pinctrl: msm: Check for ngpios > MAX_NR_GPIO
[linux-2.6/btrfs-unstable.git] / net / openvswitch / flow_netlink.c
blob4d000acaed0db5cc2052ae55f5b0cb7be6472b79
1 /*
2 * Copyright (c) 2007-2013 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/ndisc.h>
47 #include "flow_netlink.h"
49 static void update_range__(struct sw_flow_match *match,
50 size_t offset, size_t size, bool is_mask)
52 struct sw_flow_key_range *range = NULL;
53 size_t start = rounddown(offset, sizeof(long));
54 size_t end = roundup(offset + size, sizeof(long));
56 if (!is_mask)
57 range = &match->range;
58 else if (match->mask)
59 range = &match->mask->range;
61 if (!range)
62 return;
64 if (range->start == range->end) {
65 range->start = start;
66 range->end = end;
67 return;
70 if (range->start > start)
71 range->start = start;
73 if (range->end < end)
74 range->end = end;
77 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
78 do { \
79 update_range__(match, offsetof(struct sw_flow_key, field), \
80 sizeof((match)->key->field), is_mask); \
81 if (is_mask) { \
82 if ((match)->mask) \
83 (match)->mask->key.field = value; \
84 } else { \
85 (match)->key->field = value; \
86 } \
87 } while (0)
89 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
90 do { \
91 update_range__(match, offsetof(struct sw_flow_key, field), \
92 len, is_mask); \
93 if (is_mask) { \
94 if ((match)->mask) \
95 memcpy(&(match)->mask->key.field, value_p, len);\
96 } else { \
97 memcpy(&(match)->key->field, value_p, len); \
98 } \
99 } while (0)
101 static u16 range_n_bytes(const struct sw_flow_key_range *range)
103 return range->end - range->start;
106 static bool match_validate(const struct sw_flow_match *match,
107 u64 key_attrs, u64 mask_attrs)
109 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
110 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
112 /* The following mask attributes allowed only if they
113 * pass the validation tests. */
114 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
115 | (1 << OVS_KEY_ATTR_IPV6)
116 | (1 << OVS_KEY_ATTR_TCP)
117 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
118 | (1 << OVS_KEY_ATTR_UDP)
119 | (1 << OVS_KEY_ATTR_SCTP)
120 | (1 << OVS_KEY_ATTR_ICMP)
121 | (1 << OVS_KEY_ATTR_ICMPV6)
122 | (1 << OVS_KEY_ATTR_ARP)
123 | (1 << OVS_KEY_ATTR_ND));
125 /* Always allowed mask fields. */
126 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
127 | (1 << OVS_KEY_ATTR_IN_PORT)
128 | (1 << OVS_KEY_ATTR_ETHERTYPE));
130 /* Check key attributes. */
131 if (match->key->eth.type == htons(ETH_P_ARP)
132 || match->key->eth.type == htons(ETH_P_RARP)) {
133 key_expected |= 1 << OVS_KEY_ATTR_ARP;
134 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
135 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
138 if (match->key->eth.type == htons(ETH_P_IP)) {
139 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
140 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
141 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
143 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
144 if (match->key->ip.proto == IPPROTO_UDP) {
145 key_expected |= 1 << OVS_KEY_ATTR_UDP;
146 if (match->mask && (match->mask->key.ip.proto == 0xff))
147 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
150 if (match->key->ip.proto == IPPROTO_SCTP) {
151 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
152 if (match->mask && (match->mask->key.ip.proto == 0xff))
153 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
156 if (match->key->ip.proto == IPPROTO_TCP) {
157 key_expected |= 1 << OVS_KEY_ATTR_TCP;
158 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
159 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
160 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
161 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
165 if (match->key->ip.proto == IPPROTO_ICMP) {
166 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
167 if (match->mask && (match->mask->key.ip.proto == 0xff))
168 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
173 if (match->key->eth.type == htons(ETH_P_IPV6)) {
174 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
175 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
176 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
178 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
179 if (match->key->ip.proto == IPPROTO_UDP) {
180 key_expected |= 1 << OVS_KEY_ATTR_UDP;
181 if (match->mask && (match->mask->key.ip.proto == 0xff))
182 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
185 if (match->key->ip.proto == IPPROTO_SCTP) {
186 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
187 if (match->mask && (match->mask->key.ip.proto == 0xff))
188 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
191 if (match->key->ip.proto == IPPROTO_TCP) {
192 key_expected |= 1 << OVS_KEY_ATTR_TCP;
193 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
194 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
195 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
196 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
200 if (match->key->ip.proto == IPPROTO_ICMPV6) {
201 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
202 if (match->mask && (match->mask->key.ip.proto == 0xff))
203 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
205 if (match->key->ipv6.tp.src ==
206 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
207 match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
208 key_expected |= 1 << OVS_KEY_ATTR_ND;
209 if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
210 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
216 if ((key_attrs & key_expected) != key_expected) {
217 /* Key attributes check failed. */
218 OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
219 key_attrs, key_expected);
220 return false;
223 if ((mask_attrs & mask_allowed) != mask_attrs) {
224 /* Mask attributes check failed. */
225 OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
226 mask_attrs, mask_allowed);
227 return false;
230 return true;
233 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
234 static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
235 [OVS_KEY_ATTR_ENCAP] = -1,
236 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
237 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
238 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
239 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
240 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
241 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
242 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
243 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
244 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
245 [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
246 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
247 [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
248 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
249 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
250 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
251 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
252 [OVS_KEY_ATTR_TUNNEL] = -1,
255 static bool is_all_zero(const u8 *fp, size_t size)
257 int i;
259 if (!fp)
260 return false;
262 for (i = 0; i < size; i++)
263 if (fp[i])
264 return false;
266 return true;
269 static bool is_all_set(const u8 *fp, size_t size)
271 int i;
273 if (!fp)
274 return false;
276 for (i = 0; i < size; i++)
277 if (fp[i] != 0xff)
278 return false;
280 return true;
283 static int __parse_flow_nlattrs(const struct nlattr *attr,
284 const struct nlattr *a[],
285 u64 *attrsp, bool nz)
287 const struct nlattr *nla;
288 u64 attrs;
289 int rem;
291 attrs = *attrsp;
292 nla_for_each_nested(nla, attr, rem) {
293 u16 type = nla_type(nla);
294 int expected_len;
296 if (type > OVS_KEY_ATTR_MAX) {
297 OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
298 type, OVS_KEY_ATTR_MAX);
299 return -EINVAL;
302 if (attrs & (1 << type)) {
303 OVS_NLERR("Duplicate key attribute (type %d).\n", type);
304 return -EINVAL;
307 expected_len = ovs_key_lens[type];
308 if (nla_len(nla) != expected_len && expected_len != -1) {
309 OVS_NLERR("Key attribute has unexpected length (type=%d"
310 ", length=%d, expected=%d).\n", type,
311 nla_len(nla), expected_len);
312 return -EINVAL;
315 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
316 attrs |= 1 << type;
317 a[type] = nla;
320 if (rem) {
321 OVS_NLERR("Message has %d unknown bytes.\n", rem);
322 return -EINVAL;
325 *attrsp = attrs;
326 return 0;
329 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
330 const struct nlattr *a[], u64 *attrsp)
332 return __parse_flow_nlattrs(attr, a, attrsp, true);
335 static int parse_flow_nlattrs(const struct nlattr *attr,
336 const struct nlattr *a[], u64 *attrsp)
338 return __parse_flow_nlattrs(attr, a, attrsp, false);
341 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
342 struct sw_flow_match *match, bool is_mask)
344 struct nlattr *a;
345 int rem;
346 bool ttl = false;
347 __be16 tun_flags = 0;
349 nla_for_each_nested(a, attr, rem) {
350 int type = nla_type(a);
351 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
352 [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
353 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
354 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
355 [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
356 [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
357 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
358 [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
361 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
362 OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
363 type, OVS_TUNNEL_KEY_ATTR_MAX);
364 return -EINVAL;
367 if (ovs_tunnel_key_lens[type] != nla_len(a)) {
368 OVS_NLERR("IPv4 tunnel attribute type has unexpected "
369 " length (type=%d, length=%d, expected=%d).\n",
370 type, nla_len(a), ovs_tunnel_key_lens[type]);
371 return -EINVAL;
374 switch (type) {
375 case OVS_TUNNEL_KEY_ATTR_ID:
376 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
377 nla_get_be64(a), is_mask);
378 tun_flags |= TUNNEL_KEY;
379 break;
380 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
381 SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
382 nla_get_be32(a), is_mask);
383 break;
384 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
385 SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
386 nla_get_be32(a), is_mask);
387 break;
388 case OVS_TUNNEL_KEY_ATTR_TOS:
389 SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
390 nla_get_u8(a), is_mask);
391 break;
392 case OVS_TUNNEL_KEY_ATTR_TTL:
393 SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
394 nla_get_u8(a), is_mask);
395 ttl = true;
396 break;
397 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
398 tun_flags |= TUNNEL_DONT_FRAGMENT;
399 break;
400 case OVS_TUNNEL_KEY_ATTR_CSUM:
401 tun_flags |= TUNNEL_CSUM;
402 break;
403 default:
404 return -EINVAL;
408 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
410 if (rem > 0) {
411 OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
412 return -EINVAL;
415 if (!is_mask) {
416 if (!match->key->tun_key.ipv4_dst) {
417 OVS_NLERR("IPv4 tunnel destination address is zero.\n");
418 return -EINVAL;
421 if (!ttl) {
422 OVS_NLERR("IPv4 tunnel TTL not specified.\n");
423 return -EINVAL;
427 return 0;
430 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
431 const struct ovs_key_ipv4_tunnel *tun_key,
432 const struct ovs_key_ipv4_tunnel *output)
434 struct nlattr *nla;
436 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
437 if (!nla)
438 return -EMSGSIZE;
440 if (output->tun_flags & TUNNEL_KEY &&
441 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
442 return -EMSGSIZE;
443 if (output->ipv4_src &&
444 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
445 return -EMSGSIZE;
446 if (output->ipv4_dst &&
447 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
448 return -EMSGSIZE;
449 if (output->ipv4_tos &&
450 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
451 return -EMSGSIZE;
452 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
453 return -EMSGSIZE;
454 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
455 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
456 return -EMSGSIZE;
457 if ((output->tun_flags & TUNNEL_CSUM) &&
458 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
459 return -EMSGSIZE;
461 nla_nest_end(skb, nla);
462 return 0;
466 static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
467 const struct nlattr **a, bool is_mask)
469 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
470 SW_FLOW_KEY_PUT(match, phy.priority,
471 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
472 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
475 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
476 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
478 if (is_mask)
479 in_port = 0xffffffff; /* Always exact match in_port. */
480 else if (in_port >= DP_MAX_PORTS)
481 return -EINVAL;
483 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
484 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
485 } else if (!is_mask) {
486 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
489 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
490 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
492 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
493 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
495 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
496 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
497 is_mask))
498 return -EINVAL;
499 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
501 return 0;
504 static int ovs_key_from_nlattrs(struct sw_flow_match *match, bool *exact_5tuple,
505 u64 attrs, const struct nlattr **a,
506 bool is_mask)
508 int err;
509 u64 orig_attrs = attrs;
511 err = metadata_from_nlattrs(match, &attrs, a, is_mask);
512 if (err)
513 return err;
515 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
516 const struct ovs_key_ethernet *eth_key;
518 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
519 SW_FLOW_KEY_MEMCPY(match, eth.src,
520 eth_key->eth_src, ETH_ALEN, is_mask);
521 SW_FLOW_KEY_MEMCPY(match, eth.dst,
522 eth_key->eth_dst, ETH_ALEN, is_mask);
523 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
526 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
527 __be16 tci;
529 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
530 if (!(tci & htons(VLAN_TAG_PRESENT))) {
531 if (is_mask)
532 OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
533 else
534 OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
536 return -EINVAL;
539 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
540 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
541 } else if (!is_mask)
542 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
544 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
545 __be16 eth_type;
547 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
548 if (is_mask) {
549 /* Always exact match EtherType. */
550 eth_type = htons(0xffff);
551 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
552 OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
553 ntohs(eth_type), ETH_P_802_3_MIN);
554 return -EINVAL;
557 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
558 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
559 } else if (!is_mask) {
560 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
563 if (is_mask && exact_5tuple) {
564 if (match->mask->key.eth.type != htons(0xffff))
565 *exact_5tuple = false;
568 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
569 const struct ovs_key_ipv4 *ipv4_key;
571 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
572 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
573 OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
574 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
575 return -EINVAL;
577 SW_FLOW_KEY_PUT(match, ip.proto,
578 ipv4_key->ipv4_proto, is_mask);
579 SW_FLOW_KEY_PUT(match, ip.tos,
580 ipv4_key->ipv4_tos, is_mask);
581 SW_FLOW_KEY_PUT(match, ip.ttl,
582 ipv4_key->ipv4_ttl, is_mask);
583 SW_FLOW_KEY_PUT(match, ip.frag,
584 ipv4_key->ipv4_frag, is_mask);
585 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
586 ipv4_key->ipv4_src, is_mask);
587 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
588 ipv4_key->ipv4_dst, is_mask);
589 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
591 if (is_mask && exact_5tuple && *exact_5tuple) {
592 if (ipv4_key->ipv4_proto != 0xff ||
593 ipv4_key->ipv4_src != htonl(0xffffffff) ||
594 ipv4_key->ipv4_dst != htonl(0xffffffff))
595 *exact_5tuple = false;
599 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
600 const struct ovs_key_ipv6 *ipv6_key;
602 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
603 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
604 OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
605 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
606 return -EINVAL;
608 SW_FLOW_KEY_PUT(match, ipv6.label,
609 ipv6_key->ipv6_label, is_mask);
610 SW_FLOW_KEY_PUT(match, ip.proto,
611 ipv6_key->ipv6_proto, is_mask);
612 SW_FLOW_KEY_PUT(match, ip.tos,
613 ipv6_key->ipv6_tclass, is_mask);
614 SW_FLOW_KEY_PUT(match, ip.ttl,
615 ipv6_key->ipv6_hlimit, is_mask);
616 SW_FLOW_KEY_PUT(match, ip.frag,
617 ipv6_key->ipv6_frag, is_mask);
618 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
619 ipv6_key->ipv6_src,
620 sizeof(match->key->ipv6.addr.src),
621 is_mask);
622 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
623 ipv6_key->ipv6_dst,
624 sizeof(match->key->ipv6.addr.dst),
625 is_mask);
627 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
629 if (is_mask && exact_5tuple && *exact_5tuple) {
630 if (ipv6_key->ipv6_proto != 0xff ||
631 !is_all_set((u8 *)ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src)) ||
632 !is_all_set((u8 *)ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst)))
633 *exact_5tuple = false;
637 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
638 const struct ovs_key_arp *arp_key;
640 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
641 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
642 OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
643 arp_key->arp_op);
644 return -EINVAL;
647 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
648 arp_key->arp_sip, is_mask);
649 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
650 arp_key->arp_tip, is_mask);
651 SW_FLOW_KEY_PUT(match, ip.proto,
652 ntohs(arp_key->arp_op), is_mask);
653 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
654 arp_key->arp_sha, ETH_ALEN, is_mask);
655 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
656 arp_key->arp_tha, ETH_ALEN, is_mask);
658 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
661 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
662 const struct ovs_key_tcp *tcp_key;
664 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
665 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
666 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
667 tcp_key->tcp_src, is_mask);
668 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
669 tcp_key->tcp_dst, is_mask);
670 } else {
671 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
672 tcp_key->tcp_src, is_mask);
673 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
674 tcp_key->tcp_dst, is_mask);
676 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
678 if (is_mask && exact_5tuple && *exact_5tuple &&
679 (tcp_key->tcp_src != htons(0xffff) ||
680 tcp_key->tcp_dst != htons(0xffff)))
681 *exact_5tuple = false;
684 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
685 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
686 SW_FLOW_KEY_PUT(match, ipv4.tp.flags,
687 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
688 is_mask);
689 } else {
690 SW_FLOW_KEY_PUT(match, ipv6.tp.flags,
691 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
692 is_mask);
694 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
697 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
698 const struct ovs_key_udp *udp_key;
700 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
701 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
702 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
703 udp_key->udp_src, is_mask);
704 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
705 udp_key->udp_dst, is_mask);
706 } else {
707 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
708 udp_key->udp_src, is_mask);
709 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
710 udp_key->udp_dst, is_mask);
712 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
714 if (is_mask && exact_5tuple && *exact_5tuple &&
715 (udp_key->udp_src != htons(0xffff) ||
716 udp_key->udp_dst != htons(0xffff)))
717 *exact_5tuple = false;
720 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
721 const struct ovs_key_sctp *sctp_key;
723 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
724 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
725 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
726 sctp_key->sctp_src, is_mask);
727 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
728 sctp_key->sctp_dst, is_mask);
729 } else {
730 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
731 sctp_key->sctp_src, is_mask);
732 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
733 sctp_key->sctp_dst, is_mask);
735 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
738 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
739 const struct ovs_key_icmp *icmp_key;
741 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
742 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
743 htons(icmp_key->icmp_type), is_mask);
744 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
745 htons(icmp_key->icmp_code), is_mask);
746 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
749 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
750 const struct ovs_key_icmpv6 *icmpv6_key;
752 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
753 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
754 htons(icmpv6_key->icmpv6_type), is_mask);
755 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
756 htons(icmpv6_key->icmpv6_code), is_mask);
757 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
760 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
761 const struct ovs_key_nd *nd_key;
763 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
764 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
765 nd_key->nd_target,
766 sizeof(match->key->ipv6.nd.target),
767 is_mask);
768 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
769 nd_key->nd_sll, ETH_ALEN, is_mask);
770 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
771 nd_key->nd_tll, ETH_ALEN, is_mask);
772 attrs &= ~(1 << OVS_KEY_ATTR_ND);
775 if (attrs != 0)
776 return -EINVAL;
778 return 0;
781 static void sw_flow_mask_set(struct sw_flow_mask *mask,
782 struct sw_flow_key_range *range, u8 val)
784 u8 *m = (u8 *)&mask->key + range->start;
786 mask->range = *range;
787 memset(m, val, range_n_bytes(range));
791 * ovs_nla_get_match - parses Netlink attributes into a flow key and
792 * mask. In case the 'mask' is NULL, the flow is treated as exact match
793 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
794 * does not include any don't care bit.
795 * @match: receives the extracted flow match information.
796 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
797 * sequence. The fields should of the packet that triggered the creation
798 * of this flow.
799 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
800 * attribute specifies the mask field of the wildcarded flow.
802 int ovs_nla_get_match(struct sw_flow_match *match,
803 bool *exact_5tuple,
804 const struct nlattr *key,
805 const struct nlattr *mask)
807 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
808 const struct nlattr *encap;
809 u64 key_attrs = 0;
810 u64 mask_attrs = 0;
811 bool encap_valid = false;
812 int err;
814 err = parse_flow_nlattrs(key, a, &key_attrs);
815 if (err)
816 return err;
818 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
819 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
820 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
821 __be16 tci;
823 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
824 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
825 OVS_NLERR("Invalid Vlan frame.\n");
826 return -EINVAL;
829 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
830 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
831 encap = a[OVS_KEY_ATTR_ENCAP];
832 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
833 encap_valid = true;
835 if (tci & htons(VLAN_TAG_PRESENT)) {
836 err = parse_flow_nlattrs(encap, a, &key_attrs);
837 if (err)
838 return err;
839 } else if (!tci) {
840 /* Corner case for truncated 802.1Q header. */
841 if (nla_len(encap)) {
842 OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
843 return -EINVAL;
845 } else {
846 OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
847 return -EINVAL;
851 err = ovs_key_from_nlattrs(match, NULL, key_attrs, a, false);
852 if (err)
853 return err;
855 if (exact_5tuple)
856 *exact_5tuple = true;
858 if (mask) {
859 err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
860 if (err)
861 return err;
863 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
864 __be16 eth_type = 0;
865 __be16 tci = 0;
867 if (!encap_valid) {
868 OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
869 return -EINVAL;
872 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
873 if (a[OVS_KEY_ATTR_ETHERTYPE])
874 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
876 if (eth_type == htons(0xffff)) {
877 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
878 encap = a[OVS_KEY_ATTR_ENCAP];
879 err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
880 } else {
881 OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
882 ntohs(eth_type));
883 return -EINVAL;
886 if (a[OVS_KEY_ATTR_VLAN])
887 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
889 if (!(tci & htons(VLAN_TAG_PRESENT))) {
890 OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
891 return -EINVAL;
895 err = ovs_key_from_nlattrs(match, exact_5tuple, mask_attrs, a, true);
896 if (err)
897 return err;
898 } else {
899 /* Populate exact match flow's key mask. */
900 if (match->mask)
901 sw_flow_mask_set(match->mask, &match->range, 0xff);
904 if (!match_validate(match, key_attrs, mask_attrs))
905 return -EINVAL;
907 return 0;
911 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
912 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
913 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
914 * sequence.
916 * This parses a series of Netlink attributes that form a flow key, which must
917 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
918 * get the metadata, that is, the parts of the flow key that cannot be
919 * extracted from the packet itself.
922 int ovs_nla_get_flow_metadata(struct sw_flow *flow,
923 const struct nlattr *attr)
925 struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
926 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
927 u64 attrs = 0;
928 int err;
929 struct sw_flow_match match;
931 flow->key.phy.in_port = DP_MAX_PORTS;
932 flow->key.phy.priority = 0;
933 flow->key.phy.skb_mark = 0;
934 memset(tun_key, 0, sizeof(flow->key.tun_key));
936 err = parse_flow_nlattrs(attr, a, &attrs);
937 if (err)
938 return -EINVAL;
940 memset(&match, 0, sizeof(match));
941 match.key = &flow->key;
943 err = metadata_from_nlattrs(&match, &attrs, a, false);
944 if (err)
945 return err;
947 return 0;
950 int ovs_nla_put_flow(const struct sw_flow_key *swkey,
951 const struct sw_flow_key *output, struct sk_buff *skb)
953 struct ovs_key_ethernet *eth_key;
954 struct nlattr *nla, *encap;
955 bool is_mask = (swkey != output);
957 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
958 goto nla_put_failure;
960 if ((swkey->tun_key.ipv4_dst || is_mask) &&
961 ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
962 goto nla_put_failure;
964 if (swkey->phy.in_port == DP_MAX_PORTS) {
965 if (is_mask && (output->phy.in_port == 0xffff))
966 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
967 goto nla_put_failure;
968 } else {
969 u16 upper_u16;
970 upper_u16 = !is_mask ? 0 : 0xffff;
972 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
973 (upper_u16 << 16) | output->phy.in_port))
974 goto nla_put_failure;
977 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
978 goto nla_put_failure;
980 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
981 if (!nla)
982 goto nla_put_failure;
984 eth_key = nla_data(nla);
985 memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
986 memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
988 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
989 __be16 eth_type;
990 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
991 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
992 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
993 goto nla_put_failure;
994 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
995 if (!swkey->eth.tci)
996 goto unencap;
997 } else
998 encap = NULL;
1000 if (swkey->eth.type == htons(ETH_P_802_2)) {
1002 * Ethertype 802.2 is represented in the netlink with omitted
1003 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1004 * 0xffff in the mask attribute. Ethertype can also
1005 * be wildcarded.
1007 if (is_mask && output->eth.type)
1008 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1009 output->eth.type))
1010 goto nla_put_failure;
1011 goto unencap;
1014 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1015 goto nla_put_failure;
1017 if (swkey->eth.type == htons(ETH_P_IP)) {
1018 struct ovs_key_ipv4 *ipv4_key;
1020 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1021 if (!nla)
1022 goto nla_put_failure;
1023 ipv4_key = nla_data(nla);
1024 ipv4_key->ipv4_src = output->ipv4.addr.src;
1025 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1026 ipv4_key->ipv4_proto = output->ip.proto;
1027 ipv4_key->ipv4_tos = output->ip.tos;
1028 ipv4_key->ipv4_ttl = output->ip.ttl;
1029 ipv4_key->ipv4_frag = output->ip.frag;
1030 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1031 struct ovs_key_ipv6 *ipv6_key;
1033 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1034 if (!nla)
1035 goto nla_put_failure;
1036 ipv6_key = nla_data(nla);
1037 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1038 sizeof(ipv6_key->ipv6_src));
1039 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1040 sizeof(ipv6_key->ipv6_dst));
1041 ipv6_key->ipv6_label = output->ipv6.label;
1042 ipv6_key->ipv6_proto = output->ip.proto;
1043 ipv6_key->ipv6_tclass = output->ip.tos;
1044 ipv6_key->ipv6_hlimit = output->ip.ttl;
1045 ipv6_key->ipv6_frag = output->ip.frag;
1046 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1047 swkey->eth.type == htons(ETH_P_RARP)) {
1048 struct ovs_key_arp *arp_key;
1050 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1051 if (!nla)
1052 goto nla_put_failure;
1053 arp_key = nla_data(nla);
1054 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1055 arp_key->arp_sip = output->ipv4.addr.src;
1056 arp_key->arp_tip = output->ipv4.addr.dst;
1057 arp_key->arp_op = htons(output->ip.proto);
1058 memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
1059 memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
1062 if ((swkey->eth.type == htons(ETH_P_IP) ||
1063 swkey->eth.type == htons(ETH_P_IPV6)) &&
1064 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1066 if (swkey->ip.proto == IPPROTO_TCP) {
1067 struct ovs_key_tcp *tcp_key;
1069 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1070 if (!nla)
1071 goto nla_put_failure;
1072 tcp_key = nla_data(nla);
1073 if (swkey->eth.type == htons(ETH_P_IP)) {
1074 tcp_key->tcp_src = output->ipv4.tp.src;
1075 tcp_key->tcp_dst = output->ipv4.tp.dst;
1076 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1077 output->ipv4.tp.flags))
1078 goto nla_put_failure;
1079 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1080 tcp_key->tcp_src = output->ipv6.tp.src;
1081 tcp_key->tcp_dst = output->ipv6.tp.dst;
1082 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1083 output->ipv6.tp.flags))
1084 goto nla_put_failure;
1086 } else if (swkey->ip.proto == IPPROTO_UDP) {
1087 struct ovs_key_udp *udp_key;
1089 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1090 if (!nla)
1091 goto nla_put_failure;
1092 udp_key = nla_data(nla);
1093 if (swkey->eth.type == htons(ETH_P_IP)) {
1094 udp_key->udp_src = output->ipv4.tp.src;
1095 udp_key->udp_dst = output->ipv4.tp.dst;
1096 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1097 udp_key->udp_src = output->ipv6.tp.src;
1098 udp_key->udp_dst = output->ipv6.tp.dst;
1100 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1101 struct ovs_key_sctp *sctp_key;
1103 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1104 if (!nla)
1105 goto nla_put_failure;
1106 sctp_key = nla_data(nla);
1107 if (swkey->eth.type == htons(ETH_P_IP)) {
1108 sctp_key->sctp_src = swkey->ipv4.tp.src;
1109 sctp_key->sctp_dst = swkey->ipv4.tp.dst;
1110 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1111 sctp_key->sctp_src = swkey->ipv6.tp.src;
1112 sctp_key->sctp_dst = swkey->ipv6.tp.dst;
1114 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1115 swkey->ip.proto == IPPROTO_ICMP) {
1116 struct ovs_key_icmp *icmp_key;
1118 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1119 if (!nla)
1120 goto nla_put_failure;
1121 icmp_key = nla_data(nla);
1122 icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
1123 icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
1124 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1125 swkey->ip.proto == IPPROTO_ICMPV6) {
1126 struct ovs_key_icmpv6 *icmpv6_key;
1128 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1129 sizeof(*icmpv6_key));
1130 if (!nla)
1131 goto nla_put_failure;
1132 icmpv6_key = nla_data(nla);
1133 icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
1134 icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
1136 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1137 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1138 struct ovs_key_nd *nd_key;
1140 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1141 if (!nla)
1142 goto nla_put_failure;
1143 nd_key = nla_data(nla);
1144 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1145 sizeof(nd_key->nd_target));
1146 memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
1147 memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
1152 unencap:
1153 if (encap)
1154 nla_nest_end(skb, encap);
1156 return 0;
1158 nla_put_failure:
1159 return -EMSGSIZE;
1162 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1164 struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
1166 struct sw_flow_actions *sfa;
1168 if (size > MAX_ACTIONS_BUFSIZE)
1169 return ERR_PTR(-EINVAL);
1171 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1172 if (!sfa)
1173 return ERR_PTR(-ENOMEM);
1175 sfa->actions_len = 0;
1176 return sfa;
1179 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1180 * The caller must hold rcu_read_lock for this to be sensible. */
1181 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1183 kfree_rcu(sf_acts, rcu);
1186 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1187 int attr_len)
1190 struct sw_flow_actions *acts;
1191 int new_acts_size;
1192 int req_size = NLA_ALIGN(attr_len);
1193 int next_offset = offsetof(struct sw_flow_actions, actions) +
1194 (*sfa)->actions_len;
1196 if (req_size <= (ksize(*sfa) - next_offset))
1197 goto out;
1199 new_acts_size = ksize(*sfa) * 2;
1201 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1202 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1203 return ERR_PTR(-EMSGSIZE);
1204 new_acts_size = MAX_ACTIONS_BUFSIZE;
1207 acts = ovs_nla_alloc_flow_actions(new_acts_size);
1208 if (IS_ERR(acts))
1209 return (void *)acts;
1211 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1212 acts->actions_len = (*sfa)->actions_len;
1213 kfree(*sfa);
1214 *sfa = acts;
1216 out:
1217 (*sfa)->actions_len += req_size;
1218 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1221 static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
1223 struct nlattr *a;
1225 a = reserve_sfa_size(sfa, nla_attr_size(len));
1226 if (IS_ERR(a))
1227 return PTR_ERR(a);
1229 a->nla_type = attrtype;
1230 a->nla_len = nla_attr_size(len);
1232 if (data)
1233 memcpy(nla_data(a), data, len);
1234 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1236 return 0;
1239 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1240 int attrtype)
1242 int used = (*sfa)->actions_len;
1243 int err;
1245 err = add_action(sfa, attrtype, NULL, 0);
1246 if (err)
1247 return err;
1249 return used;
1252 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1253 int st_offset)
1255 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1256 st_offset);
1258 a->nla_len = sfa->actions_len - st_offset;
1261 static int validate_and_copy_sample(const struct nlattr *attr,
1262 const struct sw_flow_key *key, int depth,
1263 struct sw_flow_actions **sfa)
1265 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1266 const struct nlattr *probability, *actions;
1267 const struct nlattr *a;
1268 int rem, start, err, st_acts;
1270 memset(attrs, 0, sizeof(attrs));
1271 nla_for_each_nested(a, attr, rem) {
1272 int type = nla_type(a);
1273 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1274 return -EINVAL;
1275 attrs[type] = a;
1277 if (rem)
1278 return -EINVAL;
1280 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1281 if (!probability || nla_len(probability) != sizeof(u32))
1282 return -EINVAL;
1284 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1285 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1286 return -EINVAL;
1288 /* validation done, copy sample action. */
1289 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
1290 if (start < 0)
1291 return start;
1292 err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1293 nla_data(probability), sizeof(u32));
1294 if (err)
1295 return err;
1296 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
1297 if (st_acts < 0)
1298 return st_acts;
1300 err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
1301 if (err)
1302 return err;
1304 add_nested_action_end(*sfa, st_acts);
1305 add_nested_action_end(*sfa, start);
1307 return 0;
1310 static int validate_tp_port(const struct sw_flow_key *flow_key)
1312 if (flow_key->eth.type == htons(ETH_P_IP)) {
1313 if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst)
1314 return 0;
1315 } else if (flow_key->eth.type == htons(ETH_P_IPV6)) {
1316 if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst)
1317 return 0;
1320 return -EINVAL;
1323 void ovs_match_init(struct sw_flow_match *match,
1324 struct sw_flow_key *key,
1325 struct sw_flow_mask *mask)
1327 memset(match, 0, sizeof(*match));
1328 match->key = key;
1329 match->mask = mask;
1331 memset(key, 0, sizeof(*key));
1333 if (mask) {
1334 memset(&mask->key, 0, sizeof(mask->key));
1335 mask->range.start = mask->range.end = 0;
1339 static int validate_and_copy_set_tun(const struct nlattr *attr,
1340 struct sw_flow_actions **sfa)
1342 struct sw_flow_match match;
1343 struct sw_flow_key key;
1344 int err, start;
1346 ovs_match_init(&match, &key, NULL);
1347 err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
1348 if (err)
1349 return err;
1351 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
1352 if (start < 0)
1353 return start;
1355 err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
1356 sizeof(match.key->tun_key));
1357 add_nested_action_end(*sfa, start);
1359 return err;
1362 static int validate_set(const struct nlattr *a,
1363 const struct sw_flow_key *flow_key,
1364 struct sw_flow_actions **sfa,
1365 bool *set_tun)
1367 const struct nlattr *ovs_key = nla_data(a);
1368 int key_type = nla_type(ovs_key);
1370 /* There can be only one key in a action */
1371 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1372 return -EINVAL;
1374 if (key_type > OVS_KEY_ATTR_MAX ||
1375 (ovs_key_lens[key_type] != nla_len(ovs_key) &&
1376 ovs_key_lens[key_type] != -1))
1377 return -EINVAL;
1379 switch (key_type) {
1380 const struct ovs_key_ipv4 *ipv4_key;
1381 const struct ovs_key_ipv6 *ipv6_key;
1382 int err;
1384 case OVS_KEY_ATTR_PRIORITY:
1385 case OVS_KEY_ATTR_SKB_MARK:
1386 case OVS_KEY_ATTR_ETHERNET:
1387 break;
1389 case OVS_KEY_ATTR_TUNNEL:
1390 *set_tun = true;
1391 err = validate_and_copy_set_tun(a, sfa);
1392 if (err)
1393 return err;
1394 break;
1396 case OVS_KEY_ATTR_IPV4:
1397 if (flow_key->eth.type != htons(ETH_P_IP))
1398 return -EINVAL;
1400 if (!flow_key->ip.proto)
1401 return -EINVAL;
1403 ipv4_key = nla_data(ovs_key);
1404 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1405 return -EINVAL;
1407 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1408 return -EINVAL;
1410 break;
1412 case OVS_KEY_ATTR_IPV6:
1413 if (flow_key->eth.type != htons(ETH_P_IPV6))
1414 return -EINVAL;
1416 if (!flow_key->ip.proto)
1417 return -EINVAL;
1419 ipv6_key = nla_data(ovs_key);
1420 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1421 return -EINVAL;
1423 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1424 return -EINVAL;
1426 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1427 return -EINVAL;
1429 break;
1431 case OVS_KEY_ATTR_TCP:
1432 if (flow_key->ip.proto != IPPROTO_TCP)
1433 return -EINVAL;
1435 return validate_tp_port(flow_key);
1437 case OVS_KEY_ATTR_UDP:
1438 if (flow_key->ip.proto != IPPROTO_UDP)
1439 return -EINVAL;
1441 return validate_tp_port(flow_key);
1443 case OVS_KEY_ATTR_SCTP:
1444 if (flow_key->ip.proto != IPPROTO_SCTP)
1445 return -EINVAL;
1447 return validate_tp_port(flow_key);
1449 default:
1450 return -EINVAL;
1453 return 0;
1456 static int validate_userspace(const struct nlattr *attr)
1458 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1459 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1460 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1462 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1463 int error;
1465 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1466 attr, userspace_policy);
1467 if (error)
1468 return error;
1470 if (!a[OVS_USERSPACE_ATTR_PID] ||
1471 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1472 return -EINVAL;
1474 return 0;
1477 static int copy_action(const struct nlattr *from,
1478 struct sw_flow_actions **sfa)
1480 int totlen = NLA_ALIGN(from->nla_len);
1481 struct nlattr *to;
1483 to = reserve_sfa_size(sfa, from->nla_len);
1484 if (IS_ERR(to))
1485 return PTR_ERR(to);
1487 memcpy(to, from, totlen);
1488 return 0;
1491 int ovs_nla_copy_actions(const struct nlattr *attr,
1492 const struct sw_flow_key *key,
1493 int depth,
1494 struct sw_flow_actions **sfa)
1496 const struct nlattr *a;
1497 int rem, err;
1499 if (depth >= SAMPLE_ACTION_DEPTH)
1500 return -EOVERFLOW;
1502 nla_for_each_nested(a, attr, rem) {
1503 /* Expected argument lengths, (u32)-1 for variable length. */
1504 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
1505 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
1506 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
1507 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
1508 [OVS_ACTION_ATTR_POP_VLAN] = 0,
1509 [OVS_ACTION_ATTR_SET] = (u32)-1,
1510 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1
1512 const struct ovs_action_push_vlan *vlan;
1513 int type = nla_type(a);
1514 bool skip_copy;
1516 if (type > OVS_ACTION_ATTR_MAX ||
1517 (action_lens[type] != nla_len(a) &&
1518 action_lens[type] != (u32)-1))
1519 return -EINVAL;
1521 skip_copy = false;
1522 switch (type) {
1523 case OVS_ACTION_ATTR_UNSPEC:
1524 return -EINVAL;
1526 case OVS_ACTION_ATTR_USERSPACE:
1527 err = validate_userspace(a);
1528 if (err)
1529 return err;
1530 break;
1532 case OVS_ACTION_ATTR_OUTPUT:
1533 if (nla_get_u32(a) >= DP_MAX_PORTS)
1534 return -EINVAL;
1535 break;
1538 case OVS_ACTION_ATTR_POP_VLAN:
1539 break;
1541 case OVS_ACTION_ATTR_PUSH_VLAN:
1542 vlan = nla_data(a);
1543 if (vlan->vlan_tpid != htons(ETH_P_8021Q))
1544 return -EINVAL;
1545 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
1546 return -EINVAL;
1547 break;
1549 case OVS_ACTION_ATTR_SET:
1550 err = validate_set(a, key, sfa, &skip_copy);
1551 if (err)
1552 return err;
1553 break;
1555 case OVS_ACTION_ATTR_SAMPLE:
1556 err = validate_and_copy_sample(a, key, depth, sfa);
1557 if (err)
1558 return err;
1559 skip_copy = true;
1560 break;
1562 default:
1563 return -EINVAL;
1565 if (!skip_copy) {
1566 err = copy_action(a, sfa);
1567 if (err)
1568 return err;
1572 if (rem > 0)
1573 return -EINVAL;
1575 return 0;
1578 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
1580 const struct nlattr *a;
1581 struct nlattr *start;
1582 int err = 0, rem;
1584 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
1585 if (!start)
1586 return -EMSGSIZE;
1588 nla_for_each_nested(a, attr, rem) {
1589 int type = nla_type(a);
1590 struct nlattr *st_sample;
1592 switch (type) {
1593 case OVS_SAMPLE_ATTR_PROBABILITY:
1594 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
1595 sizeof(u32), nla_data(a)))
1596 return -EMSGSIZE;
1597 break;
1598 case OVS_SAMPLE_ATTR_ACTIONS:
1599 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
1600 if (!st_sample)
1601 return -EMSGSIZE;
1602 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
1603 if (err)
1604 return err;
1605 nla_nest_end(skb, st_sample);
1606 break;
1610 nla_nest_end(skb, start);
1611 return err;
1614 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
1616 const struct nlattr *ovs_key = nla_data(a);
1617 int key_type = nla_type(ovs_key);
1618 struct nlattr *start;
1619 int err;
1621 switch (key_type) {
1622 case OVS_KEY_ATTR_IPV4_TUNNEL:
1623 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
1624 if (!start)
1625 return -EMSGSIZE;
1627 err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
1628 nla_data(ovs_key));
1629 if (err)
1630 return err;
1631 nla_nest_end(skb, start);
1632 break;
1633 default:
1634 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
1635 return -EMSGSIZE;
1636 break;
1639 return 0;
1642 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
1644 const struct nlattr *a;
1645 int rem, err;
1647 nla_for_each_attr(a, attr, len, rem) {
1648 int type = nla_type(a);
1650 switch (type) {
1651 case OVS_ACTION_ATTR_SET:
1652 err = set_action_to_attr(a, skb);
1653 if (err)
1654 return err;
1655 break;
1657 case OVS_ACTION_ATTR_SAMPLE:
1658 err = sample_action_to_attr(a, skb);
1659 if (err)
1660 return err;
1661 break;
1662 default:
1663 if (nla_put(skb, type, nla_len(a), nla_data(a)))
1664 return -EMSGSIZE;
1665 break;
1669 return 0;