e1000e: implement ethtool set_phys_id
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000e / 82571.c
blob8295f21924393e805268d629881b446b8eeed69c
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
46 #include "e1000.h"
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
84 /**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
87 **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
93 if (hw->phy.media_type != e1000_media_type_copper) {
94 phy->type = e1000_phy_none;
95 return 0;
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
113 case e1000_82574:
114 case e1000_82583:
115 phy->type = e1000_phy_bm;
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120 break;
121 default:
122 return -E1000_ERR_PHY;
123 break;
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
138 ret_val = -E1000_ERR_PHY;
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
142 ret_val = -E1000_ERR_PHY;
143 break;
144 case e1000_82574:
145 case e1000_82583:
146 if (phy->id != BME1000_E_PHY_ID_R2)
147 ret_val = -E1000_ERR_PHY;
148 break;
149 default:
150 ret_val = -E1000_ERR_PHY;
151 break;
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
157 return ret_val;
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
187 switch (hw->mac.type) {
188 case e1000_82573:
189 case e1000_82574:
190 case e1000_82583:
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
202 /* Fall Through */
203 default:
204 nvm->type = e1000_nvm_eeprom_spi;
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
211 size += NVM_WORD_SIZE_BASE_SHIFT;
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
216 nvm->word_size = 1 << size;
217 break;
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
231 return 0;
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
238 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
240 struct e1000_hw *hw = &adapter->hw;
241 struct e1000_mac_info *mac = &hw->mac;
242 struct e1000_mac_operations *func = &mac->ops;
243 u32 swsm = 0;
244 u32 swsm2 = 0;
245 bool force_clear_smbi = false;
247 /* Set media type */
248 switch (adapter->pdev->device) {
249 case E1000_DEV_ID_82571EB_FIBER:
250 case E1000_DEV_ID_82572EI_FIBER:
251 case E1000_DEV_ID_82571EB_QUAD_FIBER:
252 hw->phy.media_type = e1000_media_type_fiber;
253 break;
254 case E1000_DEV_ID_82571EB_SERDES:
255 case E1000_DEV_ID_82572EI_SERDES:
256 case E1000_DEV_ID_82571EB_SERDES_DUAL:
257 case E1000_DEV_ID_82571EB_SERDES_QUAD:
258 hw->phy.media_type = e1000_media_type_internal_serdes;
259 break;
260 default:
261 hw->phy.media_type = e1000_media_type_copper;
262 break;
265 /* Set mta register count */
266 mac->mta_reg_count = 128;
267 /* Set rar entry count */
268 mac->rar_entry_count = E1000_RAR_ENTRIES;
269 /* Adaptive IFS supported */
270 mac->adaptive_ifs = true;
272 /* check for link */
273 switch (hw->phy.media_type) {
274 case e1000_media_type_copper:
275 func->setup_physical_interface = e1000_setup_copper_link_82571;
276 func->check_for_link = e1000e_check_for_copper_link;
277 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
278 break;
279 case e1000_media_type_fiber:
280 func->setup_physical_interface =
281 e1000_setup_fiber_serdes_link_82571;
282 func->check_for_link = e1000e_check_for_fiber_link;
283 func->get_link_up_info =
284 e1000e_get_speed_and_duplex_fiber_serdes;
285 break;
286 case e1000_media_type_internal_serdes:
287 func->setup_physical_interface =
288 e1000_setup_fiber_serdes_link_82571;
289 func->check_for_link = e1000_check_for_serdes_link_82571;
290 func->get_link_up_info =
291 e1000e_get_speed_and_duplex_fiber_serdes;
292 break;
293 default:
294 return -E1000_ERR_CONFIG;
295 break;
298 switch (hw->mac.type) {
299 case e1000_82573:
300 func->set_lan_id = e1000_set_lan_id_single_port;
301 func->check_mng_mode = e1000e_check_mng_mode_generic;
302 func->led_on = e1000e_led_on_generic;
303 func->blink_led = e1000e_blink_led_generic;
305 /* FWSM register */
306 mac->has_fwsm = true;
308 * ARC supported; valid only if manageability features are
309 * enabled.
311 mac->arc_subsystem_valid =
312 (er32(FWSM) & E1000_FWSM_MODE_MASK)
313 ? true : false;
314 break;
315 case e1000_82574:
316 case e1000_82583:
317 func->set_lan_id = e1000_set_lan_id_single_port;
318 func->check_mng_mode = e1000_check_mng_mode_82574;
319 func->led_on = e1000_led_on_82574;
320 break;
321 default:
322 func->check_mng_mode = e1000e_check_mng_mode_generic;
323 func->led_on = e1000e_led_on_generic;
324 func->blink_led = e1000e_blink_led_generic;
326 /* FWSM register */
327 mac->has_fwsm = true;
328 break;
332 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
333 * first NVM or PHY access. This should be done for single-port
334 * devices, and for one port only on dual-port devices so that
335 * for those devices we can still use the SMBI lock to synchronize
336 * inter-port accesses to the PHY & NVM.
338 switch (hw->mac.type) {
339 case e1000_82571:
340 case e1000_82572:
341 swsm2 = er32(SWSM2);
343 if (!(swsm2 & E1000_SWSM2_LOCK)) {
344 /* Only do this for the first interface on this card */
345 ew32(SWSM2,
346 swsm2 | E1000_SWSM2_LOCK);
347 force_clear_smbi = true;
348 } else
349 force_clear_smbi = false;
350 break;
351 default:
352 force_clear_smbi = true;
353 break;
356 if (force_clear_smbi) {
357 /* Make sure SWSM.SMBI is clear */
358 swsm = er32(SWSM);
359 if (swsm & E1000_SWSM_SMBI) {
360 /* This bit should not be set on a first interface, and
361 * indicates that the bootagent or EFI code has
362 * improperly left this bit enabled
364 e_dbg("Please update your 82571 Bootagent\n");
366 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
370 * Initialize device specific counter of SMBI acquisition
371 * timeouts.
373 hw->dev_spec.e82571.smb_counter = 0;
375 return 0;
378 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
380 struct e1000_hw *hw = &adapter->hw;
381 static int global_quad_port_a; /* global port a indication */
382 struct pci_dev *pdev = adapter->pdev;
383 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
384 s32 rc;
386 rc = e1000_init_mac_params_82571(adapter);
387 if (rc)
388 return rc;
390 rc = e1000_init_nvm_params_82571(hw);
391 if (rc)
392 return rc;
394 rc = e1000_init_phy_params_82571(hw);
395 if (rc)
396 return rc;
398 /* tag quad port adapters first, it's used below */
399 switch (pdev->device) {
400 case E1000_DEV_ID_82571EB_QUAD_COPPER:
401 case E1000_DEV_ID_82571EB_QUAD_FIBER:
402 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
403 case E1000_DEV_ID_82571PT_QUAD_COPPER:
404 adapter->flags |= FLAG_IS_QUAD_PORT;
405 /* mark the first port */
406 if (global_quad_port_a == 0)
407 adapter->flags |= FLAG_IS_QUAD_PORT_A;
408 /* Reset for multiple quad port adapters */
409 global_quad_port_a++;
410 if (global_quad_port_a == 4)
411 global_quad_port_a = 0;
412 break;
413 default:
414 break;
417 switch (adapter->hw.mac.type) {
418 case e1000_82571:
419 /* these dual ports don't have WoL on port B at all */
420 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
421 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
422 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
423 (is_port_b))
424 adapter->flags &= ~FLAG_HAS_WOL;
425 /* quad ports only support WoL on port A */
426 if (adapter->flags & FLAG_IS_QUAD_PORT &&
427 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
428 adapter->flags &= ~FLAG_HAS_WOL;
429 /* Does not support WoL on any port */
430 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
431 adapter->flags &= ~FLAG_HAS_WOL;
432 break;
433 case e1000_82573:
434 case e1000_82574:
435 case e1000_82583:
436 if (pdev->device == E1000_DEV_ID_82573L) {
437 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
438 adapter->max_hw_frame_size = DEFAULT_JUMBO;
440 break;
441 default:
442 break;
445 return 0;
449 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
450 * @hw: pointer to the HW structure
452 * Reads the PHY registers and stores the PHY ID and possibly the PHY
453 * revision in the hardware structure.
455 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
457 struct e1000_phy_info *phy = &hw->phy;
458 s32 ret_val;
459 u16 phy_id = 0;
461 switch (hw->mac.type) {
462 case e1000_82571:
463 case e1000_82572:
465 * The 82571 firmware may still be configuring the PHY.
466 * In this case, we cannot access the PHY until the
467 * configuration is done. So we explicitly set the
468 * PHY ID.
470 phy->id = IGP01E1000_I_PHY_ID;
471 break;
472 case e1000_82573:
473 return e1000e_get_phy_id(hw);
474 break;
475 case e1000_82574:
476 case e1000_82583:
477 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
478 if (ret_val)
479 return ret_val;
481 phy->id = (u32)(phy_id << 16);
482 udelay(20);
483 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
484 if (ret_val)
485 return ret_val;
487 phy->id |= (u32)(phy_id);
488 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
489 break;
490 default:
491 return -E1000_ERR_PHY;
492 break;
495 return 0;
499 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
500 * @hw: pointer to the HW structure
502 * Acquire the HW semaphore to access the PHY or NVM
504 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
506 u32 swsm;
507 s32 sw_timeout = hw->nvm.word_size + 1;
508 s32 fw_timeout = hw->nvm.word_size + 1;
509 s32 i = 0;
512 * If we have timedout 3 times on trying to acquire
513 * the inter-port SMBI semaphore, there is old code
514 * operating on the other port, and it is not
515 * releasing SMBI. Modify the number of times that
516 * we try for the semaphore to interwork with this
517 * older code.
519 if (hw->dev_spec.e82571.smb_counter > 2)
520 sw_timeout = 1;
522 /* Get the SW semaphore */
523 while (i < sw_timeout) {
524 swsm = er32(SWSM);
525 if (!(swsm & E1000_SWSM_SMBI))
526 break;
528 udelay(50);
529 i++;
532 if (i == sw_timeout) {
533 e_dbg("Driver can't access device - SMBI bit is set.\n");
534 hw->dev_spec.e82571.smb_counter++;
536 /* Get the FW semaphore. */
537 for (i = 0; i < fw_timeout; i++) {
538 swsm = er32(SWSM);
539 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
541 /* Semaphore acquired if bit latched */
542 if (er32(SWSM) & E1000_SWSM_SWESMBI)
543 break;
545 udelay(50);
548 if (i == fw_timeout) {
549 /* Release semaphores */
550 e1000_put_hw_semaphore_82571(hw);
551 e_dbg("Driver can't access the NVM\n");
552 return -E1000_ERR_NVM;
555 return 0;
559 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
560 * @hw: pointer to the HW structure
562 * Release hardware semaphore used to access the PHY or NVM
564 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
566 u32 swsm;
568 swsm = er32(SWSM);
569 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
570 ew32(SWSM, swsm);
573 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
574 * @hw: pointer to the HW structure
576 * Acquire the HW semaphore during reset.
579 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
581 u32 extcnf_ctrl;
582 s32 ret_val = 0;
583 s32 i = 0;
585 extcnf_ctrl = er32(EXTCNF_CTRL);
586 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
587 do {
588 ew32(EXTCNF_CTRL, extcnf_ctrl);
589 extcnf_ctrl = er32(EXTCNF_CTRL);
591 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
592 break;
594 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
596 usleep_range(2000, 4000);
597 i++;
598 } while (i < MDIO_OWNERSHIP_TIMEOUT);
600 if (i == MDIO_OWNERSHIP_TIMEOUT) {
601 /* Release semaphores */
602 e1000_put_hw_semaphore_82573(hw);
603 e_dbg("Driver can't access the PHY\n");
604 ret_val = -E1000_ERR_PHY;
605 goto out;
608 out:
609 return ret_val;
613 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
614 * @hw: pointer to the HW structure
616 * Release hardware semaphore used during reset.
619 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
621 u32 extcnf_ctrl;
623 extcnf_ctrl = er32(EXTCNF_CTRL);
624 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
625 ew32(EXTCNF_CTRL, extcnf_ctrl);
628 static DEFINE_MUTEX(swflag_mutex);
631 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
632 * @hw: pointer to the HW structure
634 * Acquire the HW semaphore to access the PHY or NVM.
637 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
639 s32 ret_val;
641 mutex_lock(&swflag_mutex);
642 ret_val = e1000_get_hw_semaphore_82573(hw);
643 if (ret_val)
644 mutex_unlock(&swflag_mutex);
645 return ret_val;
649 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
650 * @hw: pointer to the HW structure
652 * Release hardware semaphore used to access the PHY or NVM
655 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
657 e1000_put_hw_semaphore_82573(hw);
658 mutex_unlock(&swflag_mutex);
662 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
663 * @hw: pointer to the HW structure
664 * @active: true to enable LPLU, false to disable
666 * Sets the LPLU D0 state according to the active flag.
667 * LPLU will not be activated unless the
668 * device autonegotiation advertisement meets standards of
669 * either 10 or 10/100 or 10/100/1000 at all duplexes.
670 * This is a function pointer entry point only called by
671 * PHY setup routines.
673 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
675 u16 data = er32(POEMB);
677 if (active)
678 data |= E1000_PHY_CTRL_D0A_LPLU;
679 else
680 data &= ~E1000_PHY_CTRL_D0A_LPLU;
682 ew32(POEMB, data);
683 return 0;
687 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
688 * @hw: pointer to the HW structure
689 * @active: boolean used to enable/disable lplu
691 * The low power link up (lplu) state is set to the power management level D3
692 * when active is true, else clear lplu for D3. LPLU
693 * is used during Dx states where the power conservation is most important.
694 * During driver activity, SmartSpeed should be enabled so performance is
695 * maintained.
697 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
699 u16 data = er32(POEMB);
701 if (!active) {
702 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
703 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
704 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
705 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
706 data |= E1000_PHY_CTRL_NOND0A_LPLU;
709 ew32(POEMB, data);
710 return 0;
714 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
715 * @hw: pointer to the HW structure
717 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
718 * Then for non-82573 hardware, set the EEPROM access request bit and wait
719 * for EEPROM access grant bit. If the access grant bit is not set, release
720 * hardware semaphore.
722 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
724 s32 ret_val;
726 ret_val = e1000_get_hw_semaphore_82571(hw);
727 if (ret_val)
728 return ret_val;
730 switch (hw->mac.type) {
731 case e1000_82573:
732 break;
733 default:
734 ret_val = e1000e_acquire_nvm(hw);
735 break;
738 if (ret_val)
739 e1000_put_hw_semaphore_82571(hw);
741 return ret_val;
745 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
746 * @hw: pointer to the HW structure
748 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
750 static void e1000_release_nvm_82571(struct e1000_hw *hw)
752 e1000e_release_nvm(hw);
753 e1000_put_hw_semaphore_82571(hw);
757 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
758 * @hw: pointer to the HW structure
759 * @offset: offset within the EEPROM to be written to
760 * @words: number of words to write
761 * @data: 16 bit word(s) to be written to the EEPROM
763 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
765 * If e1000e_update_nvm_checksum is not called after this function, the
766 * EEPROM will most likely contain an invalid checksum.
768 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
769 u16 *data)
771 s32 ret_val;
773 switch (hw->mac.type) {
774 case e1000_82573:
775 case e1000_82574:
776 case e1000_82583:
777 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
778 break;
779 case e1000_82571:
780 case e1000_82572:
781 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
782 break;
783 default:
784 ret_val = -E1000_ERR_NVM;
785 break;
788 return ret_val;
792 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
793 * @hw: pointer to the HW structure
795 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
796 * up to the checksum. Then calculates the EEPROM checksum and writes the
797 * value to the EEPROM.
799 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
801 u32 eecd;
802 s32 ret_val;
803 u16 i;
805 ret_val = e1000e_update_nvm_checksum_generic(hw);
806 if (ret_val)
807 return ret_val;
810 * If our nvm is an EEPROM, then we're done
811 * otherwise, commit the checksum to the flash NVM.
813 if (hw->nvm.type != e1000_nvm_flash_hw)
814 return ret_val;
816 /* Check for pending operations. */
817 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
818 usleep_range(1000, 2000);
819 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
820 break;
823 if (i == E1000_FLASH_UPDATES)
824 return -E1000_ERR_NVM;
826 /* Reset the firmware if using STM opcode. */
827 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
829 * The enabling of and the actual reset must be done
830 * in two write cycles.
832 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
833 e1e_flush();
834 ew32(HICR, E1000_HICR_FW_RESET);
837 /* Commit the write to flash */
838 eecd = er32(EECD) | E1000_EECD_FLUPD;
839 ew32(EECD, eecd);
841 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
842 usleep_range(1000, 2000);
843 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
844 break;
847 if (i == E1000_FLASH_UPDATES)
848 return -E1000_ERR_NVM;
850 return 0;
854 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
855 * @hw: pointer to the HW structure
857 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
858 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
860 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
862 if (hw->nvm.type == e1000_nvm_flash_hw)
863 e1000_fix_nvm_checksum_82571(hw);
865 return e1000e_validate_nvm_checksum_generic(hw);
869 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
870 * @hw: pointer to the HW structure
871 * @offset: offset within the EEPROM to be written to
872 * @words: number of words to write
873 * @data: 16 bit word(s) to be written to the EEPROM
875 * After checking for invalid values, poll the EEPROM to ensure the previous
876 * command has completed before trying to write the next word. After write
877 * poll for completion.
879 * If e1000e_update_nvm_checksum is not called after this function, the
880 * EEPROM will most likely contain an invalid checksum.
882 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
883 u16 words, u16 *data)
885 struct e1000_nvm_info *nvm = &hw->nvm;
886 u32 i, eewr = 0;
887 s32 ret_val = 0;
890 * A check for invalid values: offset too large, too many words,
891 * and not enough words.
893 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
894 (words == 0)) {
895 e_dbg("nvm parameter(s) out of bounds\n");
896 return -E1000_ERR_NVM;
899 for (i = 0; i < words; i++) {
900 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
901 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
902 E1000_NVM_RW_REG_START;
904 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
905 if (ret_val)
906 break;
908 ew32(EEWR, eewr);
910 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
911 if (ret_val)
912 break;
915 return ret_val;
919 * e1000_get_cfg_done_82571 - Poll for configuration done
920 * @hw: pointer to the HW structure
922 * Reads the management control register for the config done bit to be set.
924 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
926 s32 timeout = PHY_CFG_TIMEOUT;
928 while (timeout) {
929 if (er32(EEMNGCTL) &
930 E1000_NVM_CFG_DONE_PORT_0)
931 break;
932 usleep_range(1000, 2000);
933 timeout--;
935 if (!timeout) {
936 e_dbg("MNG configuration cycle has not completed.\n");
937 return -E1000_ERR_RESET;
940 return 0;
944 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
945 * @hw: pointer to the HW structure
946 * @active: true to enable LPLU, false to disable
948 * Sets the LPLU D0 state according to the active flag. When activating LPLU
949 * this function also disables smart speed and vice versa. LPLU will not be
950 * activated unless the device autonegotiation advertisement meets standards
951 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
952 * pointer entry point only called by PHY setup routines.
954 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
956 struct e1000_phy_info *phy = &hw->phy;
957 s32 ret_val;
958 u16 data;
960 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
961 if (ret_val)
962 return ret_val;
964 if (active) {
965 data |= IGP02E1000_PM_D0_LPLU;
966 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
967 if (ret_val)
968 return ret_val;
970 /* When LPLU is enabled, we should disable SmartSpeed */
971 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
972 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
974 if (ret_val)
975 return ret_val;
976 } else {
977 data &= ~IGP02E1000_PM_D0_LPLU;
978 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
980 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
981 * during Dx states where the power conservation is most
982 * important. During driver activity we should enable
983 * SmartSpeed, so performance is maintained.
985 if (phy->smart_speed == e1000_smart_speed_on) {
986 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
987 &data);
988 if (ret_val)
989 return ret_val;
991 data |= IGP01E1000_PSCFR_SMART_SPEED;
992 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
993 data);
994 if (ret_val)
995 return ret_val;
996 } else if (phy->smart_speed == e1000_smart_speed_off) {
997 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
998 &data);
999 if (ret_val)
1000 return ret_val;
1002 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1003 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1004 data);
1005 if (ret_val)
1006 return ret_val;
1010 return 0;
1014 * e1000_reset_hw_82571 - Reset hardware
1015 * @hw: pointer to the HW structure
1017 * This resets the hardware into a known state.
1019 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1021 u32 ctrl, ctrl_ext;
1022 s32 ret_val;
1025 * Prevent the PCI-E bus from sticking if there is no TLP connection
1026 * on the last TLP read/write transaction when MAC is reset.
1028 ret_val = e1000e_disable_pcie_master(hw);
1029 if (ret_val)
1030 e_dbg("PCI-E Master disable polling has failed.\n");
1032 e_dbg("Masking off all interrupts\n");
1033 ew32(IMC, 0xffffffff);
1035 ew32(RCTL, 0);
1036 ew32(TCTL, E1000_TCTL_PSP);
1037 e1e_flush();
1039 usleep_range(10000, 20000);
1042 * Must acquire the MDIO ownership before MAC reset.
1043 * Ownership defaults to firmware after a reset.
1045 switch (hw->mac.type) {
1046 case e1000_82573:
1047 ret_val = e1000_get_hw_semaphore_82573(hw);
1048 break;
1049 case e1000_82574:
1050 case e1000_82583:
1051 ret_val = e1000_get_hw_semaphore_82574(hw);
1052 break;
1053 default:
1054 break;
1056 if (ret_val)
1057 e_dbg("Cannot acquire MDIO ownership\n");
1059 ctrl = er32(CTRL);
1061 e_dbg("Issuing a global reset to MAC\n");
1062 ew32(CTRL, ctrl | E1000_CTRL_RST);
1064 /* Must release MDIO ownership and mutex after MAC reset. */
1065 switch (hw->mac.type) {
1066 case e1000_82574:
1067 case e1000_82583:
1068 e1000_put_hw_semaphore_82574(hw);
1069 break;
1070 default:
1071 break;
1074 if (hw->nvm.type == e1000_nvm_flash_hw) {
1075 udelay(10);
1076 ctrl_ext = er32(CTRL_EXT);
1077 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1078 ew32(CTRL_EXT, ctrl_ext);
1079 e1e_flush();
1082 ret_val = e1000e_get_auto_rd_done(hw);
1083 if (ret_val)
1084 /* We don't want to continue accessing MAC registers. */
1085 return ret_val;
1088 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1089 * Need to wait for Phy configuration completion before accessing
1090 * NVM and Phy.
1093 switch (hw->mac.type) {
1094 case e1000_82573:
1095 case e1000_82574:
1096 case e1000_82583:
1097 msleep(25);
1098 break;
1099 default:
1100 break;
1103 /* Clear any pending interrupt events. */
1104 ew32(IMC, 0xffffffff);
1105 er32(ICR);
1107 if (hw->mac.type == e1000_82571) {
1108 /* Install any alternate MAC address into RAR0 */
1109 ret_val = e1000_check_alt_mac_addr_generic(hw);
1110 if (ret_val)
1111 return ret_val;
1113 e1000e_set_laa_state_82571(hw, true);
1116 /* Reinitialize the 82571 serdes link state machine */
1117 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1118 hw->mac.serdes_link_state = e1000_serdes_link_down;
1120 return 0;
1124 * e1000_init_hw_82571 - Initialize hardware
1125 * @hw: pointer to the HW structure
1127 * This inits the hardware readying it for operation.
1129 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1131 struct e1000_mac_info *mac = &hw->mac;
1132 u32 reg_data;
1133 s32 ret_val;
1134 u16 i, rar_count = mac->rar_entry_count;
1136 e1000_initialize_hw_bits_82571(hw);
1138 /* Initialize identification LED */
1139 ret_val = e1000e_id_led_init(hw);
1140 if (ret_val)
1141 e_dbg("Error initializing identification LED\n");
1142 /* This is not fatal and we should not stop init due to this */
1144 /* Disabling VLAN filtering */
1145 e_dbg("Initializing the IEEE VLAN\n");
1146 mac->ops.clear_vfta(hw);
1148 /* Setup the receive address. */
1150 * If, however, a locally administered address was assigned to the
1151 * 82571, we must reserve a RAR for it to work around an issue where
1152 * resetting one port will reload the MAC on the other port.
1154 if (e1000e_get_laa_state_82571(hw))
1155 rar_count--;
1156 e1000e_init_rx_addrs(hw, rar_count);
1158 /* Zero out the Multicast HASH table */
1159 e_dbg("Zeroing the MTA\n");
1160 for (i = 0; i < mac->mta_reg_count; i++)
1161 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1163 /* Setup link and flow control */
1164 ret_val = e1000_setup_link_82571(hw);
1166 /* Set the transmit descriptor write-back policy */
1167 reg_data = er32(TXDCTL(0));
1168 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1169 E1000_TXDCTL_FULL_TX_DESC_WB |
1170 E1000_TXDCTL_COUNT_DESC;
1171 ew32(TXDCTL(0), reg_data);
1173 /* ...for both queues. */
1174 switch (mac->type) {
1175 case e1000_82573:
1176 e1000e_enable_tx_pkt_filtering(hw);
1177 /* fall through */
1178 case e1000_82574:
1179 case e1000_82583:
1180 reg_data = er32(GCR);
1181 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1182 ew32(GCR, reg_data);
1183 break;
1184 default:
1185 reg_data = er32(TXDCTL(1));
1186 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1187 E1000_TXDCTL_FULL_TX_DESC_WB |
1188 E1000_TXDCTL_COUNT_DESC;
1189 ew32(TXDCTL(1), reg_data);
1190 break;
1194 * Clear all of the statistics registers (clear on read). It is
1195 * important that we do this after we have tried to establish link
1196 * because the symbol error count will increment wildly if there
1197 * is no link.
1199 e1000_clear_hw_cntrs_82571(hw);
1201 return ret_val;
1205 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1206 * @hw: pointer to the HW structure
1208 * Initializes required hardware-dependent bits needed for normal operation.
1210 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1212 u32 reg;
1214 /* Transmit Descriptor Control 0 */
1215 reg = er32(TXDCTL(0));
1216 reg |= (1 << 22);
1217 ew32(TXDCTL(0), reg);
1219 /* Transmit Descriptor Control 1 */
1220 reg = er32(TXDCTL(1));
1221 reg |= (1 << 22);
1222 ew32(TXDCTL(1), reg);
1224 /* Transmit Arbitration Control 0 */
1225 reg = er32(TARC(0));
1226 reg &= ~(0xF << 27); /* 30:27 */
1227 switch (hw->mac.type) {
1228 case e1000_82571:
1229 case e1000_82572:
1230 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1231 break;
1232 default:
1233 break;
1235 ew32(TARC(0), reg);
1237 /* Transmit Arbitration Control 1 */
1238 reg = er32(TARC(1));
1239 switch (hw->mac.type) {
1240 case e1000_82571:
1241 case e1000_82572:
1242 reg &= ~((1 << 29) | (1 << 30));
1243 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1244 if (er32(TCTL) & E1000_TCTL_MULR)
1245 reg &= ~(1 << 28);
1246 else
1247 reg |= (1 << 28);
1248 ew32(TARC(1), reg);
1249 break;
1250 default:
1251 break;
1254 /* Device Control */
1255 switch (hw->mac.type) {
1256 case e1000_82573:
1257 case e1000_82574:
1258 case e1000_82583:
1259 reg = er32(CTRL);
1260 reg &= ~(1 << 29);
1261 ew32(CTRL, reg);
1262 break;
1263 default:
1264 break;
1267 /* Extended Device Control */
1268 switch (hw->mac.type) {
1269 case e1000_82573:
1270 case e1000_82574:
1271 case e1000_82583:
1272 reg = er32(CTRL_EXT);
1273 reg &= ~(1 << 23);
1274 reg |= (1 << 22);
1275 ew32(CTRL_EXT, reg);
1276 break;
1277 default:
1278 break;
1281 if (hw->mac.type == e1000_82571) {
1282 reg = er32(PBA_ECC);
1283 reg |= E1000_PBA_ECC_CORR_EN;
1284 ew32(PBA_ECC, reg);
1287 * Workaround for hardware errata.
1288 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1291 if ((hw->mac.type == e1000_82571) ||
1292 (hw->mac.type == e1000_82572)) {
1293 reg = er32(CTRL_EXT);
1294 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1295 ew32(CTRL_EXT, reg);
1299 /* PCI-Ex Control Registers */
1300 switch (hw->mac.type) {
1301 case e1000_82574:
1302 case e1000_82583:
1303 reg = er32(GCR);
1304 reg |= (1 << 22);
1305 ew32(GCR, reg);
1308 * Workaround for hardware errata.
1309 * apply workaround for hardware errata documented in errata
1310 * docs Fixes issue where some error prone or unreliable PCIe
1311 * completions are occurring, particularly with ASPM enabled.
1312 * Without fix, issue can cause Tx timeouts.
1314 reg = er32(GCR2);
1315 reg |= 1;
1316 ew32(GCR2, reg);
1317 break;
1318 default:
1319 break;
1324 * e1000_clear_vfta_82571 - Clear VLAN filter table
1325 * @hw: pointer to the HW structure
1327 * Clears the register array which contains the VLAN filter table by
1328 * setting all the values to 0.
1330 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1332 u32 offset;
1333 u32 vfta_value = 0;
1334 u32 vfta_offset = 0;
1335 u32 vfta_bit_in_reg = 0;
1337 switch (hw->mac.type) {
1338 case e1000_82573:
1339 case e1000_82574:
1340 case e1000_82583:
1341 if (hw->mng_cookie.vlan_id != 0) {
1343 * The VFTA is a 4096b bit-field, each identifying
1344 * a single VLAN ID. The following operations
1345 * determine which 32b entry (i.e. offset) into the
1346 * array we want to set the VLAN ID (i.e. bit) of
1347 * the manageability unit.
1349 vfta_offset = (hw->mng_cookie.vlan_id >>
1350 E1000_VFTA_ENTRY_SHIFT) &
1351 E1000_VFTA_ENTRY_MASK;
1352 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1353 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1355 break;
1356 default:
1357 break;
1359 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1361 * If the offset we want to clear is the same offset of the
1362 * manageability VLAN ID, then clear all bits except that of
1363 * the manageability unit.
1365 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1366 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1367 e1e_flush();
1372 * e1000_check_mng_mode_82574 - Check manageability is enabled
1373 * @hw: pointer to the HW structure
1375 * Reads the NVM Initialization Control Word 2 and returns true
1376 * (>0) if any manageability is enabled, else false (0).
1378 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1380 u16 data;
1382 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1383 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1387 * e1000_led_on_82574 - Turn LED on
1388 * @hw: pointer to the HW structure
1390 * Turn LED on.
1392 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1394 u32 ctrl;
1395 u32 i;
1397 ctrl = hw->mac.ledctl_mode2;
1398 if (!(E1000_STATUS_LU & er32(STATUS))) {
1400 * If no link, then turn LED on by setting the invert bit
1401 * for each LED that's "on" (0x0E) in ledctl_mode2.
1403 for (i = 0; i < 4; i++)
1404 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1405 E1000_LEDCTL_MODE_LED_ON)
1406 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1408 ew32(LEDCTL, ctrl);
1410 return 0;
1414 * e1000_check_phy_82574 - check 82574 phy hung state
1415 * @hw: pointer to the HW structure
1417 * Returns whether phy is hung or not
1419 bool e1000_check_phy_82574(struct e1000_hw *hw)
1421 u16 status_1kbt = 0;
1422 u16 receive_errors = 0;
1423 bool phy_hung = false;
1424 s32 ret_val = 0;
1427 * Read PHY Receive Error counter first, if its is max - all F's then
1428 * read the Base1000T status register If both are max then PHY is hung.
1430 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1432 if (ret_val)
1433 goto out;
1434 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1435 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1436 if (ret_val)
1437 goto out;
1438 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1439 E1000_IDLE_ERROR_COUNT_MASK)
1440 phy_hung = true;
1442 out:
1443 return phy_hung;
1447 * e1000_setup_link_82571 - Setup flow control and link settings
1448 * @hw: pointer to the HW structure
1450 * Determines which flow control settings to use, then configures flow
1451 * control. Calls the appropriate media-specific link configuration
1452 * function. Assuming the adapter has a valid link partner, a valid link
1453 * should be established. Assumes the hardware has previously been reset
1454 * and the transmitter and receiver are not enabled.
1456 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1459 * 82573 does not have a word in the NVM to determine
1460 * the default flow control setting, so we explicitly
1461 * set it to full.
1463 switch (hw->mac.type) {
1464 case e1000_82573:
1465 case e1000_82574:
1466 case e1000_82583:
1467 if (hw->fc.requested_mode == e1000_fc_default)
1468 hw->fc.requested_mode = e1000_fc_full;
1469 break;
1470 default:
1471 break;
1474 return e1000e_setup_link(hw);
1478 * e1000_setup_copper_link_82571 - Configure copper link settings
1479 * @hw: pointer to the HW structure
1481 * Configures the link for auto-neg or forced speed and duplex. Then we check
1482 * for link, once link is established calls to configure collision distance
1483 * and flow control are called.
1485 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1487 u32 ctrl;
1488 s32 ret_val;
1490 ctrl = er32(CTRL);
1491 ctrl |= E1000_CTRL_SLU;
1492 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1493 ew32(CTRL, ctrl);
1495 switch (hw->phy.type) {
1496 case e1000_phy_m88:
1497 case e1000_phy_bm:
1498 ret_val = e1000e_copper_link_setup_m88(hw);
1499 break;
1500 case e1000_phy_igp_2:
1501 ret_val = e1000e_copper_link_setup_igp(hw);
1502 break;
1503 default:
1504 return -E1000_ERR_PHY;
1505 break;
1508 if (ret_val)
1509 return ret_val;
1511 ret_val = e1000e_setup_copper_link(hw);
1513 return ret_val;
1517 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1518 * @hw: pointer to the HW structure
1520 * Configures collision distance and flow control for fiber and serdes links.
1521 * Upon successful setup, poll for link.
1523 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1525 switch (hw->mac.type) {
1526 case e1000_82571:
1527 case e1000_82572:
1529 * If SerDes loopback mode is entered, there is no form
1530 * of reset to take the adapter out of that mode. So we
1531 * have to explicitly take the adapter out of loopback
1532 * mode. This prevents drivers from twiddling their thumbs
1533 * if another tool failed to take it out of loopback mode.
1535 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1536 break;
1537 default:
1538 break;
1541 return e1000e_setup_fiber_serdes_link(hw);
1545 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1546 * @hw: pointer to the HW structure
1548 * Reports the link state as up or down.
1550 * If autonegotiation is supported by the link partner, the link state is
1551 * determined by the result of autonegotiation. This is the most likely case.
1552 * If autonegotiation is not supported by the link partner, and the link
1553 * has a valid signal, force the link up.
1555 * The link state is represented internally here by 4 states:
1557 * 1) down
1558 * 2) autoneg_progress
1559 * 3) autoneg_complete (the link successfully autonegotiated)
1560 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1563 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1565 struct e1000_mac_info *mac = &hw->mac;
1566 u32 rxcw;
1567 u32 ctrl;
1568 u32 status;
1569 u32 txcw;
1570 u32 i;
1571 s32 ret_val = 0;
1573 ctrl = er32(CTRL);
1574 status = er32(STATUS);
1575 rxcw = er32(RXCW);
1577 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1579 /* Receiver is synchronized with no invalid bits. */
1580 switch (mac->serdes_link_state) {
1581 case e1000_serdes_link_autoneg_complete:
1582 if (!(status & E1000_STATUS_LU)) {
1584 * We have lost link, retry autoneg before
1585 * reporting link failure
1587 mac->serdes_link_state =
1588 e1000_serdes_link_autoneg_progress;
1589 mac->serdes_has_link = false;
1590 e_dbg("AN_UP -> AN_PROG\n");
1591 } else {
1592 mac->serdes_has_link = true;
1594 break;
1596 case e1000_serdes_link_forced_up:
1598 * If we are receiving /C/ ordered sets, re-enable
1599 * auto-negotiation in the TXCW register and disable
1600 * forced link in the Device Control register in an
1601 * attempt to auto-negotiate with our link partner.
1602 * If the partner code word is null, stop forcing
1603 * and restart auto negotiation.
1605 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
1606 /* Enable autoneg, and unforce link up */
1607 ew32(TXCW, mac->txcw);
1608 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1609 mac->serdes_link_state =
1610 e1000_serdes_link_autoneg_progress;
1611 mac->serdes_has_link = false;
1612 e_dbg("FORCED_UP -> AN_PROG\n");
1613 } else {
1614 mac->serdes_has_link = true;
1616 break;
1618 case e1000_serdes_link_autoneg_progress:
1619 if (rxcw & E1000_RXCW_C) {
1621 * We received /C/ ordered sets, meaning the
1622 * link partner has autonegotiated, and we can
1623 * trust the Link Up (LU) status bit.
1625 if (status & E1000_STATUS_LU) {
1626 mac->serdes_link_state =
1627 e1000_serdes_link_autoneg_complete;
1628 e_dbg("AN_PROG -> AN_UP\n");
1629 mac->serdes_has_link = true;
1630 } else {
1631 /* Autoneg completed, but failed. */
1632 mac->serdes_link_state =
1633 e1000_serdes_link_down;
1634 e_dbg("AN_PROG -> DOWN\n");
1636 } else {
1638 * The link partner did not autoneg.
1639 * Force link up and full duplex, and change
1640 * state to forced.
1642 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1643 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1644 ew32(CTRL, ctrl);
1646 /* Configure Flow Control after link up. */
1647 ret_val = e1000e_config_fc_after_link_up(hw);
1648 if (ret_val) {
1649 e_dbg("Error config flow control\n");
1650 break;
1652 mac->serdes_link_state =
1653 e1000_serdes_link_forced_up;
1654 mac->serdes_has_link = true;
1655 e_dbg("AN_PROG -> FORCED_UP\n");
1657 break;
1659 case e1000_serdes_link_down:
1660 default:
1662 * The link was down but the receiver has now gained
1663 * valid sync, so lets see if we can bring the link
1664 * up.
1666 ew32(TXCW, mac->txcw);
1667 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1668 mac->serdes_link_state =
1669 e1000_serdes_link_autoneg_progress;
1670 mac->serdes_has_link = false;
1671 e_dbg("DOWN -> AN_PROG\n");
1672 break;
1674 } else {
1675 if (!(rxcw & E1000_RXCW_SYNCH)) {
1676 mac->serdes_has_link = false;
1677 mac->serdes_link_state = e1000_serdes_link_down;
1678 e_dbg("ANYSTATE -> DOWN\n");
1679 } else {
1681 * Check several times, if Sync and Config
1682 * both are consistently 1 then simply ignore
1683 * the Invalid bit and restart Autoneg
1685 for (i = 0; i < AN_RETRY_COUNT; i++) {
1686 udelay(10);
1687 rxcw = er32(RXCW);
1688 if ((rxcw & E1000_RXCW_IV) &&
1689 !((rxcw & E1000_RXCW_SYNCH) &&
1690 (rxcw & E1000_RXCW_C))) {
1691 mac->serdes_has_link = false;
1692 mac->serdes_link_state =
1693 e1000_serdes_link_down;
1694 e_dbg("ANYSTATE -> DOWN\n");
1695 break;
1699 if (i == AN_RETRY_COUNT) {
1700 txcw = er32(TXCW);
1701 txcw |= E1000_TXCW_ANE;
1702 ew32(TXCW, txcw);
1703 mac->serdes_link_state =
1704 e1000_serdes_link_autoneg_progress;
1705 mac->serdes_has_link = false;
1706 e_dbg("ANYSTATE -> AN_PROG\n");
1711 return ret_val;
1715 * e1000_valid_led_default_82571 - Verify a valid default LED config
1716 * @hw: pointer to the HW structure
1717 * @data: pointer to the NVM (EEPROM)
1719 * Read the EEPROM for the current default LED configuration. If the
1720 * LED configuration is not valid, set to a valid LED configuration.
1722 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1724 s32 ret_val;
1726 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1727 if (ret_val) {
1728 e_dbg("NVM Read Error\n");
1729 return ret_val;
1732 switch (hw->mac.type) {
1733 case e1000_82573:
1734 case e1000_82574:
1735 case e1000_82583:
1736 if (*data == ID_LED_RESERVED_F746)
1737 *data = ID_LED_DEFAULT_82573;
1738 break;
1739 default:
1740 if (*data == ID_LED_RESERVED_0000 ||
1741 *data == ID_LED_RESERVED_FFFF)
1742 *data = ID_LED_DEFAULT;
1743 break;
1746 return 0;
1750 * e1000e_get_laa_state_82571 - Get locally administered address state
1751 * @hw: pointer to the HW structure
1753 * Retrieve and return the current locally administered address state.
1755 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1757 if (hw->mac.type != e1000_82571)
1758 return false;
1760 return hw->dev_spec.e82571.laa_is_present;
1764 * e1000e_set_laa_state_82571 - Set locally administered address state
1765 * @hw: pointer to the HW structure
1766 * @state: enable/disable locally administered address
1768 * Enable/Disable the current locally administered address state.
1770 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1772 if (hw->mac.type != e1000_82571)
1773 return;
1775 hw->dev_spec.e82571.laa_is_present = state;
1777 /* If workaround is activated... */
1778 if (state)
1780 * Hold a copy of the LAA in RAR[14] This is done so that
1781 * between the time RAR[0] gets clobbered and the time it
1782 * gets fixed, the actual LAA is in one of the RARs and no
1783 * incoming packets directed to this port are dropped.
1784 * Eventually the LAA will be in RAR[0] and RAR[14].
1786 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1790 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1791 * @hw: pointer to the HW structure
1793 * Verifies that the EEPROM has completed the update. After updating the
1794 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1795 * the checksum fix is not implemented, we need to set the bit and update
1796 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1797 * we need to return bad checksum.
1799 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1801 struct e1000_nvm_info *nvm = &hw->nvm;
1802 s32 ret_val;
1803 u16 data;
1805 if (nvm->type != e1000_nvm_flash_hw)
1806 return 0;
1809 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1810 * 10h-12h. Checksum may need to be fixed.
1812 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1813 if (ret_val)
1814 return ret_val;
1816 if (!(data & 0x10)) {
1818 * Read 0x23 and check bit 15. This bit is a 1
1819 * when the checksum has already been fixed. If
1820 * the checksum is still wrong and this bit is a
1821 * 1, we need to return bad checksum. Otherwise,
1822 * we need to set this bit to a 1 and update the
1823 * checksum.
1825 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1826 if (ret_val)
1827 return ret_val;
1829 if (!(data & 0x8000)) {
1830 data |= 0x8000;
1831 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1832 if (ret_val)
1833 return ret_val;
1834 ret_val = e1000e_update_nvm_checksum(hw);
1838 return 0;
1842 * e1000_read_mac_addr_82571 - Read device MAC address
1843 * @hw: pointer to the HW structure
1845 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1847 s32 ret_val = 0;
1849 if (hw->mac.type == e1000_82571) {
1851 * If there's an alternate MAC address place it in RAR0
1852 * so that it will override the Si installed default perm
1853 * address.
1855 ret_val = e1000_check_alt_mac_addr_generic(hw);
1856 if (ret_val)
1857 goto out;
1860 ret_val = e1000_read_mac_addr_generic(hw);
1862 out:
1863 return ret_val;
1867 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1868 * @hw: pointer to the HW structure
1870 * In the case of a PHY power down to save power, or to turn off link during a
1871 * driver unload, or wake on lan is not enabled, remove the link.
1873 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1875 struct e1000_phy_info *phy = &hw->phy;
1876 struct e1000_mac_info *mac = &hw->mac;
1878 if (!(phy->ops.check_reset_block))
1879 return;
1881 /* If the management interface is not enabled, then power down */
1882 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1883 e1000_power_down_phy_copper(hw);
1887 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1888 * @hw: pointer to the HW structure
1890 * Clears the hardware counters by reading the counter registers.
1892 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1894 e1000e_clear_hw_cntrs_base(hw);
1896 er32(PRC64);
1897 er32(PRC127);
1898 er32(PRC255);
1899 er32(PRC511);
1900 er32(PRC1023);
1901 er32(PRC1522);
1902 er32(PTC64);
1903 er32(PTC127);
1904 er32(PTC255);
1905 er32(PTC511);
1906 er32(PTC1023);
1907 er32(PTC1522);
1909 er32(ALGNERRC);
1910 er32(RXERRC);
1911 er32(TNCRS);
1912 er32(CEXTERR);
1913 er32(TSCTC);
1914 er32(TSCTFC);
1916 er32(MGTPRC);
1917 er32(MGTPDC);
1918 er32(MGTPTC);
1920 er32(IAC);
1921 er32(ICRXOC);
1923 er32(ICRXPTC);
1924 er32(ICRXATC);
1925 er32(ICTXPTC);
1926 er32(ICTXATC);
1927 er32(ICTXQEC);
1928 er32(ICTXQMTC);
1929 er32(ICRXDMTC);
1932 static struct e1000_mac_operations e82571_mac_ops = {
1933 /* .check_mng_mode: mac type dependent */
1934 /* .check_for_link: media type dependent */
1935 .id_led_init = e1000e_id_led_init,
1936 .cleanup_led = e1000e_cleanup_led_generic,
1937 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1938 .get_bus_info = e1000e_get_bus_info_pcie,
1939 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1940 /* .get_link_up_info: media type dependent */
1941 /* .led_on: mac type dependent */
1942 .led_off = e1000e_led_off_generic,
1943 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1944 .write_vfta = e1000_write_vfta_generic,
1945 .clear_vfta = e1000_clear_vfta_82571,
1946 .reset_hw = e1000_reset_hw_82571,
1947 .init_hw = e1000_init_hw_82571,
1948 .setup_link = e1000_setup_link_82571,
1949 /* .setup_physical_interface: media type dependent */
1950 .setup_led = e1000e_setup_led_generic,
1951 .read_mac_addr = e1000_read_mac_addr_82571,
1954 static struct e1000_phy_operations e82_phy_ops_igp = {
1955 .acquire = e1000_get_hw_semaphore_82571,
1956 .check_polarity = e1000_check_polarity_igp,
1957 .check_reset_block = e1000e_check_reset_block_generic,
1958 .commit = NULL,
1959 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1960 .get_cfg_done = e1000_get_cfg_done_82571,
1961 .get_cable_length = e1000e_get_cable_length_igp_2,
1962 .get_info = e1000e_get_phy_info_igp,
1963 .read_reg = e1000e_read_phy_reg_igp,
1964 .release = e1000_put_hw_semaphore_82571,
1965 .reset = e1000e_phy_hw_reset_generic,
1966 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1967 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1968 .write_reg = e1000e_write_phy_reg_igp,
1969 .cfg_on_link_up = NULL,
1972 static struct e1000_phy_operations e82_phy_ops_m88 = {
1973 .acquire = e1000_get_hw_semaphore_82571,
1974 .check_polarity = e1000_check_polarity_m88,
1975 .check_reset_block = e1000e_check_reset_block_generic,
1976 .commit = e1000e_phy_sw_reset,
1977 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1978 .get_cfg_done = e1000e_get_cfg_done,
1979 .get_cable_length = e1000e_get_cable_length_m88,
1980 .get_info = e1000e_get_phy_info_m88,
1981 .read_reg = e1000e_read_phy_reg_m88,
1982 .release = e1000_put_hw_semaphore_82571,
1983 .reset = e1000e_phy_hw_reset_generic,
1984 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1985 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1986 .write_reg = e1000e_write_phy_reg_m88,
1987 .cfg_on_link_up = NULL,
1990 static struct e1000_phy_operations e82_phy_ops_bm = {
1991 .acquire = e1000_get_hw_semaphore_82571,
1992 .check_polarity = e1000_check_polarity_m88,
1993 .check_reset_block = e1000e_check_reset_block_generic,
1994 .commit = e1000e_phy_sw_reset,
1995 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1996 .get_cfg_done = e1000e_get_cfg_done,
1997 .get_cable_length = e1000e_get_cable_length_m88,
1998 .get_info = e1000e_get_phy_info_m88,
1999 .read_reg = e1000e_read_phy_reg_bm2,
2000 .release = e1000_put_hw_semaphore_82571,
2001 .reset = e1000e_phy_hw_reset_generic,
2002 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
2003 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
2004 .write_reg = e1000e_write_phy_reg_bm2,
2005 .cfg_on_link_up = NULL,
2008 static struct e1000_nvm_operations e82571_nvm_ops = {
2009 .acquire = e1000_acquire_nvm_82571,
2010 .read = e1000e_read_nvm_eerd,
2011 .release = e1000_release_nvm_82571,
2012 .update = e1000_update_nvm_checksum_82571,
2013 .valid_led_default = e1000_valid_led_default_82571,
2014 .validate = e1000_validate_nvm_checksum_82571,
2015 .write = e1000_write_nvm_82571,
2018 struct e1000_info e1000_82571_info = {
2019 .mac = e1000_82571,
2020 .flags = FLAG_HAS_HW_VLAN_FILTER
2021 | FLAG_HAS_JUMBO_FRAMES
2022 | FLAG_HAS_WOL
2023 | FLAG_APME_IN_CTRL3
2024 | FLAG_RX_CSUM_ENABLED
2025 | FLAG_HAS_CTRLEXT_ON_LOAD
2026 | FLAG_HAS_SMART_POWER_DOWN
2027 | FLAG_RESET_OVERWRITES_LAA /* errata */
2028 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2029 | FLAG_APME_CHECK_PORT_B,
2030 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2031 | FLAG2_DMA_BURST,
2032 .pba = 38,
2033 .max_hw_frame_size = DEFAULT_JUMBO,
2034 .get_variants = e1000_get_variants_82571,
2035 .mac_ops = &e82571_mac_ops,
2036 .phy_ops = &e82_phy_ops_igp,
2037 .nvm_ops = &e82571_nvm_ops,
2040 struct e1000_info e1000_82572_info = {
2041 .mac = e1000_82572,
2042 .flags = FLAG_HAS_HW_VLAN_FILTER
2043 | FLAG_HAS_JUMBO_FRAMES
2044 | FLAG_HAS_WOL
2045 | FLAG_APME_IN_CTRL3
2046 | FLAG_RX_CSUM_ENABLED
2047 | FLAG_HAS_CTRLEXT_ON_LOAD
2048 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2049 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2050 | FLAG2_DMA_BURST,
2051 .pba = 38,
2052 .max_hw_frame_size = DEFAULT_JUMBO,
2053 .get_variants = e1000_get_variants_82571,
2054 .mac_ops = &e82571_mac_ops,
2055 .phy_ops = &e82_phy_ops_igp,
2056 .nvm_ops = &e82571_nvm_ops,
2059 struct e1000_info e1000_82573_info = {
2060 .mac = e1000_82573,
2061 .flags = FLAG_HAS_HW_VLAN_FILTER
2062 | FLAG_HAS_WOL
2063 | FLAG_APME_IN_CTRL3
2064 | FLAG_RX_CSUM_ENABLED
2065 | FLAG_HAS_SMART_POWER_DOWN
2066 | FLAG_HAS_AMT
2067 | FLAG_HAS_SWSM_ON_LOAD,
2068 .flags2 = FLAG2_DISABLE_ASPM_L1
2069 | FLAG2_DISABLE_ASPM_L0S,
2070 .pba = 20,
2071 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2072 .get_variants = e1000_get_variants_82571,
2073 .mac_ops = &e82571_mac_ops,
2074 .phy_ops = &e82_phy_ops_m88,
2075 .nvm_ops = &e82571_nvm_ops,
2078 struct e1000_info e1000_82574_info = {
2079 .mac = e1000_82574,
2080 .flags = FLAG_HAS_HW_VLAN_FILTER
2081 | FLAG_HAS_MSIX
2082 | FLAG_HAS_JUMBO_FRAMES
2083 | FLAG_HAS_WOL
2084 | FLAG_APME_IN_CTRL3
2085 | FLAG_RX_CSUM_ENABLED
2086 | FLAG_HAS_SMART_POWER_DOWN
2087 | FLAG_HAS_AMT
2088 | FLAG_HAS_CTRLEXT_ON_LOAD,
2089 .flags2 = FLAG2_CHECK_PHY_HANG
2090 | FLAG2_DISABLE_ASPM_L0S,
2091 .pba = 32,
2092 .max_hw_frame_size = DEFAULT_JUMBO,
2093 .get_variants = e1000_get_variants_82571,
2094 .mac_ops = &e82571_mac_ops,
2095 .phy_ops = &e82_phy_ops_bm,
2096 .nvm_ops = &e82571_nvm_ops,
2099 struct e1000_info e1000_82583_info = {
2100 .mac = e1000_82583,
2101 .flags = FLAG_HAS_HW_VLAN_FILTER
2102 | FLAG_HAS_WOL
2103 | FLAG_APME_IN_CTRL3
2104 | FLAG_RX_CSUM_ENABLED
2105 | FLAG_HAS_SMART_POWER_DOWN
2106 | FLAG_HAS_AMT
2107 | FLAG_HAS_CTRLEXT_ON_LOAD,
2108 .flags2 = FLAG2_DISABLE_ASPM_L0S,
2109 .pba = 32,
2110 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2111 .get_variants = e1000_get_variants_82571,
2112 .mac_ops = &e82571_mac_ops,
2113 .phy_ops = &e82_phy_ops_bm,
2114 .nvm_ops = &e82571_nvm_ops,