powerpc: Remove redundant clear of MSR_VSX in __giveup_vsx()
[linux-2.6/btrfs-unstable.git] / kernel / cpu.c
blobeee0331342628f09a02720ffe34aba2f8fb12f31
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
36 #include "smpboot.h"
38 /**
39 * cpuhp_cpu_state - Per cpu hotplug state storage
40 * @state: The current cpu state
41 * @target: The target state
42 * @thread: Pointer to the hotplug thread
43 * @should_run: Thread should execute
44 * @rollback: Perform a rollback
45 * @single: Single callback invocation
46 * @bringup: Single callback bringup or teardown selector
47 * @cb_state: The state for a single callback (install/uninstall)
48 * @result: Result of the operation
49 * @done: Signal completion to the issuer of the task
51 struct cpuhp_cpu_state {
52 enum cpuhp_state state;
53 enum cpuhp_state target;
54 #ifdef CONFIG_SMP
55 struct task_struct *thread;
56 bool should_run;
57 bool rollback;
58 bool single;
59 bool bringup;
60 struct hlist_node *node;
61 enum cpuhp_state cb_state;
62 int result;
63 struct completion done;
64 #endif
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
75 /**
76 * cpuhp_step - Hotplug state machine step
77 * @name: Name of the step
78 * @startup: Startup function of the step
79 * @teardown: Teardown function of the step
80 * @skip_onerr: Do not invoke the functions on error rollback
81 * Will go away once the notifiers are gone
82 * @cant_stop: Bringup/teardown can't be stopped at this step
84 struct cpuhp_step {
85 const char *name;
86 union {
87 int (*single)(unsigned int cpu);
88 int (*multi)(unsigned int cpu,
89 struct hlist_node *node);
90 } startup;
91 union {
92 int (*single)(unsigned int cpu);
93 int (*multi)(unsigned int cpu,
94 struct hlist_node *node);
95 } teardown;
96 struct hlist_head list;
97 bool skip_onerr;
98 bool cant_stop;
99 bool multi_instance;
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
109 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 * purposes as that state is handled explicitly in cpu_down.
112 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
117 struct cpuhp_step *sp;
119 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 return sp + state;
124 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125 * @cpu: The cpu for which the callback should be invoked
126 * @step: The step in the state machine
127 * @bringup: True if the bringup callback should be invoked
129 * Called from cpu hotplug and from the state register machinery.
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 bool bringup, struct hlist_node *node)
134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 struct cpuhp_step *step = cpuhp_get_step(state);
136 int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 int (*cb)(unsigned int cpu);
138 int ret, cnt;
140 if (!step->multi_instance) {
141 cb = bringup ? step->startup.single : step->teardown.single;
142 if (!cb)
143 return 0;
144 trace_cpuhp_enter(cpu, st->target, state, cb);
145 ret = cb(cpu);
146 trace_cpuhp_exit(cpu, st->state, state, ret);
147 return ret;
149 cbm = bringup ? step->startup.multi : step->teardown.multi;
150 if (!cbm)
151 return 0;
153 /* Single invocation for instance add/remove */
154 if (node) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
158 return ret;
161 /* State transition. Invoke on all instances */
162 cnt = 0;
163 hlist_for_each(node, &step->list) {
164 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 ret = cbm(cpu, node);
166 trace_cpuhp_exit(cpu, st->state, state, ret);
167 if (ret)
168 goto err;
169 cnt++;
171 return 0;
172 err:
173 /* Rollback the instances if one failed */
174 cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 if (!cbm)
176 return ret;
178 hlist_for_each(node, &step->list) {
179 if (!cnt--)
180 break;
181 cbm(cpu, node);
183 return ret;
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
193 * The following two APIs (cpu_maps_update_begin/done) must be used when
194 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
196 void cpu_maps_update_begin(void)
198 mutex_lock(&cpu_add_remove_lock);
201 void cpu_maps_update_done(void)
203 mutex_unlock(&cpu_add_remove_lock);
207 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208 * Should always be manipulated under cpu_add_remove_lock
210 static int cpu_hotplug_disabled;
212 #ifdef CONFIG_HOTPLUG_CPU
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
216 void cpus_read_lock(void)
218 percpu_down_read(&cpu_hotplug_lock);
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
222 void cpus_read_unlock(void)
224 percpu_up_read(&cpu_hotplug_lock);
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
228 void cpus_write_lock(void)
230 percpu_down_write(&cpu_hotplug_lock);
233 void cpus_write_unlock(void)
235 percpu_up_write(&cpu_hotplug_lock);
238 void lockdep_assert_cpus_held(void)
240 percpu_rwsem_assert_held(&cpu_hotplug_lock);
244 * Wait for currently running CPU hotplug operations to complete (if any) and
245 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247 * hotplug path before performing hotplug operations. So acquiring that lock
248 * guarantees mutual exclusion from any currently running hotplug operations.
250 void cpu_hotplug_disable(void)
252 cpu_maps_update_begin();
253 cpu_hotplug_disabled++;
254 cpu_maps_update_done();
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
258 static void __cpu_hotplug_enable(void)
260 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 return;
262 cpu_hotplug_disabled--;
265 void cpu_hotplug_enable(void)
267 cpu_maps_update_begin();
268 __cpu_hotplug_enable();
269 cpu_maps_update_done();
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif /* CONFIG_HOTPLUG_CPU */
274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
276 static int bringup_wait_for_ap(unsigned int cpu)
278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
280 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
281 wait_for_completion(&st->done);
282 if (WARN_ON_ONCE((!cpu_online(cpu))))
283 return -ECANCELED;
285 /* Unpark the stopper thread and the hotplug thread of the target cpu */
286 stop_machine_unpark(cpu);
287 kthread_unpark(st->thread);
289 /* Should we go further up ? */
290 if (st->target > CPUHP_AP_ONLINE_IDLE) {
291 __cpuhp_kick_ap_work(st);
292 wait_for_completion(&st->done);
294 return st->result;
297 static int bringup_cpu(unsigned int cpu)
299 struct task_struct *idle = idle_thread_get(cpu);
300 int ret;
303 * Some architectures have to walk the irq descriptors to
304 * setup the vector space for the cpu which comes online.
305 * Prevent irq alloc/free across the bringup.
307 irq_lock_sparse();
309 /* Arch-specific enabling code. */
310 ret = __cpu_up(cpu, idle);
311 irq_unlock_sparse();
312 if (ret)
313 return ret;
314 return bringup_wait_for_ap(cpu);
318 * Hotplug state machine related functions
320 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
322 for (st->state++; st->state < st->target; st->state++) {
323 struct cpuhp_step *step = cpuhp_get_step(st->state);
325 if (!step->skip_onerr)
326 cpuhp_invoke_callback(cpu, st->state, true, NULL);
330 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
331 enum cpuhp_state target)
333 enum cpuhp_state prev_state = st->state;
334 int ret = 0;
336 for (; st->state > target; st->state--) {
337 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
338 if (ret) {
339 st->target = prev_state;
340 undo_cpu_down(cpu, st);
341 break;
344 return ret;
347 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
349 for (st->state--; st->state > st->target; st->state--) {
350 struct cpuhp_step *step = cpuhp_get_step(st->state);
352 if (!step->skip_onerr)
353 cpuhp_invoke_callback(cpu, st->state, false, NULL);
357 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
358 enum cpuhp_state target)
360 enum cpuhp_state prev_state = st->state;
361 int ret = 0;
363 while (st->state < target) {
364 st->state++;
365 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
366 if (ret) {
367 st->target = prev_state;
368 undo_cpu_up(cpu, st);
369 break;
372 return ret;
376 * The cpu hotplug threads manage the bringup and teardown of the cpus
378 static void cpuhp_create(unsigned int cpu)
380 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
382 init_completion(&st->done);
385 static int cpuhp_should_run(unsigned int cpu)
387 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
389 return st->should_run;
392 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
393 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
395 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
397 return cpuhp_down_callbacks(cpu, st, target);
400 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
401 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
403 return cpuhp_up_callbacks(cpu, st, st->target);
407 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
408 * callbacks when a state gets [un]installed at runtime.
410 static void cpuhp_thread_fun(unsigned int cpu)
412 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
413 int ret = 0;
416 * Paired with the mb() in cpuhp_kick_ap_work and
417 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
419 smp_mb();
420 if (!st->should_run)
421 return;
423 st->should_run = false;
425 lock_map_acquire(&cpuhp_state_lock_map);
426 /* Single callback invocation for [un]install ? */
427 if (st->single) {
428 if (st->cb_state < CPUHP_AP_ONLINE) {
429 local_irq_disable();
430 ret = cpuhp_invoke_callback(cpu, st->cb_state,
431 st->bringup, st->node);
432 local_irq_enable();
433 } else {
434 ret = cpuhp_invoke_callback(cpu, st->cb_state,
435 st->bringup, st->node);
437 } else if (st->rollback) {
438 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
440 undo_cpu_down(cpu, st);
441 st->rollback = false;
442 } else {
443 /* Cannot happen .... */
444 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
446 /* Regular hotplug work */
447 if (st->state < st->target)
448 ret = cpuhp_ap_online(cpu, st);
449 else if (st->state > st->target)
450 ret = cpuhp_ap_offline(cpu, st);
452 lock_map_release(&cpuhp_state_lock_map);
453 st->result = ret;
454 complete(&st->done);
457 /* Invoke a single callback on a remote cpu */
458 static int
459 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
460 struct hlist_node *node)
462 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
464 if (!cpu_online(cpu))
465 return 0;
467 lock_map_acquire(&cpuhp_state_lock_map);
468 lock_map_release(&cpuhp_state_lock_map);
471 * If we are up and running, use the hotplug thread. For early calls
472 * we invoke the thread function directly.
474 if (!st->thread)
475 return cpuhp_invoke_callback(cpu, state, bringup, node);
477 st->cb_state = state;
478 st->single = true;
479 st->bringup = bringup;
480 st->node = node;
483 * Make sure the above stores are visible before should_run becomes
484 * true. Paired with the mb() above in cpuhp_thread_fun()
486 smp_mb();
487 st->should_run = true;
488 wake_up_process(st->thread);
489 wait_for_completion(&st->done);
490 return st->result;
493 /* Regular hotplug invocation of the AP hotplug thread */
494 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
496 st->result = 0;
497 st->single = false;
499 * Make sure the above stores are visible before should_run becomes
500 * true. Paired with the mb() above in cpuhp_thread_fun()
502 smp_mb();
503 st->should_run = true;
504 wake_up_process(st->thread);
507 static int cpuhp_kick_ap_work(unsigned int cpu)
509 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
510 enum cpuhp_state state = st->state;
512 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
513 lock_map_acquire(&cpuhp_state_lock_map);
514 lock_map_release(&cpuhp_state_lock_map);
515 __cpuhp_kick_ap_work(st);
516 wait_for_completion(&st->done);
517 trace_cpuhp_exit(cpu, st->state, state, st->result);
518 return st->result;
521 static struct smp_hotplug_thread cpuhp_threads = {
522 .store = &cpuhp_state.thread,
523 .create = &cpuhp_create,
524 .thread_should_run = cpuhp_should_run,
525 .thread_fn = cpuhp_thread_fun,
526 .thread_comm = "cpuhp/%u",
527 .selfparking = true,
530 void __init cpuhp_threads_init(void)
532 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
533 kthread_unpark(this_cpu_read(cpuhp_state.thread));
536 #ifdef CONFIG_HOTPLUG_CPU
538 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
539 * @cpu: a CPU id
541 * This function walks all processes, finds a valid mm struct for each one and
542 * then clears a corresponding bit in mm's cpumask. While this all sounds
543 * trivial, there are various non-obvious corner cases, which this function
544 * tries to solve in a safe manner.
546 * Also note that the function uses a somewhat relaxed locking scheme, so it may
547 * be called only for an already offlined CPU.
549 void clear_tasks_mm_cpumask(int cpu)
551 struct task_struct *p;
554 * This function is called after the cpu is taken down and marked
555 * offline, so its not like new tasks will ever get this cpu set in
556 * their mm mask. -- Peter Zijlstra
557 * Thus, we may use rcu_read_lock() here, instead of grabbing
558 * full-fledged tasklist_lock.
560 WARN_ON(cpu_online(cpu));
561 rcu_read_lock();
562 for_each_process(p) {
563 struct task_struct *t;
566 * Main thread might exit, but other threads may still have
567 * a valid mm. Find one.
569 t = find_lock_task_mm(p);
570 if (!t)
571 continue;
572 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
573 task_unlock(t);
575 rcu_read_unlock();
578 /* Take this CPU down. */
579 static int take_cpu_down(void *_param)
581 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
582 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
583 int err, cpu = smp_processor_id();
585 /* Ensure this CPU doesn't handle any more interrupts. */
586 err = __cpu_disable();
587 if (err < 0)
588 return err;
591 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
592 * do this step again.
594 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
595 st->state--;
596 /* Invoke the former CPU_DYING callbacks */
597 for (; st->state > target; st->state--)
598 cpuhp_invoke_callback(cpu, st->state, false, NULL);
600 /* Give up timekeeping duties */
601 tick_handover_do_timer();
602 /* Park the stopper thread */
603 stop_machine_park(cpu);
604 return 0;
607 static int takedown_cpu(unsigned int cpu)
609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
610 int err;
612 /* Park the smpboot threads */
613 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
614 smpboot_park_threads(cpu);
617 * Prevent irq alloc/free while the dying cpu reorganizes the
618 * interrupt affinities.
620 irq_lock_sparse();
623 * So now all preempt/rcu users must observe !cpu_active().
625 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
626 if (err) {
627 /* CPU refused to die */
628 irq_unlock_sparse();
629 /* Unpark the hotplug thread so we can rollback there */
630 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
631 return err;
633 BUG_ON(cpu_online(cpu));
636 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
637 * runnable tasks from the cpu, there's only the idle task left now
638 * that the migration thread is done doing the stop_machine thing.
640 * Wait for the stop thread to go away.
642 wait_for_completion(&st->done);
643 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
645 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
646 irq_unlock_sparse();
648 hotplug_cpu__broadcast_tick_pull(cpu);
649 /* This actually kills the CPU. */
650 __cpu_die(cpu);
652 tick_cleanup_dead_cpu(cpu);
653 return 0;
656 static void cpuhp_complete_idle_dead(void *arg)
658 struct cpuhp_cpu_state *st = arg;
660 complete(&st->done);
663 void cpuhp_report_idle_dead(void)
665 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
667 BUG_ON(st->state != CPUHP_AP_OFFLINE);
668 rcu_report_dead(smp_processor_id());
669 st->state = CPUHP_AP_IDLE_DEAD;
671 * We cannot call complete after rcu_report_dead() so we delegate it
672 * to an online cpu.
674 smp_call_function_single(cpumask_first(cpu_online_mask),
675 cpuhp_complete_idle_dead, st, 0);
678 #else
679 #define takedown_cpu NULL
680 #endif
682 #ifdef CONFIG_HOTPLUG_CPU
684 /* Requires cpu_add_remove_lock to be held */
685 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
686 enum cpuhp_state target)
688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 int prev_state, ret = 0;
691 if (num_online_cpus() == 1)
692 return -EBUSY;
694 if (!cpu_present(cpu))
695 return -EINVAL;
697 cpus_write_lock();
699 cpuhp_tasks_frozen = tasks_frozen;
701 prev_state = st->state;
702 st->target = target;
704 * If the current CPU state is in the range of the AP hotplug thread,
705 * then we need to kick the thread.
707 if (st->state > CPUHP_TEARDOWN_CPU) {
708 ret = cpuhp_kick_ap_work(cpu);
710 * The AP side has done the error rollback already. Just
711 * return the error code..
713 if (ret)
714 goto out;
717 * We might have stopped still in the range of the AP hotplug
718 * thread. Nothing to do anymore.
720 if (st->state > CPUHP_TEARDOWN_CPU)
721 goto out;
724 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
725 * to do the further cleanups.
727 ret = cpuhp_down_callbacks(cpu, st, target);
728 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
729 st->target = prev_state;
730 st->rollback = true;
731 cpuhp_kick_ap_work(cpu);
734 out:
735 cpus_write_unlock();
736 return ret;
739 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
741 int err;
743 cpu_maps_update_begin();
745 if (cpu_hotplug_disabled) {
746 err = -EBUSY;
747 goto out;
750 err = _cpu_down(cpu, 0, target);
752 out:
753 cpu_maps_update_done();
754 return err;
756 int cpu_down(unsigned int cpu)
758 return do_cpu_down(cpu, CPUHP_OFFLINE);
760 EXPORT_SYMBOL(cpu_down);
761 #endif /*CONFIG_HOTPLUG_CPU*/
764 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
765 * @cpu: cpu that just started
767 * It must be called by the arch code on the new cpu, before the new cpu
768 * enables interrupts and before the "boot" cpu returns from __cpu_up().
770 void notify_cpu_starting(unsigned int cpu)
772 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
773 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
775 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
776 while (st->state < target) {
777 st->state++;
778 cpuhp_invoke_callback(cpu, st->state, true, NULL);
783 * Called from the idle task. Wake up the controlling task which brings the
784 * stopper and the hotplug thread of the upcoming CPU up and then delegates
785 * the rest of the online bringup to the hotplug thread.
787 void cpuhp_online_idle(enum cpuhp_state state)
789 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
791 /* Happens for the boot cpu */
792 if (state != CPUHP_AP_ONLINE_IDLE)
793 return;
795 st->state = CPUHP_AP_ONLINE_IDLE;
796 complete(&st->done);
799 /* Requires cpu_add_remove_lock to be held */
800 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
802 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
803 struct task_struct *idle;
804 int ret = 0;
806 cpus_write_lock();
808 if (!cpu_present(cpu)) {
809 ret = -EINVAL;
810 goto out;
814 * The caller of do_cpu_up might have raced with another
815 * caller. Ignore it for now.
817 if (st->state >= target)
818 goto out;
820 if (st->state == CPUHP_OFFLINE) {
821 /* Let it fail before we try to bring the cpu up */
822 idle = idle_thread_get(cpu);
823 if (IS_ERR(idle)) {
824 ret = PTR_ERR(idle);
825 goto out;
829 cpuhp_tasks_frozen = tasks_frozen;
831 st->target = target;
833 * If the current CPU state is in the range of the AP hotplug thread,
834 * then we need to kick the thread once more.
836 if (st->state > CPUHP_BRINGUP_CPU) {
837 ret = cpuhp_kick_ap_work(cpu);
839 * The AP side has done the error rollback already. Just
840 * return the error code..
842 if (ret)
843 goto out;
847 * Try to reach the target state. We max out on the BP at
848 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
849 * responsible for bringing it up to the target state.
851 target = min((int)target, CPUHP_BRINGUP_CPU);
852 ret = cpuhp_up_callbacks(cpu, st, target);
853 out:
854 cpus_write_unlock();
855 return ret;
858 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
860 int err = 0;
862 if (!cpu_possible(cpu)) {
863 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
864 cpu);
865 #if defined(CONFIG_IA64)
866 pr_err("please check additional_cpus= boot parameter\n");
867 #endif
868 return -EINVAL;
871 err = try_online_node(cpu_to_node(cpu));
872 if (err)
873 return err;
875 cpu_maps_update_begin();
877 if (cpu_hotplug_disabled) {
878 err = -EBUSY;
879 goto out;
882 err = _cpu_up(cpu, 0, target);
883 out:
884 cpu_maps_update_done();
885 return err;
888 int cpu_up(unsigned int cpu)
890 return do_cpu_up(cpu, CPUHP_ONLINE);
892 EXPORT_SYMBOL_GPL(cpu_up);
894 #ifdef CONFIG_PM_SLEEP_SMP
895 static cpumask_var_t frozen_cpus;
897 int freeze_secondary_cpus(int primary)
899 int cpu, error = 0;
901 cpu_maps_update_begin();
902 if (!cpu_online(primary))
903 primary = cpumask_first(cpu_online_mask);
905 * We take down all of the non-boot CPUs in one shot to avoid races
906 * with the userspace trying to use the CPU hotplug at the same time
908 cpumask_clear(frozen_cpus);
910 pr_info("Disabling non-boot CPUs ...\n");
911 for_each_online_cpu(cpu) {
912 if (cpu == primary)
913 continue;
914 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
915 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
916 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
917 if (!error)
918 cpumask_set_cpu(cpu, frozen_cpus);
919 else {
920 pr_err("Error taking CPU%d down: %d\n", cpu, error);
921 break;
925 if (!error)
926 BUG_ON(num_online_cpus() > 1);
927 else
928 pr_err("Non-boot CPUs are not disabled\n");
931 * Make sure the CPUs won't be enabled by someone else. We need to do
932 * this even in case of failure as all disable_nonboot_cpus() users are
933 * supposed to do enable_nonboot_cpus() on the failure path.
935 cpu_hotplug_disabled++;
937 cpu_maps_update_done();
938 return error;
941 void __weak arch_enable_nonboot_cpus_begin(void)
945 void __weak arch_enable_nonboot_cpus_end(void)
949 void enable_nonboot_cpus(void)
951 int cpu, error;
953 /* Allow everyone to use the CPU hotplug again */
954 cpu_maps_update_begin();
955 __cpu_hotplug_enable();
956 if (cpumask_empty(frozen_cpus))
957 goto out;
959 pr_info("Enabling non-boot CPUs ...\n");
961 arch_enable_nonboot_cpus_begin();
963 for_each_cpu(cpu, frozen_cpus) {
964 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
965 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
966 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
967 if (!error) {
968 pr_info("CPU%d is up\n", cpu);
969 continue;
971 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
974 arch_enable_nonboot_cpus_end();
976 cpumask_clear(frozen_cpus);
977 out:
978 cpu_maps_update_done();
981 static int __init alloc_frozen_cpus(void)
983 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
984 return -ENOMEM;
985 return 0;
987 core_initcall(alloc_frozen_cpus);
990 * When callbacks for CPU hotplug notifications are being executed, we must
991 * ensure that the state of the system with respect to the tasks being frozen
992 * or not, as reported by the notification, remains unchanged *throughout the
993 * duration* of the execution of the callbacks.
994 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
996 * This synchronization is implemented by mutually excluding regular CPU
997 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
998 * Hibernate notifications.
1000 static int
1001 cpu_hotplug_pm_callback(struct notifier_block *nb,
1002 unsigned long action, void *ptr)
1004 switch (action) {
1006 case PM_SUSPEND_PREPARE:
1007 case PM_HIBERNATION_PREPARE:
1008 cpu_hotplug_disable();
1009 break;
1011 case PM_POST_SUSPEND:
1012 case PM_POST_HIBERNATION:
1013 cpu_hotplug_enable();
1014 break;
1016 default:
1017 return NOTIFY_DONE;
1020 return NOTIFY_OK;
1024 static int __init cpu_hotplug_pm_sync_init(void)
1027 * cpu_hotplug_pm_callback has higher priority than x86
1028 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1029 * to disable cpu hotplug to avoid cpu hotplug race.
1031 pm_notifier(cpu_hotplug_pm_callback, 0);
1032 return 0;
1034 core_initcall(cpu_hotplug_pm_sync_init);
1036 #endif /* CONFIG_PM_SLEEP_SMP */
1038 int __boot_cpu_id;
1040 #endif /* CONFIG_SMP */
1042 /* Boot processor state steps */
1043 static struct cpuhp_step cpuhp_bp_states[] = {
1044 [CPUHP_OFFLINE] = {
1045 .name = "offline",
1046 .startup.single = NULL,
1047 .teardown.single = NULL,
1049 #ifdef CONFIG_SMP
1050 [CPUHP_CREATE_THREADS]= {
1051 .name = "threads:prepare",
1052 .startup.single = smpboot_create_threads,
1053 .teardown.single = NULL,
1054 .cant_stop = true,
1056 [CPUHP_PERF_PREPARE] = {
1057 .name = "perf:prepare",
1058 .startup.single = perf_event_init_cpu,
1059 .teardown.single = perf_event_exit_cpu,
1061 [CPUHP_WORKQUEUE_PREP] = {
1062 .name = "workqueue:prepare",
1063 .startup.single = workqueue_prepare_cpu,
1064 .teardown.single = NULL,
1066 [CPUHP_HRTIMERS_PREPARE] = {
1067 .name = "hrtimers:prepare",
1068 .startup.single = hrtimers_prepare_cpu,
1069 .teardown.single = hrtimers_dead_cpu,
1071 [CPUHP_SMPCFD_PREPARE] = {
1072 .name = "smpcfd:prepare",
1073 .startup.single = smpcfd_prepare_cpu,
1074 .teardown.single = smpcfd_dead_cpu,
1076 [CPUHP_RELAY_PREPARE] = {
1077 .name = "relay:prepare",
1078 .startup.single = relay_prepare_cpu,
1079 .teardown.single = NULL,
1081 [CPUHP_SLAB_PREPARE] = {
1082 .name = "slab:prepare",
1083 .startup.single = slab_prepare_cpu,
1084 .teardown.single = slab_dead_cpu,
1086 [CPUHP_RCUTREE_PREP] = {
1087 .name = "RCU/tree:prepare",
1088 .startup.single = rcutree_prepare_cpu,
1089 .teardown.single = rcutree_dead_cpu,
1092 * On the tear-down path, timers_dead_cpu() must be invoked
1093 * before blk_mq_queue_reinit_notify() from notify_dead(),
1094 * otherwise a RCU stall occurs.
1096 [CPUHP_TIMERS_DEAD] = {
1097 .name = "timers:dead",
1098 .startup.single = NULL,
1099 .teardown.single = timers_dead_cpu,
1101 /* Kicks the plugged cpu into life */
1102 [CPUHP_BRINGUP_CPU] = {
1103 .name = "cpu:bringup",
1104 .startup.single = bringup_cpu,
1105 .teardown.single = NULL,
1106 .cant_stop = true,
1108 [CPUHP_AP_SMPCFD_DYING] = {
1109 .name = "smpcfd:dying",
1110 .startup.single = NULL,
1111 .teardown.single = smpcfd_dying_cpu,
1114 * Handled on controll processor until the plugged processor manages
1115 * this itself.
1117 [CPUHP_TEARDOWN_CPU] = {
1118 .name = "cpu:teardown",
1119 .startup.single = NULL,
1120 .teardown.single = takedown_cpu,
1121 .cant_stop = true,
1123 #else
1124 [CPUHP_BRINGUP_CPU] = { },
1125 #endif
1128 /* Application processor state steps */
1129 static struct cpuhp_step cpuhp_ap_states[] = {
1130 #ifdef CONFIG_SMP
1131 /* Final state before CPU kills itself */
1132 [CPUHP_AP_IDLE_DEAD] = {
1133 .name = "idle:dead",
1136 * Last state before CPU enters the idle loop to die. Transient state
1137 * for synchronization.
1139 [CPUHP_AP_OFFLINE] = {
1140 .name = "ap:offline",
1141 .cant_stop = true,
1143 /* First state is scheduler control. Interrupts are disabled */
1144 [CPUHP_AP_SCHED_STARTING] = {
1145 .name = "sched:starting",
1146 .startup.single = sched_cpu_starting,
1147 .teardown.single = sched_cpu_dying,
1149 [CPUHP_AP_RCUTREE_DYING] = {
1150 .name = "RCU/tree:dying",
1151 .startup.single = NULL,
1152 .teardown.single = rcutree_dying_cpu,
1154 /* Entry state on starting. Interrupts enabled from here on. Transient
1155 * state for synchronsization */
1156 [CPUHP_AP_ONLINE] = {
1157 .name = "ap:online",
1159 /* Handle smpboot threads park/unpark */
1160 [CPUHP_AP_SMPBOOT_THREADS] = {
1161 .name = "smpboot/threads:online",
1162 .startup.single = smpboot_unpark_threads,
1163 .teardown.single = NULL,
1165 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1166 .name = "irq/affinity:online",
1167 .startup.single = irq_affinity_online_cpu,
1168 .teardown.single = NULL,
1170 [CPUHP_AP_PERF_ONLINE] = {
1171 .name = "perf:online",
1172 .startup.single = perf_event_init_cpu,
1173 .teardown.single = perf_event_exit_cpu,
1175 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1176 .name = "workqueue:online",
1177 .startup.single = workqueue_online_cpu,
1178 .teardown.single = workqueue_offline_cpu,
1180 [CPUHP_AP_RCUTREE_ONLINE] = {
1181 .name = "RCU/tree:online",
1182 .startup.single = rcutree_online_cpu,
1183 .teardown.single = rcutree_offline_cpu,
1185 #endif
1187 * The dynamically registered state space is here
1190 #ifdef CONFIG_SMP
1191 /* Last state is scheduler control setting the cpu active */
1192 [CPUHP_AP_ACTIVE] = {
1193 .name = "sched:active",
1194 .startup.single = sched_cpu_activate,
1195 .teardown.single = sched_cpu_deactivate,
1197 #endif
1199 /* CPU is fully up and running. */
1200 [CPUHP_ONLINE] = {
1201 .name = "online",
1202 .startup.single = NULL,
1203 .teardown.single = NULL,
1207 /* Sanity check for callbacks */
1208 static int cpuhp_cb_check(enum cpuhp_state state)
1210 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1211 return -EINVAL;
1212 return 0;
1216 * Returns a free for dynamic slot assignment of the Online state. The states
1217 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1218 * by having no name assigned.
1220 static int cpuhp_reserve_state(enum cpuhp_state state)
1222 enum cpuhp_state i, end;
1223 struct cpuhp_step *step;
1225 switch (state) {
1226 case CPUHP_AP_ONLINE_DYN:
1227 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1228 end = CPUHP_AP_ONLINE_DYN_END;
1229 break;
1230 case CPUHP_BP_PREPARE_DYN:
1231 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1232 end = CPUHP_BP_PREPARE_DYN_END;
1233 break;
1234 default:
1235 return -EINVAL;
1238 for (i = state; i <= end; i++, step++) {
1239 if (!step->name)
1240 return i;
1242 WARN(1, "No more dynamic states available for CPU hotplug\n");
1243 return -ENOSPC;
1246 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1247 int (*startup)(unsigned int cpu),
1248 int (*teardown)(unsigned int cpu),
1249 bool multi_instance)
1251 /* (Un)Install the callbacks for further cpu hotplug operations */
1252 struct cpuhp_step *sp;
1253 int ret = 0;
1255 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1256 ret = cpuhp_reserve_state(state);
1257 if (ret < 0)
1258 return ret;
1259 state = ret;
1261 sp = cpuhp_get_step(state);
1262 if (name && sp->name)
1263 return -EBUSY;
1265 sp->startup.single = startup;
1266 sp->teardown.single = teardown;
1267 sp->name = name;
1268 sp->multi_instance = multi_instance;
1269 INIT_HLIST_HEAD(&sp->list);
1270 return ret;
1273 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1275 return cpuhp_get_step(state)->teardown.single;
1279 * Call the startup/teardown function for a step either on the AP or
1280 * on the current CPU.
1282 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1283 struct hlist_node *node)
1285 struct cpuhp_step *sp = cpuhp_get_step(state);
1286 int ret;
1288 if ((bringup && !sp->startup.single) ||
1289 (!bringup && !sp->teardown.single))
1290 return 0;
1292 * The non AP bound callbacks can fail on bringup. On teardown
1293 * e.g. module removal we crash for now.
1295 #ifdef CONFIG_SMP
1296 if (cpuhp_is_ap_state(state))
1297 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1298 else
1299 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1300 #else
1301 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1302 #endif
1303 BUG_ON(ret && !bringup);
1304 return ret;
1308 * Called from __cpuhp_setup_state on a recoverable failure.
1310 * Note: The teardown callbacks for rollback are not allowed to fail!
1312 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1313 struct hlist_node *node)
1315 int cpu;
1317 /* Roll back the already executed steps on the other cpus */
1318 for_each_present_cpu(cpu) {
1319 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1320 int cpustate = st->state;
1322 if (cpu >= failedcpu)
1323 break;
1325 /* Did we invoke the startup call on that cpu ? */
1326 if (cpustate >= state)
1327 cpuhp_issue_call(cpu, state, false, node);
1331 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1332 struct hlist_node *node,
1333 bool invoke)
1335 struct cpuhp_step *sp;
1336 int cpu;
1337 int ret;
1339 lockdep_assert_cpus_held();
1341 sp = cpuhp_get_step(state);
1342 if (sp->multi_instance == false)
1343 return -EINVAL;
1345 mutex_lock(&cpuhp_state_mutex);
1347 if (!invoke || !sp->startup.multi)
1348 goto add_node;
1351 * Try to call the startup callback for each present cpu
1352 * depending on the hotplug state of the cpu.
1354 for_each_present_cpu(cpu) {
1355 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1356 int cpustate = st->state;
1358 if (cpustate < state)
1359 continue;
1361 ret = cpuhp_issue_call(cpu, state, true, node);
1362 if (ret) {
1363 if (sp->teardown.multi)
1364 cpuhp_rollback_install(cpu, state, node);
1365 goto unlock;
1368 add_node:
1369 ret = 0;
1370 hlist_add_head(node, &sp->list);
1371 unlock:
1372 mutex_unlock(&cpuhp_state_mutex);
1373 return ret;
1376 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1377 bool invoke)
1379 int ret;
1381 cpus_read_lock();
1382 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1383 cpus_read_unlock();
1384 return ret;
1386 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1389 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1390 * @state: The state to setup
1391 * @invoke: If true, the startup function is invoked for cpus where
1392 * cpu state >= @state
1393 * @startup: startup callback function
1394 * @teardown: teardown callback function
1395 * @multi_instance: State is set up for multiple instances which get
1396 * added afterwards.
1398 * The caller needs to hold cpus read locked while calling this function.
1399 * Returns:
1400 * On success:
1401 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1402 * 0 for all other states
1403 * On failure: proper (negative) error code
1405 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1406 const char *name, bool invoke,
1407 int (*startup)(unsigned int cpu),
1408 int (*teardown)(unsigned int cpu),
1409 bool multi_instance)
1411 int cpu, ret = 0;
1412 bool dynstate;
1414 lockdep_assert_cpus_held();
1416 if (cpuhp_cb_check(state) || !name)
1417 return -EINVAL;
1419 mutex_lock(&cpuhp_state_mutex);
1421 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1422 multi_instance);
1424 dynstate = state == CPUHP_AP_ONLINE_DYN;
1425 if (ret > 0 && dynstate) {
1426 state = ret;
1427 ret = 0;
1430 if (ret || !invoke || !startup)
1431 goto out;
1434 * Try to call the startup callback for each present cpu
1435 * depending on the hotplug state of the cpu.
1437 for_each_present_cpu(cpu) {
1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439 int cpustate = st->state;
1441 if (cpustate < state)
1442 continue;
1444 ret = cpuhp_issue_call(cpu, state, true, NULL);
1445 if (ret) {
1446 if (teardown)
1447 cpuhp_rollback_install(cpu, state, NULL);
1448 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1449 goto out;
1452 out:
1453 mutex_unlock(&cpuhp_state_mutex);
1455 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1456 * dynamically allocated state in case of success.
1458 if (!ret && dynstate)
1459 return state;
1460 return ret;
1462 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1464 int __cpuhp_setup_state(enum cpuhp_state state,
1465 const char *name, bool invoke,
1466 int (*startup)(unsigned int cpu),
1467 int (*teardown)(unsigned int cpu),
1468 bool multi_instance)
1470 int ret;
1472 cpus_read_lock();
1473 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1474 teardown, multi_instance);
1475 cpus_read_unlock();
1476 return ret;
1478 EXPORT_SYMBOL(__cpuhp_setup_state);
1480 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1481 struct hlist_node *node, bool invoke)
1483 struct cpuhp_step *sp = cpuhp_get_step(state);
1484 int cpu;
1486 BUG_ON(cpuhp_cb_check(state));
1488 if (!sp->multi_instance)
1489 return -EINVAL;
1491 cpus_read_lock();
1492 mutex_lock(&cpuhp_state_mutex);
1494 if (!invoke || !cpuhp_get_teardown_cb(state))
1495 goto remove;
1497 * Call the teardown callback for each present cpu depending
1498 * on the hotplug state of the cpu. This function is not
1499 * allowed to fail currently!
1501 for_each_present_cpu(cpu) {
1502 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1503 int cpustate = st->state;
1505 if (cpustate >= state)
1506 cpuhp_issue_call(cpu, state, false, node);
1509 remove:
1510 hlist_del(node);
1511 mutex_unlock(&cpuhp_state_mutex);
1512 cpus_read_unlock();
1514 return 0;
1516 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1519 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1520 * @state: The state to remove
1521 * @invoke: If true, the teardown function is invoked for cpus where
1522 * cpu state >= @state
1524 * The caller needs to hold cpus read locked while calling this function.
1525 * The teardown callback is currently not allowed to fail. Think
1526 * about module removal!
1528 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1530 struct cpuhp_step *sp = cpuhp_get_step(state);
1531 int cpu;
1533 BUG_ON(cpuhp_cb_check(state));
1535 lockdep_assert_cpus_held();
1537 mutex_lock(&cpuhp_state_mutex);
1538 if (sp->multi_instance) {
1539 WARN(!hlist_empty(&sp->list),
1540 "Error: Removing state %d which has instances left.\n",
1541 state);
1542 goto remove;
1545 if (!invoke || !cpuhp_get_teardown_cb(state))
1546 goto remove;
1549 * Call the teardown callback for each present cpu depending
1550 * on the hotplug state of the cpu. This function is not
1551 * allowed to fail currently!
1553 for_each_present_cpu(cpu) {
1554 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1555 int cpustate = st->state;
1557 if (cpustate >= state)
1558 cpuhp_issue_call(cpu, state, false, NULL);
1560 remove:
1561 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1562 mutex_unlock(&cpuhp_state_mutex);
1564 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1566 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1568 cpus_read_lock();
1569 __cpuhp_remove_state_cpuslocked(state, invoke);
1570 cpus_read_unlock();
1572 EXPORT_SYMBOL(__cpuhp_remove_state);
1574 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1575 static ssize_t show_cpuhp_state(struct device *dev,
1576 struct device_attribute *attr, char *buf)
1578 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1580 return sprintf(buf, "%d\n", st->state);
1582 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1584 static ssize_t write_cpuhp_target(struct device *dev,
1585 struct device_attribute *attr,
1586 const char *buf, size_t count)
1588 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1589 struct cpuhp_step *sp;
1590 int target, ret;
1592 ret = kstrtoint(buf, 10, &target);
1593 if (ret)
1594 return ret;
1596 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1597 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1598 return -EINVAL;
1599 #else
1600 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1601 return -EINVAL;
1602 #endif
1604 ret = lock_device_hotplug_sysfs();
1605 if (ret)
1606 return ret;
1608 mutex_lock(&cpuhp_state_mutex);
1609 sp = cpuhp_get_step(target);
1610 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1611 mutex_unlock(&cpuhp_state_mutex);
1612 if (ret)
1613 goto out;
1615 if (st->state < target)
1616 ret = do_cpu_up(dev->id, target);
1617 else
1618 ret = do_cpu_down(dev->id, target);
1619 out:
1620 unlock_device_hotplug();
1621 return ret ? ret : count;
1624 static ssize_t show_cpuhp_target(struct device *dev,
1625 struct device_attribute *attr, char *buf)
1627 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1629 return sprintf(buf, "%d\n", st->target);
1631 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1633 static struct attribute *cpuhp_cpu_attrs[] = {
1634 &dev_attr_state.attr,
1635 &dev_attr_target.attr,
1636 NULL
1639 static const struct attribute_group cpuhp_cpu_attr_group = {
1640 .attrs = cpuhp_cpu_attrs,
1641 .name = "hotplug",
1642 NULL
1645 static ssize_t show_cpuhp_states(struct device *dev,
1646 struct device_attribute *attr, char *buf)
1648 ssize_t cur, res = 0;
1649 int i;
1651 mutex_lock(&cpuhp_state_mutex);
1652 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1653 struct cpuhp_step *sp = cpuhp_get_step(i);
1655 if (sp->name) {
1656 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1657 buf += cur;
1658 res += cur;
1661 mutex_unlock(&cpuhp_state_mutex);
1662 return res;
1664 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1666 static struct attribute *cpuhp_cpu_root_attrs[] = {
1667 &dev_attr_states.attr,
1668 NULL
1671 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1672 .attrs = cpuhp_cpu_root_attrs,
1673 .name = "hotplug",
1674 NULL
1677 static int __init cpuhp_sysfs_init(void)
1679 int cpu, ret;
1681 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1682 &cpuhp_cpu_root_attr_group);
1683 if (ret)
1684 return ret;
1686 for_each_possible_cpu(cpu) {
1687 struct device *dev = get_cpu_device(cpu);
1689 if (!dev)
1690 continue;
1691 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1692 if (ret)
1693 return ret;
1695 return 0;
1697 device_initcall(cpuhp_sysfs_init);
1698 #endif
1701 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1702 * represents all NR_CPUS bits binary values of 1<<nr.
1704 * It is used by cpumask_of() to get a constant address to a CPU
1705 * mask value that has a single bit set only.
1708 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1709 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1710 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1711 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1712 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1714 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1716 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1717 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1718 #if BITS_PER_LONG > 32
1719 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1720 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1721 #endif
1723 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1725 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1726 EXPORT_SYMBOL(cpu_all_bits);
1728 #ifdef CONFIG_INIT_ALL_POSSIBLE
1729 struct cpumask __cpu_possible_mask __read_mostly
1730 = {CPU_BITS_ALL};
1731 #else
1732 struct cpumask __cpu_possible_mask __read_mostly;
1733 #endif
1734 EXPORT_SYMBOL(__cpu_possible_mask);
1736 struct cpumask __cpu_online_mask __read_mostly;
1737 EXPORT_SYMBOL(__cpu_online_mask);
1739 struct cpumask __cpu_present_mask __read_mostly;
1740 EXPORT_SYMBOL(__cpu_present_mask);
1742 struct cpumask __cpu_active_mask __read_mostly;
1743 EXPORT_SYMBOL(__cpu_active_mask);
1745 void init_cpu_present(const struct cpumask *src)
1747 cpumask_copy(&__cpu_present_mask, src);
1750 void init_cpu_possible(const struct cpumask *src)
1752 cpumask_copy(&__cpu_possible_mask, src);
1755 void init_cpu_online(const struct cpumask *src)
1757 cpumask_copy(&__cpu_online_mask, src);
1761 * Activate the first processor.
1763 void __init boot_cpu_init(void)
1765 int cpu = smp_processor_id();
1767 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1768 set_cpu_online(cpu, true);
1769 set_cpu_active(cpu, true);
1770 set_cpu_present(cpu, true);
1771 set_cpu_possible(cpu, true);
1773 #ifdef CONFIG_SMP
1774 __boot_cpu_id = cpu;
1775 #endif
1779 * Must be called _AFTER_ setting up the per_cpu areas
1781 void __init boot_cpu_state_init(void)
1783 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;