init/main.c: code clean-up
[linux-2.6/btrfs-unstable.git] / mm / mmap.c
blob64c9d736155c7a546e6d133426a0861a63688ead
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
50 #include "internal.h"
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
60 static void unmap_region(struct mm_struct *mm,
61 struct vm_area_struct *vma, struct vm_area_struct *prev,
62 unsigned long start, unsigned long end);
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
68 * map_type prot
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
79 pgprot_t protection_map[16] = {
80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 return __pgprot(pgprot_val(protection_map[vm_flags &
87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 EXPORT_SYMBOL(vm_get_page_prot);
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
99 * Make sure vm_committed_as in one cacheline and not cacheline shared with
100 * other variables. It can be updated by several CPUs frequently.
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
105 * The global memory commitment made in the system can be a metric
106 * that can be used to drive ballooning decisions when Linux is hosted
107 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108 * balancing memory across competing virtual machines that are hosted.
109 * Several metrics drive this policy engine including the guest reported
110 * memory commitment.
112 unsigned long vm_memory_committed(void)
114 return percpu_counter_read_positive(&vm_committed_as);
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
119 * Check that a process has enough memory to allocate a new virtual
120 * mapping. 0 means there is enough memory for the allocation to
121 * succeed and -ENOMEM implies there is not.
123 * We currently support three overcommit policies, which are set via the
124 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
126 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127 * Additional code 2002 Jul 20 by Robert Love.
129 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
131 * Note this is a helper function intended to be used by LSMs which
132 * wish to use this logic.
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
136 unsigned long free, allowed, reserve;
138 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139 -(s64)vm_committed_as_batch * num_online_cpus(),
140 "memory commitment underflow");
142 vm_acct_memory(pages);
145 * Sometimes we want to use more memory than we have
147 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148 return 0;
150 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151 free = global_page_state(NR_FREE_PAGES);
152 free += global_page_state(NR_FILE_PAGES);
155 * shmem pages shouldn't be counted as free in this
156 * case, they can't be purged, only swapped out, and
157 * that won't affect the overall amount of available
158 * memory in the system.
160 free -= global_page_state(NR_SHMEM);
162 free += get_nr_swap_pages();
165 * Any slabs which are created with the
166 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167 * which are reclaimable, under pressure. The dentry
168 * cache and most inode caches should fall into this
170 free += global_page_state(NR_SLAB_RECLAIMABLE);
173 * Leave reserved pages. The pages are not for anonymous pages.
175 if (free <= totalreserve_pages)
176 goto error;
177 else
178 free -= totalreserve_pages;
181 * Reserve some for root
183 if (!cap_sys_admin)
184 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
186 if (free > pages)
187 return 0;
189 goto error;
192 allowed = vm_commit_limit();
194 * Reserve some for root
196 if (!cap_sys_admin)
197 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
200 * Don't let a single process grow so big a user can't recover
202 if (mm) {
203 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204 allowed -= min(mm->total_vm / 32, reserve);
207 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208 return 0;
209 error:
210 vm_unacct_memory(pages);
212 return -ENOMEM;
216 * Requires inode->i_mapping->i_mmap_mutex
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219 struct file *file, struct address_space *mapping)
221 if (vma->vm_flags & VM_DENYWRITE)
222 atomic_inc(&file_inode(file)->i_writecount);
223 if (vma->vm_flags & VM_SHARED)
224 mapping->i_mmap_writable--;
226 flush_dcache_mmap_lock(mapping);
227 if (unlikely(vma->vm_flags & VM_NONLINEAR))
228 list_del_init(&vma->shared.nonlinear);
229 else
230 vma_interval_tree_remove(vma, &mapping->i_mmap);
231 flush_dcache_mmap_unlock(mapping);
235 * Unlink a file-based vm structure from its interval tree, to hide
236 * vma from rmap and vmtruncate before freeing its page tables.
238 void unlink_file_vma(struct vm_area_struct *vma)
240 struct file *file = vma->vm_file;
242 if (file) {
243 struct address_space *mapping = file->f_mapping;
244 mutex_lock(&mapping->i_mmap_mutex);
245 __remove_shared_vm_struct(vma, file, mapping);
246 mutex_unlock(&mapping->i_mmap_mutex);
251 * Close a vm structure and free it, returning the next.
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
255 struct vm_area_struct *next = vma->vm_next;
257 might_sleep();
258 if (vma->vm_ops && vma->vm_ops->close)
259 vma->vm_ops->close(vma);
260 if (vma->vm_file)
261 fput(vma->vm_file);
262 mpol_put(vma_policy(vma));
263 kmem_cache_free(vm_area_cachep, vma);
264 return next;
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
271 unsigned long rlim, retval;
272 unsigned long newbrk, oldbrk;
273 struct mm_struct *mm = current->mm;
274 unsigned long min_brk;
275 bool populate;
277 down_write(&mm->mmap_sem);
279 #ifdef CONFIG_COMPAT_BRK
281 * CONFIG_COMPAT_BRK can still be overridden by setting
282 * randomize_va_space to 2, which will still cause mm->start_brk
283 * to be arbitrarily shifted
285 if (current->brk_randomized)
286 min_brk = mm->start_brk;
287 else
288 min_brk = mm->end_data;
289 #else
290 min_brk = mm->start_brk;
291 #endif
292 if (brk < min_brk)
293 goto out;
296 * Check against rlimit here. If this check is done later after the test
297 * of oldbrk with newbrk then it can escape the test and let the data
298 * segment grow beyond its set limit the in case where the limit is
299 * not page aligned -Ram Gupta
301 rlim = rlimit(RLIMIT_DATA);
302 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
303 (mm->end_data - mm->start_data) > rlim)
304 goto out;
306 newbrk = PAGE_ALIGN(brk);
307 oldbrk = PAGE_ALIGN(mm->brk);
308 if (oldbrk == newbrk)
309 goto set_brk;
311 /* Always allow shrinking brk. */
312 if (brk <= mm->brk) {
313 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
314 goto set_brk;
315 goto out;
318 /* Check against existing mmap mappings. */
319 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
320 goto out;
322 /* Ok, looks good - let it rip. */
323 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
324 goto out;
326 set_brk:
327 mm->brk = brk;
328 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
329 up_write(&mm->mmap_sem);
330 if (populate)
331 mm_populate(oldbrk, newbrk - oldbrk);
332 return brk;
334 out:
335 retval = mm->brk;
336 up_write(&mm->mmap_sem);
337 return retval;
340 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
342 unsigned long max, subtree_gap;
343 max = vma->vm_start;
344 if (vma->vm_prev)
345 max -= vma->vm_prev->vm_end;
346 if (vma->vm_rb.rb_left) {
347 subtree_gap = rb_entry(vma->vm_rb.rb_left,
348 struct vm_area_struct, vm_rb)->rb_subtree_gap;
349 if (subtree_gap > max)
350 max = subtree_gap;
352 if (vma->vm_rb.rb_right) {
353 subtree_gap = rb_entry(vma->vm_rb.rb_right,
354 struct vm_area_struct, vm_rb)->rb_subtree_gap;
355 if (subtree_gap > max)
356 max = subtree_gap;
358 return max;
361 #ifdef CONFIG_DEBUG_VM_RB
362 static int browse_rb(struct rb_root *root)
364 int i = 0, j, bug = 0;
365 struct rb_node *nd, *pn = NULL;
366 unsigned long prev = 0, pend = 0;
368 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
369 struct vm_area_struct *vma;
370 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
371 if (vma->vm_start < prev) {
372 pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
373 bug = 1;
375 if (vma->vm_start < pend) {
376 pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
377 bug = 1;
379 if (vma->vm_start > vma->vm_end) {
380 pr_info("vm_end %lx < vm_start %lx\n",
381 vma->vm_end, vma->vm_start);
382 bug = 1;
384 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
385 pr_info("free gap %lx, correct %lx\n",
386 vma->rb_subtree_gap,
387 vma_compute_subtree_gap(vma));
388 bug = 1;
390 i++;
391 pn = nd;
392 prev = vma->vm_start;
393 pend = vma->vm_end;
395 j = 0;
396 for (nd = pn; nd; nd = rb_prev(nd))
397 j++;
398 if (i != j) {
399 pr_info("backwards %d, forwards %d\n", j, i);
400 bug = 1;
402 return bug ? -1 : i;
405 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
407 struct rb_node *nd;
409 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
410 struct vm_area_struct *vma;
411 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
412 BUG_ON(vma != ignore &&
413 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
417 static void validate_mm(struct mm_struct *mm)
419 int bug = 0;
420 int i = 0;
421 unsigned long highest_address = 0;
422 struct vm_area_struct *vma = mm->mmap;
423 while (vma) {
424 struct anon_vma_chain *avc;
425 vma_lock_anon_vma(vma);
426 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
427 anon_vma_interval_tree_verify(avc);
428 vma_unlock_anon_vma(vma);
429 highest_address = vma->vm_end;
430 vma = vma->vm_next;
431 i++;
433 if (i != mm->map_count) {
434 pr_info("map_count %d vm_next %d\n", mm->map_count, i);
435 bug = 1;
437 if (highest_address != mm->highest_vm_end) {
438 pr_info("mm->highest_vm_end %lx, found %lx\n",
439 mm->highest_vm_end, highest_address);
440 bug = 1;
442 i = browse_rb(&mm->mm_rb);
443 if (i != mm->map_count) {
444 pr_info("map_count %d rb %d\n", mm->map_count, i);
445 bug = 1;
447 BUG_ON(bug);
449 #else
450 #define validate_mm_rb(root, ignore) do { } while (0)
451 #define validate_mm(mm) do { } while (0)
452 #endif
454 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
455 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
458 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
459 * vma->vm_prev->vm_end values changed, without modifying the vma's position
460 * in the rbtree.
462 static void vma_gap_update(struct vm_area_struct *vma)
465 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
466 * function that does exacltly what we want.
468 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
471 static inline void vma_rb_insert(struct vm_area_struct *vma,
472 struct rb_root *root)
474 /* All rb_subtree_gap values must be consistent prior to insertion */
475 validate_mm_rb(root, NULL);
477 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
480 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
483 * All rb_subtree_gap values must be consistent prior to erase,
484 * with the possible exception of the vma being erased.
486 validate_mm_rb(root, vma);
489 * Note rb_erase_augmented is a fairly large inline function,
490 * so make sure we instantiate it only once with our desired
491 * augmented rbtree callbacks.
493 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
497 * vma has some anon_vma assigned, and is already inserted on that
498 * anon_vma's interval trees.
500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501 * vma must be removed from the anon_vma's interval trees using
502 * anon_vma_interval_tree_pre_update_vma().
504 * After the update, the vma will be reinserted using
505 * anon_vma_interval_tree_post_update_vma().
507 * The entire update must be protected by exclusive mmap_sem and by
508 * the root anon_vma's mutex.
510 static inline void
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 struct anon_vma_chain *avc;
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
519 static inline void
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 struct anon_vma_chain *avc;
524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529 unsigned long end, struct vm_area_struct **pprev,
530 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 __rb_link = &mm->mm_rb.rb_node;
535 rb_prev = __rb_parent = NULL;
537 while (*__rb_link) {
538 struct vm_area_struct *vma_tmp;
540 __rb_parent = *__rb_link;
541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543 if (vma_tmp->vm_end > addr) {
544 /* Fail if an existing vma overlaps the area */
545 if (vma_tmp->vm_start < end)
546 return -ENOMEM;
547 __rb_link = &__rb_parent->rb_left;
548 } else {
549 rb_prev = __rb_parent;
550 __rb_link = &__rb_parent->rb_right;
554 *pprev = NULL;
555 if (rb_prev)
556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557 *rb_link = __rb_link;
558 *rb_parent = __rb_parent;
559 return 0;
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563 unsigned long addr, unsigned long end)
565 unsigned long nr_pages = 0;
566 struct vm_area_struct *vma;
568 /* Find first overlaping mapping */
569 vma = find_vma_intersection(mm, addr, end);
570 if (!vma)
571 return 0;
573 nr_pages = (min(end, vma->vm_end) -
574 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576 /* Iterate over the rest of the overlaps */
577 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578 unsigned long overlap_len;
580 if (vma->vm_start > end)
581 break;
583 overlap_len = min(end, vma->vm_end) - vma->vm_start;
584 nr_pages += overlap_len >> PAGE_SHIFT;
587 return nr_pages;
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591 struct rb_node **rb_link, struct rb_node *rb_parent)
593 /* Update tracking information for the gap following the new vma. */
594 if (vma->vm_next)
595 vma_gap_update(vma->vm_next);
596 else
597 mm->highest_vm_end = vma->vm_end;
600 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 * correct insertion point for that vma. As a result, we could not
602 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 * So, we first insert the vma with a zero rb_subtree_gap value
604 * (to be consistent with what we did on the way down), and then
605 * immediately update the gap to the correct value. Finally we
606 * rebalance the rbtree after all augmented values have been set.
608 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609 vma->rb_subtree_gap = 0;
610 vma_gap_update(vma);
611 vma_rb_insert(vma, &mm->mm_rb);
614 static void __vma_link_file(struct vm_area_struct *vma)
616 struct file *file;
618 file = vma->vm_file;
619 if (file) {
620 struct address_space *mapping = file->f_mapping;
622 if (vma->vm_flags & VM_DENYWRITE)
623 atomic_dec(&file_inode(file)->i_writecount);
624 if (vma->vm_flags & VM_SHARED)
625 mapping->i_mmap_writable++;
627 flush_dcache_mmap_lock(mapping);
628 if (unlikely(vma->vm_flags & VM_NONLINEAR))
629 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
630 else
631 vma_interval_tree_insert(vma, &mapping->i_mmap);
632 flush_dcache_mmap_unlock(mapping);
636 static void
637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
641 __vma_link_list(mm, vma, prev, rb_parent);
642 __vma_link_rb(mm, vma, rb_link, rb_parent);
645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
646 struct vm_area_struct *prev, struct rb_node **rb_link,
647 struct rb_node *rb_parent)
649 struct address_space *mapping = NULL;
651 if (vma->vm_file) {
652 mapping = vma->vm_file->f_mapping;
653 mutex_lock(&mapping->i_mmap_mutex);
656 __vma_link(mm, vma, prev, rb_link, rb_parent);
657 __vma_link_file(vma);
659 if (mapping)
660 mutex_unlock(&mapping->i_mmap_mutex);
662 mm->map_count++;
663 validate_mm(mm);
667 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
668 * mm's list and rbtree. It has already been inserted into the interval tree.
670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
672 struct vm_area_struct *prev;
673 struct rb_node **rb_link, *rb_parent;
675 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
676 &prev, &rb_link, &rb_parent))
677 BUG();
678 __vma_link(mm, vma, prev, rb_link, rb_parent);
679 mm->map_count++;
682 static inline void
683 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
684 struct vm_area_struct *prev)
686 struct vm_area_struct *next;
688 vma_rb_erase(vma, &mm->mm_rb);
689 prev->vm_next = next = vma->vm_next;
690 if (next)
691 next->vm_prev = prev;
693 /* Kill the cache */
694 vmacache_invalidate(mm);
698 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
699 * is already present in an i_mmap tree without adjusting the tree.
700 * The following helper function should be used when such adjustments
701 * are necessary. The "insert" vma (if any) is to be inserted
702 * before we drop the necessary locks.
704 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
705 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
707 struct mm_struct *mm = vma->vm_mm;
708 struct vm_area_struct *next = vma->vm_next;
709 struct vm_area_struct *importer = NULL;
710 struct address_space *mapping = NULL;
711 struct rb_root *root = NULL;
712 struct anon_vma *anon_vma = NULL;
713 struct file *file = vma->vm_file;
714 bool start_changed = false, end_changed = false;
715 long adjust_next = 0;
716 int remove_next = 0;
718 if (next && !insert) {
719 struct vm_area_struct *exporter = NULL;
721 if (end >= next->vm_end) {
723 * vma expands, overlapping all the next, and
724 * perhaps the one after too (mprotect case 6).
726 again: remove_next = 1 + (end > next->vm_end);
727 end = next->vm_end;
728 exporter = next;
729 importer = vma;
730 } else if (end > next->vm_start) {
732 * vma expands, overlapping part of the next:
733 * mprotect case 5 shifting the boundary up.
735 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
736 exporter = next;
737 importer = vma;
738 } else if (end < vma->vm_end) {
740 * vma shrinks, and !insert tells it's not
741 * split_vma inserting another: so it must be
742 * mprotect case 4 shifting the boundary down.
744 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
745 exporter = vma;
746 importer = next;
750 * Easily overlooked: when mprotect shifts the boundary,
751 * make sure the expanding vma has anon_vma set if the
752 * shrinking vma had, to cover any anon pages imported.
754 if (exporter && exporter->anon_vma && !importer->anon_vma) {
755 if (anon_vma_clone(importer, exporter))
756 return -ENOMEM;
757 importer->anon_vma = exporter->anon_vma;
761 if (file) {
762 mapping = file->f_mapping;
763 if (!(vma->vm_flags & VM_NONLINEAR)) {
764 root = &mapping->i_mmap;
765 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
767 if (adjust_next)
768 uprobe_munmap(next, next->vm_start,
769 next->vm_end);
772 mutex_lock(&mapping->i_mmap_mutex);
773 if (insert) {
775 * Put into interval tree now, so instantiated pages
776 * are visible to arm/parisc __flush_dcache_page
777 * throughout; but we cannot insert into address
778 * space until vma start or end is updated.
780 __vma_link_file(insert);
784 vma_adjust_trans_huge(vma, start, end, adjust_next);
786 anon_vma = vma->anon_vma;
787 if (!anon_vma && adjust_next)
788 anon_vma = next->anon_vma;
789 if (anon_vma) {
790 VM_BUG_ON(adjust_next && next->anon_vma &&
791 anon_vma != next->anon_vma);
792 anon_vma_lock_write(anon_vma);
793 anon_vma_interval_tree_pre_update_vma(vma);
794 if (adjust_next)
795 anon_vma_interval_tree_pre_update_vma(next);
798 if (root) {
799 flush_dcache_mmap_lock(mapping);
800 vma_interval_tree_remove(vma, root);
801 if (adjust_next)
802 vma_interval_tree_remove(next, root);
805 if (start != vma->vm_start) {
806 vma->vm_start = start;
807 start_changed = true;
809 if (end != vma->vm_end) {
810 vma->vm_end = end;
811 end_changed = true;
813 vma->vm_pgoff = pgoff;
814 if (adjust_next) {
815 next->vm_start += adjust_next << PAGE_SHIFT;
816 next->vm_pgoff += adjust_next;
819 if (root) {
820 if (adjust_next)
821 vma_interval_tree_insert(next, root);
822 vma_interval_tree_insert(vma, root);
823 flush_dcache_mmap_unlock(mapping);
826 if (remove_next) {
828 * vma_merge has merged next into vma, and needs
829 * us to remove next before dropping the locks.
831 __vma_unlink(mm, next, vma);
832 if (file)
833 __remove_shared_vm_struct(next, file, mapping);
834 } else if (insert) {
836 * split_vma has split insert from vma, and needs
837 * us to insert it before dropping the locks
838 * (it may either follow vma or precede it).
840 __insert_vm_struct(mm, insert);
841 } else {
842 if (start_changed)
843 vma_gap_update(vma);
844 if (end_changed) {
845 if (!next)
846 mm->highest_vm_end = end;
847 else if (!adjust_next)
848 vma_gap_update(next);
852 if (anon_vma) {
853 anon_vma_interval_tree_post_update_vma(vma);
854 if (adjust_next)
855 anon_vma_interval_tree_post_update_vma(next);
856 anon_vma_unlock_write(anon_vma);
858 if (mapping)
859 mutex_unlock(&mapping->i_mmap_mutex);
861 if (root) {
862 uprobe_mmap(vma);
864 if (adjust_next)
865 uprobe_mmap(next);
868 if (remove_next) {
869 if (file) {
870 uprobe_munmap(next, next->vm_start, next->vm_end);
871 fput(file);
873 if (next->anon_vma)
874 anon_vma_merge(vma, next);
875 mm->map_count--;
876 mpol_put(vma_policy(next));
877 kmem_cache_free(vm_area_cachep, next);
879 * In mprotect's case 6 (see comments on vma_merge),
880 * we must remove another next too. It would clutter
881 * up the code too much to do both in one go.
883 next = vma->vm_next;
884 if (remove_next == 2)
885 goto again;
886 else if (next)
887 vma_gap_update(next);
888 else
889 mm->highest_vm_end = end;
891 if (insert && file)
892 uprobe_mmap(insert);
894 validate_mm(mm);
896 return 0;
900 * If the vma has a ->close operation then the driver probably needs to release
901 * per-vma resources, so we don't attempt to merge those.
903 static inline int is_mergeable_vma(struct vm_area_struct *vma,
904 struct file *file, unsigned long vm_flags)
907 * VM_SOFTDIRTY should not prevent from VMA merging, if we
908 * match the flags but dirty bit -- the caller should mark
909 * merged VMA as dirty. If dirty bit won't be excluded from
910 * comparison, we increase pressue on the memory system forcing
911 * the kernel to generate new VMAs when old one could be
912 * extended instead.
914 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
915 return 0;
916 if (vma->vm_file != file)
917 return 0;
918 if (vma->vm_ops && vma->vm_ops->close)
919 return 0;
920 return 1;
923 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
924 struct anon_vma *anon_vma2,
925 struct vm_area_struct *vma)
928 * The list_is_singular() test is to avoid merging VMA cloned from
929 * parents. This can improve scalability caused by anon_vma lock.
931 if ((!anon_vma1 || !anon_vma2) && (!vma ||
932 list_is_singular(&vma->anon_vma_chain)))
933 return 1;
934 return anon_vma1 == anon_vma2;
938 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
939 * in front of (at a lower virtual address and file offset than) the vma.
941 * We cannot merge two vmas if they have differently assigned (non-NULL)
942 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
944 * We don't check here for the merged mmap wrapping around the end of pagecache
945 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
946 * wrap, nor mmaps which cover the final page at index -1UL.
948 static int
949 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
950 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
952 if (is_mergeable_vma(vma, file, vm_flags) &&
953 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
954 if (vma->vm_pgoff == vm_pgoff)
955 return 1;
957 return 0;
961 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
962 * beyond (at a higher virtual address and file offset than) the vma.
964 * We cannot merge two vmas if they have differently assigned (non-NULL)
965 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
967 static int
968 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
969 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
971 if (is_mergeable_vma(vma, file, vm_flags) &&
972 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
973 pgoff_t vm_pglen;
974 vm_pglen = vma_pages(vma);
975 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
976 return 1;
978 return 0;
982 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
983 * whether that can be merged with its predecessor or its successor.
984 * Or both (it neatly fills a hole).
986 * In most cases - when called for mmap, brk or mremap - [addr,end) is
987 * certain not to be mapped by the time vma_merge is called; but when
988 * called for mprotect, it is certain to be already mapped (either at
989 * an offset within prev, or at the start of next), and the flags of
990 * this area are about to be changed to vm_flags - and the no-change
991 * case has already been eliminated.
993 * The following mprotect cases have to be considered, where AAAA is
994 * the area passed down from mprotect_fixup, never extending beyond one
995 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
997 * AAAA AAAA AAAA AAAA
998 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
999 * cannot merge might become might become might become
1000 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1001 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1002 * mremap move: PPPPNNNNNNNN 8
1003 * AAAA
1004 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1005 * might become case 1 below case 2 below case 3 below
1007 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1008 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1010 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1011 struct vm_area_struct *prev, unsigned long addr,
1012 unsigned long end, unsigned long vm_flags,
1013 struct anon_vma *anon_vma, struct file *file,
1014 pgoff_t pgoff, struct mempolicy *policy)
1016 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1017 struct vm_area_struct *area, *next;
1018 int err;
1021 * We later require that vma->vm_flags == vm_flags,
1022 * so this tests vma->vm_flags & VM_SPECIAL, too.
1024 if (vm_flags & VM_SPECIAL)
1025 return NULL;
1027 if (prev)
1028 next = prev->vm_next;
1029 else
1030 next = mm->mmap;
1031 area = next;
1032 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1033 next = next->vm_next;
1036 * Can it merge with the predecessor?
1038 if (prev && prev->vm_end == addr &&
1039 mpol_equal(vma_policy(prev), policy) &&
1040 can_vma_merge_after(prev, vm_flags,
1041 anon_vma, file, pgoff)) {
1043 * OK, it can. Can we now merge in the successor as well?
1045 if (next && end == next->vm_start &&
1046 mpol_equal(policy, vma_policy(next)) &&
1047 can_vma_merge_before(next, vm_flags,
1048 anon_vma, file, pgoff+pglen) &&
1049 is_mergeable_anon_vma(prev->anon_vma,
1050 next->anon_vma, NULL)) {
1051 /* cases 1, 6 */
1052 err = vma_adjust(prev, prev->vm_start,
1053 next->vm_end, prev->vm_pgoff, NULL);
1054 } else /* cases 2, 5, 7 */
1055 err = vma_adjust(prev, prev->vm_start,
1056 end, prev->vm_pgoff, NULL);
1057 if (err)
1058 return NULL;
1059 khugepaged_enter_vma_merge(prev);
1060 return prev;
1064 * Can this new request be merged in front of next?
1066 if (next && end == next->vm_start &&
1067 mpol_equal(policy, vma_policy(next)) &&
1068 can_vma_merge_before(next, vm_flags,
1069 anon_vma, file, pgoff+pglen)) {
1070 if (prev && addr < prev->vm_end) /* case 4 */
1071 err = vma_adjust(prev, prev->vm_start,
1072 addr, prev->vm_pgoff, NULL);
1073 else /* cases 3, 8 */
1074 err = vma_adjust(area, addr, next->vm_end,
1075 next->vm_pgoff - pglen, NULL);
1076 if (err)
1077 return NULL;
1078 khugepaged_enter_vma_merge(area);
1079 return area;
1082 return NULL;
1086 * Rough compatbility check to quickly see if it's even worth looking
1087 * at sharing an anon_vma.
1089 * They need to have the same vm_file, and the flags can only differ
1090 * in things that mprotect may change.
1092 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1093 * we can merge the two vma's. For example, we refuse to merge a vma if
1094 * there is a vm_ops->close() function, because that indicates that the
1095 * driver is doing some kind of reference counting. But that doesn't
1096 * really matter for the anon_vma sharing case.
1098 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1100 return a->vm_end == b->vm_start &&
1101 mpol_equal(vma_policy(a), vma_policy(b)) &&
1102 a->vm_file == b->vm_file &&
1103 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1104 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1108 * Do some basic sanity checking to see if we can re-use the anon_vma
1109 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1110 * the same as 'old', the other will be the new one that is trying
1111 * to share the anon_vma.
1113 * NOTE! This runs with mm_sem held for reading, so it is possible that
1114 * the anon_vma of 'old' is concurrently in the process of being set up
1115 * by another page fault trying to merge _that_. But that's ok: if it
1116 * is being set up, that automatically means that it will be a singleton
1117 * acceptable for merging, so we can do all of this optimistically. But
1118 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1120 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1121 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1122 * is to return an anon_vma that is "complex" due to having gone through
1123 * a fork).
1125 * We also make sure that the two vma's are compatible (adjacent,
1126 * and with the same memory policies). That's all stable, even with just
1127 * a read lock on the mm_sem.
1129 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1131 if (anon_vma_compatible(a, b)) {
1132 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1134 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1135 return anon_vma;
1137 return NULL;
1141 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1142 * neighbouring vmas for a suitable anon_vma, before it goes off
1143 * to allocate a new anon_vma. It checks because a repetitive
1144 * sequence of mprotects and faults may otherwise lead to distinct
1145 * anon_vmas being allocated, preventing vma merge in subsequent
1146 * mprotect.
1148 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1150 struct anon_vma *anon_vma;
1151 struct vm_area_struct *near;
1153 near = vma->vm_next;
1154 if (!near)
1155 goto try_prev;
1157 anon_vma = reusable_anon_vma(near, vma, near);
1158 if (anon_vma)
1159 return anon_vma;
1160 try_prev:
1161 near = vma->vm_prev;
1162 if (!near)
1163 goto none;
1165 anon_vma = reusable_anon_vma(near, near, vma);
1166 if (anon_vma)
1167 return anon_vma;
1168 none:
1170 * There's no absolute need to look only at touching neighbours:
1171 * we could search further afield for "compatible" anon_vmas.
1172 * But it would probably just be a waste of time searching,
1173 * or lead to too many vmas hanging off the same anon_vma.
1174 * We're trying to allow mprotect remerging later on,
1175 * not trying to minimize memory used for anon_vmas.
1177 return NULL;
1180 #ifdef CONFIG_PROC_FS
1181 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1182 struct file *file, long pages)
1184 const unsigned long stack_flags
1185 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1187 mm->total_vm += pages;
1189 if (file) {
1190 mm->shared_vm += pages;
1191 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1192 mm->exec_vm += pages;
1193 } else if (flags & stack_flags)
1194 mm->stack_vm += pages;
1196 #endif /* CONFIG_PROC_FS */
1199 * If a hint addr is less than mmap_min_addr change hint to be as
1200 * low as possible but still greater than mmap_min_addr
1202 static inline unsigned long round_hint_to_min(unsigned long hint)
1204 hint &= PAGE_MASK;
1205 if (((void *)hint != NULL) &&
1206 (hint < mmap_min_addr))
1207 return PAGE_ALIGN(mmap_min_addr);
1208 return hint;
1211 static inline int mlock_future_check(struct mm_struct *mm,
1212 unsigned long flags,
1213 unsigned long len)
1215 unsigned long locked, lock_limit;
1217 /* mlock MCL_FUTURE? */
1218 if (flags & VM_LOCKED) {
1219 locked = len >> PAGE_SHIFT;
1220 locked += mm->locked_vm;
1221 lock_limit = rlimit(RLIMIT_MEMLOCK);
1222 lock_limit >>= PAGE_SHIFT;
1223 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1224 return -EAGAIN;
1226 return 0;
1230 * The caller must hold down_write(&current->mm->mmap_sem).
1233 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1234 unsigned long len, unsigned long prot,
1235 unsigned long flags, unsigned long pgoff,
1236 unsigned long *populate)
1238 struct mm_struct * mm = current->mm;
1239 vm_flags_t vm_flags;
1241 *populate = 0;
1244 * Does the application expect PROT_READ to imply PROT_EXEC?
1246 * (the exception is when the underlying filesystem is noexec
1247 * mounted, in which case we dont add PROT_EXEC.)
1249 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1250 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1251 prot |= PROT_EXEC;
1253 if (!len)
1254 return -EINVAL;
1256 if (!(flags & MAP_FIXED))
1257 addr = round_hint_to_min(addr);
1259 /* Careful about overflows.. */
1260 len = PAGE_ALIGN(len);
1261 if (!len)
1262 return -ENOMEM;
1264 /* offset overflow? */
1265 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1266 return -EOVERFLOW;
1268 /* Too many mappings? */
1269 if (mm->map_count > sysctl_max_map_count)
1270 return -ENOMEM;
1272 /* Obtain the address to map to. we verify (or select) it and ensure
1273 * that it represents a valid section of the address space.
1275 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1276 if (addr & ~PAGE_MASK)
1277 return addr;
1279 /* Do simple checking here so the lower-level routines won't have
1280 * to. we assume access permissions have been handled by the open
1281 * of the memory object, so we don't do any here.
1283 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1284 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1286 if (flags & MAP_LOCKED)
1287 if (!can_do_mlock())
1288 return -EPERM;
1290 if (mlock_future_check(mm, vm_flags, len))
1291 return -EAGAIN;
1293 if (file) {
1294 struct inode *inode = file_inode(file);
1296 switch (flags & MAP_TYPE) {
1297 case MAP_SHARED:
1298 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1299 return -EACCES;
1302 * Make sure we don't allow writing to an append-only
1303 * file..
1305 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1306 return -EACCES;
1309 * Make sure there are no mandatory locks on the file.
1311 if (locks_verify_locked(file))
1312 return -EAGAIN;
1314 vm_flags |= VM_SHARED | VM_MAYSHARE;
1315 if (!(file->f_mode & FMODE_WRITE))
1316 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1318 /* fall through */
1319 case MAP_PRIVATE:
1320 if (!(file->f_mode & FMODE_READ))
1321 return -EACCES;
1322 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1323 if (vm_flags & VM_EXEC)
1324 return -EPERM;
1325 vm_flags &= ~VM_MAYEXEC;
1328 if (!file->f_op->mmap)
1329 return -ENODEV;
1330 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331 return -EINVAL;
1332 break;
1334 default:
1335 return -EINVAL;
1337 } else {
1338 switch (flags & MAP_TYPE) {
1339 case MAP_SHARED:
1340 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1341 return -EINVAL;
1343 * Ignore pgoff.
1345 pgoff = 0;
1346 vm_flags |= VM_SHARED | VM_MAYSHARE;
1347 break;
1348 case MAP_PRIVATE:
1350 * Set pgoff according to addr for anon_vma.
1352 pgoff = addr >> PAGE_SHIFT;
1353 break;
1354 default:
1355 return -EINVAL;
1360 * Set 'VM_NORESERVE' if we should not account for the
1361 * memory use of this mapping.
1363 if (flags & MAP_NORESERVE) {
1364 /* We honor MAP_NORESERVE if allowed to overcommit */
1365 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1366 vm_flags |= VM_NORESERVE;
1368 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369 if (file && is_file_hugepages(file))
1370 vm_flags |= VM_NORESERVE;
1373 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1374 if (!IS_ERR_VALUE(addr) &&
1375 ((vm_flags & VM_LOCKED) ||
1376 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1377 *populate = len;
1378 return addr;
1381 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1382 unsigned long, prot, unsigned long, flags,
1383 unsigned long, fd, unsigned long, pgoff)
1385 struct file *file = NULL;
1386 unsigned long retval = -EBADF;
1388 if (!(flags & MAP_ANONYMOUS)) {
1389 audit_mmap_fd(fd, flags);
1390 file = fget(fd);
1391 if (!file)
1392 goto out;
1393 if (is_file_hugepages(file))
1394 len = ALIGN(len, huge_page_size(hstate_file(file)));
1395 retval = -EINVAL;
1396 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1397 goto out_fput;
1398 } else if (flags & MAP_HUGETLB) {
1399 struct user_struct *user = NULL;
1400 struct hstate *hs;
1402 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1403 if (!hs)
1404 return -EINVAL;
1406 len = ALIGN(len, huge_page_size(hs));
1408 * VM_NORESERVE is used because the reservations will be
1409 * taken when vm_ops->mmap() is called
1410 * A dummy user value is used because we are not locking
1411 * memory so no accounting is necessary
1413 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1414 VM_NORESERVE,
1415 &user, HUGETLB_ANONHUGE_INODE,
1416 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417 if (IS_ERR(file))
1418 return PTR_ERR(file);
1421 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1423 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1424 out_fput:
1425 if (file)
1426 fput(file);
1427 out:
1428 return retval;
1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1432 struct mmap_arg_struct {
1433 unsigned long addr;
1434 unsigned long len;
1435 unsigned long prot;
1436 unsigned long flags;
1437 unsigned long fd;
1438 unsigned long offset;
1441 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1443 struct mmap_arg_struct a;
1445 if (copy_from_user(&a, arg, sizeof(a)))
1446 return -EFAULT;
1447 if (a.offset & ~PAGE_MASK)
1448 return -EINVAL;
1450 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1451 a.offset >> PAGE_SHIFT);
1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1456 * Some shared mappigns will want the pages marked read-only
1457 * to track write events. If so, we'll downgrade vm_page_prot
1458 * to the private version (using protection_map[] without the
1459 * VM_SHARED bit).
1461 int vma_wants_writenotify(struct vm_area_struct *vma)
1463 vm_flags_t vm_flags = vma->vm_flags;
1465 /* If it was private or non-writable, the write bit is already clear */
1466 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1467 return 0;
1469 /* The backer wishes to know when pages are first written to? */
1470 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1471 return 1;
1473 /* The open routine did something to the protections already? */
1474 if (pgprot_val(vma->vm_page_prot) !=
1475 pgprot_val(vm_get_page_prot(vm_flags)))
1476 return 0;
1478 /* Specialty mapping? */
1479 if (vm_flags & VM_PFNMAP)
1480 return 0;
1482 /* Can the mapping track the dirty pages? */
1483 return vma->vm_file && vma->vm_file->f_mapping &&
1484 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1488 * We account for memory if it's a private writeable mapping,
1489 * not hugepages and VM_NORESERVE wasn't set.
1491 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1494 * hugetlb has its own accounting separate from the core VM
1495 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1497 if (file && is_file_hugepages(file))
1498 return 0;
1500 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1503 unsigned long mmap_region(struct file *file, unsigned long addr,
1504 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1506 struct mm_struct *mm = current->mm;
1507 struct vm_area_struct *vma, *prev;
1508 int error;
1509 struct rb_node **rb_link, *rb_parent;
1510 unsigned long charged = 0;
1512 /* Check against address space limit. */
1513 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1514 unsigned long nr_pages;
1517 * MAP_FIXED may remove pages of mappings that intersects with
1518 * requested mapping. Account for the pages it would unmap.
1520 if (!(vm_flags & MAP_FIXED))
1521 return -ENOMEM;
1523 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1525 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1526 return -ENOMEM;
1529 /* Clear old maps */
1530 error = -ENOMEM;
1531 munmap_back:
1532 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1533 if (do_munmap(mm, addr, len))
1534 return -ENOMEM;
1535 goto munmap_back;
1539 * Private writable mapping: check memory availability
1541 if (accountable_mapping(file, vm_flags)) {
1542 charged = len >> PAGE_SHIFT;
1543 if (security_vm_enough_memory_mm(mm, charged))
1544 return -ENOMEM;
1545 vm_flags |= VM_ACCOUNT;
1549 * Can we just expand an old mapping?
1551 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1552 if (vma)
1553 goto out;
1556 * Determine the object being mapped and call the appropriate
1557 * specific mapper. the address has already been validated, but
1558 * not unmapped, but the maps are removed from the list.
1560 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1561 if (!vma) {
1562 error = -ENOMEM;
1563 goto unacct_error;
1566 vma->vm_mm = mm;
1567 vma->vm_start = addr;
1568 vma->vm_end = addr + len;
1569 vma->vm_flags = vm_flags;
1570 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1571 vma->vm_pgoff = pgoff;
1572 INIT_LIST_HEAD(&vma->anon_vma_chain);
1574 if (file) {
1575 if (vm_flags & VM_DENYWRITE) {
1576 error = deny_write_access(file);
1577 if (error)
1578 goto free_vma;
1580 vma->vm_file = get_file(file);
1581 error = file->f_op->mmap(file, vma);
1582 if (error)
1583 goto unmap_and_free_vma;
1585 /* Can addr have changed??
1587 * Answer: Yes, several device drivers can do it in their
1588 * f_op->mmap method. -DaveM
1589 * Bug: If addr is changed, prev, rb_link, rb_parent should
1590 * be updated for vma_link()
1592 WARN_ON_ONCE(addr != vma->vm_start);
1594 addr = vma->vm_start;
1595 vm_flags = vma->vm_flags;
1596 } else if (vm_flags & VM_SHARED) {
1597 error = shmem_zero_setup(vma);
1598 if (error)
1599 goto free_vma;
1602 if (vma_wants_writenotify(vma)) {
1603 pgprot_t pprot = vma->vm_page_prot;
1605 /* Can vma->vm_page_prot have changed??
1607 * Answer: Yes, drivers may have changed it in their
1608 * f_op->mmap method.
1610 * Ensures that vmas marked as uncached stay that way.
1612 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1613 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1614 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1617 vma_link(mm, vma, prev, rb_link, rb_parent);
1618 /* Once vma denies write, undo our temporary denial count */
1619 if (vm_flags & VM_DENYWRITE)
1620 allow_write_access(file);
1621 file = vma->vm_file;
1622 out:
1623 perf_event_mmap(vma);
1625 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1626 if (vm_flags & VM_LOCKED) {
1627 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1628 vma == get_gate_vma(current->mm)))
1629 mm->locked_vm += (len >> PAGE_SHIFT);
1630 else
1631 vma->vm_flags &= ~VM_LOCKED;
1634 if (file)
1635 uprobe_mmap(vma);
1638 * New (or expanded) vma always get soft dirty status.
1639 * Otherwise user-space soft-dirty page tracker won't
1640 * be able to distinguish situation when vma area unmapped,
1641 * then new mapped in-place (which must be aimed as
1642 * a completely new data area).
1644 vma->vm_flags |= VM_SOFTDIRTY;
1646 return addr;
1648 unmap_and_free_vma:
1649 if (vm_flags & VM_DENYWRITE)
1650 allow_write_access(file);
1651 vma->vm_file = NULL;
1652 fput(file);
1654 /* Undo any partial mapping done by a device driver. */
1655 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1656 charged = 0;
1657 free_vma:
1658 kmem_cache_free(vm_area_cachep, vma);
1659 unacct_error:
1660 if (charged)
1661 vm_unacct_memory(charged);
1662 return error;
1665 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1668 * We implement the search by looking for an rbtree node that
1669 * immediately follows a suitable gap. That is,
1670 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1671 * - gap_end = vma->vm_start >= info->low_limit + length;
1672 * - gap_end - gap_start >= length
1675 struct mm_struct *mm = current->mm;
1676 struct vm_area_struct *vma;
1677 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1679 /* Adjust search length to account for worst case alignment overhead */
1680 length = info->length + info->align_mask;
1681 if (length < info->length)
1682 return -ENOMEM;
1684 /* Adjust search limits by the desired length */
1685 if (info->high_limit < length)
1686 return -ENOMEM;
1687 high_limit = info->high_limit - length;
1689 if (info->low_limit > high_limit)
1690 return -ENOMEM;
1691 low_limit = info->low_limit + length;
1693 /* Check if rbtree root looks promising */
1694 if (RB_EMPTY_ROOT(&mm->mm_rb))
1695 goto check_highest;
1696 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1697 if (vma->rb_subtree_gap < length)
1698 goto check_highest;
1700 while (true) {
1701 /* Visit left subtree if it looks promising */
1702 gap_end = vma->vm_start;
1703 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1704 struct vm_area_struct *left =
1705 rb_entry(vma->vm_rb.rb_left,
1706 struct vm_area_struct, vm_rb);
1707 if (left->rb_subtree_gap >= length) {
1708 vma = left;
1709 continue;
1713 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1714 check_current:
1715 /* Check if current node has a suitable gap */
1716 if (gap_start > high_limit)
1717 return -ENOMEM;
1718 if (gap_end >= low_limit && gap_end - gap_start >= length)
1719 goto found;
1721 /* Visit right subtree if it looks promising */
1722 if (vma->vm_rb.rb_right) {
1723 struct vm_area_struct *right =
1724 rb_entry(vma->vm_rb.rb_right,
1725 struct vm_area_struct, vm_rb);
1726 if (right->rb_subtree_gap >= length) {
1727 vma = right;
1728 continue;
1732 /* Go back up the rbtree to find next candidate node */
1733 while (true) {
1734 struct rb_node *prev = &vma->vm_rb;
1735 if (!rb_parent(prev))
1736 goto check_highest;
1737 vma = rb_entry(rb_parent(prev),
1738 struct vm_area_struct, vm_rb);
1739 if (prev == vma->vm_rb.rb_left) {
1740 gap_start = vma->vm_prev->vm_end;
1741 gap_end = vma->vm_start;
1742 goto check_current;
1747 check_highest:
1748 /* Check highest gap, which does not precede any rbtree node */
1749 gap_start = mm->highest_vm_end;
1750 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1751 if (gap_start > high_limit)
1752 return -ENOMEM;
1754 found:
1755 /* We found a suitable gap. Clip it with the original low_limit. */
1756 if (gap_start < info->low_limit)
1757 gap_start = info->low_limit;
1759 /* Adjust gap address to the desired alignment */
1760 gap_start += (info->align_offset - gap_start) & info->align_mask;
1762 VM_BUG_ON(gap_start + info->length > info->high_limit);
1763 VM_BUG_ON(gap_start + info->length > gap_end);
1764 return gap_start;
1767 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1769 struct mm_struct *mm = current->mm;
1770 struct vm_area_struct *vma;
1771 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1773 /* Adjust search length to account for worst case alignment overhead */
1774 length = info->length + info->align_mask;
1775 if (length < info->length)
1776 return -ENOMEM;
1779 * Adjust search limits by the desired length.
1780 * See implementation comment at top of unmapped_area().
1782 gap_end = info->high_limit;
1783 if (gap_end < length)
1784 return -ENOMEM;
1785 high_limit = gap_end - length;
1787 if (info->low_limit > high_limit)
1788 return -ENOMEM;
1789 low_limit = info->low_limit + length;
1791 /* Check highest gap, which does not precede any rbtree node */
1792 gap_start = mm->highest_vm_end;
1793 if (gap_start <= high_limit)
1794 goto found_highest;
1796 /* Check if rbtree root looks promising */
1797 if (RB_EMPTY_ROOT(&mm->mm_rb))
1798 return -ENOMEM;
1799 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1800 if (vma->rb_subtree_gap < length)
1801 return -ENOMEM;
1803 while (true) {
1804 /* Visit right subtree if it looks promising */
1805 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1806 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1807 struct vm_area_struct *right =
1808 rb_entry(vma->vm_rb.rb_right,
1809 struct vm_area_struct, vm_rb);
1810 if (right->rb_subtree_gap >= length) {
1811 vma = right;
1812 continue;
1816 check_current:
1817 /* Check if current node has a suitable gap */
1818 gap_end = vma->vm_start;
1819 if (gap_end < low_limit)
1820 return -ENOMEM;
1821 if (gap_start <= high_limit && gap_end - gap_start >= length)
1822 goto found;
1824 /* Visit left subtree if it looks promising */
1825 if (vma->vm_rb.rb_left) {
1826 struct vm_area_struct *left =
1827 rb_entry(vma->vm_rb.rb_left,
1828 struct vm_area_struct, vm_rb);
1829 if (left->rb_subtree_gap >= length) {
1830 vma = left;
1831 continue;
1835 /* Go back up the rbtree to find next candidate node */
1836 while (true) {
1837 struct rb_node *prev = &vma->vm_rb;
1838 if (!rb_parent(prev))
1839 return -ENOMEM;
1840 vma = rb_entry(rb_parent(prev),
1841 struct vm_area_struct, vm_rb);
1842 if (prev == vma->vm_rb.rb_right) {
1843 gap_start = vma->vm_prev ?
1844 vma->vm_prev->vm_end : 0;
1845 goto check_current;
1850 found:
1851 /* We found a suitable gap. Clip it with the original high_limit. */
1852 if (gap_end > info->high_limit)
1853 gap_end = info->high_limit;
1855 found_highest:
1856 /* Compute highest gap address at the desired alignment */
1857 gap_end -= info->length;
1858 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1860 VM_BUG_ON(gap_end < info->low_limit);
1861 VM_BUG_ON(gap_end < gap_start);
1862 return gap_end;
1865 /* Get an address range which is currently unmapped.
1866 * For shmat() with addr=0.
1868 * Ugly calling convention alert:
1869 * Return value with the low bits set means error value,
1870 * ie
1871 * if (ret & ~PAGE_MASK)
1872 * error = ret;
1874 * This function "knows" that -ENOMEM has the bits set.
1876 #ifndef HAVE_ARCH_UNMAPPED_AREA
1877 unsigned long
1878 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1879 unsigned long len, unsigned long pgoff, unsigned long flags)
1881 struct mm_struct *mm = current->mm;
1882 struct vm_area_struct *vma;
1883 struct vm_unmapped_area_info info;
1885 if (len > TASK_SIZE - mmap_min_addr)
1886 return -ENOMEM;
1888 if (flags & MAP_FIXED)
1889 return addr;
1891 if (addr) {
1892 addr = PAGE_ALIGN(addr);
1893 vma = find_vma(mm, addr);
1894 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1895 (!vma || addr + len <= vma->vm_start))
1896 return addr;
1899 info.flags = 0;
1900 info.length = len;
1901 info.low_limit = mm->mmap_base;
1902 info.high_limit = TASK_SIZE;
1903 info.align_mask = 0;
1904 return vm_unmapped_area(&info);
1906 #endif
1909 * This mmap-allocator allocates new areas top-down from below the
1910 * stack's low limit (the base):
1912 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1913 unsigned long
1914 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1915 const unsigned long len, const unsigned long pgoff,
1916 const unsigned long flags)
1918 struct vm_area_struct *vma;
1919 struct mm_struct *mm = current->mm;
1920 unsigned long addr = addr0;
1921 struct vm_unmapped_area_info info;
1923 /* requested length too big for entire address space */
1924 if (len > TASK_SIZE - mmap_min_addr)
1925 return -ENOMEM;
1927 if (flags & MAP_FIXED)
1928 return addr;
1930 /* requesting a specific address */
1931 if (addr) {
1932 addr = PAGE_ALIGN(addr);
1933 vma = find_vma(mm, addr);
1934 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1935 (!vma || addr + len <= vma->vm_start))
1936 return addr;
1939 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1940 info.length = len;
1941 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1942 info.high_limit = mm->mmap_base;
1943 info.align_mask = 0;
1944 addr = vm_unmapped_area(&info);
1947 * A failed mmap() very likely causes application failure,
1948 * so fall back to the bottom-up function here. This scenario
1949 * can happen with large stack limits and large mmap()
1950 * allocations.
1952 if (addr & ~PAGE_MASK) {
1953 VM_BUG_ON(addr != -ENOMEM);
1954 info.flags = 0;
1955 info.low_limit = TASK_UNMAPPED_BASE;
1956 info.high_limit = TASK_SIZE;
1957 addr = vm_unmapped_area(&info);
1960 return addr;
1962 #endif
1964 unsigned long
1965 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1966 unsigned long pgoff, unsigned long flags)
1968 unsigned long (*get_area)(struct file *, unsigned long,
1969 unsigned long, unsigned long, unsigned long);
1971 unsigned long error = arch_mmap_check(addr, len, flags);
1972 if (error)
1973 return error;
1975 /* Careful about overflows.. */
1976 if (len > TASK_SIZE)
1977 return -ENOMEM;
1979 get_area = current->mm->get_unmapped_area;
1980 if (file && file->f_op->get_unmapped_area)
1981 get_area = file->f_op->get_unmapped_area;
1982 addr = get_area(file, addr, len, pgoff, flags);
1983 if (IS_ERR_VALUE(addr))
1984 return addr;
1986 if (addr > TASK_SIZE - len)
1987 return -ENOMEM;
1988 if (addr & ~PAGE_MASK)
1989 return -EINVAL;
1991 addr = arch_rebalance_pgtables(addr, len);
1992 error = security_mmap_addr(addr);
1993 return error ? error : addr;
1996 EXPORT_SYMBOL(get_unmapped_area);
1998 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1999 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2001 struct rb_node *rb_node;
2002 struct vm_area_struct *vma;
2004 /* Check the cache first. */
2005 vma = vmacache_find(mm, addr);
2006 if (likely(vma))
2007 return vma;
2009 rb_node = mm->mm_rb.rb_node;
2010 vma = NULL;
2012 while (rb_node) {
2013 struct vm_area_struct *tmp;
2015 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2017 if (tmp->vm_end > addr) {
2018 vma = tmp;
2019 if (tmp->vm_start <= addr)
2020 break;
2021 rb_node = rb_node->rb_left;
2022 } else
2023 rb_node = rb_node->rb_right;
2026 if (vma)
2027 vmacache_update(addr, vma);
2028 return vma;
2031 EXPORT_SYMBOL(find_vma);
2034 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2036 struct vm_area_struct *
2037 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2038 struct vm_area_struct **pprev)
2040 struct vm_area_struct *vma;
2042 vma = find_vma(mm, addr);
2043 if (vma) {
2044 *pprev = vma->vm_prev;
2045 } else {
2046 struct rb_node *rb_node = mm->mm_rb.rb_node;
2047 *pprev = NULL;
2048 while (rb_node) {
2049 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2050 rb_node = rb_node->rb_right;
2053 return vma;
2057 * Verify that the stack growth is acceptable and
2058 * update accounting. This is shared with both the
2059 * grow-up and grow-down cases.
2061 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2063 struct mm_struct *mm = vma->vm_mm;
2064 struct rlimit *rlim = current->signal->rlim;
2065 unsigned long new_start;
2067 /* address space limit tests */
2068 if (!may_expand_vm(mm, grow))
2069 return -ENOMEM;
2071 /* Stack limit test */
2072 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2073 return -ENOMEM;
2075 /* mlock limit tests */
2076 if (vma->vm_flags & VM_LOCKED) {
2077 unsigned long locked;
2078 unsigned long limit;
2079 locked = mm->locked_vm + grow;
2080 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2081 limit >>= PAGE_SHIFT;
2082 if (locked > limit && !capable(CAP_IPC_LOCK))
2083 return -ENOMEM;
2086 /* Check to ensure the stack will not grow into a hugetlb-only region */
2087 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2088 vma->vm_end - size;
2089 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2090 return -EFAULT;
2093 * Overcommit.. This must be the final test, as it will
2094 * update security statistics.
2096 if (security_vm_enough_memory_mm(mm, grow))
2097 return -ENOMEM;
2099 /* Ok, everything looks good - let it rip */
2100 if (vma->vm_flags & VM_LOCKED)
2101 mm->locked_vm += grow;
2102 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2103 return 0;
2106 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2108 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2109 * vma is the last one with address > vma->vm_end. Have to extend vma.
2111 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2113 int error;
2115 if (!(vma->vm_flags & VM_GROWSUP))
2116 return -EFAULT;
2119 * We must make sure the anon_vma is allocated
2120 * so that the anon_vma locking is not a noop.
2122 if (unlikely(anon_vma_prepare(vma)))
2123 return -ENOMEM;
2124 vma_lock_anon_vma(vma);
2127 * vma->vm_start/vm_end cannot change under us because the caller
2128 * is required to hold the mmap_sem in read mode. We need the
2129 * anon_vma lock to serialize against concurrent expand_stacks.
2130 * Also guard against wrapping around to address 0.
2132 if (address < PAGE_ALIGN(address+4))
2133 address = PAGE_ALIGN(address+4);
2134 else {
2135 vma_unlock_anon_vma(vma);
2136 return -ENOMEM;
2138 error = 0;
2140 /* Somebody else might have raced and expanded it already */
2141 if (address > vma->vm_end) {
2142 unsigned long size, grow;
2144 size = address - vma->vm_start;
2145 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2147 error = -ENOMEM;
2148 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2149 error = acct_stack_growth(vma, size, grow);
2150 if (!error) {
2152 * vma_gap_update() doesn't support concurrent
2153 * updates, but we only hold a shared mmap_sem
2154 * lock here, so we need to protect against
2155 * concurrent vma expansions.
2156 * vma_lock_anon_vma() doesn't help here, as
2157 * we don't guarantee that all growable vmas
2158 * in a mm share the same root anon vma.
2159 * So, we reuse mm->page_table_lock to guard
2160 * against concurrent vma expansions.
2162 spin_lock(&vma->vm_mm->page_table_lock);
2163 anon_vma_interval_tree_pre_update_vma(vma);
2164 vma->vm_end = address;
2165 anon_vma_interval_tree_post_update_vma(vma);
2166 if (vma->vm_next)
2167 vma_gap_update(vma->vm_next);
2168 else
2169 vma->vm_mm->highest_vm_end = address;
2170 spin_unlock(&vma->vm_mm->page_table_lock);
2172 perf_event_mmap(vma);
2176 vma_unlock_anon_vma(vma);
2177 khugepaged_enter_vma_merge(vma);
2178 validate_mm(vma->vm_mm);
2179 return error;
2181 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2184 * vma is the first one with address < vma->vm_start. Have to extend vma.
2186 int expand_downwards(struct vm_area_struct *vma,
2187 unsigned long address)
2189 int error;
2192 * We must make sure the anon_vma is allocated
2193 * so that the anon_vma locking is not a noop.
2195 if (unlikely(anon_vma_prepare(vma)))
2196 return -ENOMEM;
2198 address &= PAGE_MASK;
2199 error = security_mmap_addr(address);
2200 if (error)
2201 return error;
2203 vma_lock_anon_vma(vma);
2206 * vma->vm_start/vm_end cannot change under us because the caller
2207 * is required to hold the mmap_sem in read mode. We need the
2208 * anon_vma lock to serialize against concurrent expand_stacks.
2211 /* Somebody else might have raced and expanded it already */
2212 if (address < vma->vm_start) {
2213 unsigned long size, grow;
2215 size = vma->vm_end - address;
2216 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2218 error = -ENOMEM;
2219 if (grow <= vma->vm_pgoff) {
2220 error = acct_stack_growth(vma, size, grow);
2221 if (!error) {
2223 * vma_gap_update() doesn't support concurrent
2224 * updates, but we only hold a shared mmap_sem
2225 * lock here, so we need to protect against
2226 * concurrent vma expansions.
2227 * vma_lock_anon_vma() doesn't help here, as
2228 * we don't guarantee that all growable vmas
2229 * in a mm share the same root anon vma.
2230 * So, we reuse mm->page_table_lock to guard
2231 * against concurrent vma expansions.
2233 spin_lock(&vma->vm_mm->page_table_lock);
2234 anon_vma_interval_tree_pre_update_vma(vma);
2235 vma->vm_start = address;
2236 vma->vm_pgoff -= grow;
2237 anon_vma_interval_tree_post_update_vma(vma);
2238 vma_gap_update(vma);
2239 spin_unlock(&vma->vm_mm->page_table_lock);
2241 perf_event_mmap(vma);
2245 vma_unlock_anon_vma(vma);
2246 khugepaged_enter_vma_merge(vma);
2247 validate_mm(vma->vm_mm);
2248 return error;
2252 * Note how expand_stack() refuses to expand the stack all the way to
2253 * abut the next virtual mapping, *unless* that mapping itself is also
2254 * a stack mapping. We want to leave room for a guard page, after all
2255 * (the guard page itself is not added here, that is done by the
2256 * actual page faulting logic)
2258 * This matches the behavior of the guard page logic (see mm/memory.c:
2259 * check_stack_guard_page()), which only allows the guard page to be
2260 * removed under these circumstances.
2262 #ifdef CONFIG_STACK_GROWSUP
2263 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2265 struct vm_area_struct *next;
2267 address &= PAGE_MASK;
2268 next = vma->vm_next;
2269 if (next && next->vm_start == address + PAGE_SIZE) {
2270 if (!(next->vm_flags & VM_GROWSUP))
2271 return -ENOMEM;
2273 return expand_upwards(vma, address);
2276 struct vm_area_struct *
2277 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2279 struct vm_area_struct *vma, *prev;
2281 addr &= PAGE_MASK;
2282 vma = find_vma_prev(mm, addr, &prev);
2283 if (vma && (vma->vm_start <= addr))
2284 return vma;
2285 if (!prev || expand_stack(prev, addr))
2286 return NULL;
2287 if (prev->vm_flags & VM_LOCKED)
2288 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2289 return prev;
2291 #else
2292 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2294 struct vm_area_struct *prev;
2296 address &= PAGE_MASK;
2297 prev = vma->vm_prev;
2298 if (prev && prev->vm_end == address) {
2299 if (!(prev->vm_flags & VM_GROWSDOWN))
2300 return -ENOMEM;
2302 return expand_downwards(vma, address);
2305 struct vm_area_struct *
2306 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2308 struct vm_area_struct * vma;
2309 unsigned long start;
2311 addr &= PAGE_MASK;
2312 vma = find_vma(mm,addr);
2313 if (!vma)
2314 return NULL;
2315 if (vma->vm_start <= addr)
2316 return vma;
2317 if (!(vma->vm_flags & VM_GROWSDOWN))
2318 return NULL;
2319 start = vma->vm_start;
2320 if (expand_stack(vma, addr))
2321 return NULL;
2322 if (vma->vm_flags & VM_LOCKED)
2323 __mlock_vma_pages_range(vma, addr, start, NULL);
2324 return vma;
2326 #endif
2329 * Ok - we have the memory areas we should free on the vma list,
2330 * so release them, and do the vma updates.
2332 * Called with the mm semaphore held.
2334 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2336 unsigned long nr_accounted = 0;
2338 /* Update high watermark before we lower total_vm */
2339 update_hiwater_vm(mm);
2340 do {
2341 long nrpages = vma_pages(vma);
2343 if (vma->vm_flags & VM_ACCOUNT)
2344 nr_accounted += nrpages;
2345 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2346 vma = remove_vma(vma);
2347 } while (vma);
2348 vm_unacct_memory(nr_accounted);
2349 validate_mm(mm);
2353 * Get rid of page table information in the indicated region.
2355 * Called with the mm semaphore held.
2357 static void unmap_region(struct mm_struct *mm,
2358 struct vm_area_struct *vma, struct vm_area_struct *prev,
2359 unsigned long start, unsigned long end)
2361 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2362 struct mmu_gather tlb;
2364 lru_add_drain();
2365 tlb_gather_mmu(&tlb, mm, start, end);
2366 update_hiwater_rss(mm);
2367 unmap_vmas(&tlb, vma, start, end);
2368 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2369 next ? next->vm_start : USER_PGTABLES_CEILING);
2370 tlb_finish_mmu(&tlb, start, end);
2374 * Create a list of vma's touched by the unmap, removing them from the mm's
2375 * vma list as we go..
2377 static void
2378 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2379 struct vm_area_struct *prev, unsigned long end)
2381 struct vm_area_struct **insertion_point;
2382 struct vm_area_struct *tail_vma = NULL;
2384 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2385 vma->vm_prev = NULL;
2386 do {
2387 vma_rb_erase(vma, &mm->mm_rb);
2388 mm->map_count--;
2389 tail_vma = vma;
2390 vma = vma->vm_next;
2391 } while (vma && vma->vm_start < end);
2392 *insertion_point = vma;
2393 if (vma) {
2394 vma->vm_prev = prev;
2395 vma_gap_update(vma);
2396 } else
2397 mm->highest_vm_end = prev ? prev->vm_end : 0;
2398 tail_vma->vm_next = NULL;
2400 /* Kill the cache */
2401 vmacache_invalidate(mm);
2405 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2406 * munmap path where it doesn't make sense to fail.
2408 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2409 unsigned long addr, int new_below)
2411 struct vm_area_struct *new;
2412 int err = -ENOMEM;
2414 if (is_vm_hugetlb_page(vma) && (addr &
2415 ~(huge_page_mask(hstate_vma(vma)))))
2416 return -EINVAL;
2418 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2419 if (!new)
2420 goto out_err;
2422 /* most fields are the same, copy all, and then fixup */
2423 *new = *vma;
2425 INIT_LIST_HEAD(&new->anon_vma_chain);
2427 if (new_below)
2428 new->vm_end = addr;
2429 else {
2430 new->vm_start = addr;
2431 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2434 err = vma_dup_policy(vma, new);
2435 if (err)
2436 goto out_free_vma;
2438 if (anon_vma_clone(new, vma))
2439 goto out_free_mpol;
2441 if (new->vm_file)
2442 get_file(new->vm_file);
2444 if (new->vm_ops && new->vm_ops->open)
2445 new->vm_ops->open(new);
2447 if (new_below)
2448 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2449 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2450 else
2451 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2453 /* Success. */
2454 if (!err)
2455 return 0;
2457 /* Clean everything up if vma_adjust failed. */
2458 if (new->vm_ops && new->vm_ops->close)
2459 new->vm_ops->close(new);
2460 if (new->vm_file)
2461 fput(new->vm_file);
2462 unlink_anon_vmas(new);
2463 out_free_mpol:
2464 mpol_put(vma_policy(new));
2465 out_free_vma:
2466 kmem_cache_free(vm_area_cachep, new);
2467 out_err:
2468 return err;
2472 * Split a vma into two pieces at address 'addr', a new vma is allocated
2473 * either for the first part or the tail.
2475 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2476 unsigned long addr, int new_below)
2478 if (mm->map_count >= sysctl_max_map_count)
2479 return -ENOMEM;
2481 return __split_vma(mm, vma, addr, new_below);
2484 /* Munmap is split into 2 main parts -- this part which finds
2485 * what needs doing, and the areas themselves, which do the
2486 * work. This now handles partial unmappings.
2487 * Jeremy Fitzhardinge <jeremy@goop.org>
2489 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2491 unsigned long end;
2492 struct vm_area_struct *vma, *prev, *last;
2494 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2495 return -EINVAL;
2497 if ((len = PAGE_ALIGN(len)) == 0)
2498 return -EINVAL;
2500 /* Find the first overlapping VMA */
2501 vma = find_vma(mm, start);
2502 if (!vma)
2503 return 0;
2504 prev = vma->vm_prev;
2505 /* we have start < vma->vm_end */
2507 /* if it doesn't overlap, we have nothing.. */
2508 end = start + len;
2509 if (vma->vm_start >= end)
2510 return 0;
2513 * If we need to split any vma, do it now to save pain later.
2515 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2516 * unmapped vm_area_struct will remain in use: so lower split_vma
2517 * places tmp vma above, and higher split_vma places tmp vma below.
2519 if (start > vma->vm_start) {
2520 int error;
2523 * Make sure that map_count on return from munmap() will
2524 * not exceed its limit; but let map_count go just above
2525 * its limit temporarily, to help free resources as expected.
2527 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2528 return -ENOMEM;
2530 error = __split_vma(mm, vma, start, 0);
2531 if (error)
2532 return error;
2533 prev = vma;
2536 /* Does it split the last one? */
2537 last = find_vma(mm, end);
2538 if (last && end > last->vm_start) {
2539 int error = __split_vma(mm, last, end, 1);
2540 if (error)
2541 return error;
2543 vma = prev? prev->vm_next: mm->mmap;
2546 * unlock any mlock()ed ranges before detaching vmas
2548 if (mm->locked_vm) {
2549 struct vm_area_struct *tmp = vma;
2550 while (tmp && tmp->vm_start < end) {
2551 if (tmp->vm_flags & VM_LOCKED) {
2552 mm->locked_vm -= vma_pages(tmp);
2553 munlock_vma_pages_all(tmp);
2555 tmp = tmp->vm_next;
2560 * Remove the vma's, and unmap the actual pages
2562 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2563 unmap_region(mm, vma, prev, start, end);
2565 /* Fix up all other VM information */
2566 remove_vma_list(mm, vma);
2568 return 0;
2571 int vm_munmap(unsigned long start, size_t len)
2573 int ret;
2574 struct mm_struct *mm = current->mm;
2576 down_write(&mm->mmap_sem);
2577 ret = do_munmap(mm, start, len);
2578 up_write(&mm->mmap_sem);
2579 return ret;
2581 EXPORT_SYMBOL(vm_munmap);
2583 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2585 profile_munmap(addr);
2586 return vm_munmap(addr, len);
2589 static inline void verify_mm_writelocked(struct mm_struct *mm)
2591 #ifdef CONFIG_DEBUG_VM
2592 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2593 WARN_ON(1);
2594 up_read(&mm->mmap_sem);
2596 #endif
2600 * this is really a simplified "do_mmap". it only handles
2601 * anonymous maps. eventually we may be able to do some
2602 * brk-specific accounting here.
2604 static unsigned long do_brk(unsigned long addr, unsigned long len)
2606 struct mm_struct * mm = current->mm;
2607 struct vm_area_struct * vma, * prev;
2608 unsigned long flags;
2609 struct rb_node ** rb_link, * rb_parent;
2610 pgoff_t pgoff = addr >> PAGE_SHIFT;
2611 int error;
2613 len = PAGE_ALIGN(len);
2614 if (!len)
2615 return addr;
2617 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2619 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2620 if (error & ~PAGE_MASK)
2621 return error;
2623 error = mlock_future_check(mm, mm->def_flags, len);
2624 if (error)
2625 return error;
2628 * mm->mmap_sem is required to protect against another thread
2629 * changing the mappings in case we sleep.
2631 verify_mm_writelocked(mm);
2634 * Clear old maps. this also does some error checking for us
2636 munmap_back:
2637 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2638 if (do_munmap(mm, addr, len))
2639 return -ENOMEM;
2640 goto munmap_back;
2643 /* Check against address space limits *after* clearing old maps... */
2644 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2645 return -ENOMEM;
2647 if (mm->map_count > sysctl_max_map_count)
2648 return -ENOMEM;
2650 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2651 return -ENOMEM;
2653 /* Can we just expand an old private anonymous mapping? */
2654 vma = vma_merge(mm, prev, addr, addr + len, flags,
2655 NULL, NULL, pgoff, NULL);
2656 if (vma)
2657 goto out;
2660 * create a vma struct for an anonymous mapping
2662 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2663 if (!vma) {
2664 vm_unacct_memory(len >> PAGE_SHIFT);
2665 return -ENOMEM;
2668 INIT_LIST_HEAD(&vma->anon_vma_chain);
2669 vma->vm_mm = mm;
2670 vma->vm_start = addr;
2671 vma->vm_end = addr + len;
2672 vma->vm_pgoff = pgoff;
2673 vma->vm_flags = flags;
2674 vma->vm_page_prot = vm_get_page_prot(flags);
2675 vma_link(mm, vma, prev, rb_link, rb_parent);
2676 out:
2677 perf_event_mmap(vma);
2678 mm->total_vm += len >> PAGE_SHIFT;
2679 if (flags & VM_LOCKED)
2680 mm->locked_vm += (len >> PAGE_SHIFT);
2681 vma->vm_flags |= VM_SOFTDIRTY;
2682 return addr;
2685 unsigned long vm_brk(unsigned long addr, unsigned long len)
2687 struct mm_struct *mm = current->mm;
2688 unsigned long ret;
2689 bool populate;
2691 down_write(&mm->mmap_sem);
2692 ret = do_brk(addr, len);
2693 populate = ((mm->def_flags & VM_LOCKED) != 0);
2694 up_write(&mm->mmap_sem);
2695 if (populate)
2696 mm_populate(addr, len);
2697 return ret;
2699 EXPORT_SYMBOL(vm_brk);
2701 /* Release all mmaps. */
2702 void exit_mmap(struct mm_struct *mm)
2704 struct mmu_gather tlb;
2705 struct vm_area_struct *vma;
2706 unsigned long nr_accounted = 0;
2708 /* mm's last user has gone, and its about to be pulled down */
2709 mmu_notifier_release(mm);
2711 if (mm->locked_vm) {
2712 vma = mm->mmap;
2713 while (vma) {
2714 if (vma->vm_flags & VM_LOCKED)
2715 munlock_vma_pages_all(vma);
2716 vma = vma->vm_next;
2720 arch_exit_mmap(mm);
2722 vma = mm->mmap;
2723 if (!vma) /* Can happen if dup_mmap() received an OOM */
2724 return;
2726 lru_add_drain();
2727 flush_cache_mm(mm);
2728 tlb_gather_mmu(&tlb, mm, 0, -1);
2729 /* update_hiwater_rss(mm) here? but nobody should be looking */
2730 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2731 unmap_vmas(&tlb, vma, 0, -1);
2733 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2734 tlb_finish_mmu(&tlb, 0, -1);
2737 * Walk the list again, actually closing and freeing it,
2738 * with preemption enabled, without holding any MM locks.
2740 while (vma) {
2741 if (vma->vm_flags & VM_ACCOUNT)
2742 nr_accounted += vma_pages(vma);
2743 vma = remove_vma(vma);
2745 vm_unacct_memory(nr_accounted);
2747 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2748 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2751 /* Insert vm structure into process list sorted by address
2752 * and into the inode's i_mmap tree. If vm_file is non-NULL
2753 * then i_mmap_mutex is taken here.
2755 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2757 struct vm_area_struct *prev;
2758 struct rb_node **rb_link, *rb_parent;
2761 * The vm_pgoff of a purely anonymous vma should be irrelevant
2762 * until its first write fault, when page's anon_vma and index
2763 * are set. But now set the vm_pgoff it will almost certainly
2764 * end up with (unless mremap moves it elsewhere before that
2765 * first wfault), so /proc/pid/maps tells a consistent story.
2767 * By setting it to reflect the virtual start address of the
2768 * vma, merges and splits can happen in a seamless way, just
2769 * using the existing file pgoff checks and manipulations.
2770 * Similarly in do_mmap_pgoff and in do_brk.
2772 if (!vma->vm_file) {
2773 BUG_ON(vma->anon_vma);
2774 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2776 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2777 &prev, &rb_link, &rb_parent))
2778 return -ENOMEM;
2779 if ((vma->vm_flags & VM_ACCOUNT) &&
2780 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2781 return -ENOMEM;
2783 vma_link(mm, vma, prev, rb_link, rb_parent);
2784 return 0;
2788 * Copy the vma structure to a new location in the same mm,
2789 * prior to moving page table entries, to effect an mremap move.
2791 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2792 unsigned long addr, unsigned long len, pgoff_t pgoff,
2793 bool *need_rmap_locks)
2795 struct vm_area_struct *vma = *vmap;
2796 unsigned long vma_start = vma->vm_start;
2797 struct mm_struct *mm = vma->vm_mm;
2798 struct vm_area_struct *new_vma, *prev;
2799 struct rb_node **rb_link, *rb_parent;
2800 bool faulted_in_anon_vma = true;
2803 * If anonymous vma has not yet been faulted, update new pgoff
2804 * to match new location, to increase its chance of merging.
2806 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2807 pgoff = addr >> PAGE_SHIFT;
2808 faulted_in_anon_vma = false;
2811 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2812 return NULL; /* should never get here */
2813 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2814 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2815 if (new_vma) {
2817 * Source vma may have been merged into new_vma
2819 if (unlikely(vma_start >= new_vma->vm_start &&
2820 vma_start < new_vma->vm_end)) {
2822 * The only way we can get a vma_merge with
2823 * self during an mremap is if the vma hasn't
2824 * been faulted in yet and we were allowed to
2825 * reset the dst vma->vm_pgoff to the
2826 * destination address of the mremap to allow
2827 * the merge to happen. mremap must change the
2828 * vm_pgoff linearity between src and dst vmas
2829 * (in turn preventing a vma_merge) to be
2830 * safe. It is only safe to keep the vm_pgoff
2831 * linear if there are no pages mapped yet.
2833 VM_BUG_ON(faulted_in_anon_vma);
2834 *vmap = vma = new_vma;
2836 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2837 } else {
2838 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2839 if (new_vma) {
2840 *new_vma = *vma;
2841 new_vma->vm_start = addr;
2842 new_vma->vm_end = addr + len;
2843 new_vma->vm_pgoff = pgoff;
2844 if (vma_dup_policy(vma, new_vma))
2845 goto out_free_vma;
2846 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2847 if (anon_vma_clone(new_vma, vma))
2848 goto out_free_mempol;
2849 if (new_vma->vm_file)
2850 get_file(new_vma->vm_file);
2851 if (new_vma->vm_ops && new_vma->vm_ops->open)
2852 new_vma->vm_ops->open(new_vma);
2853 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2854 *need_rmap_locks = false;
2857 return new_vma;
2859 out_free_mempol:
2860 mpol_put(vma_policy(new_vma));
2861 out_free_vma:
2862 kmem_cache_free(vm_area_cachep, new_vma);
2863 return NULL;
2867 * Return true if the calling process may expand its vm space by the passed
2868 * number of pages
2870 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2872 unsigned long cur = mm->total_vm; /* pages */
2873 unsigned long lim;
2875 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2877 if (cur + npages > lim)
2878 return 0;
2879 return 1;
2882 static int special_mapping_fault(struct vm_area_struct *vma,
2883 struct vm_fault *vmf);
2886 * Having a close hook prevents vma merging regardless of flags.
2888 static void special_mapping_close(struct vm_area_struct *vma)
2892 static const char *special_mapping_name(struct vm_area_struct *vma)
2894 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2897 static const struct vm_operations_struct special_mapping_vmops = {
2898 .close = special_mapping_close,
2899 .fault = special_mapping_fault,
2900 .name = special_mapping_name,
2903 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2904 .close = special_mapping_close,
2905 .fault = special_mapping_fault,
2908 static int special_mapping_fault(struct vm_area_struct *vma,
2909 struct vm_fault *vmf)
2911 pgoff_t pgoff;
2912 struct page **pages;
2915 * special mappings have no vm_file, and in that case, the mm
2916 * uses vm_pgoff internally. So we have to subtract it from here.
2917 * We are allowed to do this because we are the mm; do not copy
2918 * this code into drivers!
2920 pgoff = vmf->pgoff - vma->vm_pgoff;
2922 if (vma->vm_ops == &legacy_special_mapping_vmops)
2923 pages = vma->vm_private_data;
2924 else
2925 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2926 pages;
2928 for (; pgoff && *pages; ++pages)
2929 pgoff--;
2931 if (*pages) {
2932 struct page *page = *pages;
2933 get_page(page);
2934 vmf->page = page;
2935 return 0;
2938 return VM_FAULT_SIGBUS;
2941 static struct vm_area_struct *__install_special_mapping(
2942 struct mm_struct *mm,
2943 unsigned long addr, unsigned long len,
2944 unsigned long vm_flags, const struct vm_operations_struct *ops,
2945 void *priv)
2947 int ret;
2948 struct vm_area_struct *vma;
2950 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2951 if (unlikely(vma == NULL))
2952 return ERR_PTR(-ENOMEM);
2954 INIT_LIST_HEAD(&vma->anon_vma_chain);
2955 vma->vm_mm = mm;
2956 vma->vm_start = addr;
2957 vma->vm_end = addr + len;
2959 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2960 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2962 vma->vm_ops = ops;
2963 vma->vm_private_data = priv;
2965 ret = insert_vm_struct(mm, vma);
2966 if (ret)
2967 goto out;
2969 mm->total_vm += len >> PAGE_SHIFT;
2971 perf_event_mmap(vma);
2973 return vma;
2975 out:
2976 kmem_cache_free(vm_area_cachep, vma);
2977 return ERR_PTR(ret);
2981 * Called with mm->mmap_sem held for writing.
2982 * Insert a new vma covering the given region, with the given flags.
2983 * Its pages are supplied by the given array of struct page *.
2984 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2985 * The region past the last page supplied will always produce SIGBUS.
2986 * The array pointer and the pages it points to are assumed to stay alive
2987 * for as long as this mapping might exist.
2989 struct vm_area_struct *_install_special_mapping(
2990 struct mm_struct *mm,
2991 unsigned long addr, unsigned long len,
2992 unsigned long vm_flags, const struct vm_special_mapping *spec)
2994 return __install_special_mapping(mm, addr, len, vm_flags,
2995 &special_mapping_vmops, (void *)spec);
2998 int install_special_mapping(struct mm_struct *mm,
2999 unsigned long addr, unsigned long len,
3000 unsigned long vm_flags, struct page **pages)
3002 struct vm_area_struct *vma = __install_special_mapping(
3003 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3004 (void *)pages);
3006 return PTR_ERR_OR_ZERO(vma);
3009 static DEFINE_MUTEX(mm_all_locks_mutex);
3011 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3013 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3015 * The LSB of head.next can't change from under us
3016 * because we hold the mm_all_locks_mutex.
3018 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3020 * We can safely modify head.next after taking the
3021 * anon_vma->root->rwsem. If some other vma in this mm shares
3022 * the same anon_vma we won't take it again.
3024 * No need of atomic instructions here, head.next
3025 * can't change from under us thanks to the
3026 * anon_vma->root->rwsem.
3028 if (__test_and_set_bit(0, (unsigned long *)
3029 &anon_vma->root->rb_root.rb_node))
3030 BUG();
3034 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3036 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3038 * AS_MM_ALL_LOCKS can't change from under us because
3039 * we hold the mm_all_locks_mutex.
3041 * Operations on ->flags have to be atomic because
3042 * even if AS_MM_ALL_LOCKS is stable thanks to the
3043 * mm_all_locks_mutex, there may be other cpus
3044 * changing other bitflags in parallel to us.
3046 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3047 BUG();
3048 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3053 * This operation locks against the VM for all pte/vma/mm related
3054 * operations that could ever happen on a certain mm. This includes
3055 * vmtruncate, try_to_unmap, and all page faults.
3057 * The caller must take the mmap_sem in write mode before calling
3058 * mm_take_all_locks(). The caller isn't allowed to release the
3059 * mmap_sem until mm_drop_all_locks() returns.
3061 * mmap_sem in write mode is required in order to block all operations
3062 * that could modify pagetables and free pages without need of
3063 * altering the vma layout (for example populate_range() with
3064 * nonlinear vmas). It's also needed in write mode to avoid new
3065 * anon_vmas to be associated with existing vmas.
3067 * A single task can't take more than one mm_take_all_locks() in a row
3068 * or it would deadlock.
3070 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3071 * mapping->flags avoid to take the same lock twice, if more than one
3072 * vma in this mm is backed by the same anon_vma or address_space.
3074 * We can take all the locks in random order because the VM code
3075 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3076 * takes more than one of them in a row. Secondly we're protected
3077 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3079 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3080 * that may have to take thousand of locks.
3082 * mm_take_all_locks() can fail if it's interrupted by signals.
3084 int mm_take_all_locks(struct mm_struct *mm)
3086 struct vm_area_struct *vma;
3087 struct anon_vma_chain *avc;
3089 BUG_ON(down_read_trylock(&mm->mmap_sem));
3091 mutex_lock(&mm_all_locks_mutex);
3093 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3094 if (signal_pending(current))
3095 goto out_unlock;
3096 if (vma->vm_file && vma->vm_file->f_mapping)
3097 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3100 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3101 if (signal_pending(current))
3102 goto out_unlock;
3103 if (vma->anon_vma)
3104 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3105 vm_lock_anon_vma(mm, avc->anon_vma);
3108 return 0;
3110 out_unlock:
3111 mm_drop_all_locks(mm);
3112 return -EINTR;
3115 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3117 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3119 * The LSB of head.next can't change to 0 from under
3120 * us because we hold the mm_all_locks_mutex.
3122 * We must however clear the bitflag before unlocking
3123 * the vma so the users using the anon_vma->rb_root will
3124 * never see our bitflag.
3126 * No need of atomic instructions here, head.next
3127 * can't change from under us until we release the
3128 * anon_vma->root->rwsem.
3130 if (!__test_and_clear_bit(0, (unsigned long *)
3131 &anon_vma->root->rb_root.rb_node))
3132 BUG();
3133 anon_vma_unlock_write(anon_vma);
3137 static void vm_unlock_mapping(struct address_space *mapping)
3139 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3141 * AS_MM_ALL_LOCKS can't change to 0 from under us
3142 * because we hold the mm_all_locks_mutex.
3144 mutex_unlock(&mapping->i_mmap_mutex);
3145 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3146 &mapping->flags))
3147 BUG();
3152 * The mmap_sem cannot be released by the caller until
3153 * mm_drop_all_locks() returns.
3155 void mm_drop_all_locks(struct mm_struct *mm)
3157 struct vm_area_struct *vma;
3158 struct anon_vma_chain *avc;
3160 BUG_ON(down_read_trylock(&mm->mmap_sem));
3161 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3163 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3164 if (vma->anon_vma)
3165 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3166 vm_unlock_anon_vma(avc->anon_vma);
3167 if (vma->vm_file && vma->vm_file->f_mapping)
3168 vm_unlock_mapping(vma->vm_file->f_mapping);
3171 mutex_unlock(&mm_all_locks_mutex);
3175 * initialise the VMA slab
3177 void __init mmap_init(void)
3179 int ret;
3181 ret = percpu_counter_init(&vm_committed_as, 0);
3182 VM_BUG_ON(ret);
3186 * Initialise sysctl_user_reserve_kbytes.
3188 * This is intended to prevent a user from starting a single memory hogging
3189 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3190 * mode.
3192 * The default value is min(3% of free memory, 128MB)
3193 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3195 static int init_user_reserve(void)
3197 unsigned long free_kbytes;
3199 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3201 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3202 return 0;
3204 subsys_initcall(init_user_reserve);
3207 * Initialise sysctl_admin_reserve_kbytes.
3209 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3210 * to log in and kill a memory hogging process.
3212 * Systems with more than 256MB will reserve 8MB, enough to recover
3213 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3214 * only reserve 3% of free pages by default.
3216 static int init_admin_reserve(void)
3218 unsigned long free_kbytes;
3220 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3222 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3223 return 0;
3225 subsys_initcall(init_admin_reserve);
3228 * Reinititalise user and admin reserves if memory is added or removed.
3230 * The default user reserve max is 128MB, and the default max for the
3231 * admin reserve is 8MB. These are usually, but not always, enough to
3232 * enable recovery from a memory hogging process using login/sshd, a shell,
3233 * and tools like top. It may make sense to increase or even disable the
3234 * reserve depending on the existence of swap or variations in the recovery
3235 * tools. So, the admin may have changed them.
3237 * If memory is added and the reserves have been eliminated or increased above
3238 * the default max, then we'll trust the admin.
3240 * If memory is removed and there isn't enough free memory, then we
3241 * need to reset the reserves.
3243 * Otherwise keep the reserve set by the admin.
3245 static int reserve_mem_notifier(struct notifier_block *nb,
3246 unsigned long action, void *data)
3248 unsigned long tmp, free_kbytes;
3250 switch (action) {
3251 case MEM_ONLINE:
3252 /* Default max is 128MB. Leave alone if modified by operator. */
3253 tmp = sysctl_user_reserve_kbytes;
3254 if (0 < tmp && tmp < (1UL << 17))
3255 init_user_reserve();
3257 /* Default max is 8MB. Leave alone if modified by operator. */
3258 tmp = sysctl_admin_reserve_kbytes;
3259 if (0 < tmp && tmp < (1UL << 13))
3260 init_admin_reserve();
3262 break;
3263 case MEM_OFFLINE:
3264 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3266 if (sysctl_user_reserve_kbytes > free_kbytes) {
3267 init_user_reserve();
3268 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3269 sysctl_user_reserve_kbytes);
3272 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3273 init_admin_reserve();
3274 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3275 sysctl_admin_reserve_kbytes);
3277 break;
3278 default:
3279 break;
3281 return NOTIFY_OK;
3284 static struct notifier_block reserve_mem_nb = {
3285 .notifier_call = reserve_mem_notifier,
3288 static int __meminit init_reserve_notifier(void)
3290 if (register_hotmemory_notifier(&reserve_mem_nb))
3291 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3293 return 0;
3295 subsys_initcall(init_reserve_notifier);