dax: fix conversion of holes to PMDs
[linux-2.6/btrfs-unstable.git] / fs / dax.c
blob5b84a46201c2a6d6df977a8d5142f89b9ae5a253
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31 #include <linux/pfn_t.h>
32 #include <linux/sizes.h>
34 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 struct request_queue *q = bdev->bd_queue;
37 long rc = -EIO;
39 dax->addr = (void __pmem *) ERR_PTR(-EIO);
40 if (blk_queue_enter(q, true) != 0)
41 return rc;
43 rc = bdev_direct_access(bdev, dax);
44 if (rc < 0) {
45 dax->addr = (void __pmem *) ERR_PTR(rc);
46 blk_queue_exit(q);
47 return rc;
49 return rc;
52 static void dax_unmap_atomic(struct block_device *bdev,
53 const struct blk_dax_ctl *dax)
55 if (IS_ERR(dax->addr))
56 return;
57 blk_queue_exit(bdev->bd_queue);
61 * dax_clear_blocks() is called from within transaction context from XFS,
62 * and hence this means the stack from this point must follow GFP_NOFS
63 * semantics for all operations.
65 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
67 struct block_device *bdev = inode->i_sb->s_bdev;
68 struct blk_dax_ctl dax = {
69 .sector = block << (inode->i_blkbits - 9),
70 .size = _size,
73 might_sleep();
74 do {
75 long count, sz;
77 count = dax_map_atomic(bdev, &dax);
78 if (count < 0)
79 return count;
80 sz = min_t(long, count, SZ_128K);
81 clear_pmem(dax.addr, sz);
82 dax.size -= sz;
83 dax.sector += sz / 512;
84 dax_unmap_atomic(bdev, &dax);
85 cond_resched();
86 } while (dax.size);
88 wmb_pmem();
89 return 0;
91 EXPORT_SYMBOL_GPL(dax_clear_blocks);
93 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
94 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
95 loff_t pos, loff_t end)
97 loff_t final = end - pos + first; /* The final byte of the buffer */
99 if (first > 0)
100 clear_pmem(addr, first);
101 if (final < size)
102 clear_pmem(addr + final, size - final);
105 static bool buffer_written(struct buffer_head *bh)
107 return buffer_mapped(bh) && !buffer_unwritten(bh);
111 * When ext4 encounters a hole, it returns without modifying the buffer_head
112 * which means that we can't trust b_size. To cope with this, we set b_state
113 * to 0 before calling get_block and, if any bit is set, we know we can trust
114 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
115 * and would save us time calling get_block repeatedly.
117 static bool buffer_size_valid(struct buffer_head *bh)
119 return bh->b_state != 0;
123 static sector_t to_sector(const struct buffer_head *bh,
124 const struct inode *inode)
126 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
128 return sector;
131 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
132 loff_t start, loff_t end, get_block_t get_block,
133 struct buffer_head *bh)
135 loff_t pos = start, max = start, bh_max = start;
136 bool hole = false, need_wmb = false;
137 struct block_device *bdev = NULL;
138 int rw = iov_iter_rw(iter), rc;
139 long map_len = 0;
140 struct blk_dax_ctl dax = {
141 .addr = (void __pmem *) ERR_PTR(-EIO),
144 if (rw == READ)
145 end = min(end, i_size_read(inode));
147 while (pos < end) {
148 size_t len;
149 if (pos == max) {
150 unsigned blkbits = inode->i_blkbits;
151 long page = pos >> PAGE_SHIFT;
152 sector_t block = page << (PAGE_SHIFT - blkbits);
153 unsigned first = pos - (block << blkbits);
154 long size;
156 if (pos == bh_max) {
157 bh->b_size = PAGE_ALIGN(end - pos);
158 bh->b_state = 0;
159 rc = get_block(inode, block, bh, rw == WRITE);
160 if (rc)
161 break;
162 if (!buffer_size_valid(bh))
163 bh->b_size = 1 << blkbits;
164 bh_max = pos - first + bh->b_size;
165 bdev = bh->b_bdev;
166 } else {
167 unsigned done = bh->b_size -
168 (bh_max - (pos - first));
169 bh->b_blocknr += done >> blkbits;
170 bh->b_size -= done;
173 hole = rw == READ && !buffer_written(bh);
174 if (hole) {
175 size = bh->b_size - first;
176 } else {
177 dax_unmap_atomic(bdev, &dax);
178 dax.sector = to_sector(bh, inode);
179 dax.size = bh->b_size;
180 map_len = dax_map_atomic(bdev, &dax);
181 if (map_len < 0) {
182 rc = map_len;
183 break;
185 if (buffer_unwritten(bh) || buffer_new(bh)) {
186 dax_new_buf(dax.addr, map_len, first,
187 pos, end);
188 need_wmb = true;
190 dax.addr += first;
191 size = map_len - first;
193 max = min(pos + size, end);
196 if (iov_iter_rw(iter) == WRITE) {
197 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
198 need_wmb = true;
199 } else if (!hole)
200 len = copy_to_iter((void __force *) dax.addr, max - pos,
201 iter);
202 else
203 len = iov_iter_zero(max - pos, iter);
205 if (!len) {
206 rc = -EFAULT;
207 break;
210 pos += len;
211 if (!IS_ERR(dax.addr))
212 dax.addr += len;
215 if (need_wmb)
216 wmb_pmem();
217 dax_unmap_atomic(bdev, &dax);
219 return (pos == start) ? rc : pos - start;
223 * dax_do_io - Perform I/O to a DAX file
224 * @iocb: The control block for this I/O
225 * @inode: The file which the I/O is directed at
226 * @iter: The addresses to do I/O from or to
227 * @pos: The file offset where the I/O starts
228 * @get_block: The filesystem method used to translate file offsets to blocks
229 * @end_io: A filesystem callback for I/O completion
230 * @flags: See below
232 * This function uses the same locking scheme as do_blockdev_direct_IO:
233 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
234 * caller for writes. For reads, we take and release the i_mutex ourselves.
235 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
236 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
237 * is in progress.
239 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
240 struct iov_iter *iter, loff_t pos, get_block_t get_block,
241 dio_iodone_t end_io, int flags)
243 struct buffer_head bh;
244 ssize_t retval = -EINVAL;
245 loff_t end = pos + iov_iter_count(iter);
247 memset(&bh, 0, sizeof(bh));
249 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
250 struct address_space *mapping = inode->i_mapping;
251 mutex_lock(&inode->i_mutex);
252 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
253 if (retval) {
254 mutex_unlock(&inode->i_mutex);
255 goto out;
259 /* Protects against truncate */
260 if (!(flags & DIO_SKIP_DIO_COUNT))
261 inode_dio_begin(inode);
263 retval = dax_io(inode, iter, pos, end, get_block, &bh);
265 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
266 mutex_unlock(&inode->i_mutex);
268 if ((retval > 0) && end_io)
269 end_io(iocb, pos, retval, bh.b_private);
271 if (!(flags & DIO_SKIP_DIO_COUNT))
272 inode_dio_end(inode);
273 out:
274 return retval;
276 EXPORT_SYMBOL_GPL(dax_do_io);
279 * The user has performed a load from a hole in the file. Allocating
280 * a new page in the file would cause excessive storage usage for
281 * workloads with sparse files. We allocate a page cache page instead.
282 * We'll kick it out of the page cache if it's ever written to,
283 * otherwise it will simply fall out of the page cache under memory
284 * pressure without ever having been dirtied.
286 static int dax_load_hole(struct address_space *mapping, struct page *page,
287 struct vm_fault *vmf)
289 unsigned long size;
290 struct inode *inode = mapping->host;
291 if (!page)
292 page = find_or_create_page(mapping, vmf->pgoff,
293 GFP_KERNEL | __GFP_ZERO);
294 if (!page)
295 return VM_FAULT_OOM;
296 /* Recheck i_size under page lock to avoid truncate race */
297 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
298 if (vmf->pgoff >= size) {
299 unlock_page(page);
300 page_cache_release(page);
301 return VM_FAULT_SIGBUS;
304 vmf->page = page;
305 return VM_FAULT_LOCKED;
308 static int copy_user_bh(struct page *to, struct inode *inode,
309 struct buffer_head *bh, unsigned long vaddr)
311 struct blk_dax_ctl dax = {
312 .sector = to_sector(bh, inode),
313 .size = bh->b_size,
315 struct block_device *bdev = bh->b_bdev;
316 void *vto;
318 if (dax_map_atomic(bdev, &dax) < 0)
319 return PTR_ERR(dax.addr);
320 vto = kmap_atomic(to);
321 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
322 kunmap_atomic(vto);
323 dax_unmap_atomic(bdev, &dax);
324 return 0;
327 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
328 struct vm_area_struct *vma, struct vm_fault *vmf)
330 unsigned long vaddr = (unsigned long)vmf->virtual_address;
331 struct address_space *mapping = inode->i_mapping;
332 struct block_device *bdev = bh->b_bdev;
333 struct blk_dax_ctl dax = {
334 .sector = to_sector(bh, inode),
335 .size = bh->b_size,
337 pgoff_t size;
338 int error;
340 i_mmap_lock_read(mapping);
343 * Check truncate didn't happen while we were allocating a block.
344 * If it did, this block may or may not be still allocated to the
345 * file. We can't tell the filesystem to free it because we can't
346 * take i_mutex here. In the worst case, the file still has blocks
347 * allocated past the end of the file.
349 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
350 if (unlikely(vmf->pgoff >= size)) {
351 error = -EIO;
352 goto out;
355 if (dax_map_atomic(bdev, &dax) < 0) {
356 error = PTR_ERR(dax.addr);
357 goto out;
360 if (buffer_unwritten(bh) || buffer_new(bh)) {
361 clear_pmem(dax.addr, PAGE_SIZE);
362 wmb_pmem();
364 dax_unmap_atomic(bdev, &dax);
366 error = vm_insert_mixed(vma, vaddr, dax.pfn);
368 out:
369 i_mmap_unlock_read(mapping);
371 return error;
375 * __dax_fault - handle a page fault on a DAX file
376 * @vma: The virtual memory area where the fault occurred
377 * @vmf: The description of the fault
378 * @get_block: The filesystem method used to translate file offsets to blocks
379 * @complete_unwritten: The filesystem method used to convert unwritten blocks
380 * to written so the data written to them is exposed. This is required for
381 * required by write faults for filesystems that will return unwritten
382 * extent mappings from @get_block, but it is optional for reads as
383 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
384 * not support unwritten extents, the it should pass NULL.
386 * When a page fault occurs, filesystems may call this helper in their
387 * fault handler for DAX files. __dax_fault() assumes the caller has done all
388 * the necessary locking for the page fault to proceed successfully.
390 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
391 get_block_t get_block, dax_iodone_t complete_unwritten)
393 struct file *file = vma->vm_file;
394 struct address_space *mapping = file->f_mapping;
395 struct inode *inode = mapping->host;
396 struct page *page;
397 struct buffer_head bh;
398 unsigned long vaddr = (unsigned long)vmf->virtual_address;
399 unsigned blkbits = inode->i_blkbits;
400 sector_t block;
401 pgoff_t size;
402 int error;
403 int major = 0;
405 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
406 if (vmf->pgoff >= size)
407 return VM_FAULT_SIGBUS;
409 memset(&bh, 0, sizeof(bh));
410 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
411 bh.b_size = PAGE_SIZE;
413 repeat:
414 page = find_get_page(mapping, vmf->pgoff);
415 if (page) {
416 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
417 page_cache_release(page);
418 return VM_FAULT_RETRY;
420 if (unlikely(page->mapping != mapping)) {
421 unlock_page(page);
422 page_cache_release(page);
423 goto repeat;
425 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
426 if (unlikely(vmf->pgoff >= size)) {
428 * We have a struct page covering a hole in the file
429 * from a read fault and we've raced with a truncate
431 error = -EIO;
432 goto unlock_page;
436 error = get_block(inode, block, &bh, 0);
437 if (!error && (bh.b_size < PAGE_SIZE))
438 error = -EIO; /* fs corruption? */
439 if (error)
440 goto unlock_page;
442 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
443 if (vmf->flags & FAULT_FLAG_WRITE) {
444 error = get_block(inode, block, &bh, 1);
445 count_vm_event(PGMAJFAULT);
446 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
447 major = VM_FAULT_MAJOR;
448 if (!error && (bh.b_size < PAGE_SIZE))
449 error = -EIO;
450 if (error)
451 goto unlock_page;
452 } else {
453 return dax_load_hole(mapping, page, vmf);
457 if (vmf->cow_page) {
458 struct page *new_page = vmf->cow_page;
459 if (buffer_written(&bh))
460 error = copy_user_bh(new_page, inode, &bh, vaddr);
461 else
462 clear_user_highpage(new_page, vaddr);
463 if (error)
464 goto unlock_page;
465 vmf->page = page;
466 if (!page) {
467 i_mmap_lock_read(mapping);
468 /* Check we didn't race with truncate */
469 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
470 PAGE_SHIFT;
471 if (vmf->pgoff >= size) {
472 i_mmap_unlock_read(mapping);
473 error = -EIO;
474 goto out;
477 return VM_FAULT_LOCKED;
480 /* Check we didn't race with a read fault installing a new page */
481 if (!page && major)
482 page = find_lock_page(mapping, vmf->pgoff);
484 if (page) {
485 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
486 PAGE_CACHE_SIZE, 0);
487 delete_from_page_cache(page);
488 unlock_page(page);
489 page_cache_release(page);
493 * If we successfully insert the new mapping over an unwritten extent,
494 * we need to ensure we convert the unwritten extent. If there is an
495 * error inserting the mapping, the filesystem needs to leave it as
496 * unwritten to prevent exposure of the stale underlying data to
497 * userspace, but we still need to call the completion function so
498 * the private resources on the mapping buffer can be released. We
499 * indicate what the callback should do via the uptodate variable, same
500 * as for normal BH based IO completions.
502 error = dax_insert_mapping(inode, &bh, vma, vmf);
503 if (buffer_unwritten(&bh)) {
504 if (complete_unwritten)
505 complete_unwritten(&bh, !error);
506 else
507 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
510 out:
511 if (error == -ENOMEM)
512 return VM_FAULT_OOM | major;
513 /* -EBUSY is fine, somebody else faulted on the same PTE */
514 if ((error < 0) && (error != -EBUSY))
515 return VM_FAULT_SIGBUS | major;
516 return VM_FAULT_NOPAGE | major;
518 unlock_page:
519 if (page) {
520 unlock_page(page);
521 page_cache_release(page);
523 goto out;
525 EXPORT_SYMBOL(__dax_fault);
528 * dax_fault - handle a page fault on a DAX file
529 * @vma: The virtual memory area where the fault occurred
530 * @vmf: The description of the fault
531 * @get_block: The filesystem method used to translate file offsets to blocks
533 * When a page fault occurs, filesystems may call this helper in their
534 * fault handler for DAX files.
536 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
537 get_block_t get_block, dax_iodone_t complete_unwritten)
539 int result;
540 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
542 if (vmf->flags & FAULT_FLAG_WRITE) {
543 sb_start_pagefault(sb);
544 file_update_time(vma->vm_file);
546 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
547 if (vmf->flags & FAULT_FLAG_WRITE)
548 sb_end_pagefault(sb);
550 return result;
552 EXPORT_SYMBOL_GPL(dax_fault);
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
556 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
557 * more often than one might expect in the below function.
559 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
561 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
562 const char *reason, const char *fn)
564 if (bh) {
565 char bname[BDEVNAME_SIZE];
566 bdevname(bh->b_bdev, bname);
567 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
568 "length %zd fallback: %s\n", fn, current->comm,
569 address, bname, bh->b_state, (u64)bh->b_blocknr,
570 bh->b_size, reason);
571 } else {
572 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
573 current->comm, address, reason);
577 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
579 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
580 pmd_t *pmd, unsigned int flags, get_block_t get_block,
581 dax_iodone_t complete_unwritten)
583 struct file *file = vma->vm_file;
584 struct address_space *mapping = file->f_mapping;
585 struct inode *inode = mapping->host;
586 struct buffer_head bh;
587 unsigned blkbits = inode->i_blkbits;
588 unsigned long pmd_addr = address & PMD_MASK;
589 bool write = flags & FAULT_FLAG_WRITE;
590 struct block_device *bdev;
591 pgoff_t size, pgoff;
592 loff_t lstart, lend;
593 sector_t block;
594 int result = 0;
596 /* dax pmd mappings require pfn_t_devmap() */
597 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
598 return VM_FAULT_FALLBACK;
600 /* Fall back to PTEs if we're going to COW */
601 if (write && !(vma->vm_flags & VM_SHARED)) {
602 split_huge_pmd(vma, pmd, address);
603 dax_pmd_dbg(NULL, address, "cow write");
604 return VM_FAULT_FALLBACK;
606 /* If the PMD would extend outside the VMA */
607 if (pmd_addr < vma->vm_start) {
608 dax_pmd_dbg(NULL, address, "vma start unaligned");
609 return VM_FAULT_FALLBACK;
611 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
612 dax_pmd_dbg(NULL, address, "vma end unaligned");
613 return VM_FAULT_FALLBACK;
616 pgoff = linear_page_index(vma, pmd_addr);
617 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
618 if (pgoff >= size)
619 return VM_FAULT_SIGBUS;
620 /* If the PMD would cover blocks out of the file */
621 if ((pgoff | PG_PMD_COLOUR) >= size) {
622 dax_pmd_dbg(NULL, address,
623 "offset + huge page size > file size");
624 return VM_FAULT_FALLBACK;
627 memset(&bh, 0, sizeof(bh));
628 bh.b_bdev = inode->i_sb->s_bdev;
629 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
631 bh.b_size = PMD_SIZE;
632 if (get_block(inode, block, &bh, write) != 0)
633 return VM_FAULT_SIGBUS;
634 bdev = bh.b_bdev;
635 i_mmap_lock_read(mapping);
638 * If the filesystem isn't willing to tell us the length of a hole,
639 * just fall back to PTEs. Calling get_block 512 times in a loop
640 * would be silly.
642 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
643 dax_pmd_dbg(&bh, address, "allocated block too small");
644 goto fallback;
647 /* make sure no process has any zero pages covering this hole */
648 lstart = pgoff << PAGE_SHIFT;
649 lend = lstart + PMD_SIZE - 1; /* inclusive */
650 i_mmap_unlock_read(mapping);
651 unmap_mapping_range(mapping, lstart, PMD_SIZE, 0);
652 truncate_inode_pages_range(mapping, lstart, lend);
653 i_mmap_lock_read(mapping);
656 * If a truncate happened while we were allocating blocks, we may
657 * leave blocks allocated to the file that are beyond EOF. We can't
658 * take i_mutex here, so just leave them hanging; they'll be freed
659 * when the file is deleted.
661 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
662 if (pgoff >= size) {
663 result = VM_FAULT_SIGBUS;
664 goto out;
666 if ((pgoff | PG_PMD_COLOUR) >= size) {
667 dax_pmd_dbg(&bh, address,
668 "offset + huge page size > file size");
669 goto fallback;
672 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
673 spinlock_t *ptl;
674 pmd_t entry;
675 struct page *zero_page = get_huge_zero_page();
677 if (unlikely(!zero_page)) {
678 dax_pmd_dbg(&bh, address, "no zero page");
679 goto fallback;
682 ptl = pmd_lock(vma->vm_mm, pmd);
683 if (!pmd_none(*pmd)) {
684 spin_unlock(ptl);
685 dax_pmd_dbg(&bh, address, "pmd already present");
686 goto fallback;
689 dev_dbg(part_to_dev(bdev->bd_part),
690 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
691 __func__, current->comm, address,
692 (unsigned long long) to_sector(&bh, inode));
694 entry = mk_pmd(zero_page, vma->vm_page_prot);
695 entry = pmd_mkhuge(entry);
696 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
697 result = VM_FAULT_NOPAGE;
698 spin_unlock(ptl);
699 } else {
700 struct blk_dax_ctl dax = {
701 .sector = to_sector(&bh, inode),
702 .size = PMD_SIZE,
704 long length = dax_map_atomic(bdev, &dax);
706 if (length < 0) {
707 result = VM_FAULT_SIGBUS;
708 goto out;
710 if (length < PMD_SIZE) {
711 dax_pmd_dbg(&bh, address, "dax-length too small");
712 dax_unmap_atomic(bdev, &dax);
713 goto fallback;
715 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
716 dax_pmd_dbg(&bh, address, "pfn unaligned");
717 dax_unmap_atomic(bdev, &dax);
718 goto fallback;
721 if (!pfn_t_devmap(dax.pfn)) {
722 dax_unmap_atomic(bdev, &dax);
723 dax_pmd_dbg(&bh, address, "pfn not in memmap");
724 goto fallback;
727 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
728 clear_pmem(dax.addr, PMD_SIZE);
729 wmb_pmem();
730 count_vm_event(PGMAJFAULT);
731 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
732 result |= VM_FAULT_MAJOR;
734 dax_unmap_atomic(bdev, &dax);
736 dev_dbg(part_to_dev(bdev->bd_part),
737 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
738 __func__, current->comm, address,
739 pfn_t_to_pfn(dax.pfn),
740 (unsigned long long) dax.sector);
741 result |= vmf_insert_pfn_pmd(vma, address, pmd,
742 dax.pfn, write);
745 out:
746 i_mmap_unlock_read(mapping);
748 if (buffer_unwritten(&bh))
749 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
751 return result;
753 fallback:
754 count_vm_event(THP_FAULT_FALLBACK);
755 result = VM_FAULT_FALLBACK;
756 goto out;
758 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
761 * dax_pmd_fault - handle a PMD fault on a DAX file
762 * @vma: The virtual memory area where the fault occurred
763 * @vmf: The description of the fault
764 * @get_block: The filesystem method used to translate file offsets to blocks
766 * When a page fault occurs, filesystems may call this helper in their
767 * pmd_fault handler for DAX files.
769 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
770 pmd_t *pmd, unsigned int flags, get_block_t get_block,
771 dax_iodone_t complete_unwritten)
773 int result;
774 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
776 if (flags & FAULT_FLAG_WRITE) {
777 sb_start_pagefault(sb);
778 file_update_time(vma->vm_file);
780 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
781 complete_unwritten);
782 if (flags & FAULT_FLAG_WRITE)
783 sb_end_pagefault(sb);
785 return result;
787 EXPORT_SYMBOL_GPL(dax_pmd_fault);
788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
791 * dax_pfn_mkwrite - handle first write to DAX page
792 * @vma: The virtual memory area where the fault occurred
793 * @vmf: The description of the fault
796 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
798 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
800 sb_start_pagefault(sb);
801 file_update_time(vma->vm_file);
802 sb_end_pagefault(sb);
803 return VM_FAULT_NOPAGE;
805 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
808 * dax_zero_page_range - zero a range within a page of a DAX file
809 * @inode: The file being truncated
810 * @from: The file offset that is being truncated to
811 * @length: The number of bytes to zero
812 * @get_block: The filesystem method used to translate file offsets to blocks
814 * This function can be called by a filesystem when it is zeroing part of a
815 * page in a DAX file. This is intended for hole-punch operations. If
816 * you are truncating a file, the helper function dax_truncate_page() may be
817 * more convenient.
819 * We work in terms of PAGE_CACHE_SIZE here for commonality with
820 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
821 * took care of disposing of the unnecessary blocks. Even if the filesystem
822 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
823 * since the file might be mmapped.
825 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
826 get_block_t get_block)
828 struct buffer_head bh;
829 pgoff_t index = from >> PAGE_CACHE_SHIFT;
830 unsigned offset = from & (PAGE_CACHE_SIZE-1);
831 int err;
833 /* Block boundary? Nothing to do */
834 if (!length)
835 return 0;
836 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
838 memset(&bh, 0, sizeof(bh));
839 bh.b_size = PAGE_CACHE_SIZE;
840 err = get_block(inode, index, &bh, 0);
841 if (err < 0)
842 return err;
843 if (buffer_written(&bh)) {
844 struct block_device *bdev = bh.b_bdev;
845 struct blk_dax_ctl dax = {
846 .sector = to_sector(&bh, inode),
847 .size = PAGE_CACHE_SIZE,
850 if (dax_map_atomic(bdev, &dax) < 0)
851 return PTR_ERR(dax.addr);
852 clear_pmem(dax.addr + offset, length);
853 wmb_pmem();
854 dax_unmap_atomic(bdev, &dax);
857 return 0;
859 EXPORT_SYMBOL_GPL(dax_zero_page_range);
862 * dax_truncate_page - handle a partial page being truncated in a DAX file
863 * @inode: The file being truncated
864 * @from: The file offset that is being truncated to
865 * @get_block: The filesystem method used to translate file offsets to blocks
867 * Similar to block_truncate_page(), this function can be called by a
868 * filesystem when it is truncating a DAX file to handle the partial page.
870 * We work in terms of PAGE_CACHE_SIZE here for commonality with
871 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
872 * took care of disposing of the unnecessary blocks. Even if the filesystem
873 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
874 * since the file might be mmapped.
876 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
878 unsigned length = PAGE_CACHE_ALIGN(from) - from;
879 return dax_zero_page_range(inode, from, length, get_block);
881 EXPORT_SYMBOL_GPL(dax_truncate_page);