x3);
724 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
725 xpdGainValues[0]);
726 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
727 xpdGainValues[1]);
728 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
729 xpdGainValues[2]);
731 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
732 if (AR_SREV_5416_20_OR_LATER(ah) &&
733 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
734 (i != 0)) {
735 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
736 } else
737 regChainOffset = i * 0x1000;
739 if (pEepData->baseEepHeader.txMask & (1 << i)) {
740 if (IS_CHAN_2GHZ(chan))
741 pRawDataset = pEepData->calPierData2G[i];
742 else
743 pRawDataset = pEepData->calPierData5G[i];
746 if (OLC_FOR_AR9280_20_LATER) {
747 u8 pcdacIdx;
748 u8 txPower;
750 ath9k_get_txgain_index(ah, chan,
751 (struct calDataPerFreqOpLoop *)pRawDataset,
752 pCalBChans, numPiers, &txPower, &pcdacIdx);
753 ath9k_olc_get_pdadcs(ah, pcdacIdx,
754 txPower/2, pdadcValues);
755 } else {
756 ath9k_hw_get_gain_boundaries_pdadcs(ah,
757 chan, pRawDataset,
758 pCalBChans, numPiers,
759 pdGainOverlap_t2,
760 gainBoundaries,
761 pdadcValues,
762 numXpdGain);
765 diff = ath9k_change_gain_boundary_setting(ah,
766 gainBoundaries,
767 numXpdGain,
768 pdGainOverlap_t2,
769 pwr_table_offset,
770 &diff);
772 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
773 if (OLC_FOR_AR9280_20_LATER) {
774 REG_WRITE(ah,
775 AR_PHY_TPCRG5 + regChainOffset,
776 SM(0x6,
777 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
778 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
779 SM_PD_GAIN(3) | SM_PD_GAIN(4));
780 } else {
781 REG_WRITE(ah,
782 AR_PHY_TPCRG5 + regChainOffset,
783 SM(pdGainOverlap_t2,
784 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
785 SM_PDGAIN_B(0, 1) |
786 SM_PDGAIN_B(1, 2) |
787 SM_PDGAIN_B(2, 3) |
788 SM_PDGAIN_B(3, 4));
793 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
794 diff, pdadcValues);
796 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
797 for (j = 0; j < 32; j++) {
798 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
799 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
800 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
801 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
802 REG_WRITE(ah, regOffset, reg32);
804 ath_dbg(common, ATH_DBG_EEPROM,
805 "PDADC (%d,%4x): %4.4x %8.8x\n",
806 i, regChainOffset, regOffset,
807 reg32);
808 ath_dbg(common, ATH_DBG_EEPROM,
809 "PDADC: Chain %d | PDADC %3d "
810 "Value %3d | PDADC %3d Value %3d | "
811 "PDADC %3d Value %3d | PDADC %3d "
812 "Value %3d |\n",
813 i, 4 * j, pdadcValues[4 * j],
814 4 * j + 1, pdadcValues[4 * j + 1],
815 4 * j + 2, pdadcValues[4 * j + 2],
816 4 * j + 3, pdadcValues[4 * j + 3]);
818 regOffset += 4;
823 *pTxPowerIndexOffset = 0;
824 #undef SM_PD_GAIN
825 #undef SM_PDGAIN_B
828 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
829 struct ath9k_channel *chan,
830 int16_t *ratesArray,
831 u16 cfgCtl,
832 u16 AntennaReduction,
833 u16 twiceMaxRegulatoryPower,
834 u16 powerLimit)
836 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
837 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
839 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
840 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
841 u16 twiceMaxEdgePower = MAX_RATE_POWER;
842 static const u16 tpScaleReductionTable[5] =
843 { 0, 3, 6, 9, MAX_RATE_POWER };
845 int i;
846 int16_t twiceLargestAntenna;
847 struct cal_ctl_data *rep;
848 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
849 0, { 0, 0, 0, 0}
851 struct cal_target_power_leg targetPowerOfdmExt = {
852 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
853 0, { 0, 0, 0, 0 }
855 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
856 0, {0, 0, 0, 0}
858 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
859 static const u16 ctlModesFor11a[] = {
860 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
862 static const u16 ctlModesFor11g[] = {
863 CTL_11B, CTL_11G, CTL_2GHT20,
864 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
866 u16 numCtlModes;
867 const u16 *pCtlMode;
868 u16 ctlMode, freq;
869 struct chan_centers centers;
870 int tx_chainmask;
871 u16 twiceMinEdgePower;
873 tx_chainmask = ah->txchainmask;
875 ath9k_hw_get_channel_centers(ah, chan, &centers);
877 twiceLargestAntenna = max(
878 pEepData->modalHeader
879 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
880 pEepData->modalHeader
881 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
883 twiceLargestAntenna = max((u8)twiceLargestAntenna,
884 pEepData->modalHeader
885 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
887 twiceLargestAntenna = (int16_t)min(AntennaReduction -
888 twiceLargestAntenna, 0);
890 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
892 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
893 maxRegAllowedPower -=
894 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
897 scaledPower = min(powerLimit, maxRegAllowedPower);
899 switch (ar5416_get_ntxchains(tx_chainmask)) {
900 case 1:
901 break;
902 case 2:
903 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
904 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
905 else
906 scaledPower = 0;
907 break;
908 case 3:
909 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
910 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
911 else
912 scaledPower = 0;
913 break;
916 if (IS_CHAN_2GHZ(chan)) {
917 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
918 SUB_NUM_CTL_MODES_AT_2G_40;
919 pCtlMode = ctlModesFor11g;
921 ath9k_hw_get_legacy_target_powers(ah, chan,
922 pEepData->calTargetPowerCck,
923 AR5416_NUM_2G_CCK_TARGET_POWERS,
924 &targetPowerCck, 4, false);
925 ath9k_hw_get_legacy_target_powers(ah, chan,
926 pEepData->calTargetPower2G,
927 AR5416_NUM_2G_20_TARGET_POWERS,
928 &targetPowerOfdm, 4, false);
929 ath9k_hw_get_target_powers(ah, chan,
930 pEepData->calTargetPower2GHT20,
931 AR5416_NUM_2G_20_TARGET_POWERS,
932 &targetPowerHt20, 8, false);
934 if (IS_CHAN_HT40(chan)) {
935 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
936 ath9k_hw_get_target_powers(ah, chan,
937 pEepData->calTargetPower2GHT40,
938 AR5416_NUM_2G_40_TARGET_POWERS,
939 &targetPowerHt40, 8, true);
940 ath9k_hw_get_legacy_target_powers(ah, chan,
941 pEepData->calTargetPowerCck,
942 AR5416_NUM_2G_CCK_TARGET_POWERS,
943 &targetPowerCckExt, 4, true);
944 ath9k_hw_get_legacy_target_powers(ah, chan,
945 pEepData->calTargetPower2G,
946 AR5416_NUM_2G_20_TARGET_POWERS,
947 &targetPowerOfdmExt, 4, true);
949 } else {
950 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
951 SUB_NUM_CTL_MODES_AT_5G_40;
952 pCtlMode = ctlModesFor11a;
954 ath9k_hw_get_legacy_target_powers(ah, chan,
955 pEepData->calTargetPower5G,
956 AR5416_NUM_5G_20_TARGET_POWERS,
957 &targetPowerOfdm, 4, false);
958 ath9k_hw_get_target_powers(ah, chan,
959 pEepData->calTargetPower5GHT20,
960 AR5416_NUM_5G_20_TARGET_POWERS,
961 &targetPowerHt20, 8, false);
963 if (IS_CHAN_HT40(chan)) {
964 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
965 ath9k_hw_get_target_powers(ah, chan,
966 pEepData->calTargetPower5GHT40,
967 AR5416_NUM_5G_40_TARGET_POWERS,
968 &targetPowerHt40, 8, true);
969 ath9k_hw_get_legacy_target_powers(ah, chan,
970 pEepData->calTargetPower5G,
971 AR5416_NUM_5G_20_TARGET_POWERS,
972 &targetPowerOfdmExt, 4, true);
976 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
977 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
978 (pCtlMode[ctlMode] == CTL_2GHT40);
979 if (isHt40CtlMode)
980 freq = centers.synth_center;
981 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
982 freq = centers.ext_center;
983 else
984 freq = centers.ctl_center;
986 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
987 ah->eep_ops->get_eeprom_rev(ah) <= 2)
988 twiceMaxEdgePower = MAX_RATE_POWER;
990 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
991 if ((((cfgCtl & ~CTL_MODE_M) |
992 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
993 pEepData->ctlIndex[i]) ||
994 (((cfgCtl & ~CTL_MODE_M) |
995 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
996 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
997 rep = &(pEepData->ctlData[i]);
999 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1000 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1001 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1003 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1004 twiceMaxEdgePower = min(twiceMaxEdgePower,
1005 twiceMinEdgePower);
1006 } else {
1007 twiceMaxEdgePower = twiceMinEdgePower;
1008 break;
1013 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1015 switch (pCtlMode[ctlMode]) {
1016 case CTL_11B:
1017 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1018 targetPowerCck.tPow2x[i] =
1019 min((u16)targetPowerCck.tPow2x[i],
1020 minCtlPower);
1022 break;
1023 case CTL_11A:
1024 case CTL_11G:
1025 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1026 targetPowerOfdm.tPow2x[i] =
1027 min((u16)targetPowerOfdm.tPow2x[i],
1028 minCtlPower);
1030 break;
1031 case CTL_5GHT20:
1032 case CTL_2GHT20:
1033 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1034 targetPowerHt20.tPow2x[i] =
1035 min((u16)targetPowerHt20.tPow2x[i],
1036 minCtlPower);
1038 break;
1039 case CTL_11B_EXT:
1040 targetPowerCckExt.tPow2x[0] = min((u16)
1041 targetPowerCckExt.tPow2x[0],
1042 minCtlPower);
1043 break;
1044 case CTL_11A_EXT:
1045 case CTL_11G_EXT:
1046 targetPowerOfdmExt.tPow2x[0] = min((u16)
1047 targetPowerOfdmExt.tPow2x[0],
1048 minCtlPower);
1049 break;
1050 case CTL_5GHT40:
1051 case CTL_2GHT40:
1052 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1053 targetPowerHt40.tPow2x[i] =
1054 min((u16)targetPowerHt40.tPow2x[i],
1055 minCtlPower);
1057 break;
1058 default:
1059 break;
1063 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1064 ratesArray[rate18mb] = ratesArray[rate24mb] =
1065 targetPowerOfdm.tPow2x[0];
1066 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1067 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1068 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1069 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1071 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1072 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1074 if (IS_CHAN_2GHZ(chan)) {
1075 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1076 ratesArray[rate2s] = ratesArray[rate2l] =
1077 targetPowerCck.tPow2x[1];
1078 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1079 targetPowerCck.tPow2x[2];
1080 ratesArray[rate11s] = ratesArray[rate11l] =
1081 targetPowerCck.tPow2x[3];
1083 if (IS_CHAN_HT40(chan)) {
1084 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1085 ratesArray[rateHt40_0 + i] =
1086 targetPowerHt40.tPow2x[i];
1088 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1089 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1090 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1091 if (IS_CHAN_2GHZ(chan)) {
1092 ratesArray[rateExtCck] =
1093 targetPowerCckExt.tPow2x[0];
1098 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1099 struct ath9k_channel *chan,
1100 u16 cfgCtl,
1101 u8 twiceAntennaReduction,
1102 u8 twiceMaxRegulatoryPower,
1103 u8 powerLimit, bool test)
1105 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1106 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1107 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1108 struct modal_eep_header *pModal =
1109 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1110 int16_t ratesArray[Ar5416RateSize];
1111 int16_t txPowerIndexOffset = 0;
1112 u8 ht40PowerIncForPdadc = 2;
1113 int i, cck_ofdm_delta = 0;
1115 memset(ratesArray, 0, sizeof(ratesArray));
1117 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1118 AR5416_EEP_MINOR_VER_2) {
1119 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1122 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1123 &ratesArray[0], cfgCtl,
1124 twiceAntennaReduction,
1125 twiceMaxRegulatoryPower,
1126 powerLimit);
1128 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1130 regulatory->max_power_level = 0;
1131 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1132 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1133 if (ratesArray[i] > MAX_RATE_POWER)
1134 ratesArray[i] = MAX_RATE_POWER;
1135 if (ratesArray[i] > regulatory->max_power_level)
1136 regulatory->max_power_level = ratesArray[i];
1139 if (!test) {
1140 i = rate6mb;
1142 if (IS_CHAN_HT40(chan))
1143 i = rateHt40_0;
1144 else if (IS_CHAN_HT20(chan))
1145 i = rateHt20_0;
1147 regulatory->max_power_level = ratesArray[i];
1150 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1151 case 1:
1152 break;
1153 case 2:
1154 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1155 break;
1156 case 3:
1157 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1158 break;
1159 default:
1160 ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1161 "Invalid chainmask configuration\n");
1162 break;
1165 if (test)
1166 return;
1168 if (AR_SREV_9280_20_OR_LATER(ah)) {
1169 for (i = 0; i < Ar5416RateSize; i++) {
1170 int8_t pwr_table_offset;
1172 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1173 EEP_PWR_TABLE_OFFSET);
1174 ratesArray[i] -= pwr_table_offset * 2;
1178 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1179 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1180 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1181 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1182 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1183 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1184 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1185 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1186 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1187 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1189 if (IS_CHAN_2GHZ(chan)) {
1190 if (OLC_FOR_AR9280_20_LATER) {
1191 cck_ofdm_delta = 2;
1192 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1193 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1194 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1195 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1196 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1197 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1198 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1199 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1200 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1201 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1202 } else {
1203 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1204 ATH9K_POW_SM(ratesArray[rate2s], 24)
1205 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1206 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1207 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1208 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1209 ATH9K_POW_SM(ratesArray[rate11s], 24)
1210 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1211 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1212 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1216 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1217 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1218 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1219 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1220 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1221 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1222 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1223 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1224 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1225 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1227 if (IS_CHAN_HT40(chan)) {
1228 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1229 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1230 ht40PowerIncForPdadc, 24)
1231 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1232 ht40PowerIncForPdadc, 16)
1233 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1234 ht40PowerIncForPdadc, 8)
1235 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1236 ht40PowerIncForPdadc, 0));
1237 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1238 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1239 ht40PowerIncForPdadc, 24)
1240 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1241 ht40PowerIncForPdadc, 16)
1242 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1243 ht40PowerIncForPdadc, 8)
1244 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1245 ht40PowerIncForPdadc, 0));
1246 if (OLC_FOR_AR9280_20_LATER) {
1247 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1248 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1249 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1250 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1251 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1252 } else {
1253 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1254 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1255 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1256 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1257 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1261 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1262 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1263 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1266 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1268 #define EEP_DEF_SPURCHAN \
1269 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1270 struct ath_common *common = ath9k_hw_common(ah);
1272 u16 spur_val = AR_NO_SPUR;
1274 ath_dbg(common, ATH_DBG_ANI,
1275 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1276 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1278 switch (ah->config.spurmode) {
1279 case SPUR_DISABLE:
1280 break;
1281 case SPUR_ENABLE_IOCTL:
1282 spur_val = ah->config.spurchans[i][is2GHz];
1283 ath_dbg(common, ATH_DBG_ANI,
1284 "Getting spur val from new loc. %d\n", spur_val);
1285 break;
1286 case SPUR_ENABLE_EEPROM:
1287 spur_val = EEP_DEF_SPURCHAN;
1288 break;
1291 return spur_val;
1293 #undef EEP_DEF_SPURCHAN
1296 const struct eeprom_ops eep_def_ops = {
1297 .check_eeprom = ath9k_hw_def_check_eeprom,
1298 .get_eeprom = ath9k_hw_def_get_eeprom,
1299 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1300 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1301 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1302 .set_board_values = ath9k_hw_def_set_board_values,
1303 .set_addac = ath9k_hw_def_set_addac,
1304 .set_txpower = ath9k_hw_def_set_txpower,
1305 .get_spur_channel = ath9k_hw_def_get_spur_channel