ath9k: Set PM field in frame control when in PS mode
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath / ath9k / main.c
blob77fbc46624b7a80e788072dc03596030112efc1d
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 #define ATH_PCI_VERSION "0.1"
22 static char *dev_info = "ath9k";
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
33 /* We use the hw_value as an index into our private channel structure */
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
37 .hw_value = (_idx), \
38 .max_power = 30, \
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
44 .hw_value = (_idx), \
45 .max_power = 30, \
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
51 * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
72 * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
110 sc->cur_rate_table =
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
113 sc->cur_rate_table =
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
116 sc->cur_rate_table =
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 else
119 sc->cur_rate_table =
120 sc->hw_rate_table[ATH9K_MODE_11G];
121 break;
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
124 sc->cur_rate_table =
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
127 sc->cur_rate_table =
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
130 sc->cur_rate_table =
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 else
133 sc->cur_rate_table =
134 sc->hw_rate_table[ATH9K_MODE_11A];
135 break;
136 default:
137 BUG_ON(1);
138 break;
142 static void ath_update_txpow(struct ath_softc *sc)
144 struct ath_hw *ah = sc->sc_ah;
145 u32 txpow;
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
155 static u8 parse_mpdudensity(u8 mpdudensity)
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
160 * 1 for 1/4 us
161 * 2 for 1/2 us
162 * 3 for 1 us
163 * 4 for 2 us
164 * 5 for 4 us
165 * 6 for 8 us
166 * 7 for 16 us
168 switch (mpdudensity) {
169 case 0:
170 return 0;
171 case 1:
172 case 2:
173 case 3:
174 /* Our lower layer calculations limit our precision to
175 1 microsecond */
176 return 1;
177 case 4:
178 return 2;
179 case 5:
180 return 4;
181 case 6:
182 return 8;
183 case 7:
184 return 16;
185 default:
186 return 0;
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
192 const struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
195 int i, maxrates;
197 switch (band) {
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 break;
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203 break;
204 default:
205 break;
208 if (rate_table == NULL)
209 return;
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
216 else
217 maxrates = rate_table->rate_cnt;
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
227 sband->n_bitrates++;
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
235 * Set/change channels. If the channel is really being changed, it's done
236 * by reseting the chip. To accomplish this we must first cleanup any pending
237 * DMA, then restart stuff.
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240 struct ath9k_channel *hchan)
242 struct ath_hw *ah = sc->sc_ah;
243 bool fastcc = true, stopped;
244 struct ieee80211_channel *channel = hw->conf.channel;
245 int r;
247 if (sc->sc_flags & SC_OP_INVALID)
248 return -EIO;
250 ath9k_ps_wakeup(sc);
253 * This is only performed if the channel settings have
254 * actually changed.
256 * To switch channels clear any pending DMA operations;
257 * wait long enough for the RX fifo to drain, reset the
258 * hardware at the new frequency, and then re-enable
259 * the relevant bits of the h/w.
261 ath9k_hw_set_interrupts(ah, 0);
262 ath_drain_all_txq(sc, false);
263 stopped = ath_stoprecv(sc);
265 /* XXX: do not flush receive queue here. We don't want
266 * to flush data frames already in queue because of
267 * changing channel. */
269 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270 fastcc = false;
272 DPRINTF(sc, ATH_DBG_CONFIG,
273 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274 sc->sc_ah->curchan->channel,
275 channel->center_freq, sc->tx_chan_width);
277 spin_lock_bh(&sc->sc_resetlock);
279 r = ath9k_hw_reset(ah, hchan, fastcc);
280 if (r) {
281 DPRINTF(sc, ATH_DBG_FATAL,
282 "Unable to reset channel (%u Mhz) "
283 "reset status %d\n",
284 channel->center_freq, r);
285 spin_unlock_bh(&sc->sc_resetlock);
286 return r;
288 spin_unlock_bh(&sc->sc_resetlock);
290 sc->sc_flags &= ~SC_OP_FULL_RESET;
292 if (ath_startrecv(sc) != 0) {
293 DPRINTF(sc, ATH_DBG_FATAL,
294 "Unable to restart recv logic\n");
295 return -EIO;
298 ath_cache_conf_rate(sc, &hw->conf);
299 ath_update_txpow(sc);
300 ath9k_hw_set_interrupts(ah, sc->imask);
301 ath9k_ps_restore(sc);
302 return 0;
306 * This routine performs the periodic noise floor calibration function
307 * that is used to adjust and optimize the chip performance. This
308 * takes environmental changes (location, temperature) into account.
309 * When the task is complete, it reschedules itself depending on the
310 * appropriate interval that was calculated.
312 static void ath_ani_calibrate(unsigned long data)
314 struct ath_softc *sc = (struct ath_softc *)data;
315 struct ath_hw *ah = sc->sc_ah;
316 bool longcal = false;
317 bool shortcal = false;
318 bool aniflag = false;
319 unsigned int timestamp = jiffies_to_msecs(jiffies);
320 u32 cal_interval, short_cal_interval;
322 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
326 * don't calibrate when we're scanning.
327 * we are most likely not on our home channel.
329 if (sc->sc_flags & SC_OP_SCANNING)
330 goto set_timer;
332 /* Only calibrate if awake */
333 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
334 goto set_timer;
336 ath9k_ps_wakeup(sc);
338 /* Long calibration runs independently of short calibration. */
339 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
340 longcal = true;
341 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
342 sc->ani.longcal_timer = timestamp;
345 /* Short calibration applies only while caldone is false */
346 if (!sc->ani.caldone) {
347 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
348 shortcal = true;
349 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
350 sc->ani.shortcal_timer = timestamp;
351 sc->ani.resetcal_timer = timestamp;
353 } else {
354 if ((timestamp - sc->ani.resetcal_timer) >=
355 ATH_RESTART_CALINTERVAL) {
356 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
357 if (sc->ani.caldone)
358 sc->ani.resetcal_timer = timestamp;
362 /* Verify whether we must check ANI */
363 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
364 aniflag = true;
365 sc->ani.checkani_timer = timestamp;
368 /* Skip all processing if there's nothing to do. */
369 if (longcal || shortcal || aniflag) {
370 /* Call ANI routine if necessary */
371 if (aniflag)
372 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
374 /* Perform calibration if necessary */
375 if (longcal || shortcal) {
376 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
377 sc->rx_chainmask, longcal);
379 if (longcal)
380 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
381 ah->curchan);
383 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
384 ah->curchan->channel, ah->curchan->channelFlags,
385 sc->ani.noise_floor);
389 ath9k_ps_restore(sc);
391 set_timer:
393 * Set timer interval based on previous results.
394 * The interval must be the shortest necessary to satisfy ANI,
395 * short calibration and long calibration.
397 cal_interval = ATH_LONG_CALINTERVAL;
398 if (sc->sc_ah->config.enable_ani)
399 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
400 if (!sc->ani.caldone)
401 cal_interval = min(cal_interval, (u32)short_cal_interval);
403 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
406 static void ath_start_ani(struct ath_softc *sc)
408 unsigned long timestamp = jiffies_to_msecs(jiffies);
410 sc->ani.longcal_timer = timestamp;
411 sc->ani.shortcal_timer = timestamp;
412 sc->ani.checkani_timer = timestamp;
414 mod_timer(&sc->ani.timer,
415 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
419 * Update tx/rx chainmask. For legacy association,
420 * hard code chainmask to 1x1, for 11n association, use
421 * the chainmask configuration, for bt coexistence, use
422 * the chainmask configuration even in legacy mode.
424 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
426 if (is_ht ||
427 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
428 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
429 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
430 } else {
431 sc->tx_chainmask = 1;
432 sc->rx_chainmask = 1;
435 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
436 sc->tx_chainmask, sc->rx_chainmask);
439 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
441 struct ath_node *an;
443 an = (struct ath_node *)sta->drv_priv;
445 if (sc->sc_flags & SC_OP_TXAGGR) {
446 ath_tx_node_init(sc, an);
447 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
448 sta->ht_cap.ampdu_factor);
449 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
453 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
455 struct ath_node *an = (struct ath_node *)sta->drv_priv;
457 if (sc->sc_flags & SC_OP_TXAGGR)
458 ath_tx_node_cleanup(sc, an);
461 static void ath9k_tasklet(unsigned long data)
463 struct ath_softc *sc = (struct ath_softc *)data;
464 u32 status = sc->intrstatus;
466 ath9k_ps_wakeup(sc);
468 if (status & ATH9K_INT_FATAL) {
469 ath_reset(sc, false);
470 ath9k_ps_restore(sc);
471 return;
474 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
475 spin_lock_bh(&sc->rx.rxflushlock);
476 ath_rx_tasklet(sc, 0);
477 spin_unlock_bh(&sc->rx.rxflushlock);
480 if (status & ATH9K_INT_TX)
481 ath_tx_tasklet(sc);
483 if ((status & ATH9K_INT_TSFOOR) &&
484 (sc->hw->conf.flags & IEEE80211_CONF_PS)) {
486 * TSF sync does not look correct; remain awake to sync with
487 * the next Beacon.
489 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
490 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
493 /* re-enable hardware interrupt */
494 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
495 ath9k_ps_restore(sc);
498 irqreturn_t ath_isr(int irq, void *dev)
500 #define SCHED_INTR ( \
501 ATH9K_INT_FATAL | \
502 ATH9K_INT_RXORN | \
503 ATH9K_INT_RXEOL | \
504 ATH9K_INT_RX | \
505 ATH9K_INT_TX | \
506 ATH9K_INT_BMISS | \
507 ATH9K_INT_CST | \
508 ATH9K_INT_TSFOOR)
510 struct ath_softc *sc = dev;
511 struct ath_hw *ah = sc->sc_ah;
512 enum ath9k_int status;
513 bool sched = false;
516 * The hardware is not ready/present, don't
517 * touch anything. Note this can happen early
518 * on if the IRQ is shared.
520 if (sc->sc_flags & SC_OP_INVALID)
521 return IRQ_NONE;
524 /* shared irq, not for us */
526 if (!ath9k_hw_intrpend(ah))
527 return IRQ_NONE;
530 * Figure out the reason(s) for the interrupt. Note
531 * that the hal returns a pseudo-ISR that may include
532 * bits we haven't explicitly enabled so we mask the
533 * value to insure we only process bits we requested.
535 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
536 status &= sc->imask; /* discard unasked-for bits */
539 * If there are no status bits set, then this interrupt was not
540 * for me (should have been caught above).
542 if (!status)
543 return IRQ_NONE;
545 /* Cache the status */
546 sc->intrstatus = status;
548 if (status & SCHED_INTR)
549 sched = true;
552 * If a FATAL or RXORN interrupt is received, we have to reset the
553 * chip immediately.
555 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
556 goto chip_reset;
558 if (status & ATH9K_INT_SWBA)
559 tasklet_schedule(&sc->bcon_tasklet);
561 if (status & ATH9K_INT_TXURN)
562 ath9k_hw_updatetxtriglevel(ah, true);
564 if (status & ATH9K_INT_MIB) {
566 * Disable interrupts until we service the MIB
567 * interrupt; otherwise it will continue to
568 * fire.
570 ath9k_hw_set_interrupts(ah, 0);
572 * Let the hal handle the event. We assume
573 * it will clear whatever condition caused
574 * the interrupt.
576 ath9k_hw_procmibevent(ah, &sc->nodestats);
577 ath9k_hw_set_interrupts(ah, sc->imask);
580 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
581 if (status & ATH9K_INT_TIM_TIMER) {
582 /* Clear RxAbort bit so that we can
583 * receive frames */
584 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
585 ath9k_hw_setrxabort(sc->sc_ah, 0);
586 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
589 chip_reset:
591 ath_debug_stat_interrupt(sc, status);
593 if (sched) {
594 /* turn off every interrupt except SWBA */
595 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
596 tasklet_schedule(&sc->intr_tq);
599 return IRQ_HANDLED;
601 #undef SCHED_INTR
604 static u32 ath_get_extchanmode(struct ath_softc *sc,
605 struct ieee80211_channel *chan,
606 enum nl80211_channel_type channel_type)
608 u32 chanmode = 0;
610 switch (chan->band) {
611 case IEEE80211_BAND_2GHZ:
612 switch(channel_type) {
613 case NL80211_CHAN_NO_HT:
614 case NL80211_CHAN_HT20:
615 chanmode = CHANNEL_G_HT20;
616 break;
617 case NL80211_CHAN_HT40PLUS:
618 chanmode = CHANNEL_G_HT40PLUS;
619 break;
620 case NL80211_CHAN_HT40MINUS:
621 chanmode = CHANNEL_G_HT40MINUS;
622 break;
624 break;
625 case IEEE80211_BAND_5GHZ:
626 switch(channel_type) {
627 case NL80211_CHAN_NO_HT:
628 case NL80211_CHAN_HT20:
629 chanmode = CHANNEL_A_HT20;
630 break;
631 case NL80211_CHAN_HT40PLUS:
632 chanmode = CHANNEL_A_HT40PLUS;
633 break;
634 case NL80211_CHAN_HT40MINUS:
635 chanmode = CHANNEL_A_HT40MINUS;
636 break;
638 break;
639 default:
640 break;
643 return chanmode;
646 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
647 struct ath9k_keyval *hk, const u8 *addr,
648 bool authenticator)
650 const u8 *key_rxmic;
651 const u8 *key_txmic;
653 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
654 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
656 if (addr == NULL) {
658 * Group key installation - only two key cache entries are used
659 * regardless of splitmic capability since group key is only
660 * used either for TX or RX.
662 if (authenticator) {
663 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
664 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
665 } else {
666 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
669 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
671 if (!sc->splitmic) {
672 /* TX and RX keys share the same key cache entry. */
673 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
674 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
675 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
678 /* Separate key cache entries for TX and RX */
680 /* TX key goes at first index, RX key at +32. */
681 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
682 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
683 /* TX MIC entry failed. No need to proceed further */
684 DPRINTF(sc, ATH_DBG_FATAL,
685 "Setting TX MIC Key Failed\n");
686 return 0;
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 /* XXX delete tx key on failure? */
691 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
694 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
696 int i;
698 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
699 if (test_bit(i, sc->keymap) ||
700 test_bit(i + 64, sc->keymap))
701 continue; /* At least one part of TKIP key allocated */
702 if (sc->splitmic &&
703 (test_bit(i + 32, sc->keymap) ||
704 test_bit(i + 64 + 32, sc->keymap)))
705 continue; /* At least one part of TKIP key allocated */
707 /* Found a free slot for a TKIP key */
708 return i;
710 return -1;
713 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
715 int i;
717 /* First, try to find slots that would not be available for TKIP. */
718 if (sc->splitmic) {
719 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
720 if (!test_bit(i, sc->keymap) &&
721 (test_bit(i + 32, sc->keymap) ||
722 test_bit(i + 64, sc->keymap) ||
723 test_bit(i + 64 + 32, sc->keymap)))
724 return i;
725 if (!test_bit(i + 32, sc->keymap) &&
726 (test_bit(i, sc->keymap) ||
727 test_bit(i + 64, sc->keymap) ||
728 test_bit(i + 64 + 32, sc->keymap)))
729 return i + 32;
730 if (!test_bit(i + 64, sc->keymap) &&
731 (test_bit(i , sc->keymap) ||
732 test_bit(i + 32, sc->keymap) ||
733 test_bit(i + 64 + 32, sc->keymap)))
734 return i + 64;
735 if (!test_bit(i + 64 + 32, sc->keymap) &&
736 (test_bit(i, sc->keymap) ||
737 test_bit(i + 32, sc->keymap) ||
738 test_bit(i + 64, sc->keymap)))
739 return i + 64 + 32;
741 } else {
742 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
743 if (!test_bit(i, sc->keymap) &&
744 test_bit(i + 64, sc->keymap))
745 return i;
746 if (test_bit(i, sc->keymap) &&
747 !test_bit(i + 64, sc->keymap))
748 return i + 64;
752 /* No partially used TKIP slots, pick any available slot */
753 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
754 /* Do not allow slots that could be needed for TKIP group keys
755 * to be used. This limitation could be removed if we know that
756 * TKIP will not be used. */
757 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
758 continue;
759 if (sc->splitmic) {
760 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
761 continue;
762 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
763 continue;
766 if (!test_bit(i, sc->keymap))
767 return i; /* Found a free slot for a key */
770 /* No free slot found */
771 return -1;
774 static int ath_key_config(struct ath_softc *sc,
775 struct ieee80211_vif *vif,
776 struct ieee80211_sta *sta,
777 struct ieee80211_key_conf *key)
779 struct ath9k_keyval hk;
780 const u8 *mac = NULL;
781 int ret = 0;
782 int idx;
784 memset(&hk, 0, sizeof(hk));
786 switch (key->alg) {
787 case ALG_WEP:
788 hk.kv_type = ATH9K_CIPHER_WEP;
789 break;
790 case ALG_TKIP:
791 hk.kv_type = ATH9K_CIPHER_TKIP;
792 break;
793 case ALG_CCMP:
794 hk.kv_type = ATH9K_CIPHER_AES_CCM;
795 break;
796 default:
797 return -EOPNOTSUPP;
800 hk.kv_len = key->keylen;
801 memcpy(hk.kv_val, key->key, key->keylen);
803 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
804 /* For now, use the default keys for broadcast keys. This may
805 * need to change with virtual interfaces. */
806 idx = key->keyidx;
807 } else if (key->keyidx) {
808 if (WARN_ON(!sta))
809 return -EOPNOTSUPP;
810 mac = sta->addr;
812 if (vif->type != NL80211_IFTYPE_AP) {
813 /* Only keyidx 0 should be used with unicast key, but
814 * allow this for client mode for now. */
815 idx = key->keyidx;
816 } else
817 return -EIO;
818 } else {
819 if (WARN_ON(!sta))
820 return -EOPNOTSUPP;
821 mac = sta->addr;
823 if (key->alg == ALG_TKIP)
824 idx = ath_reserve_key_cache_slot_tkip(sc);
825 else
826 idx = ath_reserve_key_cache_slot(sc);
827 if (idx < 0)
828 return -ENOSPC; /* no free key cache entries */
831 if (key->alg == ALG_TKIP)
832 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
833 vif->type == NL80211_IFTYPE_AP);
834 else
835 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
837 if (!ret)
838 return -EIO;
840 set_bit(idx, sc->keymap);
841 if (key->alg == ALG_TKIP) {
842 set_bit(idx + 64, sc->keymap);
843 if (sc->splitmic) {
844 set_bit(idx + 32, sc->keymap);
845 set_bit(idx + 64 + 32, sc->keymap);
849 return idx;
852 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
854 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
855 if (key->hw_key_idx < IEEE80211_WEP_NKID)
856 return;
858 clear_bit(key->hw_key_idx, sc->keymap);
859 if (key->alg != ALG_TKIP)
860 return;
862 clear_bit(key->hw_key_idx + 64, sc->keymap);
863 if (sc->splitmic) {
864 clear_bit(key->hw_key_idx + 32, sc->keymap);
865 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
869 static void setup_ht_cap(struct ath_softc *sc,
870 struct ieee80211_sta_ht_cap *ht_info)
872 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
873 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
875 ht_info->ht_supported = true;
876 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
877 IEEE80211_HT_CAP_SM_PS |
878 IEEE80211_HT_CAP_SGI_40 |
879 IEEE80211_HT_CAP_DSSSCCK40;
881 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
882 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
884 /* set up supported mcs set */
885 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
887 switch(sc->rx_chainmask) {
888 case 1:
889 ht_info->mcs.rx_mask[0] = 0xff;
890 break;
891 case 3:
892 case 5:
893 case 7:
894 default:
895 ht_info->mcs.rx_mask[0] = 0xff;
896 ht_info->mcs.rx_mask[1] = 0xff;
897 break;
900 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
903 static void ath9k_bss_assoc_info(struct ath_softc *sc,
904 struct ieee80211_vif *vif,
905 struct ieee80211_bss_conf *bss_conf)
907 struct ath_vif *avp = (void *)vif->drv_priv;
909 if (bss_conf->assoc) {
910 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
911 bss_conf->aid, sc->curbssid);
913 /* New association, store aid */
914 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
915 sc->curaid = bss_conf->aid;
916 ath9k_hw_write_associd(sc);
919 /* Configure the beacon */
920 ath_beacon_config(sc, vif);
922 /* Reset rssi stats */
923 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
924 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
925 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
926 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
928 ath_start_ani(sc);
929 } else {
930 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
931 sc->curaid = 0;
935 /********************************/
936 /* LED functions */
937 /********************************/
939 static void ath_led_blink_work(struct work_struct *work)
941 struct ath_softc *sc = container_of(work, struct ath_softc,
942 ath_led_blink_work.work);
944 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
945 return;
947 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
948 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
949 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
950 else
951 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
952 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
954 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
955 (sc->sc_flags & SC_OP_LED_ON) ?
956 msecs_to_jiffies(sc->led_off_duration) :
957 msecs_to_jiffies(sc->led_on_duration));
959 sc->led_on_duration = sc->led_on_cnt ?
960 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
961 ATH_LED_ON_DURATION_IDLE;
962 sc->led_off_duration = sc->led_off_cnt ?
963 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
964 ATH_LED_OFF_DURATION_IDLE;
965 sc->led_on_cnt = sc->led_off_cnt = 0;
966 if (sc->sc_flags & SC_OP_LED_ON)
967 sc->sc_flags &= ~SC_OP_LED_ON;
968 else
969 sc->sc_flags |= SC_OP_LED_ON;
972 static void ath_led_brightness(struct led_classdev *led_cdev,
973 enum led_brightness brightness)
975 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
976 struct ath_softc *sc = led->sc;
978 switch (brightness) {
979 case LED_OFF:
980 if (led->led_type == ATH_LED_ASSOC ||
981 led->led_type == ATH_LED_RADIO) {
982 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
983 (led->led_type == ATH_LED_RADIO));
984 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
985 if (led->led_type == ATH_LED_RADIO)
986 sc->sc_flags &= ~SC_OP_LED_ON;
987 } else {
988 sc->led_off_cnt++;
990 break;
991 case LED_FULL:
992 if (led->led_type == ATH_LED_ASSOC) {
993 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
994 queue_delayed_work(sc->hw->workqueue,
995 &sc->ath_led_blink_work, 0);
996 } else if (led->led_type == ATH_LED_RADIO) {
997 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
998 sc->sc_flags |= SC_OP_LED_ON;
999 } else {
1000 sc->led_on_cnt++;
1002 break;
1003 default:
1004 break;
1008 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1009 char *trigger)
1011 int ret;
1013 led->sc = sc;
1014 led->led_cdev.name = led->name;
1015 led->led_cdev.default_trigger = trigger;
1016 led->led_cdev.brightness_set = ath_led_brightness;
1018 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1019 if (ret)
1020 DPRINTF(sc, ATH_DBG_FATAL,
1021 "Failed to register led:%s", led->name);
1022 else
1023 led->registered = 1;
1024 return ret;
1027 static void ath_unregister_led(struct ath_led *led)
1029 if (led->registered) {
1030 led_classdev_unregister(&led->led_cdev);
1031 led->registered = 0;
1035 static void ath_deinit_leds(struct ath_softc *sc)
1037 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1038 ath_unregister_led(&sc->assoc_led);
1039 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1040 ath_unregister_led(&sc->tx_led);
1041 ath_unregister_led(&sc->rx_led);
1042 ath_unregister_led(&sc->radio_led);
1043 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1046 static void ath_init_leds(struct ath_softc *sc)
1048 char *trigger;
1049 int ret;
1051 /* Configure gpio 1 for output */
1052 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1053 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1054 /* LED off, active low */
1055 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1057 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1059 trigger = ieee80211_get_radio_led_name(sc->hw);
1060 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1061 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1062 ret = ath_register_led(sc, &sc->radio_led, trigger);
1063 sc->radio_led.led_type = ATH_LED_RADIO;
1064 if (ret)
1065 goto fail;
1067 trigger = ieee80211_get_assoc_led_name(sc->hw);
1068 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1069 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1070 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1071 sc->assoc_led.led_type = ATH_LED_ASSOC;
1072 if (ret)
1073 goto fail;
1075 trigger = ieee80211_get_tx_led_name(sc->hw);
1076 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1077 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1078 ret = ath_register_led(sc, &sc->tx_led, trigger);
1079 sc->tx_led.led_type = ATH_LED_TX;
1080 if (ret)
1081 goto fail;
1083 trigger = ieee80211_get_rx_led_name(sc->hw);
1084 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1085 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1086 ret = ath_register_led(sc, &sc->rx_led, trigger);
1087 sc->rx_led.led_type = ATH_LED_RX;
1088 if (ret)
1089 goto fail;
1091 return;
1093 fail:
1094 ath_deinit_leds(sc);
1097 void ath_radio_enable(struct ath_softc *sc)
1099 struct ath_hw *ah = sc->sc_ah;
1100 struct ieee80211_channel *channel = sc->hw->conf.channel;
1101 int r;
1103 ath9k_ps_wakeup(sc);
1104 ath9k_hw_configpcipowersave(ah, 0);
1106 spin_lock_bh(&sc->sc_resetlock);
1107 r = ath9k_hw_reset(ah, ah->curchan, false);
1108 if (r) {
1109 DPRINTF(sc, ATH_DBG_FATAL,
1110 "Unable to reset channel %u (%uMhz) ",
1111 "reset status %d\n",
1112 channel->center_freq, r);
1114 spin_unlock_bh(&sc->sc_resetlock);
1116 ath_update_txpow(sc);
1117 if (ath_startrecv(sc) != 0) {
1118 DPRINTF(sc, ATH_DBG_FATAL,
1119 "Unable to restart recv logic\n");
1120 return;
1123 if (sc->sc_flags & SC_OP_BEACONS)
1124 ath_beacon_config(sc, NULL); /* restart beacons */
1126 /* Re-Enable interrupts */
1127 ath9k_hw_set_interrupts(ah, sc->imask);
1129 /* Enable LED */
1130 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1131 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1132 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1134 ieee80211_wake_queues(sc->hw);
1135 ath9k_ps_restore(sc);
1138 void ath_radio_disable(struct ath_softc *sc)
1140 struct ath_hw *ah = sc->sc_ah;
1141 struct ieee80211_channel *channel = sc->hw->conf.channel;
1142 int r;
1144 ath9k_ps_wakeup(sc);
1145 ieee80211_stop_queues(sc->hw);
1147 /* Disable LED */
1148 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1149 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1151 /* Disable interrupts */
1152 ath9k_hw_set_interrupts(ah, 0);
1154 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1155 ath_stoprecv(sc); /* turn off frame recv */
1156 ath_flushrecv(sc); /* flush recv queue */
1158 spin_lock_bh(&sc->sc_resetlock);
1159 r = ath9k_hw_reset(ah, ah->curchan, false);
1160 if (r) {
1161 DPRINTF(sc, ATH_DBG_FATAL,
1162 "Unable to reset channel %u (%uMhz) "
1163 "reset status %d\n",
1164 channel->center_freq, r);
1166 spin_unlock_bh(&sc->sc_resetlock);
1168 ath9k_hw_phy_disable(ah);
1169 ath9k_hw_configpcipowersave(ah, 1);
1170 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1171 ath9k_ps_restore(sc);
1174 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1176 /*******************/
1177 /* Rfkill */
1178 /*******************/
1180 static bool ath_is_rfkill_set(struct ath_softc *sc)
1182 struct ath_hw *ah = sc->sc_ah;
1184 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1185 ah->rfkill_polarity;
1188 /* h/w rfkill poll function */
1189 static void ath_rfkill_poll(struct work_struct *work)
1191 struct ath_softc *sc = container_of(work, struct ath_softc,
1192 rf_kill.rfkill_poll.work);
1193 bool radio_on;
1195 if (sc->sc_flags & SC_OP_INVALID)
1196 return;
1198 radio_on = !ath_is_rfkill_set(sc);
1201 * enable/disable radio only when there is a
1202 * state change in RF switch
1204 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1205 enum rfkill_state state;
1207 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1208 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1209 : RFKILL_STATE_HARD_BLOCKED;
1210 } else if (radio_on) {
1211 ath_radio_enable(sc);
1212 state = RFKILL_STATE_UNBLOCKED;
1213 } else {
1214 ath_radio_disable(sc);
1215 state = RFKILL_STATE_HARD_BLOCKED;
1218 if (state == RFKILL_STATE_HARD_BLOCKED)
1219 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1220 else
1221 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1223 rfkill_force_state(sc->rf_kill.rfkill, state);
1226 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1227 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1230 /* s/w rfkill handler */
1231 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1233 struct ath_softc *sc = data;
1235 switch (state) {
1236 case RFKILL_STATE_SOFT_BLOCKED:
1237 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1238 SC_OP_RFKILL_SW_BLOCKED)))
1239 ath_radio_disable(sc);
1240 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1241 return 0;
1242 case RFKILL_STATE_UNBLOCKED:
1243 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1244 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1245 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1246 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1247 "radio as it is disabled by h/w\n");
1248 return -EPERM;
1250 ath_radio_enable(sc);
1252 return 0;
1253 default:
1254 return -EINVAL;
1258 /* Init s/w rfkill */
1259 static int ath_init_sw_rfkill(struct ath_softc *sc)
1261 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1262 RFKILL_TYPE_WLAN);
1263 if (!sc->rf_kill.rfkill) {
1264 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1265 return -ENOMEM;
1268 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1269 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1270 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1271 sc->rf_kill.rfkill->data = sc;
1272 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1273 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1275 return 0;
1278 /* Deinitialize rfkill */
1279 static void ath_deinit_rfkill(struct ath_softc *sc)
1281 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1282 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1284 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1285 rfkill_unregister(sc->rf_kill.rfkill);
1286 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1287 sc->rf_kill.rfkill = NULL;
1291 static int ath_start_rfkill_poll(struct ath_softc *sc)
1293 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1294 queue_delayed_work(sc->hw->workqueue,
1295 &sc->rf_kill.rfkill_poll, 0);
1297 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1298 if (rfkill_register(sc->rf_kill.rfkill)) {
1299 DPRINTF(sc, ATH_DBG_FATAL,
1300 "Unable to register rfkill\n");
1301 rfkill_free(sc->rf_kill.rfkill);
1303 /* Deinitialize the device */
1304 ath_cleanup(sc);
1305 return -EIO;
1306 } else {
1307 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1311 return 0;
1313 #endif /* CONFIG_RFKILL */
1315 void ath_cleanup(struct ath_softc *sc)
1317 ath_detach(sc);
1318 free_irq(sc->irq, sc);
1319 ath_bus_cleanup(sc);
1320 kfree(sc->sec_wiphy);
1321 ieee80211_free_hw(sc->hw);
1324 void ath_detach(struct ath_softc *sc)
1326 struct ieee80211_hw *hw = sc->hw;
1327 int i = 0;
1329 ath9k_ps_wakeup(sc);
1331 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1333 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1334 ath_deinit_rfkill(sc);
1335 #endif
1336 ath_deinit_leds(sc);
1337 cancel_work_sync(&sc->chan_work);
1338 cancel_delayed_work_sync(&sc->wiphy_work);
1340 for (i = 0; i < sc->num_sec_wiphy; i++) {
1341 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1342 if (aphy == NULL)
1343 continue;
1344 sc->sec_wiphy[i] = NULL;
1345 ieee80211_unregister_hw(aphy->hw);
1346 ieee80211_free_hw(aphy->hw);
1348 ieee80211_unregister_hw(hw);
1349 ath_rx_cleanup(sc);
1350 ath_tx_cleanup(sc);
1352 tasklet_kill(&sc->intr_tq);
1353 tasklet_kill(&sc->bcon_tasklet);
1355 if (!(sc->sc_flags & SC_OP_INVALID))
1356 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1358 /* cleanup tx queues */
1359 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1360 if (ATH_TXQ_SETUP(sc, i))
1361 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1363 ath9k_hw_detach(sc->sc_ah);
1364 ath9k_exit_debug(sc);
1365 ath9k_ps_restore(sc);
1368 static int ath9k_reg_notifier(struct wiphy *wiphy,
1369 struct regulatory_request *request)
1371 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1372 struct ath_wiphy *aphy = hw->priv;
1373 struct ath_softc *sc = aphy->sc;
1374 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1376 return ath_reg_notifier_apply(wiphy, request, reg);
1379 static int ath_init(u16 devid, struct ath_softc *sc)
1381 struct ath_hw *ah = NULL;
1382 int status;
1383 int error = 0, i;
1384 int csz = 0;
1386 /* XXX: hardware will not be ready until ath_open() being called */
1387 sc->sc_flags |= SC_OP_INVALID;
1389 if (ath9k_init_debug(sc) < 0)
1390 printk(KERN_ERR "Unable to create debugfs files\n");
1392 spin_lock_init(&sc->wiphy_lock);
1393 spin_lock_init(&sc->sc_resetlock);
1394 spin_lock_init(&sc->sc_serial_rw);
1395 mutex_init(&sc->mutex);
1396 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1397 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1398 (unsigned long)sc);
1401 * Cache line size is used to size and align various
1402 * structures used to communicate with the hardware.
1404 ath_read_cachesize(sc, &csz);
1405 /* XXX assert csz is non-zero */
1406 sc->cachelsz = csz << 2; /* convert to bytes */
1408 ah = ath9k_hw_attach(devid, sc, &status);
1409 if (ah == NULL) {
1410 DPRINTF(sc, ATH_DBG_FATAL,
1411 "Unable to attach hardware; HAL status %d\n", status);
1412 error = -ENXIO;
1413 goto bad;
1415 sc->sc_ah = ah;
1417 /* Get the hardware key cache size. */
1418 sc->keymax = ah->caps.keycache_size;
1419 if (sc->keymax > ATH_KEYMAX) {
1420 DPRINTF(sc, ATH_DBG_ANY,
1421 "Warning, using only %u entries in %u key cache\n",
1422 ATH_KEYMAX, sc->keymax);
1423 sc->keymax = ATH_KEYMAX;
1427 * Reset the key cache since some parts do not
1428 * reset the contents on initial power up.
1430 for (i = 0; i < sc->keymax; i++)
1431 ath9k_hw_keyreset(ah, (u16) i);
1433 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1434 ath9k_reg_notifier);
1435 if (error)
1436 goto bad;
1438 /* default to MONITOR mode */
1439 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1441 /* Setup rate tables */
1443 ath_rate_attach(sc);
1444 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1445 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1448 * Allocate hardware transmit queues: one queue for
1449 * beacon frames and one data queue for each QoS
1450 * priority. Note that the hal handles reseting
1451 * these queues at the needed time.
1453 sc->beacon.beaconq = ath_beaconq_setup(ah);
1454 if (sc->beacon.beaconq == -1) {
1455 DPRINTF(sc, ATH_DBG_FATAL,
1456 "Unable to setup a beacon xmit queue\n");
1457 error = -EIO;
1458 goto bad2;
1460 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1461 if (sc->beacon.cabq == NULL) {
1462 DPRINTF(sc, ATH_DBG_FATAL,
1463 "Unable to setup CAB xmit queue\n");
1464 error = -EIO;
1465 goto bad2;
1468 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1469 ath_cabq_update(sc);
1471 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1472 sc->tx.hwq_map[i] = -1;
1474 /* Setup data queues */
1475 /* NB: ensure BK queue is the lowest priority h/w queue */
1476 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1477 DPRINTF(sc, ATH_DBG_FATAL,
1478 "Unable to setup xmit queue for BK traffic\n");
1479 error = -EIO;
1480 goto bad2;
1483 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1484 DPRINTF(sc, ATH_DBG_FATAL,
1485 "Unable to setup xmit queue for BE traffic\n");
1486 error = -EIO;
1487 goto bad2;
1489 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1490 DPRINTF(sc, ATH_DBG_FATAL,
1491 "Unable to setup xmit queue for VI traffic\n");
1492 error = -EIO;
1493 goto bad2;
1495 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1496 DPRINTF(sc, ATH_DBG_FATAL,
1497 "Unable to setup xmit queue for VO traffic\n");
1498 error = -EIO;
1499 goto bad2;
1502 /* Initializes the noise floor to a reasonable default value.
1503 * Later on this will be updated during ANI processing. */
1505 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1506 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1508 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1509 ATH9K_CIPHER_TKIP, NULL)) {
1511 * Whether we should enable h/w TKIP MIC.
1512 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1513 * report WMM capable, so it's always safe to turn on
1514 * TKIP MIC in this case.
1516 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1517 0, 1, NULL);
1521 * Check whether the separate key cache entries
1522 * are required to handle both tx+rx MIC keys.
1523 * With split mic keys the number of stations is limited
1524 * to 27 otherwise 59.
1526 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1527 ATH9K_CIPHER_TKIP, NULL)
1528 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1529 ATH9K_CIPHER_MIC, NULL)
1530 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1531 0, NULL))
1532 sc->splitmic = 1;
1534 /* turn on mcast key search if possible */
1535 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1536 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1537 1, NULL);
1539 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1541 /* 11n Capabilities */
1542 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1543 sc->sc_flags |= SC_OP_TXAGGR;
1544 sc->sc_flags |= SC_OP_RXAGGR;
1547 sc->tx_chainmask = ah->caps.tx_chainmask;
1548 sc->rx_chainmask = ah->caps.rx_chainmask;
1550 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1551 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1553 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1554 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1556 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1558 /* initialize beacon slots */
1559 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1560 sc->beacon.bslot[i] = NULL;
1561 sc->beacon.bslot_aphy[i] = NULL;
1564 /* setup channels and rates */
1566 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1567 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1568 sc->rates[IEEE80211_BAND_2GHZ];
1569 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1570 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1571 ARRAY_SIZE(ath9k_2ghz_chantable);
1573 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1574 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1575 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1576 sc->rates[IEEE80211_BAND_5GHZ];
1577 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1578 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1579 ARRAY_SIZE(ath9k_5ghz_chantable);
1582 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1583 ath9k_hw_btcoex_enable(sc->sc_ah);
1585 return 0;
1586 bad2:
1587 /* cleanup tx queues */
1588 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1589 if (ATH_TXQ_SETUP(sc, i))
1590 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1591 bad:
1592 if (ah)
1593 ath9k_hw_detach(ah);
1594 ath9k_exit_debug(sc);
1596 return error;
1599 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1601 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1602 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1603 IEEE80211_HW_SIGNAL_DBM |
1604 IEEE80211_HW_AMPDU_AGGREGATION |
1605 IEEE80211_HW_SUPPORTS_PS |
1606 IEEE80211_HW_PS_NULLFUNC_STACK |
1607 IEEE80211_HW_SPECTRUM_MGMT;
1609 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1610 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1612 hw->wiphy->interface_modes =
1613 BIT(NL80211_IFTYPE_AP) |
1614 BIT(NL80211_IFTYPE_STATION) |
1615 BIT(NL80211_IFTYPE_ADHOC) |
1616 BIT(NL80211_IFTYPE_MESH_POINT);
1618 hw->queues = 4;
1619 hw->max_rates = 4;
1620 hw->channel_change_time = 5000;
1621 hw->max_listen_interval = 10;
1622 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1623 hw->sta_data_size = sizeof(struct ath_node);
1624 hw->vif_data_size = sizeof(struct ath_vif);
1626 hw->rate_control_algorithm = "ath9k_rate_control";
1628 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1629 &sc->sbands[IEEE80211_BAND_2GHZ];
1630 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1631 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1632 &sc->sbands[IEEE80211_BAND_5GHZ];
1635 int ath_attach(u16 devid, struct ath_softc *sc)
1637 struct ieee80211_hw *hw = sc->hw;
1638 int error = 0, i;
1639 struct ath_regulatory *reg;
1641 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1643 error = ath_init(devid, sc);
1644 if (error != 0)
1645 return error;
1647 reg = &sc->sc_ah->regulatory;
1649 /* get mac address from hardware and set in mac80211 */
1651 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1653 ath_set_hw_capab(sc, hw);
1655 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1656 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1657 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1658 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1661 /* initialize tx/rx engine */
1662 error = ath_tx_init(sc, ATH_TXBUF);
1663 if (error != 0)
1664 goto error_attach;
1666 error = ath_rx_init(sc, ATH_RXBUF);
1667 if (error != 0)
1668 goto error_attach;
1670 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1671 /* Initialze h/w Rfkill */
1672 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1673 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1675 /* Initialize s/w rfkill */
1676 error = ath_init_sw_rfkill(sc);
1677 if (error)
1678 goto error_attach;
1679 #endif
1681 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1682 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1683 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1685 error = ieee80211_register_hw(hw);
1687 if (!ath_is_world_regd(reg)) {
1688 error = regulatory_hint(hw->wiphy, reg->alpha2);
1689 if (error)
1690 goto error_attach;
1693 /* Initialize LED control */
1694 ath_init_leds(sc);
1697 return 0;
1699 error_attach:
1700 /* cleanup tx queues */
1701 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1702 if (ATH_TXQ_SETUP(sc, i))
1703 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1705 ath9k_hw_detach(sc->sc_ah);
1706 ath9k_exit_debug(sc);
1708 return error;
1711 int ath_reset(struct ath_softc *sc, bool retry_tx)
1713 struct ath_hw *ah = sc->sc_ah;
1714 struct ieee80211_hw *hw = sc->hw;
1715 int r;
1717 ath9k_hw_set_interrupts(ah, 0);
1718 ath_drain_all_txq(sc, retry_tx);
1719 ath_stoprecv(sc);
1720 ath_flushrecv(sc);
1722 spin_lock_bh(&sc->sc_resetlock);
1723 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1724 if (r)
1725 DPRINTF(sc, ATH_DBG_FATAL,
1726 "Unable to reset hardware; reset status %d\n", r);
1727 spin_unlock_bh(&sc->sc_resetlock);
1729 if (ath_startrecv(sc) != 0)
1730 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1733 * We may be doing a reset in response to a request
1734 * that changes the channel so update any state that
1735 * might change as a result.
1737 ath_cache_conf_rate(sc, &hw->conf);
1739 ath_update_txpow(sc);
1741 if (sc->sc_flags & SC_OP_BEACONS)
1742 ath_beacon_config(sc, NULL); /* restart beacons */
1744 ath9k_hw_set_interrupts(ah, sc->imask);
1746 if (retry_tx) {
1747 int i;
1748 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1749 if (ATH_TXQ_SETUP(sc, i)) {
1750 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1751 ath_txq_schedule(sc, &sc->tx.txq[i]);
1752 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1757 return r;
1761 * This function will allocate both the DMA descriptor structure, and the
1762 * buffers it contains. These are used to contain the descriptors used
1763 * by the system.
1765 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1766 struct list_head *head, const char *name,
1767 int nbuf, int ndesc)
1769 #define DS2PHYS(_dd, _ds) \
1770 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1771 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1772 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1774 struct ath_desc *ds;
1775 struct ath_buf *bf;
1776 int i, bsize, error;
1778 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1779 name, nbuf, ndesc);
1781 INIT_LIST_HEAD(head);
1782 /* ath_desc must be a multiple of DWORDs */
1783 if ((sizeof(struct ath_desc) % 4) != 0) {
1784 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1785 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1786 error = -ENOMEM;
1787 goto fail;
1790 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1793 * Need additional DMA memory because we can't use
1794 * descriptors that cross the 4K page boundary. Assume
1795 * one skipped descriptor per 4K page.
1797 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1798 u32 ndesc_skipped =
1799 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1800 u32 dma_len;
1802 while (ndesc_skipped) {
1803 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1804 dd->dd_desc_len += dma_len;
1806 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1810 /* allocate descriptors */
1811 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1812 &dd->dd_desc_paddr, GFP_KERNEL);
1813 if (dd->dd_desc == NULL) {
1814 error = -ENOMEM;
1815 goto fail;
1817 ds = dd->dd_desc;
1818 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1819 name, ds, (u32) dd->dd_desc_len,
1820 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1822 /* allocate buffers */
1823 bsize = sizeof(struct ath_buf) * nbuf;
1824 bf = kzalloc(bsize, GFP_KERNEL);
1825 if (bf == NULL) {
1826 error = -ENOMEM;
1827 goto fail2;
1829 dd->dd_bufptr = bf;
1831 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1832 bf->bf_desc = ds;
1833 bf->bf_daddr = DS2PHYS(dd, ds);
1835 if (!(sc->sc_ah->caps.hw_caps &
1836 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1838 * Skip descriptor addresses which can cause 4KB
1839 * boundary crossing (addr + length) with a 32 dword
1840 * descriptor fetch.
1842 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1843 ASSERT((caddr_t) bf->bf_desc <
1844 ((caddr_t) dd->dd_desc +
1845 dd->dd_desc_len));
1847 ds += ndesc;
1848 bf->bf_desc = ds;
1849 bf->bf_daddr = DS2PHYS(dd, ds);
1852 list_add_tail(&bf->list, head);
1854 return 0;
1855 fail2:
1856 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1857 dd->dd_desc_paddr);
1858 fail:
1859 memset(dd, 0, sizeof(*dd));
1860 return error;
1861 #undef ATH_DESC_4KB_BOUND_CHECK
1862 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1863 #undef DS2PHYS
1866 void ath_descdma_cleanup(struct ath_softc *sc,
1867 struct ath_descdma *dd,
1868 struct list_head *head)
1870 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1871 dd->dd_desc_paddr);
1873 INIT_LIST_HEAD(head);
1874 kfree(dd->dd_bufptr);
1875 memset(dd, 0, sizeof(*dd));
1878 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1880 int qnum;
1882 switch (queue) {
1883 case 0:
1884 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1885 break;
1886 case 1:
1887 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1888 break;
1889 case 2:
1890 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1891 break;
1892 case 3:
1893 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1894 break;
1895 default:
1896 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1897 break;
1900 return qnum;
1903 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1905 int qnum;
1907 switch (queue) {
1908 case ATH9K_WME_AC_VO:
1909 qnum = 0;
1910 break;
1911 case ATH9K_WME_AC_VI:
1912 qnum = 1;
1913 break;
1914 case ATH9K_WME_AC_BE:
1915 qnum = 2;
1916 break;
1917 case ATH9K_WME_AC_BK:
1918 qnum = 3;
1919 break;
1920 default:
1921 qnum = -1;
1922 break;
1925 return qnum;
1928 /* XXX: Remove me once we don't depend on ath9k_channel for all
1929 * this redundant data */
1930 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1931 struct ath9k_channel *ichan)
1933 struct ieee80211_channel *chan = hw->conf.channel;
1934 struct ieee80211_conf *conf = &hw->conf;
1936 ichan->channel = chan->center_freq;
1937 ichan->chan = chan;
1939 if (chan->band == IEEE80211_BAND_2GHZ) {
1940 ichan->chanmode = CHANNEL_G;
1941 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1942 } else {
1943 ichan->chanmode = CHANNEL_A;
1944 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1947 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1949 if (conf_is_ht(conf)) {
1950 if (conf_is_ht40(conf))
1951 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1953 ichan->chanmode = ath_get_extchanmode(sc, chan,
1954 conf->channel_type);
1958 /**********************/
1959 /* mac80211 callbacks */
1960 /**********************/
1962 static int ath9k_start(struct ieee80211_hw *hw)
1964 struct ath_wiphy *aphy = hw->priv;
1965 struct ath_softc *sc = aphy->sc;
1966 struct ieee80211_channel *curchan = hw->conf.channel;
1967 struct ath9k_channel *init_channel;
1968 int r, pos;
1970 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1971 "initial channel: %d MHz\n", curchan->center_freq);
1973 mutex_lock(&sc->mutex);
1975 if (ath9k_wiphy_started(sc)) {
1976 if (sc->chan_idx == curchan->hw_value) {
1978 * Already on the operational channel, the new wiphy
1979 * can be marked active.
1981 aphy->state = ATH_WIPHY_ACTIVE;
1982 ieee80211_wake_queues(hw);
1983 } else {
1985 * Another wiphy is on another channel, start the new
1986 * wiphy in paused state.
1988 aphy->state = ATH_WIPHY_PAUSED;
1989 ieee80211_stop_queues(hw);
1991 mutex_unlock(&sc->mutex);
1992 return 0;
1994 aphy->state = ATH_WIPHY_ACTIVE;
1996 /* setup initial channel */
1998 pos = curchan->hw_value;
2000 sc->chan_idx = pos;
2001 init_channel = &sc->sc_ah->channels[pos];
2002 ath9k_update_ichannel(sc, hw, init_channel);
2004 /* Reset SERDES registers */
2005 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2008 * The basic interface to setting the hardware in a good
2009 * state is ``reset''. On return the hardware is known to
2010 * be powered up and with interrupts disabled. This must
2011 * be followed by initialization of the appropriate bits
2012 * and then setup of the interrupt mask.
2014 spin_lock_bh(&sc->sc_resetlock);
2015 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2016 if (r) {
2017 DPRINTF(sc, ATH_DBG_FATAL,
2018 "Unable to reset hardware; reset status %d "
2019 "(freq %u MHz)\n", r,
2020 curchan->center_freq);
2021 spin_unlock_bh(&sc->sc_resetlock);
2022 goto mutex_unlock;
2024 spin_unlock_bh(&sc->sc_resetlock);
2027 * This is needed only to setup initial state
2028 * but it's best done after a reset.
2030 ath_update_txpow(sc);
2033 * Setup the hardware after reset:
2034 * The receive engine is set going.
2035 * Frame transmit is handled entirely
2036 * in the frame output path; there's nothing to do
2037 * here except setup the interrupt mask.
2039 if (ath_startrecv(sc) != 0) {
2040 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2041 r = -EIO;
2042 goto mutex_unlock;
2045 /* Setup our intr mask. */
2046 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2047 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2048 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2050 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2051 sc->imask |= ATH9K_INT_GTT;
2053 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2054 sc->imask |= ATH9K_INT_CST;
2056 ath_cache_conf_rate(sc, &hw->conf);
2058 sc->sc_flags &= ~SC_OP_INVALID;
2060 /* Disable BMISS interrupt when we're not associated */
2061 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2062 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2064 ieee80211_wake_queues(hw);
2066 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2067 r = ath_start_rfkill_poll(sc);
2068 #endif
2070 mutex_unlock:
2071 mutex_unlock(&sc->mutex);
2073 return r;
2076 static int ath9k_tx(struct ieee80211_hw *hw,
2077 struct sk_buff *skb)
2079 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2080 struct ath_wiphy *aphy = hw->priv;
2081 struct ath_softc *sc = aphy->sc;
2082 struct ath_tx_control txctl;
2083 int hdrlen, padsize;
2085 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2086 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2087 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2088 goto exit;
2091 if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
2092 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2094 * mac80211 does not set PM field for normal data frames, so we
2095 * need to update that based on the current PS mode.
2097 if (ieee80211_is_data(hdr->frame_control) &&
2098 !ieee80211_is_nullfunc(hdr->frame_control) &&
2099 !ieee80211_has_pm(hdr->frame_control)) {
2100 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2101 "while in PS mode\n");
2102 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2106 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2108 * We are using PS-Poll and mac80211 can request TX while in
2109 * power save mode. Need to wake up hardware for the TX to be
2110 * completed and if needed, also for RX of buffered frames.
2112 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2113 ath9k_ps_wakeup(sc);
2114 ath9k_hw_setrxabort(sc->sc_ah, 0);
2115 if (ieee80211_is_pspoll(hdr->frame_control)) {
2116 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2117 "buffered frame\n");
2118 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2119 } else {
2120 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2121 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2124 * The actual restore operation will happen only after
2125 * the sc_flags bit is cleared. We are just dropping
2126 * the ps_usecount here.
2128 ath9k_ps_restore(sc);
2131 memset(&txctl, 0, sizeof(struct ath_tx_control));
2134 * As a temporary workaround, assign seq# here; this will likely need
2135 * to be cleaned up to work better with Beacon transmission and virtual
2136 * BSSes.
2138 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2139 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2140 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2141 sc->tx.seq_no += 0x10;
2142 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2143 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2146 /* Add the padding after the header if this is not already done */
2147 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2148 if (hdrlen & 3) {
2149 padsize = hdrlen % 4;
2150 if (skb_headroom(skb) < padsize)
2151 return -1;
2152 skb_push(skb, padsize);
2153 memmove(skb->data, skb->data + padsize, hdrlen);
2156 /* Check if a tx queue is available */
2158 txctl.txq = ath_test_get_txq(sc, skb);
2159 if (!txctl.txq)
2160 goto exit;
2162 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2164 if (ath_tx_start(hw, skb, &txctl) != 0) {
2165 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2166 goto exit;
2169 return 0;
2170 exit:
2171 dev_kfree_skb_any(skb);
2172 return 0;
2175 static void ath9k_stop(struct ieee80211_hw *hw)
2177 struct ath_wiphy *aphy = hw->priv;
2178 struct ath_softc *sc = aphy->sc;
2180 aphy->state = ATH_WIPHY_INACTIVE;
2182 if (sc->sc_flags & SC_OP_INVALID) {
2183 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2184 return;
2187 mutex_lock(&sc->mutex);
2189 ieee80211_stop_queues(hw);
2191 if (ath9k_wiphy_started(sc)) {
2192 mutex_unlock(&sc->mutex);
2193 return; /* another wiphy still in use */
2196 /* make sure h/w will not generate any interrupt
2197 * before setting the invalid flag. */
2198 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2200 if (!(sc->sc_flags & SC_OP_INVALID)) {
2201 ath_drain_all_txq(sc, false);
2202 ath_stoprecv(sc);
2203 ath9k_hw_phy_disable(sc->sc_ah);
2204 } else
2205 sc->rx.rxlink = NULL;
2207 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2208 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2209 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2210 #endif
2211 /* disable HAL and put h/w to sleep */
2212 ath9k_hw_disable(sc->sc_ah);
2213 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2215 sc->sc_flags |= SC_OP_INVALID;
2217 mutex_unlock(&sc->mutex);
2219 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2222 static int ath9k_add_interface(struct ieee80211_hw *hw,
2223 struct ieee80211_if_init_conf *conf)
2225 struct ath_wiphy *aphy = hw->priv;
2226 struct ath_softc *sc = aphy->sc;
2227 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2228 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2229 int ret = 0;
2231 mutex_lock(&sc->mutex);
2233 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2234 sc->nvifs > 0) {
2235 ret = -ENOBUFS;
2236 goto out;
2239 switch (conf->type) {
2240 case NL80211_IFTYPE_STATION:
2241 ic_opmode = NL80211_IFTYPE_STATION;
2242 break;
2243 case NL80211_IFTYPE_ADHOC:
2244 case NL80211_IFTYPE_AP:
2245 case NL80211_IFTYPE_MESH_POINT:
2246 if (sc->nbcnvifs >= ATH_BCBUF) {
2247 ret = -ENOBUFS;
2248 goto out;
2250 ic_opmode = conf->type;
2251 break;
2252 default:
2253 DPRINTF(sc, ATH_DBG_FATAL,
2254 "Interface type %d not yet supported\n", conf->type);
2255 ret = -EOPNOTSUPP;
2256 goto out;
2259 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2261 /* Set the VIF opmode */
2262 avp->av_opmode = ic_opmode;
2263 avp->av_bslot = -1;
2265 sc->nvifs++;
2267 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2268 ath9k_set_bssid_mask(hw);
2270 if (sc->nvifs > 1)
2271 goto out; /* skip global settings for secondary vif */
2273 if (ic_opmode == NL80211_IFTYPE_AP) {
2274 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2275 sc->sc_flags |= SC_OP_TSF_RESET;
2278 /* Set the device opmode */
2279 sc->sc_ah->opmode = ic_opmode;
2282 * Enable MIB interrupts when there are hardware phy counters.
2283 * Note we only do this (at the moment) for station mode.
2285 if ((conf->type == NL80211_IFTYPE_STATION) ||
2286 (conf->type == NL80211_IFTYPE_ADHOC) ||
2287 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2288 if (ath9k_hw_phycounters(sc->sc_ah))
2289 sc->imask |= ATH9K_INT_MIB;
2290 sc->imask |= ATH9K_INT_TSFOOR;
2293 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2295 if (conf->type == NL80211_IFTYPE_AP)
2296 ath_start_ani(sc);
2298 out:
2299 mutex_unlock(&sc->mutex);
2300 return ret;
2303 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2304 struct ieee80211_if_init_conf *conf)
2306 struct ath_wiphy *aphy = hw->priv;
2307 struct ath_softc *sc = aphy->sc;
2308 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2309 int i;
2311 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2313 mutex_lock(&sc->mutex);
2315 /* Stop ANI */
2316 del_timer_sync(&sc->ani.timer);
2318 /* Reclaim beacon resources */
2319 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2320 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2321 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2322 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2323 ath_beacon_return(sc, avp);
2326 sc->sc_flags &= ~SC_OP_BEACONS;
2328 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2329 if (sc->beacon.bslot[i] == conf->vif) {
2330 printk(KERN_DEBUG "%s: vif had allocated beacon "
2331 "slot\n", __func__);
2332 sc->beacon.bslot[i] = NULL;
2333 sc->beacon.bslot_aphy[i] = NULL;
2337 sc->nvifs--;
2339 mutex_unlock(&sc->mutex);
2342 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2344 struct ath_wiphy *aphy = hw->priv;
2345 struct ath_softc *sc = aphy->sc;
2346 struct ieee80211_conf *conf = &hw->conf;
2347 struct ath_hw *ah = sc->sc_ah;
2349 mutex_lock(&sc->mutex);
2351 if (changed & IEEE80211_CONF_CHANGE_PS) {
2352 if (conf->flags & IEEE80211_CONF_PS) {
2353 if (!(ah->caps.hw_caps &
2354 ATH9K_HW_CAP_AUTOSLEEP)) {
2355 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2356 sc->imask |= ATH9K_INT_TIM_TIMER;
2357 ath9k_hw_set_interrupts(sc->sc_ah,
2358 sc->imask);
2360 ath9k_hw_setrxabort(sc->sc_ah, 1);
2362 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2363 } else {
2364 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2365 if (!(ah->caps.hw_caps &
2366 ATH9K_HW_CAP_AUTOSLEEP)) {
2367 ath9k_hw_setrxabort(sc->sc_ah, 0);
2368 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2369 SC_OP_WAIT_FOR_CAB |
2370 SC_OP_WAIT_FOR_PSPOLL_DATA |
2371 SC_OP_WAIT_FOR_TX_ACK);
2372 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2373 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2374 ath9k_hw_set_interrupts(sc->sc_ah,
2375 sc->imask);
2381 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2382 struct ieee80211_channel *curchan = hw->conf.channel;
2383 int pos = curchan->hw_value;
2385 aphy->chan_idx = pos;
2386 aphy->chan_is_ht = conf_is_ht(conf);
2388 if (aphy->state == ATH_WIPHY_SCAN ||
2389 aphy->state == ATH_WIPHY_ACTIVE)
2390 ath9k_wiphy_pause_all_forced(sc, aphy);
2391 else {
2393 * Do not change operational channel based on a paused
2394 * wiphy changes.
2396 goto skip_chan_change;
2399 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2400 curchan->center_freq);
2402 /* XXX: remove me eventualy */
2403 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2405 ath_update_chainmask(sc, conf_is_ht(conf));
2407 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2408 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2409 mutex_unlock(&sc->mutex);
2410 return -EINVAL;
2414 skip_chan_change:
2415 if (changed & IEEE80211_CONF_CHANGE_POWER)
2416 sc->config.txpowlimit = 2 * conf->power_level;
2418 mutex_unlock(&sc->mutex);
2420 return 0;
2423 #define SUPPORTED_FILTERS \
2424 (FIF_PROMISC_IN_BSS | \
2425 FIF_ALLMULTI | \
2426 FIF_CONTROL | \
2427 FIF_OTHER_BSS | \
2428 FIF_BCN_PRBRESP_PROMISC | \
2429 FIF_FCSFAIL)
2431 /* FIXME: sc->sc_full_reset ? */
2432 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2433 unsigned int changed_flags,
2434 unsigned int *total_flags,
2435 int mc_count,
2436 struct dev_mc_list *mclist)
2438 struct ath_wiphy *aphy = hw->priv;
2439 struct ath_softc *sc = aphy->sc;
2440 u32 rfilt;
2442 changed_flags &= SUPPORTED_FILTERS;
2443 *total_flags &= SUPPORTED_FILTERS;
2445 sc->rx.rxfilter = *total_flags;
2446 ath9k_ps_wakeup(sc);
2447 rfilt = ath_calcrxfilter(sc);
2448 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2449 ath9k_ps_restore(sc);
2451 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2454 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2455 struct ieee80211_vif *vif,
2456 enum sta_notify_cmd cmd,
2457 struct ieee80211_sta *sta)
2459 struct ath_wiphy *aphy = hw->priv;
2460 struct ath_softc *sc = aphy->sc;
2462 switch (cmd) {
2463 case STA_NOTIFY_ADD:
2464 ath_node_attach(sc, sta);
2465 break;
2466 case STA_NOTIFY_REMOVE:
2467 ath_node_detach(sc, sta);
2468 break;
2469 default:
2470 break;
2474 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2475 const struct ieee80211_tx_queue_params *params)
2477 struct ath_wiphy *aphy = hw->priv;
2478 struct ath_softc *sc = aphy->sc;
2479 struct ath9k_tx_queue_info qi;
2480 int ret = 0, qnum;
2482 if (queue >= WME_NUM_AC)
2483 return 0;
2485 mutex_lock(&sc->mutex);
2487 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2489 qi.tqi_aifs = params->aifs;
2490 qi.tqi_cwmin = params->cw_min;
2491 qi.tqi_cwmax = params->cw_max;
2492 qi.tqi_burstTime = params->txop;
2493 qnum = ath_get_hal_qnum(queue, sc);
2495 DPRINTF(sc, ATH_DBG_CONFIG,
2496 "Configure tx [queue/halq] [%d/%d], "
2497 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2498 queue, qnum, params->aifs, params->cw_min,
2499 params->cw_max, params->txop);
2501 ret = ath_txq_update(sc, qnum, &qi);
2502 if (ret)
2503 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2505 mutex_unlock(&sc->mutex);
2507 return ret;
2510 static int ath9k_set_key(struct ieee80211_hw *hw,
2511 enum set_key_cmd cmd,
2512 struct ieee80211_vif *vif,
2513 struct ieee80211_sta *sta,
2514 struct ieee80211_key_conf *key)
2516 struct ath_wiphy *aphy = hw->priv;
2517 struct ath_softc *sc = aphy->sc;
2518 int ret = 0;
2520 if (modparam_nohwcrypt)
2521 return -ENOSPC;
2523 mutex_lock(&sc->mutex);
2524 ath9k_ps_wakeup(sc);
2525 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2527 switch (cmd) {
2528 case SET_KEY:
2529 ret = ath_key_config(sc, vif, sta, key);
2530 if (ret >= 0) {
2531 key->hw_key_idx = ret;
2532 /* push IV and Michael MIC generation to stack */
2533 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2534 if (key->alg == ALG_TKIP)
2535 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2536 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2537 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2538 ret = 0;
2540 break;
2541 case DISABLE_KEY:
2542 ath_key_delete(sc, key);
2543 break;
2544 default:
2545 ret = -EINVAL;
2548 ath9k_ps_restore(sc);
2549 mutex_unlock(&sc->mutex);
2551 return ret;
2554 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2555 struct ieee80211_vif *vif,
2556 struct ieee80211_bss_conf *bss_conf,
2557 u32 changed)
2559 struct ath_wiphy *aphy = hw->priv;
2560 struct ath_softc *sc = aphy->sc;
2561 struct ath_hw *ah = sc->sc_ah;
2562 struct ath_vif *avp = (void *)vif->drv_priv;
2563 u32 rfilt = 0;
2564 int error, i;
2566 mutex_lock(&sc->mutex);
2569 * TODO: Need to decide which hw opmode to use for
2570 * multi-interface cases
2571 * XXX: This belongs into add_interface!
2573 if (vif->type == NL80211_IFTYPE_AP &&
2574 ah->opmode != NL80211_IFTYPE_AP) {
2575 ah->opmode = NL80211_IFTYPE_STATION;
2576 ath9k_hw_setopmode(ah);
2577 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2578 sc->curaid = 0;
2579 ath9k_hw_write_associd(sc);
2580 /* Request full reset to get hw opmode changed properly */
2581 sc->sc_flags |= SC_OP_FULL_RESET;
2584 if ((changed & BSS_CHANGED_BSSID) &&
2585 !is_zero_ether_addr(bss_conf->bssid)) {
2586 switch (vif->type) {
2587 case NL80211_IFTYPE_STATION:
2588 case NL80211_IFTYPE_ADHOC:
2589 case NL80211_IFTYPE_MESH_POINT:
2590 /* Set BSSID */
2591 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2592 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2593 sc->curaid = 0;
2594 ath9k_hw_write_associd(sc);
2596 /* Set aggregation protection mode parameters */
2597 sc->config.ath_aggr_prot = 0;
2599 DPRINTF(sc, ATH_DBG_CONFIG,
2600 "RX filter 0x%x bssid %pM aid 0x%x\n",
2601 rfilt, sc->curbssid, sc->curaid);
2603 /* need to reconfigure the beacon */
2604 sc->sc_flags &= ~SC_OP_BEACONS ;
2606 break;
2607 default:
2608 break;
2612 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2613 (vif->type == NL80211_IFTYPE_AP) ||
2614 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2615 if ((changed & BSS_CHANGED_BEACON) ||
2616 (changed & BSS_CHANGED_BEACON_ENABLED &&
2617 bss_conf->enable_beacon)) {
2619 * Allocate and setup the beacon frame.
2621 * Stop any previous beacon DMA. This may be
2622 * necessary, for example, when an ibss merge
2623 * causes reconfiguration; we may be called
2624 * with beacon transmission active.
2626 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2628 error = ath_beacon_alloc(aphy, vif);
2629 if (!error)
2630 ath_beacon_config(sc, vif);
2634 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2635 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2636 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2637 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2638 ath9k_hw_keysetmac(sc->sc_ah,
2639 (u16)i,
2640 sc->curbssid);
2643 /* Only legacy IBSS for now */
2644 if (vif->type == NL80211_IFTYPE_ADHOC)
2645 ath_update_chainmask(sc, 0);
2647 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2648 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2649 bss_conf->use_short_preamble);
2650 if (bss_conf->use_short_preamble)
2651 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2652 else
2653 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2656 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2657 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2658 bss_conf->use_cts_prot);
2659 if (bss_conf->use_cts_prot &&
2660 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2661 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2662 else
2663 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2666 if (changed & BSS_CHANGED_ASSOC) {
2667 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2668 bss_conf->assoc);
2669 ath9k_bss_assoc_info(sc, vif, bss_conf);
2673 * The HW TSF has to be reset when the beacon interval changes.
2674 * We set the flag here, and ath_beacon_config_ap() would take this
2675 * into account when it gets called through the subsequent
2676 * config_interface() call - with IFCC_BEACON in the changed field.
2679 if (changed & BSS_CHANGED_BEACON_INT) {
2680 sc->sc_flags |= SC_OP_TSF_RESET;
2681 sc->beacon_interval = bss_conf->beacon_int;
2684 mutex_unlock(&sc->mutex);
2687 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2689 u64 tsf;
2690 struct ath_wiphy *aphy = hw->priv;
2691 struct ath_softc *sc = aphy->sc;
2693 mutex_lock(&sc->mutex);
2694 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2695 mutex_unlock(&sc->mutex);
2697 return tsf;
2700 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2702 struct ath_wiphy *aphy = hw->priv;
2703 struct ath_softc *sc = aphy->sc;
2705 mutex_lock(&sc->mutex);
2706 ath9k_hw_settsf64(sc->sc_ah, tsf);
2707 mutex_unlock(&sc->mutex);
2710 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2712 struct ath_wiphy *aphy = hw->priv;
2713 struct ath_softc *sc = aphy->sc;
2715 mutex_lock(&sc->mutex);
2716 ath9k_hw_reset_tsf(sc->sc_ah);
2717 mutex_unlock(&sc->mutex);
2720 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2721 enum ieee80211_ampdu_mlme_action action,
2722 struct ieee80211_sta *sta,
2723 u16 tid, u16 *ssn)
2725 struct ath_wiphy *aphy = hw->priv;
2726 struct ath_softc *sc = aphy->sc;
2727 int ret = 0;
2729 switch (action) {
2730 case IEEE80211_AMPDU_RX_START:
2731 if (!(sc->sc_flags & SC_OP_RXAGGR))
2732 ret = -ENOTSUPP;
2733 break;
2734 case IEEE80211_AMPDU_RX_STOP:
2735 break;
2736 case IEEE80211_AMPDU_TX_START:
2737 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2738 if (ret < 0)
2739 DPRINTF(sc, ATH_DBG_FATAL,
2740 "Unable to start TX aggregation\n");
2741 else
2742 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2743 break;
2744 case IEEE80211_AMPDU_TX_STOP:
2745 ret = ath_tx_aggr_stop(sc, sta, tid);
2746 if (ret < 0)
2747 DPRINTF(sc, ATH_DBG_FATAL,
2748 "Unable to stop TX aggregation\n");
2750 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2751 break;
2752 case IEEE80211_AMPDU_TX_OPERATIONAL:
2753 ath_tx_aggr_resume(sc, sta, tid);
2754 break;
2755 default:
2756 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2759 return ret;
2762 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2764 struct ath_wiphy *aphy = hw->priv;
2765 struct ath_softc *sc = aphy->sc;
2767 if (ath9k_wiphy_scanning(sc)) {
2768 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2769 "same time\n");
2771 * Do not allow the concurrent scanning state for now. This
2772 * could be improved with scanning control moved into ath9k.
2774 return;
2777 aphy->state = ATH_WIPHY_SCAN;
2778 ath9k_wiphy_pause_all_forced(sc, aphy);
2780 mutex_lock(&sc->mutex);
2781 sc->sc_flags |= SC_OP_SCANNING;
2782 mutex_unlock(&sc->mutex);
2785 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2787 struct ath_wiphy *aphy = hw->priv;
2788 struct ath_softc *sc = aphy->sc;
2790 mutex_lock(&sc->mutex);
2791 aphy->state = ATH_WIPHY_ACTIVE;
2792 sc->sc_flags &= ~SC_OP_SCANNING;
2793 sc->sc_flags |= SC_OP_FULL_RESET;
2794 mutex_unlock(&sc->mutex);
2797 struct ieee80211_ops ath9k_ops = {
2798 .tx = ath9k_tx,
2799 .start = ath9k_start,
2800 .stop = ath9k_stop,
2801 .add_interface = ath9k_add_interface,
2802 .remove_interface = ath9k_remove_interface,
2803 .config = ath9k_config,
2804 .configure_filter = ath9k_configure_filter,
2805 .sta_notify = ath9k_sta_notify,
2806 .conf_tx = ath9k_conf_tx,
2807 .bss_info_changed = ath9k_bss_info_changed,
2808 .set_key = ath9k_set_key,
2809 .get_tsf = ath9k_get_tsf,
2810 .set_tsf = ath9k_set_tsf,
2811 .reset_tsf = ath9k_reset_tsf,
2812 .ampdu_action = ath9k_ampdu_action,
2813 .sw_scan_start = ath9k_sw_scan_start,
2814 .sw_scan_complete = ath9k_sw_scan_complete,
2817 static struct {
2818 u32 version;
2819 const char * name;
2820 } ath_mac_bb_names[] = {
2821 { AR_SREV_VERSION_5416_PCI, "5416" },
2822 { AR_SREV_VERSION_5416_PCIE, "5418" },
2823 { AR_SREV_VERSION_9100, "9100" },
2824 { AR_SREV_VERSION_9160, "9160" },
2825 { AR_SREV_VERSION_9280, "9280" },
2826 { AR_SREV_VERSION_9285, "9285" }
2829 static struct {
2830 u16 version;
2831 const char * name;
2832 } ath_rf_names[] = {
2833 { 0, "5133" },
2834 { AR_RAD5133_SREV_MAJOR, "5133" },
2835 { AR_RAD5122_SREV_MAJOR, "5122" },
2836 { AR_RAD2133_SREV_MAJOR, "2133" },
2837 { AR_RAD2122_SREV_MAJOR, "2122" }
2841 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2843 const char *
2844 ath_mac_bb_name(u32 mac_bb_version)
2846 int i;
2848 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2849 if (ath_mac_bb_names[i].version == mac_bb_version) {
2850 return ath_mac_bb_names[i].name;
2854 return "????";
2858 * Return the RF name. "????" is returned if the RF is unknown.
2860 const char *
2861 ath_rf_name(u16 rf_version)
2863 int i;
2865 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2866 if (ath_rf_names[i].version == rf_version) {
2867 return ath_rf_names[i].name;
2871 return "????";
2874 static int __init ath9k_init(void)
2876 int error;
2878 /* Register rate control algorithm */
2879 error = ath_rate_control_register();
2880 if (error != 0) {
2881 printk(KERN_ERR
2882 "ath9k: Unable to register rate control "
2883 "algorithm: %d\n",
2884 error);
2885 goto err_out;
2888 error = ath9k_debug_create_root();
2889 if (error) {
2890 printk(KERN_ERR
2891 "ath9k: Unable to create debugfs root: %d\n",
2892 error);
2893 goto err_rate_unregister;
2896 error = ath_pci_init();
2897 if (error < 0) {
2898 printk(KERN_ERR
2899 "ath9k: No PCI devices found, driver not installed.\n");
2900 error = -ENODEV;
2901 goto err_remove_root;
2904 error = ath_ahb_init();
2905 if (error < 0) {
2906 error = -ENODEV;
2907 goto err_pci_exit;
2910 return 0;
2912 err_pci_exit:
2913 ath_pci_exit();
2915 err_remove_root:
2916 ath9k_debug_remove_root();
2917 err_rate_unregister:
2918 ath_rate_control_unregister();
2919 err_out:
2920 return error;
2922 module_init(ath9k_init);
2924 static void __exit ath9k_exit(void)
2926 ath_ahb_exit();
2927 ath_pci_exit();
2928 ath9k_debug_remove_root();
2929 ath_rate_control_unregister();
2930 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2932 module_exit(ath9k_exit);