enic: update enic maintainers
[linux-2.6/btrfs-unstable.git] / drivers / char / random.c
blob0ab0249189072befe3cee1b8696052727f360540
1 /*
2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
52 * Theory of operation
53 * ===================
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
220 * Acknowledgements:
221 * =================
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/nodemask.h>
253 #include <linux/spinlock.h>
254 #include <linux/kthread.h>
255 #include <linux/percpu.h>
256 #include <linux/cryptohash.h>
257 #include <linux/fips.h>
258 #include <linux/ptrace.h>
259 #include <linux/kmemcheck.h>
260 #include <linux/workqueue.h>
261 #include <linux/irq.h>
262 #include <linux/syscalls.h>
263 #include <linux/completion.h>
264 #include <linux/uuid.h>
265 #include <crypto/chacha20.h>
267 #include <asm/processor.h>
268 #include <linux/uaccess.h>
269 #include <asm/irq.h>
270 #include <asm/irq_regs.h>
271 #include <asm/io.h>
273 #define CREATE_TRACE_POINTS
274 #include <trace/events/random.h>
276 /* #define ADD_INTERRUPT_BENCH */
279 * Configuration information
281 #define INPUT_POOL_SHIFT 12
282 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283 #define OUTPUT_POOL_SHIFT 10
284 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285 #define SEC_XFER_SIZE 512
286 #define EXTRACT_SIZE 10
288 #define DEBUG_RANDOM_BOOT 0
290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
299 #define ENTROPY_SHIFT 3
300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
306 static int random_read_wakeup_bits = 64;
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316 * Originally, we used a primitive polynomial of degree .poolwords
317 * over GF(2). The taps for various sizes are defined below. They
318 * were chosen to be evenly spaced except for the last tap, which is 1
319 * to get the twisting happening as fast as possible.
321 * For the purposes of better mixing, we use the CRC-32 polynomial as
322 * well to make a (modified) twisted Generalized Feedback Shift
323 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
324 * generators. ACM Transactions on Modeling and Computer Simulation
325 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
326 * GFSR generators II. ACM Transactions on Modeling and Computer
327 * Simulation 4:254-266)
329 * Thanks to Colin Plumb for suggesting this.
331 * The mixing operation is much less sensitive than the output hash,
332 * where we use SHA-1. All that we want of mixing operation is that
333 * it be a good non-cryptographic hash; i.e. it not produce collisions
334 * when fed "random" data of the sort we expect to see. As long as
335 * the pool state differs for different inputs, we have preserved the
336 * input entropy and done a good job. The fact that an intelligent
337 * attacker can construct inputs that will produce controlled
338 * alterations to the pool's state is not important because we don't
339 * consider such inputs to contribute any randomness. The only
340 * property we need with respect to them is that the attacker can't
341 * increase his/her knowledge of the pool's state. Since all
342 * additions are reversible (knowing the final state and the input,
343 * you can reconstruct the initial state), if an attacker has any
344 * uncertainty about the initial state, he/she can only shuffle that
345 * uncertainty about, but never cause any collisions (which would
346 * decrease the uncertainty).
348 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
349 * Videau in their paper, "The Linux Pseudorandom Number Generator
350 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
351 * paper, they point out that we are not using a true Twisted GFSR,
352 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
353 * is, with only three taps, instead of the six that we are using).
354 * As a result, the resulting polynomial is neither primitive nor
355 * irreducible, and hence does not have a maximal period over
356 * GF(2**32). They suggest a slight change to the generator
357 * polynomial which improves the resulting TGFSR polynomial to be
358 * irreducible, which we have made here.
360 static struct poolinfo {
361 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
362 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
363 int tap1, tap2, tap3, tap4, tap5;
364 } poolinfo_table[] = {
365 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
366 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
367 { S(128), 104, 76, 51, 25, 1 },
368 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
369 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
370 { S(32), 26, 19, 14, 7, 1 },
371 #if 0
372 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
373 { S(2048), 1638, 1231, 819, 411, 1 },
375 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
376 { S(1024), 817, 615, 412, 204, 1 },
378 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
379 { S(1024), 819, 616, 410, 207, 2 },
381 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
382 { S(512), 411, 308, 208, 104, 1 },
384 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
385 { S(512), 409, 307, 206, 102, 2 },
386 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
387 { S(512), 409, 309, 205, 103, 2 },
389 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
390 { S(256), 205, 155, 101, 52, 1 },
392 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
393 { S(128), 103, 78, 51, 27, 2 },
395 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
396 { S(64), 52, 39, 26, 14, 1 },
397 #endif
401 * Static global variables
403 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
404 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
405 static struct fasync_struct *fasync;
407 static DEFINE_SPINLOCK(random_ready_list_lock);
408 static LIST_HEAD(random_ready_list);
410 struct crng_state {
411 __u32 state[16];
412 unsigned long init_time;
413 spinlock_t lock;
416 struct crng_state primary_crng = {
417 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
421 * crng_init = 0 --> Uninitialized
422 * 1 --> Initialized
423 * 2 --> Initialized from input_pool
425 * crng_init is protected by primary_crng->lock, and only increases
426 * its value (from 0->1->2).
428 static int crng_init = 0;
429 #define crng_ready() (likely(crng_init > 0))
430 static int crng_init_cnt = 0;
431 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
432 static void _extract_crng(struct crng_state *crng,
433 __u8 out[CHACHA20_BLOCK_SIZE]);
434 static void _crng_backtrack_protect(struct crng_state *crng,
435 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
436 static void process_random_ready_list(void);
438 /**********************************************************************
440 * OS independent entropy store. Here are the functions which handle
441 * storing entropy in an entropy pool.
443 **********************************************************************/
445 struct entropy_store;
446 struct entropy_store {
447 /* read-only data: */
448 const struct poolinfo *poolinfo;
449 __u32 *pool;
450 const char *name;
451 struct entropy_store *pull;
452 struct work_struct push_work;
454 /* read-write data: */
455 unsigned long last_pulled;
456 spinlock_t lock;
457 unsigned short add_ptr;
458 unsigned short input_rotate;
459 int entropy_count;
460 int entropy_total;
461 unsigned int initialized:1;
462 unsigned int last_data_init:1;
463 __u8 last_data[EXTRACT_SIZE];
466 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
467 size_t nbytes, int min, int rsvd);
468 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
469 size_t nbytes, int fips);
471 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
472 static void push_to_pool(struct work_struct *work);
473 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
474 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
476 static struct entropy_store input_pool = {
477 .poolinfo = &poolinfo_table[0],
478 .name = "input",
479 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
480 .pool = input_pool_data
483 static struct entropy_store blocking_pool = {
484 .poolinfo = &poolinfo_table[1],
485 .name = "blocking",
486 .pull = &input_pool,
487 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
488 .pool = blocking_pool_data,
489 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
490 push_to_pool),
493 static __u32 const twist_table[8] = {
494 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
495 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
498 * This function adds bytes into the entropy "pool". It does not
499 * update the entropy estimate. The caller should call
500 * credit_entropy_bits if this is appropriate.
502 * The pool is stirred with a primitive polynomial of the appropriate
503 * degree, and then twisted. We twist by three bits at a time because
504 * it's cheap to do so and helps slightly in the expected case where
505 * the entropy is concentrated in the low-order bits.
507 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
508 int nbytes)
510 unsigned long i, tap1, tap2, tap3, tap4, tap5;
511 int input_rotate;
512 int wordmask = r->poolinfo->poolwords - 1;
513 const char *bytes = in;
514 __u32 w;
516 tap1 = r->poolinfo->tap1;
517 tap2 = r->poolinfo->tap2;
518 tap3 = r->poolinfo->tap3;
519 tap4 = r->poolinfo->tap4;
520 tap5 = r->poolinfo->tap5;
522 input_rotate = r->input_rotate;
523 i = r->add_ptr;
525 /* mix one byte at a time to simplify size handling and churn faster */
526 while (nbytes--) {
527 w = rol32(*bytes++, input_rotate);
528 i = (i - 1) & wordmask;
530 /* XOR in the various taps */
531 w ^= r->pool[i];
532 w ^= r->pool[(i + tap1) & wordmask];
533 w ^= r->pool[(i + tap2) & wordmask];
534 w ^= r->pool[(i + tap3) & wordmask];
535 w ^= r->pool[(i + tap4) & wordmask];
536 w ^= r->pool[(i + tap5) & wordmask];
538 /* Mix the result back in with a twist */
539 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
542 * Normally, we add 7 bits of rotation to the pool.
543 * At the beginning of the pool, add an extra 7 bits
544 * rotation, so that successive passes spread the
545 * input bits across the pool evenly.
547 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
550 r->input_rotate = input_rotate;
551 r->add_ptr = i;
554 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
555 int nbytes)
557 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
558 _mix_pool_bytes(r, in, nbytes);
561 static void mix_pool_bytes(struct entropy_store *r, const void *in,
562 int nbytes)
564 unsigned long flags;
566 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
567 spin_lock_irqsave(&r->lock, flags);
568 _mix_pool_bytes(r, in, nbytes);
569 spin_unlock_irqrestore(&r->lock, flags);
572 struct fast_pool {
573 __u32 pool[4];
574 unsigned long last;
575 unsigned short reg_idx;
576 unsigned char count;
580 * This is a fast mixing routine used by the interrupt randomness
581 * collector. It's hardcoded for an 128 bit pool and assumes that any
582 * locks that might be needed are taken by the caller.
584 static void fast_mix(struct fast_pool *f)
586 __u32 a = f->pool[0], b = f->pool[1];
587 __u32 c = f->pool[2], d = f->pool[3];
589 a += b; c += d;
590 b = rol32(b, 6); d = rol32(d, 27);
591 d ^= a; b ^= c;
593 a += b; c += d;
594 b = rol32(b, 16); d = rol32(d, 14);
595 d ^= a; b ^= c;
597 a += b; c += d;
598 b = rol32(b, 6); d = rol32(d, 27);
599 d ^= a; b ^= c;
601 a += b; c += d;
602 b = rol32(b, 16); d = rol32(d, 14);
603 d ^= a; b ^= c;
605 f->pool[0] = a; f->pool[1] = b;
606 f->pool[2] = c; f->pool[3] = d;
607 f->count++;
610 static void process_random_ready_list(void)
612 unsigned long flags;
613 struct random_ready_callback *rdy, *tmp;
615 spin_lock_irqsave(&random_ready_list_lock, flags);
616 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
617 struct module *owner = rdy->owner;
619 list_del_init(&rdy->list);
620 rdy->func(rdy);
621 module_put(owner);
623 spin_unlock_irqrestore(&random_ready_list_lock, flags);
627 * Credit (or debit) the entropy store with n bits of entropy.
628 * Use credit_entropy_bits_safe() if the value comes from userspace
629 * or otherwise should be checked for extreme values.
631 static void credit_entropy_bits(struct entropy_store *r, int nbits)
633 int entropy_count, orig;
634 const int pool_size = r->poolinfo->poolfracbits;
635 int nfrac = nbits << ENTROPY_SHIFT;
637 if (!nbits)
638 return;
640 retry:
641 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
642 if (nfrac < 0) {
643 /* Debit */
644 entropy_count += nfrac;
645 } else {
647 * Credit: we have to account for the possibility of
648 * overwriting already present entropy. Even in the
649 * ideal case of pure Shannon entropy, new contributions
650 * approach the full value asymptotically:
652 * entropy <- entropy + (pool_size - entropy) *
653 * (1 - exp(-add_entropy/pool_size))
655 * For add_entropy <= pool_size/2 then
656 * (1 - exp(-add_entropy/pool_size)) >=
657 * (add_entropy/pool_size)*0.7869...
658 * so we can approximate the exponential with
659 * 3/4*add_entropy/pool_size and still be on the
660 * safe side by adding at most pool_size/2 at a time.
662 * The use of pool_size-2 in the while statement is to
663 * prevent rounding artifacts from making the loop
664 * arbitrarily long; this limits the loop to log2(pool_size)*2
665 * turns no matter how large nbits is.
667 int pnfrac = nfrac;
668 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
669 /* The +2 corresponds to the /4 in the denominator */
671 do {
672 unsigned int anfrac = min(pnfrac, pool_size/2);
673 unsigned int add =
674 ((pool_size - entropy_count)*anfrac*3) >> s;
676 entropy_count += add;
677 pnfrac -= anfrac;
678 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
681 if (unlikely(entropy_count < 0)) {
682 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
683 r->name, entropy_count);
684 WARN_ON(1);
685 entropy_count = 0;
686 } else if (entropy_count > pool_size)
687 entropy_count = pool_size;
688 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
689 goto retry;
691 r->entropy_total += nbits;
692 if (!r->initialized && r->entropy_total > 128) {
693 r->initialized = 1;
694 r->entropy_total = 0;
697 trace_credit_entropy_bits(r->name, nbits,
698 entropy_count >> ENTROPY_SHIFT,
699 r->entropy_total, _RET_IP_);
701 if (r == &input_pool) {
702 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
704 if (crng_init < 2 && entropy_bits >= 128) {
705 crng_reseed(&primary_crng, r);
706 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
709 /* should we wake readers? */
710 if (entropy_bits >= random_read_wakeup_bits) {
711 wake_up_interruptible(&random_read_wait);
712 kill_fasync(&fasync, SIGIO, POLL_IN);
714 /* If the input pool is getting full, send some
715 * entropy to the blocking pool until it is 75% full.
717 if (entropy_bits > random_write_wakeup_bits &&
718 r->initialized &&
719 r->entropy_total >= 2*random_read_wakeup_bits) {
720 struct entropy_store *other = &blocking_pool;
722 if (other->entropy_count <=
723 3 * other->poolinfo->poolfracbits / 4) {
724 schedule_work(&other->push_work);
725 r->entropy_total = 0;
731 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
733 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
735 if (nbits < 0)
736 return -EINVAL;
738 /* Cap the value to avoid overflows */
739 nbits = min(nbits, nbits_max);
741 credit_entropy_bits(r, nbits);
742 return 0;
745 /*********************************************************************
747 * CRNG using CHACHA20
749 *********************************************************************/
751 #define CRNG_RESEED_INTERVAL (300*HZ)
753 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
755 #ifdef CONFIG_NUMA
757 * Hack to deal with crazy userspace progams when they are all trying
758 * to access /dev/urandom in parallel. The programs are almost
759 * certainly doing something terribly wrong, but we'll work around
760 * their brain damage.
762 static struct crng_state **crng_node_pool __read_mostly;
763 #endif
765 static void crng_initialize(struct crng_state *crng)
767 int i;
768 unsigned long rv;
770 memcpy(&crng->state[0], "expand 32-byte k", 16);
771 if (crng == &primary_crng)
772 _extract_entropy(&input_pool, &crng->state[4],
773 sizeof(__u32) * 12, 0);
774 else
775 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
776 for (i = 4; i < 16; i++) {
777 if (!arch_get_random_seed_long(&rv) &&
778 !arch_get_random_long(&rv))
779 rv = random_get_entropy();
780 crng->state[i] ^= rv;
782 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
785 static int crng_fast_load(const char *cp, size_t len)
787 unsigned long flags;
788 char *p;
790 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
791 return 0;
792 if (crng_ready()) {
793 spin_unlock_irqrestore(&primary_crng.lock, flags);
794 return 0;
796 p = (unsigned char *) &primary_crng.state[4];
797 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
798 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
799 cp++; crng_init_cnt++; len--;
801 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
802 crng_init = 1;
803 wake_up_interruptible(&crng_init_wait);
804 pr_notice("random: fast init done\n");
806 spin_unlock_irqrestore(&primary_crng.lock, flags);
807 return 1;
810 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
812 unsigned long flags;
813 int i, num;
814 union {
815 __u8 block[CHACHA20_BLOCK_SIZE];
816 __u32 key[8];
817 } buf;
819 if (r) {
820 num = extract_entropy(r, &buf, 32, 16, 0);
821 if (num == 0)
822 return;
823 } else {
824 _extract_crng(&primary_crng, buf.block);
825 _crng_backtrack_protect(&primary_crng, buf.block,
826 CHACHA20_KEY_SIZE);
828 spin_lock_irqsave(&primary_crng.lock, flags);
829 for (i = 0; i < 8; i++) {
830 unsigned long rv;
831 if (!arch_get_random_seed_long(&rv) &&
832 !arch_get_random_long(&rv))
833 rv = random_get_entropy();
834 crng->state[i+4] ^= buf.key[i] ^ rv;
836 memzero_explicit(&buf, sizeof(buf));
837 crng->init_time = jiffies;
838 if (crng == &primary_crng && crng_init < 2) {
839 crng_init = 2;
840 process_random_ready_list();
841 wake_up_interruptible(&crng_init_wait);
842 pr_notice("random: crng init done\n");
844 spin_unlock_irqrestore(&primary_crng.lock, flags);
847 static inline void crng_wait_ready(void)
849 wait_event_interruptible(crng_init_wait, crng_ready());
852 static void _extract_crng(struct crng_state *crng,
853 __u8 out[CHACHA20_BLOCK_SIZE])
855 unsigned long v, flags;
857 if (crng_init > 1 &&
858 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
859 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
860 spin_lock_irqsave(&crng->lock, flags);
861 if (arch_get_random_long(&v))
862 crng->state[14] ^= v;
863 chacha20_block(&crng->state[0], out);
864 if (crng->state[12] == 0)
865 crng->state[13]++;
866 spin_unlock_irqrestore(&crng->lock, flags);
869 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
871 struct crng_state *crng = NULL;
873 #ifdef CONFIG_NUMA
874 if (crng_node_pool)
875 crng = crng_node_pool[numa_node_id()];
876 if (crng == NULL)
877 #endif
878 crng = &primary_crng;
879 _extract_crng(crng, out);
883 * Use the leftover bytes from the CRNG block output (if there is
884 * enough) to mutate the CRNG key to provide backtracking protection.
886 static void _crng_backtrack_protect(struct crng_state *crng,
887 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
889 unsigned long flags;
890 __u32 *s, *d;
891 int i;
893 used = round_up(used, sizeof(__u32));
894 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
895 extract_crng(tmp);
896 used = 0;
898 spin_lock_irqsave(&crng->lock, flags);
899 s = (__u32 *) &tmp[used];
900 d = &crng->state[4];
901 for (i=0; i < 8; i++)
902 *d++ ^= *s++;
903 spin_unlock_irqrestore(&crng->lock, flags);
906 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
908 struct crng_state *crng = NULL;
910 #ifdef CONFIG_NUMA
911 if (crng_node_pool)
912 crng = crng_node_pool[numa_node_id()];
913 if (crng == NULL)
914 #endif
915 crng = &primary_crng;
916 _crng_backtrack_protect(crng, tmp, used);
919 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
921 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
922 __u8 tmp[CHACHA20_BLOCK_SIZE];
923 int large_request = (nbytes > 256);
925 while (nbytes) {
926 if (large_request && need_resched()) {
927 if (signal_pending(current)) {
928 if (ret == 0)
929 ret = -ERESTARTSYS;
930 break;
932 schedule();
935 extract_crng(tmp);
936 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
937 if (copy_to_user(buf, tmp, i)) {
938 ret = -EFAULT;
939 break;
942 nbytes -= i;
943 buf += i;
944 ret += i;
946 crng_backtrack_protect(tmp, i);
948 /* Wipe data just written to memory */
949 memzero_explicit(tmp, sizeof(tmp));
951 return ret;
955 /*********************************************************************
957 * Entropy input management
959 *********************************************************************/
961 /* There is one of these per entropy source */
962 struct timer_rand_state {
963 cycles_t last_time;
964 long last_delta, last_delta2;
965 unsigned dont_count_entropy:1;
968 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
971 * Add device- or boot-specific data to the input pool to help
972 * initialize it.
974 * None of this adds any entropy; it is meant to avoid the problem of
975 * the entropy pool having similar initial state across largely
976 * identical devices.
978 void add_device_randomness(const void *buf, unsigned int size)
980 unsigned long time = random_get_entropy() ^ jiffies;
981 unsigned long flags;
983 trace_add_device_randomness(size, _RET_IP_);
984 spin_lock_irqsave(&input_pool.lock, flags);
985 _mix_pool_bytes(&input_pool, buf, size);
986 _mix_pool_bytes(&input_pool, &time, sizeof(time));
987 spin_unlock_irqrestore(&input_pool.lock, flags);
989 EXPORT_SYMBOL(add_device_randomness);
991 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
994 * This function adds entropy to the entropy "pool" by using timing
995 * delays. It uses the timer_rand_state structure to make an estimate
996 * of how many bits of entropy this call has added to the pool.
998 * The number "num" is also added to the pool - it should somehow describe
999 * the type of event which just happened. This is currently 0-255 for
1000 * keyboard scan codes, and 256 upwards for interrupts.
1003 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1005 struct entropy_store *r;
1006 struct {
1007 long jiffies;
1008 unsigned cycles;
1009 unsigned num;
1010 } sample;
1011 long delta, delta2, delta3;
1013 preempt_disable();
1015 sample.jiffies = jiffies;
1016 sample.cycles = random_get_entropy();
1017 sample.num = num;
1018 r = &input_pool;
1019 mix_pool_bytes(r, &sample, sizeof(sample));
1022 * Calculate number of bits of randomness we probably added.
1023 * We take into account the first, second and third-order deltas
1024 * in order to make our estimate.
1027 if (!state->dont_count_entropy) {
1028 delta = sample.jiffies - state->last_time;
1029 state->last_time = sample.jiffies;
1031 delta2 = delta - state->last_delta;
1032 state->last_delta = delta;
1034 delta3 = delta2 - state->last_delta2;
1035 state->last_delta2 = delta2;
1037 if (delta < 0)
1038 delta = -delta;
1039 if (delta2 < 0)
1040 delta2 = -delta2;
1041 if (delta3 < 0)
1042 delta3 = -delta3;
1043 if (delta > delta2)
1044 delta = delta2;
1045 if (delta > delta3)
1046 delta = delta3;
1049 * delta is now minimum absolute delta.
1050 * Round down by 1 bit on general principles,
1051 * and limit entropy entimate to 12 bits.
1053 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1055 preempt_enable();
1058 void add_input_randomness(unsigned int type, unsigned int code,
1059 unsigned int value)
1061 static unsigned char last_value;
1063 /* ignore autorepeat and the like */
1064 if (value == last_value)
1065 return;
1067 last_value = value;
1068 add_timer_randomness(&input_timer_state,
1069 (type << 4) ^ code ^ (code >> 4) ^ value);
1070 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1072 EXPORT_SYMBOL_GPL(add_input_randomness);
1074 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1076 #ifdef ADD_INTERRUPT_BENCH
1077 static unsigned long avg_cycles, avg_deviation;
1079 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1080 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1082 static void add_interrupt_bench(cycles_t start)
1084 long delta = random_get_entropy() - start;
1086 /* Use a weighted moving average */
1087 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1088 avg_cycles += delta;
1089 /* And average deviation */
1090 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1091 avg_deviation += delta;
1093 #else
1094 #define add_interrupt_bench(x)
1095 #endif
1097 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1099 __u32 *ptr = (__u32 *) regs;
1101 if (regs == NULL)
1102 return 0;
1103 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1104 f->reg_idx = 0;
1105 return *(ptr + f->reg_idx++);
1108 void add_interrupt_randomness(int irq, int irq_flags)
1110 struct entropy_store *r;
1111 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1112 struct pt_regs *regs = get_irq_regs();
1113 unsigned long now = jiffies;
1114 cycles_t cycles = random_get_entropy();
1115 __u32 c_high, j_high;
1116 __u64 ip;
1117 unsigned long seed;
1118 int credit = 0;
1120 if (cycles == 0)
1121 cycles = get_reg(fast_pool, regs);
1122 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1123 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1124 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1125 fast_pool->pool[1] ^= now ^ c_high;
1126 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1127 fast_pool->pool[2] ^= ip;
1128 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1129 get_reg(fast_pool, regs);
1131 fast_mix(fast_pool);
1132 add_interrupt_bench(cycles);
1134 if (!crng_ready()) {
1135 if ((fast_pool->count >= 64) &&
1136 crng_fast_load((char *) fast_pool->pool,
1137 sizeof(fast_pool->pool))) {
1138 fast_pool->count = 0;
1139 fast_pool->last = now;
1141 return;
1144 if ((fast_pool->count < 64) &&
1145 !time_after(now, fast_pool->last + HZ))
1146 return;
1148 r = &input_pool;
1149 if (!spin_trylock(&r->lock))
1150 return;
1152 fast_pool->last = now;
1153 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1156 * If we have architectural seed generator, produce a seed and
1157 * add it to the pool. For the sake of paranoia don't let the
1158 * architectural seed generator dominate the input from the
1159 * interrupt noise.
1161 if (arch_get_random_seed_long(&seed)) {
1162 __mix_pool_bytes(r, &seed, sizeof(seed));
1163 credit = 1;
1165 spin_unlock(&r->lock);
1167 fast_pool->count = 0;
1169 /* award one bit for the contents of the fast pool */
1170 credit_entropy_bits(r, credit + 1);
1172 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1174 #ifdef CONFIG_BLOCK
1175 void add_disk_randomness(struct gendisk *disk)
1177 if (!disk || !disk->random)
1178 return;
1179 /* first major is 1, so we get >= 0x200 here */
1180 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1181 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1183 EXPORT_SYMBOL_GPL(add_disk_randomness);
1184 #endif
1186 /*********************************************************************
1188 * Entropy extraction routines
1190 *********************************************************************/
1193 * This utility inline function is responsible for transferring entropy
1194 * from the primary pool to the secondary extraction pool. We make
1195 * sure we pull enough for a 'catastrophic reseed'.
1197 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1198 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1200 if (!r->pull ||
1201 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1202 r->entropy_count > r->poolinfo->poolfracbits)
1203 return;
1205 _xfer_secondary_pool(r, nbytes);
1208 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1210 __u32 tmp[OUTPUT_POOL_WORDS];
1212 int bytes = nbytes;
1214 /* pull at least as much as a wakeup */
1215 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1216 /* but never more than the buffer size */
1217 bytes = min_t(int, bytes, sizeof(tmp));
1219 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1220 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1221 bytes = extract_entropy(r->pull, tmp, bytes,
1222 random_read_wakeup_bits / 8, 0);
1223 mix_pool_bytes(r, tmp, bytes);
1224 credit_entropy_bits(r, bytes*8);
1228 * Used as a workqueue function so that when the input pool is getting
1229 * full, we can "spill over" some entropy to the output pools. That
1230 * way the output pools can store some of the excess entropy instead
1231 * of letting it go to waste.
1233 static void push_to_pool(struct work_struct *work)
1235 struct entropy_store *r = container_of(work, struct entropy_store,
1236 push_work);
1237 BUG_ON(!r);
1238 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1239 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1240 r->pull->entropy_count >> ENTROPY_SHIFT);
1244 * This function decides how many bytes to actually take from the
1245 * given pool, and also debits the entropy count accordingly.
1247 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1248 int reserved)
1250 int entropy_count, orig, have_bytes;
1251 size_t ibytes, nfrac;
1253 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1255 /* Can we pull enough? */
1256 retry:
1257 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1258 ibytes = nbytes;
1259 /* never pull more than available */
1260 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1262 if ((have_bytes -= reserved) < 0)
1263 have_bytes = 0;
1264 ibytes = min_t(size_t, ibytes, have_bytes);
1265 if (ibytes < min)
1266 ibytes = 0;
1268 if (unlikely(entropy_count < 0)) {
1269 pr_warn("random: negative entropy count: pool %s count %d\n",
1270 r->name, entropy_count);
1271 WARN_ON(1);
1272 entropy_count = 0;
1274 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1275 if ((size_t) entropy_count > nfrac)
1276 entropy_count -= nfrac;
1277 else
1278 entropy_count = 0;
1280 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1281 goto retry;
1283 trace_debit_entropy(r->name, 8 * ibytes);
1284 if (ibytes &&
1285 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1286 wake_up_interruptible(&random_write_wait);
1287 kill_fasync(&fasync, SIGIO, POLL_OUT);
1290 return ibytes;
1294 * This function does the actual extraction for extract_entropy and
1295 * extract_entropy_user.
1297 * Note: we assume that .poolwords is a multiple of 16 words.
1299 static void extract_buf(struct entropy_store *r, __u8 *out)
1301 int i;
1302 union {
1303 __u32 w[5];
1304 unsigned long l[LONGS(20)];
1305 } hash;
1306 __u32 workspace[SHA_WORKSPACE_WORDS];
1307 unsigned long flags;
1310 * If we have an architectural hardware random number
1311 * generator, use it for SHA's initial vector
1313 sha_init(hash.w);
1314 for (i = 0; i < LONGS(20); i++) {
1315 unsigned long v;
1316 if (!arch_get_random_long(&v))
1317 break;
1318 hash.l[i] = v;
1321 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1322 spin_lock_irqsave(&r->lock, flags);
1323 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1324 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1327 * We mix the hash back into the pool to prevent backtracking
1328 * attacks (where the attacker knows the state of the pool
1329 * plus the current outputs, and attempts to find previous
1330 * ouputs), unless the hash function can be inverted. By
1331 * mixing at least a SHA1 worth of hash data back, we make
1332 * brute-forcing the feedback as hard as brute-forcing the
1333 * hash.
1335 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1336 spin_unlock_irqrestore(&r->lock, flags);
1338 memzero_explicit(workspace, sizeof(workspace));
1341 * In case the hash function has some recognizable output
1342 * pattern, we fold it in half. Thus, we always feed back
1343 * twice as much data as we output.
1345 hash.w[0] ^= hash.w[3];
1346 hash.w[1] ^= hash.w[4];
1347 hash.w[2] ^= rol32(hash.w[2], 16);
1349 memcpy(out, &hash, EXTRACT_SIZE);
1350 memzero_explicit(&hash, sizeof(hash));
1353 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1354 size_t nbytes, int fips)
1356 ssize_t ret = 0, i;
1357 __u8 tmp[EXTRACT_SIZE];
1358 unsigned long flags;
1360 while (nbytes) {
1361 extract_buf(r, tmp);
1363 if (fips) {
1364 spin_lock_irqsave(&r->lock, flags);
1365 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1366 panic("Hardware RNG duplicated output!\n");
1367 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1368 spin_unlock_irqrestore(&r->lock, flags);
1370 i = min_t(int, nbytes, EXTRACT_SIZE);
1371 memcpy(buf, tmp, i);
1372 nbytes -= i;
1373 buf += i;
1374 ret += i;
1377 /* Wipe data just returned from memory */
1378 memzero_explicit(tmp, sizeof(tmp));
1380 return ret;
1384 * This function extracts randomness from the "entropy pool", and
1385 * returns it in a buffer.
1387 * The min parameter specifies the minimum amount we can pull before
1388 * failing to avoid races that defeat catastrophic reseeding while the
1389 * reserved parameter indicates how much entropy we must leave in the
1390 * pool after each pull to avoid starving other readers.
1392 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1393 size_t nbytes, int min, int reserved)
1395 __u8 tmp[EXTRACT_SIZE];
1396 unsigned long flags;
1398 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1399 if (fips_enabled) {
1400 spin_lock_irqsave(&r->lock, flags);
1401 if (!r->last_data_init) {
1402 r->last_data_init = 1;
1403 spin_unlock_irqrestore(&r->lock, flags);
1404 trace_extract_entropy(r->name, EXTRACT_SIZE,
1405 ENTROPY_BITS(r), _RET_IP_);
1406 xfer_secondary_pool(r, EXTRACT_SIZE);
1407 extract_buf(r, tmp);
1408 spin_lock_irqsave(&r->lock, flags);
1409 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1411 spin_unlock_irqrestore(&r->lock, flags);
1414 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1415 xfer_secondary_pool(r, nbytes);
1416 nbytes = account(r, nbytes, min, reserved);
1418 return _extract_entropy(r, buf, nbytes, fips_enabled);
1422 * This function extracts randomness from the "entropy pool", and
1423 * returns it in a userspace buffer.
1425 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1426 size_t nbytes)
1428 ssize_t ret = 0, i;
1429 __u8 tmp[EXTRACT_SIZE];
1430 int large_request = (nbytes > 256);
1432 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1433 xfer_secondary_pool(r, nbytes);
1434 nbytes = account(r, nbytes, 0, 0);
1436 while (nbytes) {
1437 if (large_request && need_resched()) {
1438 if (signal_pending(current)) {
1439 if (ret == 0)
1440 ret = -ERESTARTSYS;
1441 break;
1443 schedule();
1446 extract_buf(r, tmp);
1447 i = min_t(int, nbytes, EXTRACT_SIZE);
1448 if (copy_to_user(buf, tmp, i)) {
1449 ret = -EFAULT;
1450 break;
1453 nbytes -= i;
1454 buf += i;
1455 ret += i;
1458 /* Wipe data just returned from memory */
1459 memzero_explicit(tmp, sizeof(tmp));
1461 return ret;
1465 * This function is the exported kernel interface. It returns some
1466 * number of good random numbers, suitable for key generation, seeding
1467 * TCP sequence numbers, etc. It does not rely on the hardware random
1468 * number generator. For random bytes direct from the hardware RNG
1469 * (when available), use get_random_bytes_arch().
1471 void get_random_bytes(void *buf, int nbytes)
1473 __u8 tmp[CHACHA20_BLOCK_SIZE];
1475 #if DEBUG_RANDOM_BOOT > 0
1476 if (!crng_ready())
1477 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1478 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1479 #endif
1480 trace_get_random_bytes(nbytes, _RET_IP_);
1482 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1483 extract_crng(buf);
1484 buf += CHACHA20_BLOCK_SIZE;
1485 nbytes -= CHACHA20_BLOCK_SIZE;
1488 if (nbytes > 0) {
1489 extract_crng(tmp);
1490 memcpy(buf, tmp, nbytes);
1491 crng_backtrack_protect(tmp, nbytes);
1492 } else
1493 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1494 memzero_explicit(tmp, sizeof(tmp));
1496 EXPORT_SYMBOL(get_random_bytes);
1499 * Add a callback function that will be invoked when the nonblocking
1500 * pool is initialised.
1502 * returns: 0 if callback is successfully added
1503 * -EALREADY if pool is already initialised (callback not called)
1504 * -ENOENT if module for callback is not alive
1506 int add_random_ready_callback(struct random_ready_callback *rdy)
1508 struct module *owner;
1509 unsigned long flags;
1510 int err = -EALREADY;
1512 if (crng_ready())
1513 return err;
1515 owner = rdy->owner;
1516 if (!try_module_get(owner))
1517 return -ENOENT;
1519 spin_lock_irqsave(&random_ready_list_lock, flags);
1520 if (crng_ready())
1521 goto out;
1523 owner = NULL;
1525 list_add(&rdy->list, &random_ready_list);
1526 err = 0;
1528 out:
1529 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1531 module_put(owner);
1533 return err;
1535 EXPORT_SYMBOL(add_random_ready_callback);
1538 * Delete a previously registered readiness callback function.
1540 void del_random_ready_callback(struct random_ready_callback *rdy)
1542 unsigned long flags;
1543 struct module *owner = NULL;
1545 spin_lock_irqsave(&random_ready_list_lock, flags);
1546 if (!list_empty(&rdy->list)) {
1547 list_del_init(&rdy->list);
1548 owner = rdy->owner;
1550 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1552 module_put(owner);
1554 EXPORT_SYMBOL(del_random_ready_callback);
1557 * This function will use the architecture-specific hardware random
1558 * number generator if it is available. The arch-specific hw RNG will
1559 * almost certainly be faster than what we can do in software, but it
1560 * is impossible to verify that it is implemented securely (as
1561 * opposed, to, say, the AES encryption of a sequence number using a
1562 * key known by the NSA). So it's useful if we need the speed, but
1563 * only if we're willing to trust the hardware manufacturer not to
1564 * have put in a back door.
1566 void get_random_bytes_arch(void *buf, int nbytes)
1568 char *p = buf;
1570 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1571 while (nbytes) {
1572 unsigned long v;
1573 int chunk = min(nbytes, (int)sizeof(unsigned long));
1575 if (!arch_get_random_long(&v))
1576 break;
1578 memcpy(p, &v, chunk);
1579 p += chunk;
1580 nbytes -= chunk;
1583 if (nbytes)
1584 get_random_bytes(p, nbytes);
1586 EXPORT_SYMBOL(get_random_bytes_arch);
1590 * init_std_data - initialize pool with system data
1592 * @r: pool to initialize
1594 * This function clears the pool's entropy count and mixes some system
1595 * data into the pool to prepare it for use. The pool is not cleared
1596 * as that can only decrease the entropy in the pool.
1598 static void init_std_data(struct entropy_store *r)
1600 int i;
1601 ktime_t now = ktime_get_real();
1602 unsigned long rv;
1604 r->last_pulled = jiffies;
1605 mix_pool_bytes(r, &now, sizeof(now));
1606 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1607 if (!arch_get_random_seed_long(&rv) &&
1608 !arch_get_random_long(&rv))
1609 rv = random_get_entropy();
1610 mix_pool_bytes(r, &rv, sizeof(rv));
1612 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1616 * Note that setup_arch() may call add_device_randomness()
1617 * long before we get here. This allows seeding of the pools
1618 * with some platform dependent data very early in the boot
1619 * process. But it limits our options here. We must use
1620 * statically allocated structures that already have all
1621 * initializations complete at compile time. We should also
1622 * take care not to overwrite the precious per platform data
1623 * we were given.
1625 static int rand_initialize(void)
1627 #ifdef CONFIG_NUMA
1628 int i;
1629 struct crng_state *crng;
1630 struct crng_state **pool;
1631 #endif
1633 init_std_data(&input_pool);
1634 init_std_data(&blocking_pool);
1635 crng_initialize(&primary_crng);
1637 #ifdef CONFIG_NUMA
1638 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1639 for_each_online_node(i) {
1640 crng = kmalloc_node(sizeof(struct crng_state),
1641 GFP_KERNEL | __GFP_NOFAIL, i);
1642 spin_lock_init(&crng->lock);
1643 crng_initialize(crng);
1644 pool[i] = crng;
1646 mb();
1647 crng_node_pool = pool;
1648 #endif
1649 return 0;
1651 early_initcall(rand_initialize);
1653 #ifdef CONFIG_BLOCK
1654 void rand_initialize_disk(struct gendisk *disk)
1656 struct timer_rand_state *state;
1659 * If kzalloc returns null, we just won't use that entropy
1660 * source.
1662 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1663 if (state) {
1664 state->last_time = INITIAL_JIFFIES;
1665 disk->random = state;
1668 #endif
1670 static ssize_t
1671 _random_read(int nonblock, char __user *buf, size_t nbytes)
1673 ssize_t n;
1675 if (nbytes == 0)
1676 return 0;
1678 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1679 while (1) {
1680 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1681 if (n < 0)
1682 return n;
1683 trace_random_read(n*8, (nbytes-n)*8,
1684 ENTROPY_BITS(&blocking_pool),
1685 ENTROPY_BITS(&input_pool));
1686 if (n > 0)
1687 return n;
1689 /* Pool is (near) empty. Maybe wait and retry. */
1690 if (nonblock)
1691 return -EAGAIN;
1693 wait_event_interruptible(random_read_wait,
1694 ENTROPY_BITS(&input_pool) >=
1695 random_read_wakeup_bits);
1696 if (signal_pending(current))
1697 return -ERESTARTSYS;
1701 static ssize_t
1702 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1704 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1707 static ssize_t
1708 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1710 unsigned long flags;
1711 static int maxwarn = 10;
1712 int ret;
1714 if (!crng_ready() && maxwarn > 0) {
1715 maxwarn--;
1716 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1717 "(%zd bytes read)\n",
1718 current->comm, nbytes);
1719 spin_lock_irqsave(&primary_crng.lock, flags);
1720 crng_init_cnt = 0;
1721 spin_unlock_irqrestore(&primary_crng.lock, flags);
1723 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1724 ret = extract_crng_user(buf, nbytes);
1725 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1726 return ret;
1729 static unsigned int
1730 random_poll(struct file *file, poll_table * wait)
1732 unsigned int mask;
1734 poll_wait(file, &random_read_wait, wait);
1735 poll_wait(file, &random_write_wait, wait);
1736 mask = 0;
1737 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1738 mask |= POLLIN | POLLRDNORM;
1739 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1740 mask |= POLLOUT | POLLWRNORM;
1741 return mask;
1744 static int
1745 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1747 size_t bytes;
1748 __u32 buf[16];
1749 const char __user *p = buffer;
1751 while (count > 0) {
1752 bytes = min(count, sizeof(buf));
1753 if (copy_from_user(&buf, p, bytes))
1754 return -EFAULT;
1756 count -= bytes;
1757 p += bytes;
1759 mix_pool_bytes(r, buf, bytes);
1760 cond_resched();
1763 return 0;
1766 static ssize_t random_write(struct file *file, const char __user *buffer,
1767 size_t count, loff_t *ppos)
1769 size_t ret;
1771 ret = write_pool(&input_pool, buffer, count);
1772 if (ret)
1773 return ret;
1775 return (ssize_t)count;
1778 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1780 int size, ent_count;
1781 int __user *p = (int __user *)arg;
1782 int retval;
1784 switch (cmd) {
1785 case RNDGETENTCNT:
1786 /* inherently racy, no point locking */
1787 ent_count = ENTROPY_BITS(&input_pool);
1788 if (put_user(ent_count, p))
1789 return -EFAULT;
1790 return 0;
1791 case RNDADDTOENTCNT:
1792 if (!capable(CAP_SYS_ADMIN))
1793 return -EPERM;
1794 if (get_user(ent_count, p))
1795 return -EFAULT;
1796 return credit_entropy_bits_safe(&input_pool, ent_count);
1797 case RNDADDENTROPY:
1798 if (!capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1800 if (get_user(ent_count, p++))
1801 return -EFAULT;
1802 if (ent_count < 0)
1803 return -EINVAL;
1804 if (get_user(size, p++))
1805 return -EFAULT;
1806 retval = write_pool(&input_pool, (const char __user *)p,
1807 size);
1808 if (retval < 0)
1809 return retval;
1810 return credit_entropy_bits_safe(&input_pool, ent_count);
1811 case RNDZAPENTCNT:
1812 case RNDCLEARPOOL:
1814 * Clear the entropy pool counters. We no longer clear
1815 * the entropy pool, as that's silly.
1817 if (!capable(CAP_SYS_ADMIN))
1818 return -EPERM;
1819 input_pool.entropy_count = 0;
1820 blocking_pool.entropy_count = 0;
1821 return 0;
1822 default:
1823 return -EINVAL;
1827 static int random_fasync(int fd, struct file *filp, int on)
1829 return fasync_helper(fd, filp, on, &fasync);
1832 const struct file_operations random_fops = {
1833 .read = random_read,
1834 .write = random_write,
1835 .poll = random_poll,
1836 .unlocked_ioctl = random_ioctl,
1837 .fasync = random_fasync,
1838 .llseek = noop_llseek,
1841 const struct file_operations urandom_fops = {
1842 .read = urandom_read,
1843 .write = random_write,
1844 .unlocked_ioctl = random_ioctl,
1845 .fasync = random_fasync,
1846 .llseek = noop_llseek,
1849 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1850 unsigned int, flags)
1852 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1853 return -EINVAL;
1855 if (count > INT_MAX)
1856 count = INT_MAX;
1858 if (flags & GRND_RANDOM)
1859 return _random_read(flags & GRND_NONBLOCK, buf, count);
1861 if (!crng_ready()) {
1862 if (flags & GRND_NONBLOCK)
1863 return -EAGAIN;
1864 crng_wait_ready();
1865 if (signal_pending(current))
1866 return -ERESTARTSYS;
1868 return urandom_read(NULL, buf, count, NULL);
1871 /********************************************************************
1873 * Sysctl interface
1875 ********************************************************************/
1877 #ifdef CONFIG_SYSCTL
1879 #include <linux/sysctl.h>
1881 static int min_read_thresh = 8, min_write_thresh;
1882 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1883 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1884 static int random_min_urandom_seed = 60;
1885 static char sysctl_bootid[16];
1888 * This function is used to return both the bootid UUID, and random
1889 * UUID. The difference is in whether table->data is NULL; if it is,
1890 * then a new UUID is generated and returned to the user.
1892 * If the user accesses this via the proc interface, the UUID will be
1893 * returned as an ASCII string in the standard UUID format; if via the
1894 * sysctl system call, as 16 bytes of binary data.
1896 static int proc_do_uuid(struct ctl_table *table, int write,
1897 void __user *buffer, size_t *lenp, loff_t *ppos)
1899 struct ctl_table fake_table;
1900 unsigned char buf[64], tmp_uuid[16], *uuid;
1902 uuid = table->data;
1903 if (!uuid) {
1904 uuid = tmp_uuid;
1905 generate_random_uuid(uuid);
1906 } else {
1907 static DEFINE_SPINLOCK(bootid_spinlock);
1909 spin_lock(&bootid_spinlock);
1910 if (!uuid[8])
1911 generate_random_uuid(uuid);
1912 spin_unlock(&bootid_spinlock);
1915 sprintf(buf, "%pU", uuid);
1917 fake_table.data = buf;
1918 fake_table.maxlen = sizeof(buf);
1920 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1924 * Return entropy available scaled to integral bits
1926 static int proc_do_entropy(struct ctl_table *table, int write,
1927 void __user *buffer, size_t *lenp, loff_t *ppos)
1929 struct ctl_table fake_table;
1930 int entropy_count;
1932 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1934 fake_table.data = &entropy_count;
1935 fake_table.maxlen = sizeof(entropy_count);
1937 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1940 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1941 extern struct ctl_table random_table[];
1942 struct ctl_table random_table[] = {
1944 .procname = "poolsize",
1945 .data = &sysctl_poolsize,
1946 .maxlen = sizeof(int),
1947 .mode = 0444,
1948 .proc_handler = proc_dointvec,
1951 .procname = "entropy_avail",
1952 .maxlen = sizeof(int),
1953 .mode = 0444,
1954 .proc_handler = proc_do_entropy,
1955 .data = &input_pool.entropy_count,
1958 .procname = "read_wakeup_threshold",
1959 .data = &random_read_wakeup_bits,
1960 .maxlen = sizeof(int),
1961 .mode = 0644,
1962 .proc_handler = proc_dointvec_minmax,
1963 .extra1 = &min_read_thresh,
1964 .extra2 = &max_read_thresh,
1967 .procname = "write_wakeup_threshold",
1968 .data = &random_write_wakeup_bits,
1969 .maxlen = sizeof(int),
1970 .mode = 0644,
1971 .proc_handler = proc_dointvec_minmax,
1972 .extra1 = &min_write_thresh,
1973 .extra2 = &max_write_thresh,
1976 .procname = "urandom_min_reseed_secs",
1977 .data = &random_min_urandom_seed,
1978 .maxlen = sizeof(int),
1979 .mode = 0644,
1980 .proc_handler = proc_dointvec,
1983 .procname = "boot_id",
1984 .data = &sysctl_bootid,
1985 .maxlen = 16,
1986 .mode = 0444,
1987 .proc_handler = proc_do_uuid,
1990 .procname = "uuid",
1991 .maxlen = 16,
1992 .mode = 0444,
1993 .proc_handler = proc_do_uuid,
1995 #ifdef ADD_INTERRUPT_BENCH
1997 .procname = "add_interrupt_avg_cycles",
1998 .data = &avg_cycles,
1999 .maxlen = sizeof(avg_cycles),
2000 .mode = 0444,
2001 .proc_handler = proc_doulongvec_minmax,
2004 .procname = "add_interrupt_avg_deviation",
2005 .data = &avg_deviation,
2006 .maxlen = sizeof(avg_deviation),
2007 .mode = 0444,
2008 .proc_handler = proc_doulongvec_minmax,
2010 #endif
2013 #endif /* CONFIG_SYSCTL */
2015 struct batched_entropy {
2016 union {
2017 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2018 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2020 unsigned int position;
2024 * Get a random word for internal kernel use only. The quality of the random
2025 * number is either as good as RDRAND or as good as /dev/urandom, with the
2026 * goal of being quite fast and not depleting entropy.
2028 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2029 u64 get_random_u64(void)
2031 u64 ret;
2032 struct batched_entropy *batch;
2034 #if BITS_PER_LONG == 64
2035 if (arch_get_random_long((unsigned long *)&ret))
2036 return ret;
2037 #else
2038 if (arch_get_random_long((unsigned long *)&ret) &&
2039 arch_get_random_long((unsigned long *)&ret + 1))
2040 return ret;
2041 #endif
2043 batch = &get_cpu_var(batched_entropy_u64);
2044 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2045 extract_crng((u8 *)batch->entropy_u64);
2046 batch->position = 0;
2048 ret = batch->entropy_u64[batch->position++];
2049 put_cpu_var(batched_entropy_u64);
2050 return ret;
2052 EXPORT_SYMBOL(get_random_u64);
2054 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2055 u32 get_random_u32(void)
2057 u32 ret;
2058 struct batched_entropy *batch;
2060 if (arch_get_random_int(&ret))
2061 return ret;
2063 batch = &get_cpu_var(batched_entropy_u32);
2064 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2065 extract_crng((u8 *)batch->entropy_u32);
2066 batch->position = 0;
2068 ret = batch->entropy_u32[batch->position++];
2069 put_cpu_var(batched_entropy_u32);
2070 return ret;
2072 EXPORT_SYMBOL(get_random_u32);
2075 * randomize_page - Generate a random, page aligned address
2076 * @start: The smallest acceptable address the caller will take.
2077 * @range: The size of the area, starting at @start, within which the
2078 * random address must fall.
2080 * If @start + @range would overflow, @range is capped.
2082 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2083 * @start was already page aligned. We now align it regardless.
2085 * Return: A page aligned address within [start, start + range). On error,
2086 * @start is returned.
2088 unsigned long
2089 randomize_page(unsigned long start, unsigned long range)
2091 if (!PAGE_ALIGNED(start)) {
2092 range -= PAGE_ALIGN(start) - start;
2093 start = PAGE_ALIGN(start);
2096 if (start > ULONG_MAX - range)
2097 range = ULONG_MAX - start;
2099 range >>= PAGE_SHIFT;
2101 if (range == 0)
2102 return start;
2104 return start + (get_random_long() % range << PAGE_SHIFT);
2107 /* Interface for in-kernel drivers of true hardware RNGs.
2108 * Those devices may produce endless random bits and will be throttled
2109 * when our pool is full.
2111 void add_hwgenerator_randomness(const char *buffer, size_t count,
2112 size_t entropy)
2114 struct entropy_store *poolp = &input_pool;
2116 if (!crng_ready()) {
2117 crng_fast_load(buffer, count);
2118 return;
2121 /* Suspend writing if we're above the trickle threshold.
2122 * We'll be woken up again once below random_write_wakeup_thresh,
2123 * or when the calling thread is about to terminate.
2125 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2126 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2127 mix_pool_bytes(poolp, buffer, count);
2128 credit_entropy_bits(poolp, entropy);
2130 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);