2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly
;
56 static unsigned int i_hash_shift __read_mostly
;
57 static struct hlist_head
*inode_hashtable __read_mostly
;
58 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned long, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
116 static int no_open(struct inode
*inode
, struct file
*file
)
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
131 static const struct inode_operations empty_iops
;
132 static const struct file_operations no_open_fops
= {.open
= no_open
};
133 struct address_space
*const mapping
= &inode
->i_data
;
136 inode
->i_blkbits
= sb
->s_blocksize_bits
;
138 atomic_set(&inode
->i_count
, 1);
139 inode
->i_op
= &empty_iops
;
140 inode
->i_fop
= &no_open_fops
;
141 inode
->__i_nlink
= 1;
142 inode
->i_opflags
= 0;
144 inode
->i_opflags
|= IOP_XATTR
;
145 i_uid_write(inode
, 0);
146 i_gid_write(inode
, 0);
147 atomic_set(&inode
->i_writecount
, 0);
151 inode
->i_generation
= 0;
152 inode
->i_pipe
= NULL
;
153 inode
->i_bdev
= NULL
;
154 inode
->i_cdev
= NULL
;
155 inode
->i_link
= NULL
;
156 inode
->i_dir_seq
= 0;
158 inode
->dirtied_when
= 0;
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode
->i_wb_frn_winner
= 0;
162 inode
->i_wb_frn_avg_time
= 0;
163 inode
->i_wb_frn_history
= 0;
166 if (security_inode_alloc(inode
))
168 spin_lock_init(&inode
->i_lock
);
169 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
171 init_rwsem(&inode
->i_rwsem
);
172 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
174 atomic_set(&inode
->i_dio_count
, 0);
176 mapping
->a_ops
= &empty_aops
;
177 mapping
->host
= inode
;
179 atomic_set(&mapping
->i_mmap_writable
, 0);
180 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
181 mapping
->private_data
= NULL
;
182 mapping
->writeback_index
= 0;
183 inode
->i_private
= NULL
;
184 inode
->i_mapping
= mapping
;
185 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
190 #ifdef CONFIG_FSNOTIFY
191 inode
->i_fsnotify_mask
= 0;
193 inode
->i_flctx
= NULL
;
194 this_cpu_inc(nr_inodes
);
200 EXPORT_SYMBOL(inode_init_always
);
202 static struct inode
*alloc_inode(struct super_block
*sb
)
206 if (sb
->s_op
->alloc_inode
)
207 inode
= sb
->s_op
->alloc_inode(sb
);
209 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
214 if (unlikely(inode_init_always(sb
, inode
))) {
215 if (inode
->i_sb
->s_op
->destroy_inode
)
216 inode
->i_sb
->s_op
->destroy_inode(inode
);
218 kmem_cache_free(inode_cachep
, inode
);
225 void free_inode_nonrcu(struct inode
*inode
)
227 kmem_cache_free(inode_cachep
, inode
);
229 EXPORT_SYMBOL(free_inode_nonrcu
);
231 void __destroy_inode(struct inode
*inode
)
233 BUG_ON(inode_has_buffers(inode
));
234 inode_detach_wb(inode
);
235 security_inode_free(inode
);
236 fsnotify_inode_delete(inode
);
237 locks_free_lock_context(inode
);
238 if (!inode
->i_nlink
) {
239 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
240 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
245 posix_acl_release(inode
->i_acl
);
246 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
247 posix_acl_release(inode
->i_default_acl
);
249 this_cpu_dec(nr_inodes
);
251 EXPORT_SYMBOL(__destroy_inode
);
253 static void i_callback(struct rcu_head
*head
)
255 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
256 kmem_cache_free(inode_cachep
, inode
);
259 static void destroy_inode(struct inode
*inode
)
261 BUG_ON(!list_empty(&inode
->i_lru
));
262 __destroy_inode(inode
);
263 if (inode
->i_sb
->s_op
->destroy_inode
)
264 inode
->i_sb
->s_op
->destroy_inode(inode
);
266 call_rcu(&inode
->i_rcu
, i_callback
);
270 * drop_nlink - directly drop an inode's link count
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
280 void drop_nlink(struct inode
*inode
)
282 WARN_ON(inode
->i_nlink
== 0);
285 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
287 EXPORT_SYMBOL(drop_nlink
);
290 * clear_nlink - directly zero an inode's link count
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
297 void clear_nlink(struct inode
*inode
)
299 if (inode
->i_nlink
) {
300 inode
->__i_nlink
= 0;
301 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
304 EXPORT_SYMBOL(clear_nlink
);
307 * set_nlink - directly set an inode's link count
309 * @nlink: new nlink (should be non-zero)
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
314 void set_nlink(struct inode
*inode
, unsigned int nlink
)
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode
->i_nlink
== 0)
321 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
323 inode
->__i_nlink
= nlink
;
326 EXPORT_SYMBOL(set_nlink
);
329 * inc_nlink - directly increment an inode's link count
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
336 void inc_nlink(struct inode
*inode
)
338 if (unlikely(inode
->i_nlink
== 0)) {
339 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
340 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
345 EXPORT_SYMBOL(inc_nlink
);
347 void address_space_init_once(struct address_space
*mapping
)
349 memset(mapping
, 0, sizeof(*mapping
));
350 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
| __GFP_ACCOUNT
);
351 spin_lock_init(&mapping
->tree_lock
);
352 init_rwsem(&mapping
->i_mmap_rwsem
);
353 INIT_LIST_HEAD(&mapping
->private_list
);
354 spin_lock_init(&mapping
->private_lock
);
355 mapping
->i_mmap
= RB_ROOT
;
357 EXPORT_SYMBOL(address_space_init_once
);
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
364 void inode_init_once(struct inode
*inode
)
366 memset(inode
, 0, sizeof(*inode
));
367 INIT_HLIST_NODE(&inode
->i_hash
);
368 INIT_LIST_HEAD(&inode
->i_devices
);
369 INIT_LIST_HEAD(&inode
->i_io_list
);
370 INIT_LIST_HEAD(&inode
->i_wb_list
);
371 INIT_LIST_HEAD(&inode
->i_lru
);
372 address_space_init_once(&inode
->i_data
);
373 i_size_ordered_init(inode
);
374 #ifdef CONFIG_FSNOTIFY
375 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
378 EXPORT_SYMBOL(inode_init_once
);
380 static void init_once(void *foo
)
382 struct inode
*inode
= (struct inode
*) foo
;
384 inode_init_once(inode
);
388 * inode->i_lock must be held
390 void __iget(struct inode
*inode
)
392 atomic_inc(&inode
->i_count
);
396 * get additional reference to inode; caller must already hold one.
398 void ihold(struct inode
*inode
)
400 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
402 EXPORT_SYMBOL(ihold
);
404 static void inode_lru_list_add(struct inode
*inode
)
406 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
407 this_cpu_inc(nr_unused
);
411 * Add inode to LRU if needed (inode is unused and clean).
413 * Needs inode->i_lock held.
415 void inode_add_lru(struct inode
*inode
)
417 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
418 I_FREEING
| I_WILL_FREE
)) &&
419 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
420 inode_lru_list_add(inode
);
424 static void inode_lru_list_del(struct inode
*inode
)
427 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
428 this_cpu_dec(nr_unused
);
432 * inode_sb_list_add - add inode to the superblock list of inodes
433 * @inode: inode to add
435 void inode_sb_list_add(struct inode
*inode
)
437 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
438 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
439 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
441 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
443 static inline void inode_sb_list_del(struct inode
*inode
)
445 if (!list_empty(&inode
->i_sb_list
)) {
446 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
447 list_del_init(&inode
->i_sb_list
);
448 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
452 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
456 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
458 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
459 return tmp
& i_hash_mask
;
463 * __insert_inode_hash - hash an inode
464 * @inode: unhashed inode
465 * @hashval: unsigned long value used to locate this object in the
468 * Add an inode to the inode hash for this superblock.
470 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
472 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
474 spin_lock(&inode_hash_lock
);
475 spin_lock(&inode
->i_lock
);
476 hlist_add_head(&inode
->i_hash
, b
);
477 spin_unlock(&inode
->i_lock
);
478 spin_unlock(&inode_hash_lock
);
480 EXPORT_SYMBOL(__insert_inode_hash
);
483 * __remove_inode_hash - remove an inode from the hash
484 * @inode: inode to unhash
486 * Remove an inode from the superblock.
488 void __remove_inode_hash(struct inode
*inode
)
490 spin_lock(&inode_hash_lock
);
491 spin_lock(&inode
->i_lock
);
492 hlist_del_init(&inode
->i_hash
);
493 spin_unlock(&inode
->i_lock
);
494 spin_unlock(&inode_hash_lock
);
496 EXPORT_SYMBOL(__remove_inode_hash
);
498 void clear_inode(struct inode
*inode
)
502 * We have to cycle tree_lock here because reclaim can be still in the
503 * process of removing the last page (in __delete_from_page_cache())
504 * and we must not free mapping under it.
506 spin_lock_irq(&inode
->i_data
.tree_lock
);
507 BUG_ON(inode
->i_data
.nrpages
);
508 BUG_ON(inode
->i_data
.nrexceptional
);
509 spin_unlock_irq(&inode
->i_data
.tree_lock
);
510 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
511 BUG_ON(!(inode
->i_state
& I_FREEING
));
512 BUG_ON(inode
->i_state
& I_CLEAR
);
513 BUG_ON(!list_empty(&inode
->i_wb_list
));
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode
->i_state
= I_FREEING
| I_CLEAR
;
517 EXPORT_SYMBOL(clear_inode
);
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
532 static void evict(struct inode
*inode
)
534 const struct super_operations
*op
= inode
->i_sb
->s_op
;
536 BUG_ON(!(inode
->i_state
& I_FREEING
));
537 BUG_ON(!list_empty(&inode
->i_lru
));
539 if (!list_empty(&inode
->i_io_list
))
540 inode_io_list_del(inode
);
542 inode_sb_list_del(inode
);
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
550 inode_wait_for_writeback(inode
);
552 if (op
->evict_inode
) {
553 op
->evict_inode(inode
);
555 truncate_inode_pages_final(&inode
->i_data
);
558 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
560 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
563 remove_inode_hash(inode
);
565 spin_lock(&inode
->i_lock
);
566 wake_up_bit(&inode
->i_state
, __I_NEW
);
567 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
568 spin_unlock(&inode
->i_lock
);
570 destroy_inode(inode
);
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
580 static void dispose_list(struct list_head
*head
)
582 while (!list_empty(head
)) {
585 inode
= list_first_entry(head
, struct inode
, i_lru
);
586 list_del_init(&inode
->i_lru
);
594 * evict_inodes - evict all evictable inodes for a superblock
595 * @sb: superblock to operate on
597 * Make sure that no inodes with zero refcount are retained. This is
598 * called by superblock shutdown after having MS_ACTIVE flag removed,
599 * so any inode reaching zero refcount during or after that call will
600 * be immediately evicted.
602 void evict_inodes(struct super_block
*sb
)
604 struct inode
*inode
, *next
;
608 spin_lock(&sb
->s_inode_list_lock
);
609 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
610 if (atomic_read(&inode
->i_count
))
613 spin_lock(&inode
->i_lock
);
614 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
615 spin_unlock(&inode
->i_lock
);
619 inode
->i_state
|= I_FREEING
;
620 inode_lru_list_del(inode
);
621 spin_unlock(&inode
->i_lock
);
622 list_add(&inode
->i_lru
, &dispose
);
625 * We can have a ton of inodes to evict at unmount time given
626 * enough memory, check to see if we need to go to sleep for a
627 * bit so we don't livelock.
629 if (need_resched()) {
630 spin_unlock(&sb
->s_inode_list_lock
);
632 dispose_list(&dispose
);
636 spin_unlock(&sb
->s_inode_list_lock
);
638 dispose_list(&dispose
);
642 * invalidate_inodes - attempt to free all inodes on a superblock
643 * @sb: superblock to operate on
644 * @kill_dirty: flag to guide handling of dirty inodes
646 * Attempts to free all inodes for a given superblock. If there were any
647 * busy inodes return a non-zero value, else zero.
648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
651 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
654 struct inode
*inode
, *next
;
657 spin_lock(&sb
->s_inode_list_lock
);
658 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
659 spin_lock(&inode
->i_lock
);
660 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
661 spin_unlock(&inode
->i_lock
);
664 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
665 spin_unlock(&inode
->i_lock
);
669 if (atomic_read(&inode
->i_count
)) {
670 spin_unlock(&inode
->i_lock
);
675 inode
->i_state
|= I_FREEING
;
676 inode_lru_list_del(inode
);
677 spin_unlock(&inode
->i_lock
);
678 list_add(&inode
->i_lru
, &dispose
);
680 spin_unlock(&sb
->s_inode_list_lock
);
682 dispose_list(&dispose
);
688 * Isolate the inode from the LRU in preparation for freeing it.
690 * Any inodes which are pinned purely because of attached pagecache have their
691 * pagecache removed. If the inode has metadata buffers attached to
692 * mapping->private_list then try to remove them.
694 * If the inode has the I_REFERENCED flag set, then it means that it has been
695 * used recently - the flag is set in iput_final(). When we encounter such an
696 * inode, clear the flag and move it to the back of the LRU so it gets another
697 * pass through the LRU before it gets reclaimed. This is necessary because of
698 * the fact we are doing lazy LRU updates to minimise lock contention so the
699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
700 * with this flag set because they are the inodes that are out of order.
702 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
703 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
705 struct list_head
*freeable
= arg
;
706 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
709 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
710 * If we fail to get the lock, just skip it.
712 if (!spin_trylock(&inode
->i_lock
))
716 * Referenced or dirty inodes are still in use. Give them another pass
717 * through the LRU as we canot reclaim them now.
719 if (atomic_read(&inode
->i_count
) ||
720 (inode
->i_state
& ~I_REFERENCED
)) {
721 list_lru_isolate(lru
, &inode
->i_lru
);
722 spin_unlock(&inode
->i_lock
);
723 this_cpu_dec(nr_unused
);
727 /* recently referenced inodes get one more pass */
728 if (inode
->i_state
& I_REFERENCED
) {
729 inode
->i_state
&= ~I_REFERENCED
;
730 spin_unlock(&inode
->i_lock
);
734 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
736 spin_unlock(&inode
->i_lock
);
737 spin_unlock(lru_lock
);
738 if (remove_inode_buffers(inode
)) {
740 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
741 if (current_is_kswapd())
742 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
744 __count_vm_events(PGINODESTEAL
, reap
);
745 if (current
->reclaim_state
)
746 current
->reclaim_state
->reclaimed_slab
+= reap
;
753 WARN_ON(inode
->i_state
& I_NEW
);
754 inode
->i_state
|= I_FREEING
;
755 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
756 spin_unlock(&inode
->i_lock
);
758 this_cpu_dec(nr_unused
);
763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
764 * This is called from the superblock shrinker function with a number of inodes
765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
766 * then are freed outside inode_lock by dispose_list().
768 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
773 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
774 inode_lru_isolate
, &freeable
);
775 dispose_list(&freeable
);
779 static void __wait_on_freeing_inode(struct inode
*inode
);
781 * Called with the inode lock held.
783 static struct inode
*find_inode(struct super_block
*sb
,
784 struct hlist_head
*head
,
785 int (*test
)(struct inode
*, void *),
788 struct inode
*inode
= NULL
;
791 hlist_for_each_entry(inode
, head
, i_hash
) {
792 if (inode
->i_sb
!= sb
)
794 if (!test(inode
, data
))
796 spin_lock(&inode
->i_lock
);
797 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
798 __wait_on_freeing_inode(inode
);
802 spin_unlock(&inode
->i_lock
);
809 * find_inode_fast is the fast path version of find_inode, see the comment at
810 * iget_locked for details.
812 static struct inode
*find_inode_fast(struct super_block
*sb
,
813 struct hlist_head
*head
, unsigned long ino
)
815 struct inode
*inode
= NULL
;
818 hlist_for_each_entry(inode
, head
, i_hash
) {
819 if (inode
->i_ino
!= ino
)
821 if (inode
->i_sb
!= sb
)
823 spin_lock(&inode
->i_lock
);
824 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
825 __wait_on_freeing_inode(inode
);
829 spin_unlock(&inode
->i_lock
);
836 * Each cpu owns a range of LAST_INO_BATCH numbers.
837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
838 * to renew the exhausted range.
840 * This does not significantly increase overflow rate because every CPU can
841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
844 * overflow rate by 2x, which does not seem too significant.
846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
847 * error if st_ino won't fit in target struct field. Use 32bit counter
848 * here to attempt to avoid that.
850 #define LAST_INO_BATCH 1024
851 static DEFINE_PER_CPU(unsigned int, last_ino
);
853 unsigned int get_next_ino(void)
855 unsigned int *p
= &get_cpu_var(last_ino
);
856 unsigned int res
= *p
;
859 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
860 static atomic_t shared_last_ino
;
861 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
863 res
= next
- LAST_INO_BATCH
;
868 /* get_next_ino should not provide a 0 inode number */
872 put_cpu_var(last_ino
);
875 EXPORT_SYMBOL(get_next_ino
);
878 * new_inode_pseudo - obtain an inode
881 * Allocates a new inode for given superblock.
882 * Inode wont be chained in superblock s_inodes list
884 * - fs can't be unmount
885 * - quotas, fsnotify, writeback can't work
887 struct inode
*new_inode_pseudo(struct super_block
*sb
)
889 struct inode
*inode
= alloc_inode(sb
);
892 spin_lock(&inode
->i_lock
);
894 spin_unlock(&inode
->i_lock
);
895 INIT_LIST_HEAD(&inode
->i_sb_list
);
901 * new_inode - obtain an inode
904 * Allocates a new inode for given superblock. The default gfp_mask
905 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
906 * If HIGHMEM pages are unsuitable or it is known that pages allocated
907 * for the page cache are not reclaimable or migratable,
908 * mapping_set_gfp_mask() must be called with suitable flags on the
909 * newly created inode's mapping
912 struct inode
*new_inode(struct super_block
*sb
)
916 spin_lock_prefetch(&sb
->s_inode_list_lock
);
918 inode
= new_inode_pseudo(sb
);
920 inode_sb_list_add(inode
);
923 EXPORT_SYMBOL(new_inode
);
925 #ifdef CONFIG_DEBUG_LOCK_ALLOC
926 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
928 if (S_ISDIR(inode
->i_mode
)) {
929 struct file_system_type
*type
= inode
->i_sb
->s_type
;
931 /* Set new key only if filesystem hasn't already changed it */
932 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
934 * ensure nobody is actually holding i_mutex
936 // mutex_destroy(&inode->i_mutex);
937 init_rwsem(&inode
->i_rwsem
);
938 lockdep_set_class(&inode
->i_rwsem
,
939 &type
->i_mutex_dir_key
);
943 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
948 * @inode: new inode to unlock
950 * Called when the inode is fully initialised to clear the new state of the
951 * inode and wake up anyone waiting for the inode to finish initialisation.
953 void unlock_new_inode(struct inode
*inode
)
955 lockdep_annotate_inode_mutex_key(inode
);
956 spin_lock(&inode
->i_lock
);
957 WARN_ON(!(inode
->i_state
& I_NEW
));
958 inode
->i_state
&= ~I_NEW
;
960 wake_up_bit(&inode
->i_state
, __I_NEW
);
961 spin_unlock(&inode
->i_lock
);
963 EXPORT_SYMBOL(unlock_new_inode
);
966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
968 * Lock any non-NULL argument that is not a directory.
969 * Zero, one or two objects may be locked by this function.
971 * @inode1: first inode to lock
972 * @inode2: second inode to lock
974 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
977 swap(inode1
, inode2
);
979 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
981 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
982 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
984 EXPORT_SYMBOL(lock_two_nondirectories
);
987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
988 * @inode1: first inode to unlock
989 * @inode2: second inode to unlock
991 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
993 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
994 inode_unlock(inode1
);
995 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
996 inode_unlock(inode2
);
998 EXPORT_SYMBOL(unlock_two_nondirectories
);
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb: super block of file system
1003 * @hashval: hash value (usually inode number) to get
1004 * @test: callback used for comparisons between inodes
1005 * @set: callback used to initialize a new struct inode
1006 * @data: opaque data pointer to pass to @test and @set
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1020 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1021 int (*test
)(struct inode
*, void *),
1022 int (*set
)(struct inode
*, void *), void *data
)
1024 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1025 struct inode
*inode
;
1027 spin_lock(&inode_hash_lock
);
1028 inode
= find_inode(sb
, head
, test
, data
);
1029 spin_unlock(&inode_hash_lock
);
1032 wait_on_inode(inode
);
1033 if (unlikely(inode_unhashed(inode
))) {
1040 inode
= alloc_inode(sb
);
1044 spin_lock(&inode_hash_lock
);
1045 /* We released the lock, so.. */
1046 old
= find_inode(sb
, head
, test
, data
);
1048 if (set(inode
, data
))
1051 spin_lock(&inode
->i_lock
);
1052 inode
->i_state
= I_NEW
;
1053 hlist_add_head(&inode
->i_hash
, head
);
1054 spin_unlock(&inode
->i_lock
);
1055 inode_sb_list_add(inode
);
1056 spin_unlock(&inode_hash_lock
);
1058 /* Return the locked inode with I_NEW set, the
1059 * caller is responsible for filling in the contents
1065 * Uhhuh, somebody else created the same inode under
1066 * us. Use the old inode instead of the one we just
1069 spin_unlock(&inode_hash_lock
);
1070 destroy_inode(inode
);
1072 wait_on_inode(inode
);
1073 if (unlikely(inode_unhashed(inode
))) {
1081 spin_unlock(&inode_hash_lock
);
1082 destroy_inode(inode
);
1085 EXPORT_SYMBOL(iget5_locked
);
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb: super block of file system
1090 * @ino: inode number to get
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1100 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1102 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1103 struct inode
*inode
;
1105 spin_lock(&inode_hash_lock
);
1106 inode
= find_inode_fast(sb
, head
, ino
);
1107 spin_unlock(&inode_hash_lock
);
1109 wait_on_inode(inode
);
1110 if (unlikely(inode_unhashed(inode
))) {
1117 inode
= alloc_inode(sb
);
1121 spin_lock(&inode_hash_lock
);
1122 /* We released the lock, so.. */
1123 old
= find_inode_fast(sb
, head
, ino
);
1126 spin_lock(&inode
->i_lock
);
1127 inode
->i_state
= I_NEW
;
1128 hlist_add_head(&inode
->i_hash
, head
);
1129 spin_unlock(&inode
->i_lock
);
1130 inode_sb_list_add(inode
);
1131 spin_unlock(&inode_hash_lock
);
1133 /* Return the locked inode with I_NEW set, the
1134 * caller is responsible for filling in the contents
1140 * Uhhuh, somebody else created the same inode under
1141 * us. Use the old inode instead of the one we just
1144 spin_unlock(&inode_hash_lock
);
1145 destroy_inode(inode
);
1147 wait_on_inode(inode
);
1148 if (unlikely(inode_unhashed(inode
))) {
1155 EXPORT_SYMBOL(iget_locked
);
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1164 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1166 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1167 struct inode
*inode
;
1169 spin_lock(&inode_hash_lock
);
1170 hlist_for_each_entry(inode
, b
, i_hash
) {
1171 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1172 spin_unlock(&inode_hash_lock
);
1176 spin_unlock(&inode_hash_lock
);
1182 * iunique - get a unique inode number
1184 * @max_reserved: highest reserved inode number
1186 * Obtain an inode number that is unique on the system for a given
1187 * superblock. This is used by file systems that have no natural
1188 * permanent inode numbering system. An inode number is returned that
1189 * is higher than the reserved limit but unique.
1192 * With a large number of inodes live on the file system this function
1193 * currently becomes quite slow.
1195 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1198 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199 * error if st_ino won't fit in target struct field. Use 32bit counter
1200 * here to attempt to avoid that.
1202 static DEFINE_SPINLOCK(iunique_lock
);
1203 static unsigned int counter
;
1206 spin_lock(&iunique_lock
);
1208 if (counter
<= max_reserved
)
1209 counter
= max_reserved
+ 1;
1211 } while (!test_inode_iunique(sb
, res
));
1212 spin_unlock(&iunique_lock
);
1216 EXPORT_SYMBOL(iunique
);
1218 struct inode
*igrab(struct inode
*inode
)
1220 spin_lock(&inode
->i_lock
);
1221 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1223 spin_unlock(&inode
->i_lock
);
1225 spin_unlock(&inode
->i_lock
);
1227 * Handle the case where s_op->clear_inode is not been
1228 * called yet, and somebody is calling igrab
1229 * while the inode is getting freed.
1235 EXPORT_SYMBOL(igrab
);
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb: super block of file system to search
1240 * @hashval: hash value (usually inode number) to search for
1241 * @test: callback used for comparisons between inodes
1242 * @data: opaque data pointer to pass to @test
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode. You probably should be using ilookup5() instead.
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1253 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1254 int (*test
)(struct inode
*, void *), void *data
)
1256 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1257 struct inode
*inode
;
1259 spin_lock(&inode_hash_lock
);
1260 inode
= find_inode(sb
, head
, test
, data
);
1261 spin_unlock(&inode_hash_lock
);
1265 EXPORT_SYMBOL(ilookup5_nowait
);
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb: super block of file system to search
1270 * @hashval: hash value (usually inode number) to search for
1271 * @test: callback used for comparisons between inodes
1272 * @data: opaque data pointer to pass to @test
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count. Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1284 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1285 int (*test
)(struct inode
*, void *), void *data
)
1287 struct inode
*inode
;
1289 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1291 wait_on_inode(inode
);
1292 if (unlikely(inode_unhashed(inode
))) {
1299 EXPORT_SYMBOL(ilookup5
);
1302 * ilookup - search for an inode in the inode cache
1303 * @sb: super block of file system to search
1304 * @ino: inode number to search for
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1309 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1311 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1312 struct inode
*inode
;
1314 spin_lock(&inode_hash_lock
);
1315 inode
= find_inode_fast(sb
, head
, ino
);
1316 spin_unlock(&inode_hash_lock
);
1319 wait_on_inode(inode
);
1320 if (unlikely(inode_unhashed(inode
))) {
1327 EXPORT_SYMBOL(ilookup
);
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb: super block of file system to search
1332 * @hashval: hash value (usually inode number) to search for
1333 * @match: callback used for comparisons between inodes
1334 * @data: opaque data pointer to pass to @match
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped. The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1. It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction. The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1352 struct inode
*find_inode_nowait(struct super_block
*sb
,
1353 unsigned long hashval
,
1354 int (*match
)(struct inode
*, unsigned long,
1358 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1359 struct inode
*inode
, *ret_inode
= NULL
;
1362 spin_lock(&inode_hash_lock
);
1363 hlist_for_each_entry(inode
, head
, i_hash
) {
1364 if (inode
->i_sb
!= sb
)
1366 mval
= match(inode
, hashval
, data
);
1374 spin_unlock(&inode_hash_lock
);
1377 EXPORT_SYMBOL(find_inode_nowait
);
1379 int insert_inode_locked(struct inode
*inode
)
1381 struct super_block
*sb
= inode
->i_sb
;
1382 ino_t ino
= inode
->i_ino
;
1383 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1386 struct inode
*old
= NULL
;
1387 spin_lock(&inode_hash_lock
);
1388 hlist_for_each_entry(old
, head
, i_hash
) {
1389 if (old
->i_ino
!= ino
)
1391 if (old
->i_sb
!= sb
)
1393 spin_lock(&old
->i_lock
);
1394 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1395 spin_unlock(&old
->i_lock
);
1401 spin_lock(&inode
->i_lock
);
1402 inode
->i_state
|= I_NEW
;
1403 hlist_add_head(&inode
->i_hash
, head
);
1404 spin_unlock(&inode
->i_lock
);
1405 spin_unlock(&inode_hash_lock
);
1409 spin_unlock(&old
->i_lock
);
1410 spin_unlock(&inode_hash_lock
);
1412 if (unlikely(!inode_unhashed(old
))) {
1419 EXPORT_SYMBOL(insert_inode_locked
);
1421 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1422 int (*test
)(struct inode
*, void *), void *data
)
1424 struct super_block
*sb
= inode
->i_sb
;
1425 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1428 struct inode
*old
= NULL
;
1430 spin_lock(&inode_hash_lock
);
1431 hlist_for_each_entry(old
, head
, i_hash
) {
1432 if (old
->i_sb
!= sb
)
1434 if (!test(old
, data
))
1436 spin_lock(&old
->i_lock
);
1437 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1438 spin_unlock(&old
->i_lock
);
1444 spin_lock(&inode
->i_lock
);
1445 inode
->i_state
|= I_NEW
;
1446 hlist_add_head(&inode
->i_hash
, head
);
1447 spin_unlock(&inode
->i_lock
);
1448 spin_unlock(&inode_hash_lock
);
1452 spin_unlock(&old
->i_lock
);
1453 spin_unlock(&inode_hash_lock
);
1455 if (unlikely(!inode_unhashed(old
))) {
1462 EXPORT_SYMBOL(insert_inode_locked4
);
1465 int generic_delete_inode(struct inode
*inode
)
1469 EXPORT_SYMBOL(generic_delete_inode
);
1472 * Called when we're dropping the last reference
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour. If it tells
1477 * us to evict inode, do so. Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1481 static void iput_final(struct inode
*inode
)
1483 struct super_block
*sb
= inode
->i_sb
;
1484 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1487 WARN_ON(inode
->i_state
& I_NEW
);
1490 drop
= op
->drop_inode(inode
);
1492 drop
= generic_drop_inode(inode
);
1494 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1495 inode
->i_state
|= I_REFERENCED
;
1496 inode_add_lru(inode
);
1497 spin_unlock(&inode
->i_lock
);
1502 inode
->i_state
|= I_WILL_FREE
;
1503 spin_unlock(&inode
->i_lock
);
1504 write_inode_now(inode
, 1);
1505 spin_lock(&inode
->i_lock
);
1506 WARN_ON(inode
->i_state
& I_NEW
);
1507 inode
->i_state
&= ~I_WILL_FREE
;
1510 inode
->i_state
|= I_FREEING
;
1511 if (!list_empty(&inode
->i_lru
))
1512 inode_lru_list_del(inode
);
1513 spin_unlock(&inode
->i_lock
);
1519 * iput - put an inode
1520 * @inode: inode to put
1522 * Puts an inode, dropping its usage count. If the inode use count hits
1523 * zero, the inode is then freed and may also be destroyed.
1525 * Consequently, iput() can sleep.
1527 void iput(struct inode
*inode
)
1531 BUG_ON(inode
->i_state
& I_CLEAR
);
1533 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1534 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1535 atomic_inc(&inode
->i_count
);
1536 inode
->i_state
&= ~I_DIRTY_TIME
;
1537 spin_unlock(&inode
->i_lock
);
1538 trace_writeback_lazytime_iput(inode
);
1539 mark_inode_dirty_sync(inode
);
1545 EXPORT_SYMBOL(iput
);
1548 * bmap - find a block number in a file
1549 * @inode: inode of file
1550 * @block: block to find
1552 * Returns the block number on the device holding the inode that
1553 * is the disk block number for the block of the file requested.
1554 * That is, asked for block 4 of inode 1 the function will return the
1555 * disk block relative to the disk start that holds that block of the
1558 sector_t
bmap(struct inode
*inode
, sector_t block
)
1561 if (inode
->i_mapping
->a_ops
->bmap
)
1562 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1565 EXPORT_SYMBOL(bmap
);
1568 * Update times in overlayed inode from underlying real inode
1570 static void update_ovl_inode_times(struct dentry
*dentry
, struct inode
*inode
,
1574 struct inode
*realinode
= d_real_inode(dentry
);
1576 if (unlikely(inode
!= realinode
) &&
1577 (!timespec_equal(&inode
->i_mtime
, &realinode
->i_mtime
) ||
1578 !timespec_equal(&inode
->i_ctime
, &realinode
->i_ctime
))) {
1579 inode
->i_mtime
= realinode
->i_mtime
;
1580 inode
->i_ctime
= realinode
->i_ctime
;
1586 * With relative atime, only update atime if the previous atime is
1587 * earlier than either the ctime or mtime or if at least a day has
1588 * passed since the last atime update.
1590 static int relatime_need_update(const struct path
*path
, struct inode
*inode
,
1591 struct timespec now
, bool rcu
)
1594 if (!(path
->mnt
->mnt_flags
& MNT_RELATIME
))
1597 update_ovl_inode_times(path
->dentry
, inode
, rcu
);
1599 * Is mtime younger than atime? If yes, update atime:
1601 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1604 * Is ctime younger than atime? If yes, update atime:
1606 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1610 * Is the previous atime value older than a day? If yes,
1613 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1616 * Good, we can skip the atime update:
1621 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1623 int iflags
= I_DIRTY_TIME
;
1625 if (flags
& S_ATIME
)
1626 inode
->i_atime
= *time
;
1627 if (flags
& S_VERSION
)
1628 inode_inc_iversion(inode
);
1629 if (flags
& S_CTIME
)
1630 inode
->i_ctime
= *time
;
1631 if (flags
& S_MTIME
)
1632 inode
->i_mtime
= *time
;
1634 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
) || (flags
& S_VERSION
))
1635 iflags
|= I_DIRTY_SYNC
;
1636 __mark_inode_dirty(inode
, iflags
);
1639 EXPORT_SYMBOL(generic_update_time
);
1642 * This does the actual work of updating an inodes time or version. Must have
1643 * had called mnt_want_write() before calling this.
1645 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1647 int (*update_time
)(struct inode
*, struct timespec
*, int);
1649 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1650 generic_update_time
;
1652 return update_time(inode
, time
, flags
);
1656 * touch_atime - update the access time
1657 * @path: the &struct path to update
1658 * @inode: inode to update
1660 * Update the accessed time on an inode and mark it for writeback.
1661 * This function automatically handles read only file systems and media,
1662 * as well as the "noatime" flag and inode specific "noatime" markers.
1664 bool __atime_needs_update(const struct path
*path
, struct inode
*inode
,
1667 struct vfsmount
*mnt
= path
->mnt
;
1668 struct timespec now
;
1670 if (inode
->i_flags
& S_NOATIME
)
1673 /* Atime updates will likely cause i_uid and i_gid to be written
1674 * back improprely if their true value is unknown to the vfs.
1676 if (HAS_UNMAPPED_ID(inode
))
1679 if (IS_NOATIME(inode
))
1681 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1684 if (mnt
->mnt_flags
& MNT_NOATIME
)
1686 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1689 now
= current_time(inode
);
1691 if (!relatime_need_update(path
, inode
, now
, rcu
))
1694 if (timespec_equal(&inode
->i_atime
, &now
))
1700 void touch_atime(const struct path
*path
)
1702 struct vfsmount
*mnt
= path
->mnt
;
1703 struct inode
*inode
= d_inode(path
->dentry
);
1704 struct timespec now
;
1706 if (!__atime_needs_update(path
, inode
, false))
1709 if (!sb_start_write_trylock(inode
->i_sb
))
1712 if (__mnt_want_write(mnt
) != 0)
1715 * File systems can error out when updating inodes if they need to
1716 * allocate new space to modify an inode (such is the case for
1717 * Btrfs), but since we touch atime while walking down the path we
1718 * really don't care if we failed to update the atime of the file,
1719 * so just ignore the return value.
1720 * We may also fail on filesystems that have the ability to make parts
1721 * of the fs read only, e.g. subvolumes in Btrfs.
1723 now
= current_time(inode
);
1724 update_time(inode
, &now
, S_ATIME
);
1725 __mnt_drop_write(mnt
);
1727 sb_end_write(inode
->i_sb
);
1729 EXPORT_SYMBOL(touch_atime
);
1732 * The logic we want is
1734 * if suid or (sgid and xgrp)
1737 int should_remove_suid(struct dentry
*dentry
)
1739 umode_t mode
= d_inode(dentry
)->i_mode
;
1742 /* suid always must be killed */
1743 if (unlikely(mode
& S_ISUID
))
1744 kill
= ATTR_KILL_SUID
;
1747 * sgid without any exec bits is just a mandatory locking mark; leave
1748 * it alone. If some exec bits are set, it's a real sgid; kill it.
1750 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1751 kill
|= ATTR_KILL_SGID
;
1753 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1758 EXPORT_SYMBOL(should_remove_suid
);
1761 * Return mask of changes for notify_change() that need to be done as a
1762 * response to write or truncate. Return 0 if nothing has to be changed.
1763 * Negative value on error (change should be denied).
1765 int dentry_needs_remove_privs(struct dentry
*dentry
)
1767 struct inode
*inode
= d_inode(dentry
);
1771 if (IS_NOSEC(inode
))
1774 mask
= should_remove_suid(dentry
);
1775 ret
= security_inode_need_killpriv(dentry
);
1779 mask
|= ATTR_KILL_PRIV
;
1783 static int __remove_privs(struct dentry
*dentry
, int kill
)
1785 struct iattr newattrs
;
1787 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1789 * Note we call this on write, so notify_change will not
1790 * encounter any conflicting delegations:
1792 return notify_change(dentry
, &newattrs
, NULL
);
1796 * Remove special file priviledges (suid, capabilities) when file is written
1799 int file_remove_privs(struct file
*file
)
1801 struct dentry
*dentry
= file_dentry(file
);
1802 struct inode
*inode
= file_inode(file
);
1806 /* Fast path for nothing security related */
1807 if (IS_NOSEC(inode
))
1810 kill
= dentry_needs_remove_privs(dentry
);
1814 error
= __remove_privs(dentry
, kill
);
1816 inode_has_no_xattr(inode
);
1820 EXPORT_SYMBOL(file_remove_privs
);
1823 * file_update_time - update mtime and ctime time
1824 * @file: file accessed
1826 * Update the mtime and ctime members of an inode and mark the inode
1827 * for writeback. Note that this function is meant exclusively for
1828 * usage in the file write path of filesystems, and filesystems may
1829 * choose to explicitly ignore update via this function with the
1830 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1831 * timestamps are handled by the server. This can return an error for
1832 * file systems who need to allocate space in order to update an inode.
1835 int file_update_time(struct file
*file
)
1837 struct inode
*inode
= file_inode(file
);
1838 struct timespec now
;
1842 /* First try to exhaust all avenues to not sync */
1843 if (IS_NOCMTIME(inode
))
1846 now
= current_time(inode
);
1847 if (!timespec_equal(&inode
->i_mtime
, &now
))
1850 if (!timespec_equal(&inode
->i_ctime
, &now
))
1853 if (IS_I_VERSION(inode
))
1854 sync_it
|= S_VERSION
;
1859 /* Finally allowed to write? Takes lock. */
1860 if (__mnt_want_write_file(file
))
1863 ret
= update_time(inode
, &now
, sync_it
);
1864 __mnt_drop_write_file(file
);
1868 EXPORT_SYMBOL(file_update_time
);
1870 int inode_needs_sync(struct inode
*inode
)
1874 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1878 EXPORT_SYMBOL(inode_needs_sync
);
1881 * If we try to find an inode in the inode hash while it is being
1882 * deleted, we have to wait until the filesystem completes its
1883 * deletion before reporting that it isn't found. This function waits
1884 * until the deletion _might_ have completed. Callers are responsible
1885 * to recheck inode state.
1887 * It doesn't matter if I_NEW is not set initially, a call to
1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1891 static void __wait_on_freeing_inode(struct inode
*inode
)
1893 wait_queue_head_t
*wq
;
1894 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1895 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1896 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1897 spin_unlock(&inode
->i_lock
);
1898 spin_unlock(&inode_hash_lock
);
1900 finish_wait(wq
, &wait
.wait
);
1901 spin_lock(&inode_hash_lock
);
1904 static __initdata
unsigned long ihash_entries
;
1905 static int __init
set_ihash_entries(char *str
)
1909 ihash_entries
= simple_strtoul(str
, &str
, 0);
1912 __setup("ihash_entries=", set_ihash_entries
);
1915 * Initialize the waitqueues and inode hash table.
1917 void __init
inode_init_early(void)
1921 /* If hashes are distributed across NUMA nodes, defer
1922 * hash allocation until vmalloc space is available.
1928 alloc_large_system_hash("Inode-cache",
1929 sizeof(struct hlist_head
),
1938 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1939 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1942 void __init
inode_init(void)
1946 /* inode slab cache */
1947 inode_cachep
= kmem_cache_create("inode_cache",
1948 sizeof(struct inode
),
1950 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1951 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1954 /* Hash may have been set up in inode_init_early */
1959 alloc_large_system_hash("Inode-cache",
1960 sizeof(struct hlist_head
),
1969 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1970 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1973 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1975 inode
->i_mode
= mode
;
1976 if (S_ISCHR(mode
)) {
1977 inode
->i_fop
= &def_chr_fops
;
1978 inode
->i_rdev
= rdev
;
1979 } else if (S_ISBLK(mode
)) {
1980 inode
->i_fop
= &def_blk_fops
;
1981 inode
->i_rdev
= rdev
;
1982 } else if (S_ISFIFO(mode
))
1983 inode
->i_fop
= &pipefifo_fops
;
1984 else if (S_ISSOCK(mode
))
1985 ; /* leave it no_open_fops */
1987 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1988 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1991 EXPORT_SYMBOL(init_special_inode
);
1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1996 * @dir: Directory inode
1997 * @mode: mode of the new inode
1999 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2002 inode
->i_uid
= current_fsuid();
2003 if (dir
&& dir
->i_mode
& S_ISGID
) {
2004 inode
->i_gid
= dir
->i_gid
;
2008 inode
->i_gid
= current_fsgid();
2009 inode
->i_mode
= mode
;
2011 EXPORT_SYMBOL(inode_init_owner
);
2014 * inode_owner_or_capable - check current task permissions to inode
2015 * @inode: inode being checked
2017 * Return true if current either has CAP_FOWNER in a namespace with the
2018 * inode owner uid mapped, or owns the file.
2020 bool inode_owner_or_capable(const struct inode
*inode
)
2022 struct user_namespace
*ns
;
2024 if (uid_eq(current_fsuid(), inode
->i_uid
))
2027 ns
= current_user_ns();
2028 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
2032 EXPORT_SYMBOL(inode_owner_or_capable
);
2035 * Direct i/o helper functions
2037 static void __inode_dio_wait(struct inode
*inode
)
2039 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2040 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2043 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
2044 if (atomic_read(&inode
->i_dio_count
))
2046 } while (atomic_read(&inode
->i_dio_count
));
2047 finish_wait(wq
, &q
.wait
);
2051 * inode_dio_wait - wait for outstanding DIO requests to finish
2052 * @inode: inode to wait for
2054 * Waits for all pending direct I/O requests to finish so that we can
2055 * proceed with a truncate or equivalent operation.
2057 * Must be called under a lock that serializes taking new references
2058 * to i_dio_count, usually by inode->i_mutex.
2060 void inode_dio_wait(struct inode
*inode
)
2062 if (atomic_read(&inode
->i_dio_count
))
2063 __inode_dio_wait(inode
);
2065 EXPORT_SYMBOL(inode_dio_wait
);
2068 * inode_set_flags - atomically set some inode flags
2070 * Note: the caller should be holding i_mutex, or else be sure that
2071 * they have exclusive access to the inode structure (i.e., while the
2072 * inode is being instantiated). The reason for the cmpxchg() loop
2073 * --- which wouldn't be necessary if all code paths which modify
2074 * i_flags actually followed this rule, is that there is at least one
2075 * code path which doesn't today so we use cmpxchg() out of an abundance
2078 * In the long run, i_mutex is overkill, and we should probably look
2079 * at using the i_lock spinlock to protect i_flags, and then make sure
2080 * it is so documented in include/linux/fs.h and that all code follows
2081 * the locking convention!!
2083 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2086 unsigned int old_flags
, new_flags
;
2088 WARN_ON_ONCE(flags
& ~mask
);
2090 old_flags
= ACCESS_ONCE(inode
->i_flags
);
2091 new_flags
= (old_flags
& ~mask
) | flags
;
2092 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2093 new_flags
) != old_flags
));
2095 EXPORT_SYMBOL(inode_set_flags
);
2097 void inode_nohighmem(struct inode
*inode
)
2099 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2101 EXPORT_SYMBOL(inode_nohighmem
);
2104 * current_time - Return FS time
2107 * Return the current time truncated to the time granularity supported by
2110 * Note that inode and inode->sb cannot be NULL.
2111 * Otherwise, the function warns and returns time without truncation.
2113 struct timespec
current_time(struct inode
*inode
)
2115 struct timespec now
= current_kernel_time();
2117 if (unlikely(!inode
->i_sb
)) {
2118 WARN(1, "current_time() called with uninitialized super_block in the inode");
2122 return timespec_trunc(now
, inode
->i_sb
->s_time_gran
);
2124 EXPORT_SYMBOL(current_time
);