Merge tag 'irqchip-core-3.18' of git://git.infradead.org/users/jcooper/linux into...
[linux-2.6/btrfs-unstable.git] / kernel / sched / core.c
blobec1a286684a56047a4352350edf4c0686e4ba70e
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
96 smp_mb__before_atomic();
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
104 smp_mb__after_atomic();
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
111 unsigned long delta;
112 ktime_t soft, hard, now;
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
134 void update_rq_clock(struct rq *rq)
136 s64 delta;
138 if (rq->skip_clock_update > 0)
139 return;
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 if (delta < 0)
143 return;
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
149 * Debugging: various feature bits
152 #define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
155 const_debug unsigned int sysctl_sched_features =
156 #include "features.h"
159 #undef SCHED_FEAT
161 #ifdef CONFIG_SCHED_DEBUG
162 #define SCHED_FEAT(name, enabled) \
163 #name ,
165 static const char * const sched_feat_names[] = {
166 #include "features.h"
169 #undef SCHED_FEAT
171 static int sched_feat_show(struct seq_file *m, void *v)
173 int i;
175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
180 seq_puts(m, "\n");
182 return 0;
185 #ifdef HAVE_JUMP_LABEL
187 #define jump_label_key__true STATIC_KEY_INIT_TRUE
188 #define jump_label_key__false STATIC_KEY_INIT_FALSE
190 #define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 #include "features.h"
197 #undef SCHED_FEAT
199 static void sched_feat_disable(int i)
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
205 static void sched_feat_enable(int i)
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
210 #else
211 static void sched_feat_disable(int i) { };
212 static void sched_feat_enable(int i) { };
213 #endif /* HAVE_JUMP_LABEL */
215 static int sched_feat_set(char *cmp)
217 int i;
218 int neg = 0;
220 if (strncmp(cmp, "NO_", 3) == 0) {
221 neg = 1;
222 cmp += 3;
225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
227 if (neg) {
228 sysctl_sched_features &= ~(1UL << i);
229 sched_feat_disable(i);
230 } else {
231 sysctl_sched_features |= (1UL << i);
232 sched_feat_enable(i);
234 break;
238 return i;
241 static ssize_t
242 sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
245 char buf[64];
246 char *cmp;
247 int i;
248 struct inode *inode;
250 if (cnt > 63)
251 cnt = 63;
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
262 i = sched_feat_set(cmp);
263 mutex_unlock(&inode->i_mutex);
264 if (i == __SCHED_FEAT_NR)
265 return -EINVAL;
267 *ppos += cnt;
269 return cnt;
272 static int sched_feat_open(struct inode *inode, struct file *filp)
274 return single_open(filp, sched_feat_show, NULL);
277 static const struct file_operations sched_feat_fops = {
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
285 static __init int sched_init_debug(void)
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
290 return 0;
292 late_initcall(sched_init_debug);
293 #endif /* CONFIG_SCHED_DEBUG */
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
299 const_debug unsigned int sysctl_sched_nr_migrate = 32;
302 * period over which we average the RT time consumption, measured
303 * in ms.
305 * default: 1s
307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
313 unsigned int sysctl_sched_rt_period = 1000000;
315 __read_mostly int scheduler_running;
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
321 int sysctl_sched_rt_runtime = 950000;
324 * __task_rq_lock - lock the rq @p resides on.
326 static inline struct rq *__task_rq_lock(struct task_struct *p)
327 __acquires(rq->lock)
329 struct rq *rq;
331 lockdep_assert_held(&p->pi_lock);
333 for (;;) {
334 rq = task_rq(p);
335 raw_spin_lock(&rq->lock);
336 if (likely(rq == task_rq(p)))
337 return rq;
338 raw_spin_unlock(&rq->lock);
343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346 __acquires(p->pi_lock)
347 __acquires(rq->lock)
349 struct rq *rq;
351 for (;;) {
352 raw_spin_lock_irqsave(&p->pi_lock, *flags);
353 rq = task_rq(p);
354 raw_spin_lock(&rq->lock);
355 if (likely(rq == task_rq(p)))
356 return rq;
357 raw_spin_unlock(&rq->lock);
358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362 static void __task_rq_unlock(struct rq *rq)
363 __releases(rq->lock)
365 raw_spin_unlock(&rq->lock);
368 static inline void
369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
370 __releases(rq->lock)
371 __releases(p->pi_lock)
373 raw_spin_unlock(&rq->lock);
374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
378 * this_rq_lock - lock this runqueue and disable interrupts.
380 static struct rq *this_rq_lock(void)
381 __acquires(rq->lock)
383 struct rq *rq;
385 local_irq_disable();
386 rq = this_rq();
387 raw_spin_lock(&rq->lock);
389 return rq;
392 #ifdef CONFIG_SCHED_HRTICK
394 * Use HR-timers to deliver accurate preemption points.
397 static void hrtick_clear(struct rq *rq)
399 if (hrtimer_active(&rq->hrtick_timer))
400 hrtimer_cancel(&rq->hrtick_timer);
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
407 static enum hrtimer_restart hrtick(struct hrtimer *timer)
409 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
413 raw_spin_lock(&rq->lock);
414 update_rq_clock(rq);
415 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416 raw_spin_unlock(&rq->lock);
418 return HRTIMER_NORESTART;
421 #ifdef CONFIG_SMP
423 static int __hrtick_restart(struct rq *rq)
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = hrtimer_get_softexpires(timer);
428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
432 * called from hardirq (IPI) context
434 static void __hrtick_start(void *arg)
436 struct rq *rq = arg;
438 raw_spin_lock(&rq->lock);
439 __hrtick_restart(rq);
440 rq->hrtick_csd_pending = 0;
441 raw_spin_unlock(&rq->lock);
445 * Called to set the hrtick timer state.
447 * called with rq->lock held and irqs disabled
449 void hrtick_start(struct rq *rq, u64 delay)
451 struct hrtimer *timer = &rq->hrtick_timer;
452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
454 hrtimer_set_expires(timer, time);
456 if (rq == this_rq()) {
457 __hrtick_restart(rq);
458 } else if (!rq->hrtick_csd_pending) {
459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 rq->hrtick_csd_pending = 1;
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
467 int cpu = (int)(long)hcpu;
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
476 hrtick_clear(cpu_rq(cpu));
477 return NOTIFY_OK;
480 return NOTIFY_DONE;
483 static __init void init_hrtick(void)
485 hotcpu_notifier(hotplug_hrtick, 0);
487 #else
489 * Called to set the hrtick timer state.
491 * called with rq->lock held and irqs disabled
493 void hrtick_start(struct rq *rq, u64 delay)
495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496 HRTIMER_MODE_REL_PINNED, 0);
499 static inline void init_hrtick(void)
502 #endif /* CONFIG_SMP */
504 static void init_rq_hrtick(struct rq *rq)
506 #ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512 #endif
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
517 #else /* CONFIG_SCHED_HRTICK */
518 static inline void hrtick_clear(struct rq *rq)
522 static inline void init_rq_hrtick(struct rq *rq)
526 static inline void init_hrtick(void)
529 #endif /* CONFIG_SCHED_HRTICK */
532 * cmpxchg based fetch_or, macro so it works for different integer types
534 #define fetch_or(ptr, val) \
535 ({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
542 __old; \
545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
551 static bool set_nr_and_not_polling(struct task_struct *p)
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
563 static bool set_nr_if_polling(struct task_struct *p)
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
578 return true;
581 #else
582 static bool set_nr_and_not_polling(struct task_struct *p)
584 set_tsk_need_resched(p);
585 return true;
588 #ifdef CONFIG_SMP
589 static bool set_nr_if_polling(struct task_struct *p)
591 return false;
593 #endif
594 #endif
597 * resched_curr - mark rq's current task 'to be rescheduled now'.
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
603 void resched_curr(struct rq *rq)
605 struct task_struct *curr = rq->curr;
606 int cpu;
608 lockdep_assert_held(&rq->lock);
610 if (test_tsk_need_resched(curr))
611 return;
613 cpu = cpu_of(rq);
615 if (cpu == smp_processor_id()) {
616 set_tsk_need_resched(curr);
617 set_preempt_need_resched();
618 return;
621 if (set_nr_and_not_polling(curr))
622 smp_send_reschedule(cpu);
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
627 void resched_cpu(int cpu)
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
633 return;
634 resched_curr(rq);
635 raw_spin_unlock_irqrestore(&rq->lock, flags);
638 #ifdef CONFIG_SMP
639 #ifdef CONFIG_NO_HZ_COMMON
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
648 int get_nohz_timer_target(int pinned)
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
657 rcu_read_lock();
658 for_each_domain(cpu, sd) {
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
666 unlock:
667 rcu_read_unlock();
668 return cpu;
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
680 static void wake_up_idle_cpu(int cpu)
682 struct rq *rq = cpu_rq(cpu);
684 if (cpu == smp_processor_id())
685 return;
687 if (set_nr_and_not_polling(rq->idle))
688 smp_send_reschedule(cpu);
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
693 static bool wake_up_full_nohz_cpu(int cpu)
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
701 if (tick_nohz_full_cpu(cpu)) {
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
704 tick_nohz_full_kick_cpu(cpu);
705 return true;
708 return false;
711 void wake_up_nohz_cpu(int cpu)
713 if (!wake_up_full_nohz_cpu(cpu))
714 wake_up_idle_cpu(cpu);
717 static inline bool got_nohz_idle_kick(void)
719 int cpu = smp_processor_id();
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
735 #else /* CONFIG_NO_HZ_COMMON */
737 static inline bool got_nohz_idle_kick(void)
739 return false;
742 #endif /* CONFIG_NO_HZ_COMMON */
744 #ifdef CONFIG_NO_HZ_FULL
745 bool sched_can_stop_tick(void)
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
752 if (this_rq()->nr_running > 1)
753 return false;
755 return true;
757 #endif /* CONFIG_NO_HZ_FULL */
759 void sched_avg_update(struct rq *rq)
761 s64 period = sched_avg_period();
763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
769 asm("" : "+rm" (rq->age_stamp));
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
775 #endif /* CONFIG_SMP */
777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
783 * Caller must hold rcu_lock or sufficient equivalent.
785 int walk_tg_tree_from(struct task_group *from,
786 tg_visitor down, tg_visitor up, void *data)
788 struct task_group *parent, *child;
789 int ret;
791 parent = from;
793 down:
794 ret = (*down)(parent, data);
795 if (ret)
796 goto out;
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
802 continue;
804 ret = (*up)(parent, data);
805 if (ret || parent == from)
806 goto out;
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
812 out:
813 return ret;
816 int tg_nop(struct task_group *tg, void *data)
818 return 0;
820 #endif
822 static void set_load_weight(struct task_struct *p)
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
828 * SCHED_IDLE tasks get minimal weight:
830 if (p->policy == SCHED_IDLE) {
831 load->weight = scale_load(WEIGHT_IDLEPRIO);
832 load->inv_weight = WMULT_IDLEPRIO;
833 return;
836 load->weight = scale_load(prio_to_weight[prio]);
837 load->inv_weight = prio_to_wmult[prio];
840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
842 update_rq_clock(rq);
843 sched_info_queued(rq, p);
844 p->sched_class->enqueue_task(rq, p, flags);
847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
849 update_rq_clock(rq);
850 sched_info_dequeued(rq, p);
851 p->sched_class->dequeue_task(rq, p, flags);
854 void activate_task(struct rq *rq, struct task_struct *p, int flags)
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
859 enqueue_task(rq, p, flags);
862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
867 dequeue_task(rq, p, flags);
870 static void update_rq_clock_task(struct rq *rq, s64 delta)
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878 #endif
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
897 if (irq_delta > delta)
898 irq_delta = delta;
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
902 #endif
903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904 if (static_key_false((&paravirt_steal_rq_enabled))) {
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
908 if (unlikely(steal > delta))
909 steal = delta;
911 rq->prev_steal_time_rq += steal;
912 delta -= steal;
914 #endif
916 rq->clock_task += delta;
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920 sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
924 void sched_set_stop_task(int cpu, struct task_struct *stop)
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
929 if (stop) {
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
940 stop->sched_class = &stop_sched_class;
943 cpu_rq(cpu)->stop = stop;
945 if (old_stop) {
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
950 old_stop->sched_class = &rt_sched_class;
955 * __normal_prio - return the priority that is based on the static prio
957 static inline int __normal_prio(struct task_struct *p)
959 return p->static_prio;
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
969 static inline int normal_prio(struct task_struct *p)
971 int prio;
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
989 static int effective_prio(struct task_struct *p)
991 p->normal_prio = normal_prio(p);
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1008 inline int task_curr(const struct task_struct *p)
1010 return cpu_curr(task_cpu(p)) == p;
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
1015 int oldprio)
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
1019 prev_class->switched_from(rq, p);
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1027 const struct sched_class *class;
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1047 rq->skip_clock_update = 1;
1050 #ifdef CONFIG_SMP
1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1053 #ifdef CONFIG_SCHED_DEBUG
1055 * We should never call set_task_cpu() on a blocked task,
1056 * ttwu() will sort out the placement.
1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1061 #ifdef CONFIG_LOCKDEP
1063 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1066 * sched_move_task() holds both and thus holding either pins the cgroup,
1067 * see task_group().
1069 * Furthermore, all task_rq users should acquire both locks, see
1070 * task_rq_lock().
1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 lockdep_is_held(&task_rq(p)->lock)));
1074 #endif
1075 #endif
1077 trace_sched_migrate_task(p, new_cpu);
1079 if (task_cpu(p) != new_cpu) {
1080 if (p->sched_class->migrate_task_rq)
1081 p->sched_class->migrate_task_rq(p, new_cpu);
1082 p->se.nr_migrations++;
1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1086 __set_task_cpu(p, new_cpu);
1089 static void __migrate_swap_task(struct task_struct *p, int cpu)
1091 if (p->on_rq) {
1092 struct rq *src_rq, *dst_rq;
1094 src_rq = task_rq(p);
1095 dst_rq = cpu_rq(cpu);
1097 deactivate_task(src_rq, p, 0);
1098 set_task_cpu(p, cpu);
1099 activate_task(dst_rq, p, 0);
1100 check_preempt_curr(dst_rq, p, 0);
1101 } else {
1103 * Task isn't running anymore; make it appear like we migrated
1104 * it before it went to sleep. This means on wakeup we make the
1105 * previous cpu our targer instead of where it really is.
1107 p->wake_cpu = cpu;
1111 struct migration_swap_arg {
1112 struct task_struct *src_task, *dst_task;
1113 int src_cpu, dst_cpu;
1116 static int migrate_swap_stop(void *data)
1118 struct migration_swap_arg *arg = data;
1119 struct rq *src_rq, *dst_rq;
1120 int ret = -EAGAIN;
1122 src_rq = cpu_rq(arg->src_cpu);
1123 dst_rq = cpu_rq(arg->dst_cpu);
1125 double_raw_lock(&arg->src_task->pi_lock,
1126 &arg->dst_task->pi_lock);
1127 double_rq_lock(src_rq, dst_rq);
1128 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 goto unlock;
1131 if (task_cpu(arg->src_task) != arg->src_cpu)
1132 goto unlock;
1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 goto unlock;
1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 goto unlock;
1140 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1143 ret = 0;
1145 unlock:
1146 double_rq_unlock(src_rq, dst_rq);
1147 raw_spin_unlock(&arg->dst_task->pi_lock);
1148 raw_spin_unlock(&arg->src_task->pi_lock);
1150 return ret;
1154 * Cross migrate two tasks
1156 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1158 struct migration_swap_arg arg;
1159 int ret = -EINVAL;
1161 arg = (struct migration_swap_arg){
1162 .src_task = cur,
1163 .src_cpu = task_cpu(cur),
1164 .dst_task = p,
1165 .dst_cpu = task_cpu(p),
1168 if (arg.src_cpu == arg.dst_cpu)
1169 goto out;
1172 * These three tests are all lockless; this is OK since all of them
1173 * will be re-checked with proper locks held further down the line.
1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 goto out;
1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 goto out;
1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 goto out;
1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1187 out:
1188 return ret;
1191 struct migration_arg {
1192 struct task_struct *task;
1193 int dest_cpu;
1196 static int migration_cpu_stop(void *data);
1199 * wait_task_inactive - wait for a thread to unschedule.
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change. If it changes, i.e. @p might have woken up,
1203 * then return zero. When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count). If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1216 unsigned long flags;
1217 int running, on_rq;
1218 unsigned long ncsw;
1219 struct rq *rq;
1221 for (;;) {
1223 * We do the initial early heuristics without holding
1224 * any task-queue locks at all. We'll only try to get
1225 * the runqueue lock when things look like they will
1226 * work out!
1228 rq = task_rq(p);
1231 * If the task is actively running on another CPU
1232 * still, just relax and busy-wait without holding
1233 * any locks.
1235 * NOTE! Since we don't hold any locks, it's not
1236 * even sure that "rq" stays as the right runqueue!
1237 * But we don't care, since "task_running()" will
1238 * return false if the runqueue has changed and p
1239 * is actually now running somewhere else!
1241 while (task_running(rq, p)) {
1242 if (match_state && unlikely(p->state != match_state))
1243 return 0;
1244 cpu_relax();
1248 * Ok, time to look more closely! We need the rq
1249 * lock now, to be *sure*. If we're wrong, we'll
1250 * just go back and repeat.
1252 rq = task_rq_lock(p, &flags);
1253 trace_sched_wait_task(p);
1254 running = task_running(rq, p);
1255 on_rq = p->on_rq;
1256 ncsw = 0;
1257 if (!match_state || p->state == match_state)
1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259 task_rq_unlock(rq, p, &flags);
1262 * If it changed from the expected state, bail out now.
1264 if (unlikely(!ncsw))
1265 break;
1268 * Was it really running after all now that we
1269 * checked with the proper locks actually held?
1271 * Oops. Go back and try again..
1273 if (unlikely(running)) {
1274 cpu_relax();
1275 continue;
1279 * It's not enough that it's not actively running,
1280 * it must be off the runqueue _entirely_, and not
1281 * preempted!
1283 * So if it was still runnable (but just not actively
1284 * running right now), it's preempted, and we should
1285 * yield - it could be a while.
1287 if (unlikely(on_rq)) {
1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292 continue;
1296 * Ahh, all good. It wasn't running, and it wasn't
1297 * runnable, which means that it will never become
1298 * running in the future either. We're all done!
1300 break;
1303 return ncsw;
1306 /***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1313 * NOTE: this function doesn't have to take the runqueue lock,
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1319 void kick_process(struct task_struct *p)
1321 int cpu;
1323 preempt_disable();
1324 cpu = task_cpu(p);
1325 if ((cpu != smp_processor_id()) && task_curr(p))
1326 smp_send_reschedule(cpu);
1327 preempt_enable();
1329 EXPORT_SYMBOL_GPL(kick_process);
1330 #endif /* CONFIG_SMP */
1332 #ifdef CONFIG_SMP
1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1336 static int select_fallback_rq(int cpu, struct task_struct *p)
1338 int nid = cpu_to_node(cpu);
1339 const struct cpumask *nodemask = NULL;
1340 enum { cpuset, possible, fail } state = cpuset;
1341 int dest_cpu;
1344 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 * will return -1. There is no cpu on the node, and we should
1346 * select the cpu on the other node.
1348 if (nid != -1) {
1349 nodemask = cpumask_of_node(nid);
1351 /* Look for allowed, online CPU in same node. */
1352 for_each_cpu(dest_cpu, nodemask) {
1353 if (!cpu_online(dest_cpu))
1354 continue;
1355 if (!cpu_active(dest_cpu))
1356 continue;
1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 return dest_cpu;
1362 for (;;) {
1363 /* Any allowed, online CPU? */
1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365 if (!cpu_online(dest_cpu))
1366 continue;
1367 if (!cpu_active(dest_cpu))
1368 continue;
1369 goto out;
1372 switch (state) {
1373 case cpuset:
1374 /* No more Mr. Nice Guy. */
1375 cpuset_cpus_allowed_fallback(p);
1376 state = possible;
1377 break;
1379 case possible:
1380 do_set_cpus_allowed(p, cpu_possible_mask);
1381 state = fail;
1382 break;
1384 case fail:
1385 BUG();
1386 break;
1390 out:
1391 if (state != cpuset) {
1393 * Don't tell them about moving exiting tasks or
1394 * kernel threads (both mm NULL), since they never
1395 * leave kernel.
1397 if (p->mm && printk_ratelimit()) {
1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399 task_pid_nr(p), p->comm, cpu);
1403 return dest_cpu;
1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1409 static inline
1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1415 * In order not to call set_task_cpu() on a blocking task we need
1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * cpu.
1419 * Since this is common to all placement strategies, this lives here.
1421 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 * not worry about this generic constraint ]
1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1425 !cpu_online(cpu)))
1426 cpu = select_fallback_rq(task_cpu(p), p);
1428 return cpu;
1431 static void update_avg(u64 *avg, u64 sample)
1433 s64 diff = sample - *avg;
1434 *avg += diff >> 3;
1436 #endif
1438 static void
1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1441 #ifdef CONFIG_SCHEDSTATS
1442 struct rq *rq = this_rq();
1444 #ifdef CONFIG_SMP
1445 int this_cpu = smp_processor_id();
1447 if (cpu == this_cpu) {
1448 schedstat_inc(rq, ttwu_local);
1449 schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 } else {
1451 struct sched_domain *sd;
1453 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454 rcu_read_lock();
1455 for_each_domain(this_cpu, sd) {
1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 schedstat_inc(sd, ttwu_wake_remote);
1458 break;
1461 rcu_read_unlock();
1464 if (wake_flags & WF_MIGRATED)
1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1467 #endif /* CONFIG_SMP */
1469 schedstat_inc(rq, ttwu_count);
1470 schedstat_inc(p, se.statistics.nr_wakeups);
1472 if (wake_flags & WF_SYNC)
1473 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1475 #endif /* CONFIG_SCHEDSTATS */
1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1480 activate_task(rq, p, en_flags);
1481 p->on_rq = 1;
1483 /* if a worker is waking up, notify workqueue */
1484 if (p->flags & PF_WQ_WORKER)
1485 wq_worker_waking_up(p, cpu_of(rq));
1489 * Mark the task runnable and perform wakeup-preemption.
1491 static void
1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1494 check_preempt_curr(rq, p, wake_flags);
1495 trace_sched_wakeup(p, true);
1497 p->state = TASK_RUNNING;
1498 #ifdef CONFIG_SMP
1499 if (p->sched_class->task_woken)
1500 p->sched_class->task_woken(rq, p);
1502 if (rq->idle_stamp) {
1503 u64 delta = rq_clock(rq) - rq->idle_stamp;
1504 u64 max = 2*rq->max_idle_balance_cost;
1506 update_avg(&rq->avg_idle, delta);
1508 if (rq->avg_idle > max)
1509 rq->avg_idle = max;
1511 rq->idle_stamp = 0;
1513 #endif
1516 static void
1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1519 #ifdef CONFIG_SMP
1520 if (p->sched_contributes_to_load)
1521 rq->nr_uninterruptible--;
1522 #endif
1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 ttwu_do_wakeup(rq, p, wake_flags);
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1534 static int ttwu_remote(struct task_struct *p, int wake_flags)
1536 struct rq *rq;
1537 int ret = 0;
1539 rq = __task_rq_lock(p);
1540 if (p->on_rq) {
1541 /* check_preempt_curr() may use rq clock */
1542 update_rq_clock(rq);
1543 ttwu_do_wakeup(rq, p, wake_flags);
1544 ret = 1;
1546 __task_rq_unlock(rq);
1548 return ret;
1551 #ifdef CONFIG_SMP
1552 void sched_ttwu_pending(void)
1554 struct rq *rq = this_rq();
1555 struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 struct task_struct *p;
1557 unsigned long flags;
1559 if (!llist)
1560 return;
1562 raw_spin_lock_irqsave(&rq->lock, flags);
1564 while (llist) {
1565 p = llist_entry(llist, struct task_struct, wake_entry);
1566 llist = llist_next(llist);
1567 ttwu_do_activate(rq, p, 0);
1570 raw_spin_unlock_irqrestore(&rq->lock, flags);
1573 void scheduler_ipi(void)
1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 * this IPI.
1580 preempt_fold_need_resched();
1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583 return;
1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 * traditionally all their work was done from the interrupt return
1588 * path. Now that we actually do some work, we need to make sure
1589 * we do call them.
1591 * Some archs already do call them, luckily irq_enter/exit nest
1592 * properly.
1594 * Arguably we should visit all archs and update all handlers,
1595 * however a fair share of IPIs are still resched only so this would
1596 * somewhat pessimize the simple resched case.
1598 irq_enter();
1599 sched_ttwu_pending();
1602 * Check if someone kicked us for doing the nohz idle load balance.
1604 if (unlikely(got_nohz_idle_kick())) {
1605 this_rq()->idle_balance = 1;
1606 raise_softirq_irqoff(SCHED_SOFTIRQ);
1608 irq_exit();
1611 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1613 struct rq *rq = cpu_rq(cpu);
1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 if (!set_nr_if_polling(rq->idle))
1617 smp_send_reschedule(cpu);
1618 else
1619 trace_sched_wake_idle_without_ipi(cpu);
1623 bool cpus_share_cache(int this_cpu, int that_cpu)
1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1627 #endif /* CONFIG_SMP */
1629 static void ttwu_queue(struct task_struct *p, int cpu)
1631 struct rq *rq = cpu_rq(cpu);
1633 #if defined(CONFIG_SMP)
1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636 ttwu_queue_remote(p, cpu);
1637 return;
1639 #endif
1641 raw_spin_lock(&rq->lock);
1642 ttwu_do_activate(rq, p, 0);
1643 raw_spin_unlock(&rq->lock);
1647 * try_to_wake_up - wake up a thread
1648 * @p: the thread to be awakened
1649 * @state: the mask of task states that can be woken
1650 * @wake_flags: wake modifier flags (WF_*)
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1658 * Return: %true if @p was woken up, %false if it was already running.
1659 * or @state didn't match @p's state.
1661 static int
1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1664 unsigned long flags;
1665 int cpu, success = 0;
1668 * If we are going to wake up a thread waiting for CONDITION we
1669 * need to ensure that CONDITION=1 done by the caller can not be
1670 * reordered with p->state check below. This pairs with mb() in
1671 * set_current_state() the waiting thread does.
1673 smp_mb__before_spinlock();
1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 if (!(p->state & state))
1676 goto out;
1678 success = 1; /* we're going to change ->state */
1679 cpu = task_cpu(p);
1681 if (p->on_rq && ttwu_remote(p, wake_flags))
1682 goto stat;
1684 #ifdef CONFIG_SMP
1686 * If the owning (remote) cpu is still in the middle of schedule() with
1687 * this task as prev, wait until its done referencing the task.
1689 while (p->on_cpu)
1690 cpu_relax();
1692 * Pairs with the smp_wmb() in finish_lock_switch().
1694 smp_rmb();
1696 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1697 p->state = TASK_WAKING;
1699 if (p->sched_class->task_waking)
1700 p->sched_class->task_waking(p);
1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703 if (task_cpu(p) != cpu) {
1704 wake_flags |= WF_MIGRATED;
1705 set_task_cpu(p, cpu);
1707 #endif /* CONFIG_SMP */
1709 ttwu_queue(p, cpu);
1710 stat:
1711 ttwu_stat(p, cpu, wake_flags);
1712 out:
1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1715 return success;
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1722 * Put @p on the run-queue if it's not already there. The caller must
1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724 * the current task.
1726 static void try_to_wake_up_local(struct task_struct *p)
1728 struct rq *rq = task_rq(p);
1730 if (WARN_ON_ONCE(rq != this_rq()) ||
1731 WARN_ON_ONCE(p == current))
1732 return;
1734 lockdep_assert_held(&rq->lock);
1736 if (!raw_spin_trylock(&p->pi_lock)) {
1737 raw_spin_unlock(&rq->lock);
1738 raw_spin_lock(&p->pi_lock);
1739 raw_spin_lock(&rq->lock);
1742 if (!(p->state & TASK_NORMAL))
1743 goto out;
1745 if (!p->on_rq)
1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1748 ttwu_do_wakeup(rq, p, 0);
1749 ttwu_stat(p, smp_processor_id(), 0);
1750 out:
1751 raw_spin_unlock(&p->pi_lock);
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1758 * Attempt to wake up the nominated process and move it to the set of runnable
1759 * processes.
1761 * Return: 1 if the process was woken up, 0 if it was already running.
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1766 int wake_up_process(struct task_struct *p)
1768 WARN_ON(task_is_stopped_or_traced(p));
1769 return try_to_wake_up(p, TASK_NORMAL, 0);
1771 EXPORT_SYMBOL(wake_up_process);
1773 int wake_up_state(struct task_struct *p, unsigned int state)
1775 return try_to_wake_up(p, state, 0);
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
1782 * __sched_fork() is basic setup used by init_idle() too:
1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1786 p->on_rq = 0;
1788 p->se.on_rq = 0;
1789 p->se.exec_start = 0;
1790 p->se.sum_exec_runtime = 0;
1791 p->se.prev_sum_exec_runtime = 0;
1792 p->se.nr_migrations = 0;
1793 p->se.vruntime = 0;
1794 INIT_LIST_HEAD(&p->se.group_node);
1796 #ifdef CONFIG_SCHEDSTATS
1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1798 #endif
1800 RB_CLEAR_NODE(&p->dl.rb_node);
1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 p->dl.dl_runtime = p->dl.runtime = 0;
1803 p->dl.dl_deadline = p->dl.deadline = 0;
1804 p->dl.dl_period = 0;
1805 p->dl.flags = 0;
1807 INIT_LIST_HEAD(&p->rt.run_list);
1809 #ifdef CONFIG_PREEMPT_NOTIFIERS
1810 INIT_HLIST_HEAD(&p->preempt_notifiers);
1811 #endif
1813 #ifdef CONFIG_NUMA_BALANCING
1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816 p->mm->numa_scan_seq = 0;
1819 if (clone_flags & CLONE_VM)
1820 p->numa_preferred_nid = current->numa_preferred_nid;
1821 else
1822 p->numa_preferred_nid = -1;
1824 p->node_stamp = 0ULL;
1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827 p->numa_work.next = &p->numa_work;
1828 p->numa_faults_memory = NULL;
1829 p->numa_faults_buffer_memory = NULL;
1830 p->last_task_numa_placement = 0;
1831 p->last_sum_exec_runtime = 0;
1833 INIT_LIST_HEAD(&p->numa_entry);
1834 p->numa_group = NULL;
1835 #endif /* CONFIG_NUMA_BALANCING */
1838 #ifdef CONFIG_NUMA_BALANCING
1839 #ifdef CONFIG_SCHED_DEBUG
1840 void set_numabalancing_state(bool enabled)
1842 if (enabled)
1843 sched_feat_set("NUMA");
1844 else
1845 sched_feat_set("NO_NUMA");
1847 #else
1848 __read_mostly bool numabalancing_enabled;
1850 void set_numabalancing_state(bool enabled)
1852 numabalancing_enabled = enabled;
1854 #endif /* CONFIG_SCHED_DEBUG */
1856 #ifdef CONFIG_PROC_SYSCTL
1857 int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 void __user *buffer, size_t *lenp, loff_t *ppos)
1860 struct ctl_table t;
1861 int err;
1862 int state = numabalancing_enabled;
1864 if (write && !capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1867 t = *table;
1868 t.data = &state;
1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 if (err < 0)
1871 return err;
1872 if (write)
1873 set_numabalancing_state(state);
1874 return err;
1876 #endif
1877 #endif
1880 * fork()/clone()-time setup:
1882 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1884 unsigned long flags;
1885 int cpu = get_cpu();
1887 __sched_fork(clone_flags, p);
1889 * We mark the process as running here. This guarantees that
1890 * nobody will actually run it, and a signal or other external
1891 * event cannot wake it up and insert it on the runqueue either.
1893 p->state = TASK_RUNNING;
1896 * Make sure we do not leak PI boosting priority to the child.
1898 p->prio = current->normal_prio;
1901 * Revert to default priority/policy on fork if requested.
1903 if (unlikely(p->sched_reset_on_fork)) {
1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905 p->policy = SCHED_NORMAL;
1906 p->static_prio = NICE_TO_PRIO(0);
1907 p->rt_priority = 0;
1908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 p->static_prio = NICE_TO_PRIO(0);
1911 p->prio = p->normal_prio = __normal_prio(p);
1912 set_load_weight(p);
1915 * We don't need the reset flag anymore after the fork. It has
1916 * fulfilled its duty:
1918 p->sched_reset_on_fork = 0;
1921 if (dl_prio(p->prio)) {
1922 put_cpu();
1923 return -EAGAIN;
1924 } else if (rt_prio(p->prio)) {
1925 p->sched_class = &rt_sched_class;
1926 } else {
1927 p->sched_class = &fair_sched_class;
1930 if (p->sched_class->task_fork)
1931 p->sched_class->task_fork(p);
1934 * The child is not yet in the pid-hash so no cgroup attach races,
1935 * and the cgroup is pinned to this child due to cgroup_fork()
1936 * is ran before sched_fork().
1938 * Silence PROVE_RCU.
1940 raw_spin_lock_irqsave(&p->pi_lock, flags);
1941 set_task_cpu(p, cpu);
1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1945 if (likely(sched_info_on()))
1946 memset(&p->sched_info, 0, sizeof(p->sched_info));
1947 #endif
1948 #if defined(CONFIG_SMP)
1949 p->on_cpu = 0;
1950 #endif
1951 init_task_preempt_count(p);
1952 #ifdef CONFIG_SMP
1953 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955 #endif
1957 put_cpu();
1958 return 0;
1961 unsigned long to_ratio(u64 period, u64 runtime)
1963 if (runtime == RUNTIME_INF)
1964 return 1ULL << 20;
1967 * Doing this here saves a lot of checks in all
1968 * the calling paths, and returning zero seems
1969 * safe for them anyway.
1971 if (period == 0)
1972 return 0;
1974 return div64_u64(runtime << 20, period);
1977 #ifdef CONFIG_SMP
1978 inline struct dl_bw *dl_bw_of(int i)
1980 return &cpu_rq(i)->rd->dl_bw;
1983 static inline int dl_bw_cpus(int i)
1985 struct root_domain *rd = cpu_rq(i)->rd;
1986 int cpus = 0;
1988 for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 cpus++;
1991 return cpus;
1993 #else
1994 inline struct dl_bw *dl_bw_of(int i)
1996 return &cpu_rq(i)->dl.dl_bw;
1999 static inline int dl_bw_cpus(int i)
2001 return 1;
2003 #endif
2005 static inline
2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2008 dl_b->total_bw -= tsk_bw;
2011 static inline
2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2014 dl_b->total_bw += tsk_bw;
2017 static inline
2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2020 return dl_b->bw != -1 &&
2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2030 * This function is called while holding p's rq->lock.
2032 static int dl_overflow(struct task_struct *p, int policy,
2033 const struct sched_attr *attr)
2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037 u64 period = attr->sched_period ?: attr->sched_deadline;
2038 u64 runtime = attr->sched_runtime;
2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040 int cpus, err = -1;
2042 if (new_bw == p->dl.dl_bw)
2043 return 0;
2046 * Either if a task, enters, leave, or stays -deadline but changes
2047 * its parameters, we may need to update accordingly the total
2048 * allocated bandwidth of the container.
2050 raw_spin_lock(&dl_b->lock);
2051 cpus = dl_bw_cpus(task_cpu(p));
2052 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 __dl_clear(dl_b, p->dl.dl_bw);
2059 __dl_add(dl_b, new_bw);
2060 err = 0;
2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 __dl_clear(dl_b, p->dl.dl_bw);
2063 err = 0;
2065 raw_spin_unlock(&dl_b->lock);
2067 return err;
2070 extern void init_dl_bw(struct dl_bw *dl_b);
2073 * wake_up_new_task - wake up a newly created task for the first time.
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2079 void wake_up_new_task(struct task_struct *p)
2081 unsigned long flags;
2082 struct rq *rq;
2084 raw_spin_lock_irqsave(&p->pi_lock, flags);
2085 #ifdef CONFIG_SMP
2087 * Fork balancing, do it here and not earlier because:
2088 * - cpus_allowed can change in the fork path
2089 * - any previously selected cpu might disappear through hotplug
2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092 #endif
2094 /* Initialize new task's runnable average */
2095 init_task_runnable_average(p);
2096 rq = __task_rq_lock(p);
2097 activate_task(rq, p, 0);
2098 p->on_rq = 1;
2099 trace_sched_wakeup_new(p, true);
2100 check_preempt_curr(rq, p, WF_FORK);
2101 #ifdef CONFIG_SMP
2102 if (p->sched_class->task_woken)
2103 p->sched_class->task_woken(rq, p);
2104 #endif
2105 task_rq_unlock(rq, p, &flags);
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2112 * @notifier: notifier struct to register
2114 void preempt_notifier_register(struct preempt_notifier *notifier)
2116 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2118 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
2122 * @notifier: notifier struct to unregister
2124 * This is safe to call from within a preemption notifier.
2126 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2128 hlist_del(&notifier->link);
2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2134 struct preempt_notifier *notifier;
2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2140 static void
2141 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2144 struct preempt_notifier *notifier;
2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147 notifier->ops->sched_out(notifier, next);
2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2156 static void
2157 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
2167 * @prev: the current task that is being switched out
2168 * @next: the task we are going to switch to.
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2177 static inline void
2178 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 struct task_struct *next)
2181 trace_sched_switch(prev, next);
2182 sched_info_switch(rq, prev, next);
2183 perf_event_task_sched_out(prev, next);
2184 fire_sched_out_preempt_notifiers(prev, next);
2185 prepare_lock_switch(rq, next);
2186 prepare_arch_switch(next);
2190 * finish_task_switch - clean up after a task-switch
2191 * @rq: runqueue associated with task-switch
2192 * @prev: the thread we just switched away from.
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
2199 * Note that we may have delayed dropping an mm in context_switch(). If
2200 * so, we finish that here outside of the runqueue lock. (Doing it
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2205 __releases(rq->lock)
2207 struct mm_struct *mm = rq->prev_mm;
2208 long prev_state;
2210 rq->prev_mm = NULL;
2213 * A task struct has one reference for the use as "current".
2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
2217 * The test for TASK_DEAD must occur while the runqueue locks are
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2223 prev_state = prev->state;
2224 vtime_task_switch(prev);
2225 finish_arch_switch(prev);
2226 perf_event_task_sched_in(prev, current);
2227 finish_lock_switch(rq, prev);
2228 finish_arch_post_lock_switch();
2230 fire_sched_in_preempt_notifiers(current);
2231 if (mm)
2232 mmdrop(mm);
2233 if (unlikely(prev_state == TASK_DEAD)) {
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
2241 kprobe_flush_task(prev);
2242 put_task_struct(prev);
2245 tick_nohz_task_switch(current);
2248 #ifdef CONFIG_SMP
2250 /* rq->lock is NOT held, but preemption is disabled */
2251 static inline void post_schedule(struct rq *rq)
2253 if (rq->post_schedule) {
2254 unsigned long flags;
2256 raw_spin_lock_irqsave(&rq->lock, flags);
2257 if (rq->curr->sched_class->post_schedule)
2258 rq->curr->sched_class->post_schedule(rq);
2259 raw_spin_unlock_irqrestore(&rq->lock, flags);
2261 rq->post_schedule = 0;
2265 #else
2267 static inline void post_schedule(struct rq *rq)
2271 #endif
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2277 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2278 __releases(rq->lock)
2280 struct rq *rq = this_rq();
2282 finish_task_switch(rq, prev);
2285 * FIXME: do we need to worry about rq being invalidated by the
2286 * task_switch?
2288 post_schedule(rq);
2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 /* In this case, finish_task_switch does not reenable preemption */
2292 preempt_enable();
2293 #endif
2294 if (current->set_child_tid)
2295 put_user(task_pid_vnr(current), current->set_child_tid);
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2302 static inline void
2303 context_switch(struct rq *rq, struct task_struct *prev,
2304 struct task_struct *next)
2306 struct mm_struct *mm, *oldmm;
2308 prepare_task_switch(rq, prev, next);
2310 mm = next->mm;
2311 oldmm = prev->active_mm;
2313 * For paravirt, this is coupled with an exit in switch_to to
2314 * combine the page table reload and the switch backend into
2315 * one hypercall.
2317 arch_start_context_switch(prev);
2319 if (!mm) {
2320 next->active_mm = oldmm;
2321 atomic_inc(&oldmm->mm_count);
2322 enter_lazy_tlb(oldmm, next);
2323 } else
2324 switch_mm(oldmm, mm, next);
2326 if (!prev->mm) {
2327 prev->active_mm = NULL;
2328 rq->prev_mm = oldmm;
2331 * Since the runqueue lock will be released by the next
2332 * task (which is an invalid locking op but in the case
2333 * of the scheduler it's an obvious special-case), so we
2334 * do an early lockdep release here:
2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338 #endif
2340 context_tracking_task_switch(prev, next);
2341 /* Here we just switch the register state and the stack. */
2342 switch_to(prev, next, prev);
2344 barrier();
2346 * this_rq must be evaluated again because prev may have moved
2347 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 * frame will be invalid.
2350 finish_task_switch(this_rq(), prev);
2354 * nr_running and nr_context_switches:
2356 * externally visible scheduler statistics: current number of runnable
2357 * threads, total number of context switches performed since bootup.
2359 unsigned long nr_running(void)
2361 unsigned long i, sum = 0;
2363 for_each_online_cpu(i)
2364 sum += cpu_rq(i)->nr_running;
2366 return sum;
2369 unsigned long long nr_context_switches(void)
2371 int i;
2372 unsigned long long sum = 0;
2374 for_each_possible_cpu(i)
2375 sum += cpu_rq(i)->nr_switches;
2377 return sum;
2380 unsigned long nr_iowait(void)
2382 unsigned long i, sum = 0;
2384 for_each_possible_cpu(i)
2385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2387 return sum;
2390 unsigned long nr_iowait_cpu(int cpu)
2392 struct rq *this = cpu_rq(cpu);
2393 return atomic_read(&this->nr_iowait);
2396 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2398 struct rq *this = this_rq();
2399 *nr_waiters = atomic_read(&this->nr_iowait);
2400 *load = this->cpu_load[0];
2403 #ifdef CONFIG_SMP
2406 * sched_exec - execve() is a valuable balancing opportunity, because at
2407 * this point the task has the smallest effective memory and cache footprint.
2409 void sched_exec(void)
2411 struct task_struct *p = current;
2412 unsigned long flags;
2413 int dest_cpu;
2415 raw_spin_lock_irqsave(&p->pi_lock, flags);
2416 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2417 if (dest_cpu == smp_processor_id())
2418 goto unlock;
2420 if (likely(cpu_active(dest_cpu))) {
2421 struct migration_arg arg = { p, dest_cpu };
2423 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2424 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2425 return;
2427 unlock:
2428 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2431 #endif
2433 DEFINE_PER_CPU(struct kernel_stat, kstat);
2434 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2436 EXPORT_PER_CPU_SYMBOL(kstat);
2437 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2440 * Return any ns on the sched_clock that have not yet been accounted in
2441 * @p in case that task is currently running.
2443 * Called with task_rq_lock() held on @rq.
2445 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2447 u64 ns = 0;
2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2451 * project cycles that may never be accounted to this
2452 * thread, breaking clock_gettime().
2454 if (task_current(rq, p) && p->on_rq) {
2455 update_rq_clock(rq);
2456 ns = rq_clock_task(rq) - p->se.exec_start;
2457 if ((s64)ns < 0)
2458 ns = 0;
2461 return ns;
2464 unsigned long long task_delta_exec(struct task_struct *p)
2466 unsigned long flags;
2467 struct rq *rq;
2468 u64 ns = 0;
2470 rq = task_rq_lock(p, &flags);
2471 ns = do_task_delta_exec(p, rq);
2472 task_rq_unlock(rq, p, &flags);
2474 return ns;
2478 * Return accounted runtime for the task.
2479 * In case the task is currently running, return the runtime plus current's
2480 * pending runtime that have not been accounted yet.
2482 unsigned long long task_sched_runtime(struct task_struct *p)
2484 unsigned long flags;
2485 struct rq *rq;
2486 u64 ns = 0;
2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2490 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 * So we have a optimization chance when the task's delta_exec is 0.
2492 * Reading ->on_cpu is racy, but this is ok.
2494 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 * If we race with it entering cpu, unaccounted time is 0. This is
2496 * indistinguishable from the read occurring a few cycles earlier.
2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 * been accounted, so we're correct here as well.
2500 if (!p->on_cpu || !p->on_rq)
2501 return p->se.sum_exec_runtime;
2502 #endif
2504 rq = task_rq_lock(p, &flags);
2505 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2506 task_rq_unlock(rq, p, &flags);
2508 return ns;
2512 * This function gets called by the timer code, with HZ frequency.
2513 * We call it with interrupts disabled.
2515 void scheduler_tick(void)
2517 int cpu = smp_processor_id();
2518 struct rq *rq = cpu_rq(cpu);
2519 struct task_struct *curr = rq->curr;
2521 sched_clock_tick();
2523 raw_spin_lock(&rq->lock);
2524 update_rq_clock(rq);
2525 curr->sched_class->task_tick(rq, curr, 0);
2526 update_cpu_load_active(rq);
2527 raw_spin_unlock(&rq->lock);
2529 perf_event_task_tick();
2531 #ifdef CONFIG_SMP
2532 rq->idle_balance = idle_cpu(cpu);
2533 trigger_load_balance(rq);
2534 #endif
2535 rq_last_tick_reset(rq);
2538 #ifdef CONFIG_NO_HZ_FULL
2540 * scheduler_tick_max_deferment
2542 * Keep at least one tick per second when a single
2543 * active task is running because the scheduler doesn't
2544 * yet completely support full dynticks environment.
2546 * This makes sure that uptime, CFS vruntime, load
2547 * balancing, etc... continue to move forward, even
2548 * with a very low granularity.
2550 * Return: Maximum deferment in nanoseconds.
2552 u64 scheduler_tick_max_deferment(void)
2554 struct rq *rq = this_rq();
2555 unsigned long next, now = ACCESS_ONCE(jiffies);
2557 next = rq->last_sched_tick + HZ;
2559 if (time_before_eq(next, now))
2560 return 0;
2562 return jiffies_to_nsecs(next - now);
2564 #endif
2566 notrace unsigned long get_parent_ip(unsigned long addr)
2568 if (in_lock_functions(addr)) {
2569 addr = CALLER_ADDR2;
2570 if (in_lock_functions(addr))
2571 addr = CALLER_ADDR3;
2573 return addr;
2576 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2577 defined(CONFIG_PREEMPT_TRACER))
2579 void preempt_count_add(int val)
2581 #ifdef CONFIG_DEBUG_PREEMPT
2583 * Underflow?
2585 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2586 return;
2587 #endif
2588 __preempt_count_add(val);
2589 #ifdef CONFIG_DEBUG_PREEMPT
2591 * Spinlock count overflowing soon?
2593 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2594 PREEMPT_MASK - 10);
2595 #endif
2596 if (preempt_count() == val) {
2597 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2598 #ifdef CONFIG_DEBUG_PREEMPT
2599 current->preempt_disable_ip = ip;
2600 #endif
2601 trace_preempt_off(CALLER_ADDR0, ip);
2604 EXPORT_SYMBOL(preempt_count_add);
2605 NOKPROBE_SYMBOL(preempt_count_add);
2607 void preempt_count_sub(int val)
2609 #ifdef CONFIG_DEBUG_PREEMPT
2611 * Underflow?
2613 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2614 return;
2616 * Is the spinlock portion underflowing?
2618 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2619 !(preempt_count() & PREEMPT_MASK)))
2620 return;
2621 #endif
2623 if (preempt_count() == val)
2624 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2625 __preempt_count_sub(val);
2627 EXPORT_SYMBOL(preempt_count_sub);
2628 NOKPROBE_SYMBOL(preempt_count_sub);
2630 #endif
2633 * Print scheduling while atomic bug:
2635 static noinline void __schedule_bug(struct task_struct *prev)
2637 if (oops_in_progress)
2638 return;
2640 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2641 prev->comm, prev->pid, preempt_count());
2643 debug_show_held_locks(prev);
2644 print_modules();
2645 if (irqs_disabled())
2646 print_irqtrace_events(prev);
2647 #ifdef CONFIG_DEBUG_PREEMPT
2648 if (in_atomic_preempt_off()) {
2649 pr_err("Preemption disabled at:");
2650 print_ip_sym(current->preempt_disable_ip);
2651 pr_cont("\n");
2653 #endif
2654 dump_stack();
2655 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2659 * Various schedule()-time debugging checks and statistics:
2661 static inline void schedule_debug(struct task_struct *prev)
2664 * Test if we are atomic. Since do_exit() needs to call into
2665 * schedule() atomically, we ignore that path. Otherwise whine
2666 * if we are scheduling when we should not.
2668 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2669 __schedule_bug(prev);
2670 rcu_sleep_check();
2672 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2674 schedstat_inc(this_rq(), sched_count);
2678 * Pick up the highest-prio task:
2680 static inline struct task_struct *
2681 pick_next_task(struct rq *rq, struct task_struct *prev)
2683 const struct sched_class *class = &fair_sched_class;
2684 struct task_struct *p;
2687 * Optimization: we know that if all tasks are in
2688 * the fair class we can call that function directly:
2690 if (likely(prev->sched_class == class &&
2691 rq->nr_running == rq->cfs.h_nr_running)) {
2692 p = fair_sched_class.pick_next_task(rq, prev);
2693 if (unlikely(p == RETRY_TASK))
2694 goto again;
2696 /* assumes fair_sched_class->next == idle_sched_class */
2697 if (unlikely(!p))
2698 p = idle_sched_class.pick_next_task(rq, prev);
2700 return p;
2703 again:
2704 for_each_class(class) {
2705 p = class->pick_next_task(rq, prev);
2706 if (p) {
2707 if (unlikely(p == RETRY_TASK))
2708 goto again;
2709 return p;
2713 BUG(); /* the idle class will always have a runnable task */
2717 * __schedule() is the main scheduler function.
2719 * The main means of driving the scheduler and thus entering this function are:
2721 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2723 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2724 * paths. For example, see arch/x86/entry_64.S.
2726 * To drive preemption between tasks, the scheduler sets the flag in timer
2727 * interrupt handler scheduler_tick().
2729 * 3. Wakeups don't really cause entry into schedule(). They add a
2730 * task to the run-queue and that's it.
2732 * Now, if the new task added to the run-queue preempts the current
2733 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2734 * called on the nearest possible occasion:
2736 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2738 * - in syscall or exception context, at the next outmost
2739 * preempt_enable(). (this might be as soon as the wake_up()'s
2740 * spin_unlock()!)
2742 * - in IRQ context, return from interrupt-handler to
2743 * preemptible context
2745 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2746 * then at the next:
2748 * - cond_resched() call
2749 * - explicit schedule() call
2750 * - return from syscall or exception to user-space
2751 * - return from interrupt-handler to user-space
2753 static void __sched __schedule(void)
2755 struct task_struct *prev, *next;
2756 unsigned long *switch_count;
2757 struct rq *rq;
2758 int cpu;
2760 need_resched:
2761 preempt_disable();
2762 cpu = smp_processor_id();
2763 rq = cpu_rq(cpu);
2764 rcu_note_context_switch(cpu);
2765 prev = rq->curr;
2767 schedule_debug(prev);
2769 if (sched_feat(HRTICK))
2770 hrtick_clear(rq);
2773 * Make sure that signal_pending_state()->signal_pending() below
2774 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2775 * done by the caller to avoid the race with signal_wake_up().
2777 smp_mb__before_spinlock();
2778 raw_spin_lock_irq(&rq->lock);
2780 switch_count = &prev->nivcsw;
2781 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2782 if (unlikely(signal_pending_state(prev->state, prev))) {
2783 prev->state = TASK_RUNNING;
2784 } else {
2785 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2786 prev->on_rq = 0;
2789 * If a worker went to sleep, notify and ask workqueue
2790 * whether it wants to wake up a task to maintain
2791 * concurrency.
2793 if (prev->flags & PF_WQ_WORKER) {
2794 struct task_struct *to_wakeup;
2796 to_wakeup = wq_worker_sleeping(prev, cpu);
2797 if (to_wakeup)
2798 try_to_wake_up_local(to_wakeup);
2801 switch_count = &prev->nvcsw;
2804 if (prev->on_rq || rq->skip_clock_update < 0)
2805 update_rq_clock(rq);
2807 next = pick_next_task(rq, prev);
2808 clear_tsk_need_resched(prev);
2809 clear_preempt_need_resched();
2810 rq->skip_clock_update = 0;
2812 if (likely(prev != next)) {
2813 rq->nr_switches++;
2814 rq->curr = next;
2815 ++*switch_count;
2817 context_switch(rq, prev, next); /* unlocks the rq */
2819 * The context switch have flipped the stack from under us
2820 * and restored the local variables which were saved when
2821 * this task called schedule() in the past. prev == current
2822 * is still correct, but it can be moved to another cpu/rq.
2824 cpu = smp_processor_id();
2825 rq = cpu_rq(cpu);
2826 } else
2827 raw_spin_unlock_irq(&rq->lock);
2829 post_schedule(rq);
2831 sched_preempt_enable_no_resched();
2832 if (need_resched())
2833 goto need_resched;
2836 static inline void sched_submit_work(struct task_struct *tsk)
2838 if (!tsk->state || tsk_is_pi_blocked(tsk))
2839 return;
2841 * If we are going to sleep and we have plugged IO queued,
2842 * make sure to submit it to avoid deadlocks.
2844 if (blk_needs_flush_plug(tsk))
2845 blk_schedule_flush_plug(tsk);
2848 asmlinkage __visible void __sched schedule(void)
2850 struct task_struct *tsk = current;
2852 sched_submit_work(tsk);
2853 __schedule();
2855 EXPORT_SYMBOL(schedule);
2857 #ifdef CONFIG_CONTEXT_TRACKING
2858 asmlinkage __visible void __sched schedule_user(void)
2861 * If we come here after a random call to set_need_resched(),
2862 * or we have been woken up remotely but the IPI has not yet arrived,
2863 * we haven't yet exited the RCU idle mode. Do it here manually until
2864 * we find a better solution.
2866 user_exit();
2867 schedule();
2868 user_enter();
2870 #endif
2873 * schedule_preempt_disabled - called with preemption disabled
2875 * Returns with preemption disabled. Note: preempt_count must be 1
2877 void __sched schedule_preempt_disabled(void)
2879 sched_preempt_enable_no_resched();
2880 schedule();
2881 preempt_disable();
2884 #ifdef CONFIG_PREEMPT
2886 * this is the entry point to schedule() from in-kernel preemption
2887 * off of preempt_enable. Kernel preemptions off return from interrupt
2888 * occur there and call schedule directly.
2890 asmlinkage __visible void __sched notrace preempt_schedule(void)
2893 * If there is a non-zero preempt_count or interrupts are disabled,
2894 * we do not want to preempt the current task. Just return..
2896 if (likely(!preemptible()))
2897 return;
2899 do {
2900 __preempt_count_add(PREEMPT_ACTIVE);
2901 __schedule();
2902 __preempt_count_sub(PREEMPT_ACTIVE);
2905 * Check again in case we missed a preemption opportunity
2906 * between schedule and now.
2908 barrier();
2909 } while (need_resched());
2911 NOKPROBE_SYMBOL(preempt_schedule);
2912 EXPORT_SYMBOL(preempt_schedule);
2913 #endif /* CONFIG_PREEMPT */
2916 * this is the entry point to schedule() from kernel preemption
2917 * off of irq context.
2918 * Note, that this is called and return with irqs disabled. This will
2919 * protect us against recursive calling from irq.
2921 asmlinkage __visible void __sched preempt_schedule_irq(void)
2923 enum ctx_state prev_state;
2925 /* Catch callers which need to be fixed */
2926 BUG_ON(preempt_count() || !irqs_disabled());
2928 prev_state = exception_enter();
2930 do {
2931 __preempt_count_add(PREEMPT_ACTIVE);
2932 local_irq_enable();
2933 __schedule();
2934 local_irq_disable();
2935 __preempt_count_sub(PREEMPT_ACTIVE);
2938 * Check again in case we missed a preemption opportunity
2939 * between schedule and now.
2941 barrier();
2942 } while (need_resched());
2944 exception_exit(prev_state);
2947 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2948 void *key)
2950 return try_to_wake_up(curr->private, mode, wake_flags);
2952 EXPORT_SYMBOL(default_wake_function);
2954 #ifdef CONFIG_RT_MUTEXES
2957 * rt_mutex_setprio - set the current priority of a task
2958 * @p: task
2959 * @prio: prio value (kernel-internal form)
2961 * This function changes the 'effective' priority of a task. It does
2962 * not touch ->normal_prio like __setscheduler().
2964 * Used by the rt_mutex code to implement priority inheritance
2965 * logic. Call site only calls if the priority of the task changed.
2967 void rt_mutex_setprio(struct task_struct *p, int prio)
2969 int oldprio, on_rq, running, enqueue_flag = 0;
2970 struct rq *rq;
2971 const struct sched_class *prev_class;
2973 BUG_ON(prio > MAX_PRIO);
2975 rq = __task_rq_lock(p);
2978 * Idle task boosting is a nono in general. There is one
2979 * exception, when PREEMPT_RT and NOHZ is active:
2981 * The idle task calls get_next_timer_interrupt() and holds
2982 * the timer wheel base->lock on the CPU and another CPU wants
2983 * to access the timer (probably to cancel it). We can safely
2984 * ignore the boosting request, as the idle CPU runs this code
2985 * with interrupts disabled and will complete the lock
2986 * protected section without being interrupted. So there is no
2987 * real need to boost.
2989 if (unlikely(p == rq->idle)) {
2990 WARN_ON(p != rq->curr);
2991 WARN_ON(p->pi_blocked_on);
2992 goto out_unlock;
2995 trace_sched_pi_setprio(p, prio);
2996 oldprio = p->prio;
2997 prev_class = p->sched_class;
2998 on_rq = p->on_rq;
2999 running = task_current(rq, p);
3000 if (on_rq)
3001 dequeue_task(rq, p, 0);
3002 if (running)
3003 p->sched_class->put_prev_task(rq, p);
3006 * Boosting condition are:
3007 * 1. -rt task is running and holds mutex A
3008 * --> -dl task blocks on mutex A
3010 * 2. -dl task is running and holds mutex A
3011 * --> -dl task blocks on mutex A and could preempt the
3012 * running task
3014 if (dl_prio(prio)) {
3015 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3016 if (!dl_prio(p->normal_prio) ||
3017 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3018 p->dl.dl_boosted = 1;
3019 p->dl.dl_throttled = 0;
3020 enqueue_flag = ENQUEUE_REPLENISH;
3021 } else
3022 p->dl.dl_boosted = 0;
3023 p->sched_class = &dl_sched_class;
3024 } else if (rt_prio(prio)) {
3025 if (dl_prio(oldprio))
3026 p->dl.dl_boosted = 0;
3027 if (oldprio < prio)
3028 enqueue_flag = ENQUEUE_HEAD;
3029 p->sched_class = &rt_sched_class;
3030 } else {
3031 if (dl_prio(oldprio))
3032 p->dl.dl_boosted = 0;
3033 p->sched_class = &fair_sched_class;
3036 p->prio = prio;
3038 if (running)
3039 p->sched_class->set_curr_task(rq);
3040 if (on_rq)
3041 enqueue_task(rq, p, enqueue_flag);
3043 check_class_changed(rq, p, prev_class, oldprio);
3044 out_unlock:
3045 __task_rq_unlock(rq);
3047 #endif
3049 void set_user_nice(struct task_struct *p, long nice)
3051 int old_prio, delta, on_rq;
3052 unsigned long flags;
3053 struct rq *rq;
3055 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3056 return;
3058 * We have to be careful, if called from sys_setpriority(),
3059 * the task might be in the middle of scheduling on another CPU.
3061 rq = task_rq_lock(p, &flags);
3063 * The RT priorities are set via sched_setscheduler(), but we still
3064 * allow the 'normal' nice value to be set - but as expected
3065 * it wont have any effect on scheduling until the task is
3066 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3068 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3069 p->static_prio = NICE_TO_PRIO(nice);
3070 goto out_unlock;
3072 on_rq = p->on_rq;
3073 if (on_rq)
3074 dequeue_task(rq, p, 0);
3076 p->static_prio = NICE_TO_PRIO(nice);
3077 set_load_weight(p);
3078 old_prio = p->prio;
3079 p->prio = effective_prio(p);
3080 delta = p->prio - old_prio;
3082 if (on_rq) {
3083 enqueue_task(rq, p, 0);
3085 * If the task increased its priority or is running and
3086 * lowered its priority, then reschedule its CPU:
3088 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3089 resched_curr(rq);
3091 out_unlock:
3092 task_rq_unlock(rq, p, &flags);
3094 EXPORT_SYMBOL(set_user_nice);
3097 * can_nice - check if a task can reduce its nice value
3098 * @p: task
3099 * @nice: nice value
3101 int can_nice(const struct task_struct *p, const int nice)
3103 /* convert nice value [19,-20] to rlimit style value [1,40] */
3104 int nice_rlim = nice_to_rlimit(nice);
3106 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3107 capable(CAP_SYS_NICE));
3110 #ifdef __ARCH_WANT_SYS_NICE
3113 * sys_nice - change the priority of the current process.
3114 * @increment: priority increment
3116 * sys_setpriority is a more generic, but much slower function that
3117 * does similar things.
3119 SYSCALL_DEFINE1(nice, int, increment)
3121 long nice, retval;
3124 * Setpriority might change our priority at the same moment.
3125 * We don't have to worry. Conceptually one call occurs first
3126 * and we have a single winner.
3128 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3129 nice = task_nice(current) + increment;
3131 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3132 if (increment < 0 && !can_nice(current, nice))
3133 return -EPERM;
3135 retval = security_task_setnice(current, nice);
3136 if (retval)
3137 return retval;
3139 set_user_nice(current, nice);
3140 return 0;
3143 #endif
3146 * task_prio - return the priority value of a given task.
3147 * @p: the task in question.
3149 * Return: The priority value as seen by users in /proc.
3150 * RT tasks are offset by -200. Normal tasks are centered
3151 * around 0, value goes from -16 to +15.
3153 int task_prio(const struct task_struct *p)
3155 return p->prio - MAX_RT_PRIO;
3159 * idle_cpu - is a given cpu idle currently?
3160 * @cpu: the processor in question.
3162 * Return: 1 if the CPU is currently idle. 0 otherwise.
3164 int idle_cpu(int cpu)
3166 struct rq *rq = cpu_rq(cpu);
3168 if (rq->curr != rq->idle)
3169 return 0;
3171 if (rq->nr_running)
3172 return 0;
3174 #ifdef CONFIG_SMP
3175 if (!llist_empty(&rq->wake_list))
3176 return 0;
3177 #endif
3179 return 1;
3183 * idle_task - return the idle task for a given cpu.
3184 * @cpu: the processor in question.
3186 * Return: The idle task for the cpu @cpu.
3188 struct task_struct *idle_task(int cpu)
3190 return cpu_rq(cpu)->idle;
3194 * find_process_by_pid - find a process with a matching PID value.
3195 * @pid: the pid in question.
3197 * The task of @pid, if found. %NULL otherwise.
3199 static struct task_struct *find_process_by_pid(pid_t pid)
3201 return pid ? find_task_by_vpid(pid) : current;
3205 * This function initializes the sched_dl_entity of a newly becoming
3206 * SCHED_DEADLINE task.
3208 * Only the static values are considered here, the actual runtime and the
3209 * absolute deadline will be properly calculated when the task is enqueued
3210 * for the first time with its new policy.
3212 static void
3213 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3215 struct sched_dl_entity *dl_se = &p->dl;
3217 init_dl_task_timer(dl_se);
3218 dl_se->dl_runtime = attr->sched_runtime;
3219 dl_se->dl_deadline = attr->sched_deadline;
3220 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3221 dl_se->flags = attr->sched_flags;
3222 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3223 dl_se->dl_throttled = 0;
3224 dl_se->dl_new = 1;
3225 dl_se->dl_yielded = 0;
3229 * sched_setparam() passes in -1 for its policy, to let the functions
3230 * it calls know not to change it.
3232 #define SETPARAM_POLICY -1
3234 static void __setscheduler_params(struct task_struct *p,
3235 const struct sched_attr *attr)
3237 int policy = attr->sched_policy;
3239 if (policy == SETPARAM_POLICY)
3240 policy = p->policy;
3242 p->policy = policy;
3244 if (dl_policy(policy))
3245 __setparam_dl(p, attr);
3246 else if (fair_policy(policy))
3247 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3250 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3251 * !rt_policy. Always setting this ensures that things like
3252 * getparam()/getattr() don't report silly values for !rt tasks.
3254 p->rt_priority = attr->sched_priority;
3255 p->normal_prio = normal_prio(p);
3256 set_load_weight(p);
3259 /* Actually do priority change: must hold pi & rq lock. */
3260 static void __setscheduler(struct rq *rq, struct task_struct *p,
3261 const struct sched_attr *attr)
3263 __setscheduler_params(p, attr);
3266 * If we get here, there was no pi waiters boosting the
3267 * task. It is safe to use the normal prio.
3269 p->prio = normal_prio(p);
3271 if (dl_prio(p->prio))
3272 p->sched_class = &dl_sched_class;
3273 else if (rt_prio(p->prio))
3274 p->sched_class = &rt_sched_class;
3275 else
3276 p->sched_class = &fair_sched_class;
3279 static void
3280 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3282 struct sched_dl_entity *dl_se = &p->dl;
3284 attr->sched_priority = p->rt_priority;
3285 attr->sched_runtime = dl_se->dl_runtime;
3286 attr->sched_deadline = dl_se->dl_deadline;
3287 attr->sched_period = dl_se->dl_period;
3288 attr->sched_flags = dl_se->flags;
3292 * This function validates the new parameters of a -deadline task.
3293 * We ask for the deadline not being zero, and greater or equal
3294 * than the runtime, as well as the period of being zero or
3295 * greater than deadline. Furthermore, we have to be sure that
3296 * user parameters are above the internal resolution of 1us (we
3297 * check sched_runtime only since it is always the smaller one) and
3298 * below 2^63 ns (we have to check both sched_deadline and
3299 * sched_period, as the latter can be zero).
3301 static bool
3302 __checkparam_dl(const struct sched_attr *attr)
3304 /* deadline != 0 */
3305 if (attr->sched_deadline == 0)
3306 return false;
3309 * Since we truncate DL_SCALE bits, make sure we're at least
3310 * that big.
3312 if (attr->sched_runtime < (1ULL << DL_SCALE))
3313 return false;
3316 * Since we use the MSB for wrap-around and sign issues, make
3317 * sure it's not set (mind that period can be equal to zero).
3319 if (attr->sched_deadline & (1ULL << 63) ||
3320 attr->sched_period & (1ULL << 63))
3321 return false;
3323 /* runtime <= deadline <= period (if period != 0) */
3324 if ((attr->sched_period != 0 &&
3325 attr->sched_period < attr->sched_deadline) ||
3326 attr->sched_deadline < attr->sched_runtime)
3327 return false;
3329 return true;
3333 * check the target process has a UID that matches the current process's
3335 static bool check_same_owner(struct task_struct *p)
3337 const struct cred *cred = current_cred(), *pcred;
3338 bool match;
3340 rcu_read_lock();
3341 pcred = __task_cred(p);
3342 match = (uid_eq(cred->euid, pcred->euid) ||
3343 uid_eq(cred->euid, pcred->uid));
3344 rcu_read_unlock();
3345 return match;
3348 static int __sched_setscheduler(struct task_struct *p,
3349 const struct sched_attr *attr,
3350 bool user)
3352 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3353 MAX_RT_PRIO - 1 - attr->sched_priority;
3354 int retval, oldprio, oldpolicy = -1, on_rq, running;
3355 int policy = attr->sched_policy;
3356 unsigned long flags;
3357 const struct sched_class *prev_class;
3358 struct rq *rq;
3359 int reset_on_fork;
3361 /* may grab non-irq protected spin_locks */
3362 BUG_ON(in_interrupt());
3363 recheck:
3364 /* double check policy once rq lock held */
3365 if (policy < 0) {
3366 reset_on_fork = p->sched_reset_on_fork;
3367 policy = oldpolicy = p->policy;
3368 } else {
3369 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3371 if (policy != SCHED_DEADLINE &&
3372 policy != SCHED_FIFO && policy != SCHED_RR &&
3373 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3374 policy != SCHED_IDLE)
3375 return -EINVAL;
3378 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3379 return -EINVAL;
3382 * Valid priorities for SCHED_FIFO and SCHED_RR are
3383 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3384 * SCHED_BATCH and SCHED_IDLE is 0.
3386 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3387 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3388 return -EINVAL;
3389 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3390 (rt_policy(policy) != (attr->sched_priority != 0)))
3391 return -EINVAL;
3394 * Allow unprivileged RT tasks to decrease priority:
3396 if (user && !capable(CAP_SYS_NICE)) {
3397 if (fair_policy(policy)) {
3398 if (attr->sched_nice < task_nice(p) &&
3399 !can_nice(p, attr->sched_nice))
3400 return -EPERM;
3403 if (rt_policy(policy)) {
3404 unsigned long rlim_rtprio =
3405 task_rlimit(p, RLIMIT_RTPRIO);
3407 /* can't set/change the rt policy */
3408 if (policy != p->policy && !rlim_rtprio)
3409 return -EPERM;
3411 /* can't increase priority */
3412 if (attr->sched_priority > p->rt_priority &&
3413 attr->sched_priority > rlim_rtprio)
3414 return -EPERM;
3418 * Can't set/change SCHED_DEADLINE policy at all for now
3419 * (safest behavior); in the future we would like to allow
3420 * unprivileged DL tasks to increase their relative deadline
3421 * or reduce their runtime (both ways reducing utilization)
3423 if (dl_policy(policy))
3424 return -EPERM;
3427 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3428 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3430 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3431 if (!can_nice(p, task_nice(p)))
3432 return -EPERM;
3435 /* can't change other user's priorities */
3436 if (!check_same_owner(p))
3437 return -EPERM;
3439 /* Normal users shall not reset the sched_reset_on_fork flag */
3440 if (p->sched_reset_on_fork && !reset_on_fork)
3441 return -EPERM;
3444 if (user) {
3445 retval = security_task_setscheduler(p);
3446 if (retval)
3447 return retval;
3451 * make sure no PI-waiters arrive (or leave) while we are
3452 * changing the priority of the task:
3454 * To be able to change p->policy safely, the appropriate
3455 * runqueue lock must be held.
3457 rq = task_rq_lock(p, &flags);
3460 * Changing the policy of the stop threads its a very bad idea
3462 if (p == rq->stop) {
3463 task_rq_unlock(rq, p, &flags);
3464 return -EINVAL;
3468 * If not changing anything there's no need to proceed further,
3469 * but store a possible modification of reset_on_fork.
3471 if (unlikely(policy == p->policy)) {
3472 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3473 goto change;
3474 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3475 goto change;
3476 if (dl_policy(policy))
3477 goto change;
3479 p->sched_reset_on_fork = reset_on_fork;
3480 task_rq_unlock(rq, p, &flags);
3481 return 0;
3483 change:
3485 if (user) {
3486 #ifdef CONFIG_RT_GROUP_SCHED
3488 * Do not allow realtime tasks into groups that have no runtime
3489 * assigned.
3491 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3492 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3493 !task_group_is_autogroup(task_group(p))) {
3494 task_rq_unlock(rq, p, &flags);
3495 return -EPERM;
3497 #endif
3498 #ifdef CONFIG_SMP
3499 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3500 cpumask_t *span = rq->rd->span;
3503 * Don't allow tasks with an affinity mask smaller than
3504 * the entire root_domain to become SCHED_DEADLINE. We
3505 * will also fail if there's no bandwidth available.
3507 if (!cpumask_subset(span, &p->cpus_allowed) ||
3508 rq->rd->dl_bw.bw == 0) {
3509 task_rq_unlock(rq, p, &flags);
3510 return -EPERM;
3513 #endif
3516 /* recheck policy now with rq lock held */
3517 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3518 policy = oldpolicy = -1;
3519 task_rq_unlock(rq, p, &flags);
3520 goto recheck;
3524 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3525 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3526 * is available.
3528 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3529 task_rq_unlock(rq, p, &flags);
3530 return -EBUSY;
3533 p->sched_reset_on_fork = reset_on_fork;
3534 oldprio = p->prio;
3537 * Special case for priority boosted tasks.
3539 * If the new priority is lower or equal (user space view)
3540 * than the current (boosted) priority, we just store the new
3541 * normal parameters and do not touch the scheduler class and
3542 * the runqueue. This will be done when the task deboost
3543 * itself.
3545 if (rt_mutex_check_prio(p, newprio)) {
3546 __setscheduler_params(p, attr);
3547 task_rq_unlock(rq, p, &flags);
3548 return 0;
3551 on_rq = p->on_rq;
3552 running = task_current(rq, p);
3553 if (on_rq)
3554 dequeue_task(rq, p, 0);
3555 if (running)
3556 p->sched_class->put_prev_task(rq, p);
3558 prev_class = p->sched_class;
3559 __setscheduler(rq, p, attr);
3561 if (running)
3562 p->sched_class->set_curr_task(rq);
3563 if (on_rq) {
3565 * We enqueue to tail when the priority of a task is
3566 * increased (user space view).
3568 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3571 check_class_changed(rq, p, prev_class, oldprio);
3572 task_rq_unlock(rq, p, &flags);
3574 rt_mutex_adjust_pi(p);
3576 return 0;
3579 static int _sched_setscheduler(struct task_struct *p, int policy,
3580 const struct sched_param *param, bool check)
3582 struct sched_attr attr = {
3583 .sched_policy = policy,
3584 .sched_priority = param->sched_priority,
3585 .sched_nice = PRIO_TO_NICE(p->static_prio),
3588 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3589 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3590 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3591 policy &= ~SCHED_RESET_ON_FORK;
3592 attr.sched_policy = policy;
3595 return __sched_setscheduler(p, &attr, check);
3598 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3599 * @p: the task in question.
3600 * @policy: new policy.
3601 * @param: structure containing the new RT priority.
3603 * Return: 0 on success. An error code otherwise.
3605 * NOTE that the task may be already dead.
3607 int sched_setscheduler(struct task_struct *p, int policy,
3608 const struct sched_param *param)
3610 return _sched_setscheduler(p, policy, param, true);
3612 EXPORT_SYMBOL_GPL(sched_setscheduler);
3614 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3616 return __sched_setscheduler(p, attr, true);
3618 EXPORT_SYMBOL_GPL(sched_setattr);
3621 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3622 * @p: the task in question.
3623 * @policy: new policy.
3624 * @param: structure containing the new RT priority.
3626 * Just like sched_setscheduler, only don't bother checking if the
3627 * current context has permission. For example, this is needed in
3628 * stop_machine(): we create temporary high priority worker threads,
3629 * but our caller might not have that capability.
3631 * Return: 0 on success. An error code otherwise.
3633 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3634 const struct sched_param *param)
3636 return _sched_setscheduler(p, policy, param, false);
3639 static int
3640 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3642 struct sched_param lparam;
3643 struct task_struct *p;
3644 int retval;
3646 if (!param || pid < 0)
3647 return -EINVAL;
3648 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3649 return -EFAULT;
3651 rcu_read_lock();
3652 retval = -ESRCH;
3653 p = find_process_by_pid(pid);
3654 if (p != NULL)
3655 retval = sched_setscheduler(p, policy, &lparam);
3656 rcu_read_unlock();
3658 return retval;
3662 * Mimics kernel/events/core.c perf_copy_attr().
3664 static int sched_copy_attr(struct sched_attr __user *uattr,
3665 struct sched_attr *attr)
3667 u32 size;
3668 int ret;
3670 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3671 return -EFAULT;
3674 * zero the full structure, so that a short copy will be nice.
3676 memset(attr, 0, sizeof(*attr));
3678 ret = get_user(size, &uattr->size);
3679 if (ret)
3680 return ret;
3682 if (size > PAGE_SIZE) /* silly large */
3683 goto err_size;
3685 if (!size) /* abi compat */
3686 size = SCHED_ATTR_SIZE_VER0;
3688 if (size < SCHED_ATTR_SIZE_VER0)
3689 goto err_size;
3692 * If we're handed a bigger struct than we know of,
3693 * ensure all the unknown bits are 0 - i.e. new
3694 * user-space does not rely on any kernel feature
3695 * extensions we dont know about yet.
3697 if (size > sizeof(*attr)) {
3698 unsigned char __user *addr;
3699 unsigned char __user *end;
3700 unsigned char val;
3702 addr = (void __user *)uattr + sizeof(*attr);
3703 end = (void __user *)uattr + size;
3705 for (; addr < end; addr++) {
3706 ret = get_user(val, addr);
3707 if (ret)
3708 return ret;
3709 if (val)
3710 goto err_size;
3712 size = sizeof(*attr);
3715 ret = copy_from_user(attr, uattr, size);
3716 if (ret)
3717 return -EFAULT;
3720 * XXX: do we want to be lenient like existing syscalls; or do we want
3721 * to be strict and return an error on out-of-bounds values?
3723 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3725 return 0;
3727 err_size:
3728 put_user(sizeof(*attr), &uattr->size);
3729 return -E2BIG;
3733 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3734 * @pid: the pid in question.
3735 * @policy: new policy.
3736 * @param: structure containing the new RT priority.
3738 * Return: 0 on success. An error code otherwise.
3740 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3741 struct sched_param __user *, param)
3743 /* negative values for policy are not valid */
3744 if (policy < 0)
3745 return -EINVAL;
3747 return do_sched_setscheduler(pid, policy, param);
3751 * sys_sched_setparam - set/change the RT priority of a thread
3752 * @pid: the pid in question.
3753 * @param: structure containing the new RT priority.
3755 * Return: 0 on success. An error code otherwise.
3757 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3759 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3763 * sys_sched_setattr - same as above, but with extended sched_attr
3764 * @pid: the pid in question.
3765 * @uattr: structure containing the extended parameters.
3766 * @flags: for future extension.
3768 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3769 unsigned int, flags)
3771 struct sched_attr attr;
3772 struct task_struct *p;
3773 int retval;
3775 if (!uattr || pid < 0 || flags)
3776 return -EINVAL;
3778 retval = sched_copy_attr(uattr, &attr);
3779 if (retval)
3780 return retval;
3782 if ((int)attr.sched_policy < 0)
3783 return -EINVAL;
3785 rcu_read_lock();
3786 retval = -ESRCH;
3787 p = find_process_by_pid(pid);
3788 if (p != NULL)
3789 retval = sched_setattr(p, &attr);
3790 rcu_read_unlock();
3792 return retval;
3796 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3797 * @pid: the pid in question.
3799 * Return: On success, the policy of the thread. Otherwise, a negative error
3800 * code.
3802 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3804 struct task_struct *p;
3805 int retval;
3807 if (pid < 0)
3808 return -EINVAL;
3810 retval = -ESRCH;
3811 rcu_read_lock();
3812 p = find_process_by_pid(pid);
3813 if (p) {
3814 retval = security_task_getscheduler(p);
3815 if (!retval)
3816 retval = p->policy
3817 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3819 rcu_read_unlock();
3820 return retval;
3824 * sys_sched_getparam - get the RT priority of a thread
3825 * @pid: the pid in question.
3826 * @param: structure containing the RT priority.
3828 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3829 * code.
3831 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3833 struct sched_param lp = { .sched_priority = 0 };
3834 struct task_struct *p;
3835 int retval;
3837 if (!param || pid < 0)
3838 return -EINVAL;
3840 rcu_read_lock();
3841 p = find_process_by_pid(pid);
3842 retval = -ESRCH;
3843 if (!p)
3844 goto out_unlock;
3846 retval = security_task_getscheduler(p);
3847 if (retval)
3848 goto out_unlock;
3850 if (task_has_rt_policy(p))
3851 lp.sched_priority = p->rt_priority;
3852 rcu_read_unlock();
3855 * This one might sleep, we cannot do it with a spinlock held ...
3857 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3859 return retval;
3861 out_unlock:
3862 rcu_read_unlock();
3863 return retval;
3866 static int sched_read_attr(struct sched_attr __user *uattr,
3867 struct sched_attr *attr,
3868 unsigned int usize)
3870 int ret;
3872 if (!access_ok(VERIFY_WRITE, uattr, usize))
3873 return -EFAULT;
3876 * If we're handed a smaller struct than we know of,
3877 * ensure all the unknown bits are 0 - i.e. old
3878 * user-space does not get uncomplete information.
3880 if (usize < sizeof(*attr)) {
3881 unsigned char *addr;
3882 unsigned char *end;
3884 addr = (void *)attr + usize;
3885 end = (void *)attr + sizeof(*attr);
3887 for (; addr < end; addr++) {
3888 if (*addr)
3889 return -EFBIG;
3892 attr->size = usize;
3895 ret = copy_to_user(uattr, attr, attr->size);
3896 if (ret)
3897 return -EFAULT;
3899 return 0;
3903 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3904 * @pid: the pid in question.
3905 * @uattr: structure containing the extended parameters.
3906 * @size: sizeof(attr) for fwd/bwd comp.
3907 * @flags: for future extension.
3909 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3910 unsigned int, size, unsigned int, flags)
3912 struct sched_attr attr = {
3913 .size = sizeof(struct sched_attr),
3915 struct task_struct *p;
3916 int retval;
3918 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3919 size < SCHED_ATTR_SIZE_VER0 || flags)
3920 return -EINVAL;
3922 rcu_read_lock();
3923 p = find_process_by_pid(pid);
3924 retval = -ESRCH;
3925 if (!p)
3926 goto out_unlock;
3928 retval = security_task_getscheduler(p);
3929 if (retval)
3930 goto out_unlock;
3932 attr.sched_policy = p->policy;
3933 if (p->sched_reset_on_fork)
3934 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3935 if (task_has_dl_policy(p))
3936 __getparam_dl(p, &attr);
3937 else if (task_has_rt_policy(p))
3938 attr.sched_priority = p->rt_priority;
3939 else
3940 attr.sched_nice = task_nice(p);
3942 rcu_read_unlock();
3944 retval = sched_read_attr(uattr, &attr, size);
3945 return retval;
3947 out_unlock:
3948 rcu_read_unlock();
3949 return retval;
3952 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3954 cpumask_var_t cpus_allowed, new_mask;
3955 struct task_struct *p;
3956 int retval;
3958 rcu_read_lock();
3960 p = find_process_by_pid(pid);
3961 if (!p) {
3962 rcu_read_unlock();
3963 return -ESRCH;
3966 /* Prevent p going away */
3967 get_task_struct(p);
3968 rcu_read_unlock();
3970 if (p->flags & PF_NO_SETAFFINITY) {
3971 retval = -EINVAL;
3972 goto out_put_task;
3974 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3975 retval = -ENOMEM;
3976 goto out_put_task;
3978 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3979 retval = -ENOMEM;
3980 goto out_free_cpus_allowed;
3982 retval = -EPERM;
3983 if (!check_same_owner(p)) {
3984 rcu_read_lock();
3985 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3986 rcu_read_unlock();
3987 goto out_unlock;
3989 rcu_read_unlock();
3992 retval = security_task_setscheduler(p);
3993 if (retval)
3994 goto out_unlock;
3997 cpuset_cpus_allowed(p, cpus_allowed);
3998 cpumask_and(new_mask, in_mask, cpus_allowed);
4001 * Since bandwidth control happens on root_domain basis,
4002 * if admission test is enabled, we only admit -deadline
4003 * tasks allowed to run on all the CPUs in the task's
4004 * root_domain.
4006 #ifdef CONFIG_SMP
4007 if (task_has_dl_policy(p)) {
4008 const struct cpumask *span = task_rq(p)->rd->span;
4010 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4011 retval = -EBUSY;
4012 goto out_unlock;
4015 #endif
4016 again:
4017 retval = set_cpus_allowed_ptr(p, new_mask);
4019 if (!retval) {
4020 cpuset_cpus_allowed(p, cpus_allowed);
4021 if (!cpumask_subset(new_mask, cpus_allowed)) {
4023 * We must have raced with a concurrent cpuset
4024 * update. Just reset the cpus_allowed to the
4025 * cpuset's cpus_allowed
4027 cpumask_copy(new_mask, cpus_allowed);
4028 goto again;
4031 out_unlock:
4032 free_cpumask_var(new_mask);
4033 out_free_cpus_allowed:
4034 free_cpumask_var(cpus_allowed);
4035 out_put_task:
4036 put_task_struct(p);
4037 return retval;
4040 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4041 struct cpumask *new_mask)
4043 if (len < cpumask_size())
4044 cpumask_clear(new_mask);
4045 else if (len > cpumask_size())
4046 len = cpumask_size();
4048 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4052 * sys_sched_setaffinity - set the cpu affinity of a process
4053 * @pid: pid of the process
4054 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4055 * @user_mask_ptr: user-space pointer to the new cpu mask
4057 * Return: 0 on success. An error code otherwise.
4059 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4060 unsigned long __user *, user_mask_ptr)
4062 cpumask_var_t new_mask;
4063 int retval;
4065 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4066 return -ENOMEM;
4068 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4069 if (retval == 0)
4070 retval = sched_setaffinity(pid, new_mask);
4071 free_cpumask_var(new_mask);
4072 return retval;
4075 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4077 struct task_struct *p;
4078 unsigned long flags;
4079 int retval;
4081 rcu_read_lock();
4083 retval = -ESRCH;
4084 p = find_process_by_pid(pid);
4085 if (!p)
4086 goto out_unlock;
4088 retval = security_task_getscheduler(p);
4089 if (retval)
4090 goto out_unlock;
4092 raw_spin_lock_irqsave(&p->pi_lock, flags);
4093 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4094 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4096 out_unlock:
4097 rcu_read_unlock();
4099 return retval;
4103 * sys_sched_getaffinity - get the cpu affinity of a process
4104 * @pid: pid of the process
4105 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4106 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4108 * Return: 0 on success. An error code otherwise.
4110 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4111 unsigned long __user *, user_mask_ptr)
4113 int ret;
4114 cpumask_var_t mask;
4116 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4117 return -EINVAL;
4118 if (len & (sizeof(unsigned long)-1))
4119 return -EINVAL;
4121 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4122 return -ENOMEM;
4124 ret = sched_getaffinity(pid, mask);
4125 if (ret == 0) {
4126 size_t retlen = min_t(size_t, len, cpumask_size());
4128 if (copy_to_user(user_mask_ptr, mask, retlen))
4129 ret = -EFAULT;
4130 else
4131 ret = retlen;
4133 free_cpumask_var(mask);
4135 return ret;
4139 * sys_sched_yield - yield the current processor to other threads.
4141 * This function yields the current CPU to other tasks. If there are no
4142 * other threads running on this CPU then this function will return.
4144 * Return: 0.
4146 SYSCALL_DEFINE0(sched_yield)
4148 struct rq *rq = this_rq_lock();
4150 schedstat_inc(rq, yld_count);
4151 current->sched_class->yield_task(rq);
4154 * Since we are going to call schedule() anyway, there's
4155 * no need to preempt or enable interrupts:
4157 __release(rq->lock);
4158 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4159 do_raw_spin_unlock(&rq->lock);
4160 sched_preempt_enable_no_resched();
4162 schedule();
4164 return 0;
4167 static void __cond_resched(void)
4169 __preempt_count_add(PREEMPT_ACTIVE);
4170 __schedule();
4171 __preempt_count_sub(PREEMPT_ACTIVE);
4174 int __sched _cond_resched(void)
4176 if (should_resched()) {
4177 __cond_resched();
4178 return 1;
4180 return 0;
4182 EXPORT_SYMBOL(_cond_resched);
4185 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4186 * call schedule, and on return reacquire the lock.
4188 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4189 * operations here to prevent schedule() from being called twice (once via
4190 * spin_unlock(), once by hand).
4192 int __cond_resched_lock(spinlock_t *lock)
4194 int resched = should_resched();
4195 int ret = 0;
4197 lockdep_assert_held(lock);
4199 if (spin_needbreak(lock) || resched) {
4200 spin_unlock(lock);
4201 if (resched)
4202 __cond_resched();
4203 else
4204 cpu_relax();
4205 ret = 1;
4206 spin_lock(lock);
4208 return ret;
4210 EXPORT_SYMBOL(__cond_resched_lock);
4212 int __sched __cond_resched_softirq(void)
4214 BUG_ON(!in_softirq());
4216 if (should_resched()) {
4217 local_bh_enable();
4218 __cond_resched();
4219 local_bh_disable();
4220 return 1;
4222 return 0;
4224 EXPORT_SYMBOL(__cond_resched_softirq);
4227 * yield - yield the current processor to other threads.
4229 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4231 * The scheduler is at all times free to pick the calling task as the most
4232 * eligible task to run, if removing the yield() call from your code breaks
4233 * it, its already broken.
4235 * Typical broken usage is:
4237 * while (!event)
4238 * yield();
4240 * where one assumes that yield() will let 'the other' process run that will
4241 * make event true. If the current task is a SCHED_FIFO task that will never
4242 * happen. Never use yield() as a progress guarantee!!
4244 * If you want to use yield() to wait for something, use wait_event().
4245 * If you want to use yield() to be 'nice' for others, use cond_resched().
4246 * If you still want to use yield(), do not!
4248 void __sched yield(void)
4250 set_current_state(TASK_RUNNING);
4251 sys_sched_yield();
4253 EXPORT_SYMBOL(yield);
4256 * yield_to - yield the current processor to another thread in
4257 * your thread group, or accelerate that thread toward the
4258 * processor it's on.
4259 * @p: target task
4260 * @preempt: whether task preemption is allowed or not
4262 * It's the caller's job to ensure that the target task struct
4263 * can't go away on us before we can do any checks.
4265 * Return:
4266 * true (>0) if we indeed boosted the target task.
4267 * false (0) if we failed to boost the target.
4268 * -ESRCH if there's no task to yield to.
4270 int __sched yield_to(struct task_struct *p, bool preempt)
4272 struct task_struct *curr = current;
4273 struct rq *rq, *p_rq;
4274 unsigned long flags;
4275 int yielded = 0;
4277 local_irq_save(flags);
4278 rq = this_rq();
4280 again:
4281 p_rq = task_rq(p);
4283 * If we're the only runnable task on the rq and target rq also
4284 * has only one task, there's absolutely no point in yielding.
4286 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4287 yielded = -ESRCH;
4288 goto out_irq;
4291 double_rq_lock(rq, p_rq);
4292 if (task_rq(p) != p_rq) {
4293 double_rq_unlock(rq, p_rq);
4294 goto again;
4297 if (!curr->sched_class->yield_to_task)
4298 goto out_unlock;
4300 if (curr->sched_class != p->sched_class)
4301 goto out_unlock;
4303 if (task_running(p_rq, p) || p->state)
4304 goto out_unlock;
4306 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4307 if (yielded) {
4308 schedstat_inc(rq, yld_count);
4310 * Make p's CPU reschedule; pick_next_entity takes care of
4311 * fairness.
4313 if (preempt && rq != p_rq)
4314 resched_curr(p_rq);
4317 out_unlock:
4318 double_rq_unlock(rq, p_rq);
4319 out_irq:
4320 local_irq_restore(flags);
4322 if (yielded > 0)
4323 schedule();
4325 return yielded;
4327 EXPORT_SYMBOL_GPL(yield_to);
4330 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4331 * that process accounting knows that this is a task in IO wait state.
4333 void __sched io_schedule(void)
4335 struct rq *rq = raw_rq();
4337 delayacct_blkio_start();
4338 atomic_inc(&rq->nr_iowait);
4339 blk_flush_plug(current);
4340 current->in_iowait = 1;
4341 schedule();
4342 current->in_iowait = 0;
4343 atomic_dec(&rq->nr_iowait);
4344 delayacct_blkio_end();
4346 EXPORT_SYMBOL(io_schedule);
4348 long __sched io_schedule_timeout(long timeout)
4350 struct rq *rq = raw_rq();
4351 long ret;
4353 delayacct_blkio_start();
4354 atomic_inc(&rq->nr_iowait);
4355 blk_flush_plug(current);
4356 current->in_iowait = 1;
4357 ret = schedule_timeout(timeout);
4358 current->in_iowait = 0;
4359 atomic_dec(&rq->nr_iowait);
4360 delayacct_blkio_end();
4361 return ret;
4365 * sys_sched_get_priority_max - return maximum RT priority.
4366 * @policy: scheduling class.
4368 * Return: On success, this syscall returns the maximum
4369 * rt_priority that can be used by a given scheduling class.
4370 * On failure, a negative error code is returned.
4372 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4374 int ret = -EINVAL;
4376 switch (policy) {
4377 case SCHED_FIFO:
4378 case SCHED_RR:
4379 ret = MAX_USER_RT_PRIO-1;
4380 break;
4381 case SCHED_DEADLINE:
4382 case SCHED_NORMAL:
4383 case SCHED_BATCH:
4384 case SCHED_IDLE:
4385 ret = 0;
4386 break;
4388 return ret;
4392 * sys_sched_get_priority_min - return minimum RT priority.
4393 * @policy: scheduling class.
4395 * Return: On success, this syscall returns the minimum
4396 * rt_priority that can be used by a given scheduling class.
4397 * On failure, a negative error code is returned.
4399 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4401 int ret = -EINVAL;
4403 switch (policy) {
4404 case SCHED_FIFO:
4405 case SCHED_RR:
4406 ret = 1;
4407 break;
4408 case SCHED_DEADLINE:
4409 case SCHED_NORMAL:
4410 case SCHED_BATCH:
4411 case SCHED_IDLE:
4412 ret = 0;
4414 return ret;
4418 * sys_sched_rr_get_interval - return the default timeslice of a process.
4419 * @pid: pid of the process.
4420 * @interval: userspace pointer to the timeslice value.
4422 * this syscall writes the default timeslice value of a given process
4423 * into the user-space timespec buffer. A value of '0' means infinity.
4425 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4426 * an error code.
4428 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4429 struct timespec __user *, interval)
4431 struct task_struct *p;
4432 unsigned int time_slice;
4433 unsigned long flags;
4434 struct rq *rq;
4435 int retval;
4436 struct timespec t;
4438 if (pid < 0)
4439 return -EINVAL;
4441 retval = -ESRCH;
4442 rcu_read_lock();
4443 p = find_process_by_pid(pid);
4444 if (!p)
4445 goto out_unlock;
4447 retval = security_task_getscheduler(p);
4448 if (retval)
4449 goto out_unlock;
4451 rq = task_rq_lock(p, &flags);
4452 time_slice = 0;
4453 if (p->sched_class->get_rr_interval)
4454 time_slice = p->sched_class->get_rr_interval(rq, p);
4455 task_rq_unlock(rq, p, &flags);
4457 rcu_read_unlock();
4458 jiffies_to_timespec(time_slice, &t);
4459 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4460 return retval;
4462 out_unlock:
4463 rcu_read_unlock();
4464 return retval;
4467 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4469 void sched_show_task(struct task_struct *p)
4471 unsigned long free = 0;
4472 int ppid;
4473 unsigned state;
4475 state = p->state ? __ffs(p->state) + 1 : 0;
4476 printk(KERN_INFO "%-15.15s %c", p->comm,
4477 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4478 #if BITS_PER_LONG == 32
4479 if (state == TASK_RUNNING)
4480 printk(KERN_CONT " running ");
4481 else
4482 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4483 #else
4484 if (state == TASK_RUNNING)
4485 printk(KERN_CONT " running task ");
4486 else
4487 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4488 #endif
4489 #ifdef CONFIG_DEBUG_STACK_USAGE
4490 free = stack_not_used(p);
4491 #endif
4492 rcu_read_lock();
4493 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4494 rcu_read_unlock();
4495 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4496 task_pid_nr(p), ppid,
4497 (unsigned long)task_thread_info(p)->flags);
4499 print_worker_info(KERN_INFO, p);
4500 show_stack(p, NULL);
4503 void show_state_filter(unsigned long state_filter)
4505 struct task_struct *g, *p;
4507 #if BITS_PER_LONG == 32
4508 printk(KERN_INFO
4509 " task PC stack pid father\n");
4510 #else
4511 printk(KERN_INFO
4512 " task PC stack pid father\n");
4513 #endif
4514 rcu_read_lock();
4515 do_each_thread(g, p) {
4517 * reset the NMI-timeout, listing all files on a slow
4518 * console might take a lot of time:
4520 touch_nmi_watchdog();
4521 if (!state_filter || (p->state & state_filter))
4522 sched_show_task(p);
4523 } while_each_thread(g, p);
4525 touch_all_softlockup_watchdogs();
4527 #ifdef CONFIG_SCHED_DEBUG
4528 sysrq_sched_debug_show();
4529 #endif
4530 rcu_read_unlock();
4532 * Only show locks if all tasks are dumped:
4534 if (!state_filter)
4535 debug_show_all_locks();
4538 void init_idle_bootup_task(struct task_struct *idle)
4540 idle->sched_class = &idle_sched_class;
4544 * init_idle - set up an idle thread for a given CPU
4545 * @idle: task in question
4546 * @cpu: cpu the idle task belongs to
4548 * NOTE: this function does not set the idle thread's NEED_RESCHED
4549 * flag, to make booting more robust.
4551 void init_idle(struct task_struct *idle, int cpu)
4553 struct rq *rq = cpu_rq(cpu);
4554 unsigned long flags;
4556 raw_spin_lock_irqsave(&rq->lock, flags);
4558 __sched_fork(0, idle);
4559 idle->state = TASK_RUNNING;
4560 idle->se.exec_start = sched_clock();
4562 do_set_cpus_allowed(idle, cpumask_of(cpu));
4564 * We're having a chicken and egg problem, even though we are
4565 * holding rq->lock, the cpu isn't yet set to this cpu so the
4566 * lockdep check in task_group() will fail.
4568 * Similar case to sched_fork(). / Alternatively we could
4569 * use task_rq_lock() here and obtain the other rq->lock.
4571 * Silence PROVE_RCU
4573 rcu_read_lock();
4574 __set_task_cpu(idle, cpu);
4575 rcu_read_unlock();
4577 rq->curr = rq->idle = idle;
4578 idle->on_rq = 1;
4579 #if defined(CONFIG_SMP)
4580 idle->on_cpu = 1;
4581 #endif
4582 raw_spin_unlock_irqrestore(&rq->lock, flags);
4584 /* Set the preempt count _outside_ the spinlocks! */
4585 init_idle_preempt_count(idle, cpu);
4588 * The idle tasks have their own, simple scheduling class:
4590 idle->sched_class = &idle_sched_class;
4591 ftrace_graph_init_idle_task(idle, cpu);
4592 vtime_init_idle(idle, cpu);
4593 #if defined(CONFIG_SMP)
4594 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4595 #endif
4598 #ifdef CONFIG_SMP
4599 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4601 if (p->sched_class && p->sched_class->set_cpus_allowed)
4602 p->sched_class->set_cpus_allowed(p, new_mask);
4604 cpumask_copy(&p->cpus_allowed, new_mask);
4605 p->nr_cpus_allowed = cpumask_weight(new_mask);
4609 * This is how migration works:
4611 * 1) we invoke migration_cpu_stop() on the target CPU using
4612 * stop_one_cpu().
4613 * 2) stopper starts to run (implicitly forcing the migrated thread
4614 * off the CPU)
4615 * 3) it checks whether the migrated task is still in the wrong runqueue.
4616 * 4) if it's in the wrong runqueue then the migration thread removes
4617 * it and puts it into the right queue.
4618 * 5) stopper completes and stop_one_cpu() returns and the migration
4619 * is done.
4623 * Change a given task's CPU affinity. Migrate the thread to a
4624 * proper CPU and schedule it away if the CPU it's executing on
4625 * is removed from the allowed bitmask.
4627 * NOTE: the caller must have a valid reference to the task, the
4628 * task must not exit() & deallocate itself prematurely. The
4629 * call is not atomic; no spinlocks may be held.
4631 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4633 unsigned long flags;
4634 struct rq *rq;
4635 unsigned int dest_cpu;
4636 int ret = 0;
4638 rq = task_rq_lock(p, &flags);
4640 if (cpumask_equal(&p->cpus_allowed, new_mask))
4641 goto out;
4643 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4644 ret = -EINVAL;
4645 goto out;
4648 do_set_cpus_allowed(p, new_mask);
4650 /* Can the task run on the task's current CPU? If so, we're done */
4651 if (cpumask_test_cpu(task_cpu(p), new_mask))
4652 goto out;
4654 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4655 if (p->on_rq) {
4656 struct migration_arg arg = { p, dest_cpu };
4657 /* Need help from migration thread: drop lock and wait. */
4658 task_rq_unlock(rq, p, &flags);
4659 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4660 tlb_migrate_finish(p->mm);
4661 return 0;
4663 out:
4664 task_rq_unlock(rq, p, &flags);
4666 return ret;
4668 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4671 * Move (not current) task off this cpu, onto dest cpu. We're doing
4672 * this because either it can't run here any more (set_cpus_allowed()
4673 * away from this CPU, or CPU going down), or because we're
4674 * attempting to rebalance this task on exec (sched_exec).
4676 * So we race with normal scheduler movements, but that's OK, as long
4677 * as the task is no longer on this CPU.
4679 * Returns non-zero if task was successfully migrated.
4681 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4683 struct rq *rq_dest, *rq_src;
4684 int ret = 0;
4686 if (unlikely(!cpu_active(dest_cpu)))
4687 return ret;
4689 rq_src = cpu_rq(src_cpu);
4690 rq_dest = cpu_rq(dest_cpu);
4692 raw_spin_lock(&p->pi_lock);
4693 double_rq_lock(rq_src, rq_dest);
4694 /* Already moved. */
4695 if (task_cpu(p) != src_cpu)
4696 goto done;
4697 /* Affinity changed (again). */
4698 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4699 goto fail;
4702 * If we're not on a rq, the next wake-up will ensure we're
4703 * placed properly.
4705 if (p->on_rq) {
4706 dequeue_task(rq_src, p, 0);
4707 set_task_cpu(p, dest_cpu);
4708 enqueue_task(rq_dest, p, 0);
4709 check_preempt_curr(rq_dest, p, 0);
4711 done:
4712 ret = 1;
4713 fail:
4714 double_rq_unlock(rq_src, rq_dest);
4715 raw_spin_unlock(&p->pi_lock);
4716 return ret;
4719 #ifdef CONFIG_NUMA_BALANCING
4720 /* Migrate current task p to target_cpu */
4721 int migrate_task_to(struct task_struct *p, int target_cpu)
4723 struct migration_arg arg = { p, target_cpu };
4724 int curr_cpu = task_cpu(p);
4726 if (curr_cpu == target_cpu)
4727 return 0;
4729 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4730 return -EINVAL;
4732 /* TODO: This is not properly updating schedstats */
4734 trace_sched_move_numa(p, curr_cpu, target_cpu);
4735 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4739 * Requeue a task on a given node and accurately track the number of NUMA
4740 * tasks on the runqueues
4742 void sched_setnuma(struct task_struct *p, int nid)
4744 struct rq *rq;
4745 unsigned long flags;
4746 bool on_rq, running;
4748 rq = task_rq_lock(p, &flags);
4749 on_rq = p->on_rq;
4750 running = task_current(rq, p);
4752 if (on_rq)
4753 dequeue_task(rq, p, 0);
4754 if (running)
4755 p->sched_class->put_prev_task(rq, p);
4757 p->numa_preferred_nid = nid;
4759 if (running)
4760 p->sched_class->set_curr_task(rq);
4761 if (on_rq)
4762 enqueue_task(rq, p, 0);
4763 task_rq_unlock(rq, p, &flags);
4765 #endif
4768 * migration_cpu_stop - this will be executed by a highprio stopper thread
4769 * and performs thread migration by bumping thread off CPU then
4770 * 'pushing' onto another runqueue.
4772 static int migration_cpu_stop(void *data)
4774 struct migration_arg *arg = data;
4777 * The original target cpu might have gone down and we might
4778 * be on another cpu but it doesn't matter.
4780 local_irq_disable();
4781 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4782 local_irq_enable();
4783 return 0;
4786 #ifdef CONFIG_HOTPLUG_CPU
4789 * Ensures that the idle task is using init_mm right before its cpu goes
4790 * offline.
4792 void idle_task_exit(void)
4794 struct mm_struct *mm = current->active_mm;
4796 BUG_ON(cpu_online(smp_processor_id()));
4798 if (mm != &init_mm) {
4799 switch_mm(mm, &init_mm, current);
4800 finish_arch_post_lock_switch();
4802 mmdrop(mm);
4806 * Since this CPU is going 'away' for a while, fold any nr_active delta
4807 * we might have. Assumes we're called after migrate_tasks() so that the
4808 * nr_active count is stable.
4810 * Also see the comment "Global load-average calculations".
4812 static void calc_load_migrate(struct rq *rq)
4814 long delta = calc_load_fold_active(rq);
4815 if (delta)
4816 atomic_long_add(delta, &calc_load_tasks);
4819 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4823 static const struct sched_class fake_sched_class = {
4824 .put_prev_task = put_prev_task_fake,
4827 static struct task_struct fake_task = {
4829 * Avoid pull_{rt,dl}_task()
4831 .prio = MAX_PRIO + 1,
4832 .sched_class = &fake_sched_class,
4836 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4837 * try_to_wake_up()->select_task_rq().
4839 * Called with rq->lock held even though we'er in stop_machine() and
4840 * there's no concurrency possible, we hold the required locks anyway
4841 * because of lock validation efforts.
4843 static void migrate_tasks(unsigned int dead_cpu)
4845 struct rq *rq = cpu_rq(dead_cpu);
4846 struct task_struct *next, *stop = rq->stop;
4847 int dest_cpu;
4850 * Fudge the rq selection such that the below task selection loop
4851 * doesn't get stuck on the currently eligible stop task.
4853 * We're currently inside stop_machine() and the rq is either stuck
4854 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4855 * either way we should never end up calling schedule() until we're
4856 * done here.
4858 rq->stop = NULL;
4861 * put_prev_task() and pick_next_task() sched
4862 * class method both need to have an up-to-date
4863 * value of rq->clock[_task]
4865 update_rq_clock(rq);
4867 for ( ; ; ) {
4869 * There's this thread running, bail when that's the only
4870 * remaining thread.
4872 if (rq->nr_running == 1)
4873 break;
4875 next = pick_next_task(rq, &fake_task);
4876 BUG_ON(!next);
4877 next->sched_class->put_prev_task(rq, next);
4879 /* Find suitable destination for @next, with force if needed. */
4880 dest_cpu = select_fallback_rq(dead_cpu, next);
4881 raw_spin_unlock(&rq->lock);
4883 __migrate_task(next, dead_cpu, dest_cpu);
4885 raw_spin_lock(&rq->lock);
4888 rq->stop = stop;
4891 #endif /* CONFIG_HOTPLUG_CPU */
4893 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4895 static struct ctl_table sd_ctl_dir[] = {
4897 .procname = "sched_domain",
4898 .mode = 0555,
4903 static struct ctl_table sd_ctl_root[] = {
4905 .procname = "kernel",
4906 .mode = 0555,
4907 .child = sd_ctl_dir,
4912 static struct ctl_table *sd_alloc_ctl_entry(int n)
4914 struct ctl_table *entry =
4915 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4917 return entry;
4920 static void sd_free_ctl_entry(struct ctl_table **tablep)
4922 struct ctl_table *entry;
4925 * In the intermediate directories, both the child directory and
4926 * procname are dynamically allocated and could fail but the mode
4927 * will always be set. In the lowest directory the names are
4928 * static strings and all have proc handlers.
4930 for (entry = *tablep; entry->mode; entry++) {
4931 if (entry->child)
4932 sd_free_ctl_entry(&entry->child);
4933 if (entry->proc_handler == NULL)
4934 kfree(entry->procname);
4937 kfree(*tablep);
4938 *tablep = NULL;
4941 static int min_load_idx = 0;
4942 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4944 static void
4945 set_table_entry(struct ctl_table *entry,
4946 const char *procname, void *data, int maxlen,
4947 umode_t mode, proc_handler *proc_handler,
4948 bool load_idx)
4950 entry->procname = procname;
4951 entry->data = data;
4952 entry->maxlen = maxlen;
4953 entry->mode = mode;
4954 entry->proc_handler = proc_handler;
4956 if (load_idx) {
4957 entry->extra1 = &min_load_idx;
4958 entry->extra2 = &max_load_idx;
4962 static struct ctl_table *
4963 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4965 struct ctl_table *table = sd_alloc_ctl_entry(14);
4967 if (table == NULL)
4968 return NULL;
4970 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4971 sizeof(long), 0644, proc_doulongvec_minmax, false);
4972 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4973 sizeof(long), 0644, proc_doulongvec_minmax, false);
4974 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4975 sizeof(int), 0644, proc_dointvec_minmax, true);
4976 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4977 sizeof(int), 0644, proc_dointvec_minmax, true);
4978 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4979 sizeof(int), 0644, proc_dointvec_minmax, true);
4980 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4981 sizeof(int), 0644, proc_dointvec_minmax, true);
4982 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4983 sizeof(int), 0644, proc_dointvec_minmax, true);
4984 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4985 sizeof(int), 0644, proc_dointvec_minmax, false);
4986 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4987 sizeof(int), 0644, proc_dointvec_minmax, false);
4988 set_table_entry(&table[9], "cache_nice_tries",
4989 &sd->cache_nice_tries,
4990 sizeof(int), 0644, proc_dointvec_minmax, false);
4991 set_table_entry(&table[10], "flags", &sd->flags,
4992 sizeof(int), 0644, proc_dointvec_minmax, false);
4993 set_table_entry(&table[11], "max_newidle_lb_cost",
4994 &sd->max_newidle_lb_cost,
4995 sizeof(long), 0644, proc_doulongvec_minmax, false);
4996 set_table_entry(&table[12], "name", sd->name,
4997 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4998 /* &table[13] is terminator */
5000 return table;
5003 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5005 struct ctl_table *entry, *table;
5006 struct sched_domain *sd;
5007 int domain_num = 0, i;
5008 char buf[32];
5010 for_each_domain(cpu, sd)
5011 domain_num++;
5012 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5013 if (table == NULL)
5014 return NULL;
5016 i = 0;
5017 for_each_domain(cpu, sd) {
5018 snprintf(buf, 32, "domain%d", i);
5019 entry->procname = kstrdup(buf, GFP_KERNEL);
5020 entry->mode = 0555;
5021 entry->child = sd_alloc_ctl_domain_table(sd);
5022 entry++;
5023 i++;
5025 return table;
5028 static struct ctl_table_header *sd_sysctl_header;
5029 static void register_sched_domain_sysctl(void)
5031 int i, cpu_num = num_possible_cpus();
5032 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5033 char buf[32];
5035 WARN_ON(sd_ctl_dir[0].child);
5036 sd_ctl_dir[0].child = entry;
5038 if (entry == NULL)
5039 return;
5041 for_each_possible_cpu(i) {
5042 snprintf(buf, 32, "cpu%d", i);
5043 entry->procname = kstrdup(buf, GFP_KERNEL);
5044 entry->mode = 0555;
5045 entry->child = sd_alloc_ctl_cpu_table(i);
5046 entry++;
5049 WARN_ON(sd_sysctl_header);
5050 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5053 /* may be called multiple times per register */
5054 static void unregister_sched_domain_sysctl(void)
5056 if (sd_sysctl_header)
5057 unregister_sysctl_table(sd_sysctl_header);
5058 sd_sysctl_header = NULL;
5059 if (sd_ctl_dir[0].child)
5060 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5062 #else
5063 static void register_sched_domain_sysctl(void)
5066 static void unregister_sched_domain_sysctl(void)
5069 #endif
5071 static void set_rq_online(struct rq *rq)
5073 if (!rq->online) {
5074 const struct sched_class *class;
5076 cpumask_set_cpu(rq->cpu, rq->rd->online);
5077 rq->online = 1;
5079 for_each_class(class) {
5080 if (class->rq_online)
5081 class->rq_online(rq);
5086 static void set_rq_offline(struct rq *rq)
5088 if (rq->online) {
5089 const struct sched_class *class;
5091 for_each_class(class) {
5092 if (class->rq_offline)
5093 class->rq_offline(rq);
5096 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5097 rq->online = 0;
5102 * migration_call - callback that gets triggered when a CPU is added.
5103 * Here we can start up the necessary migration thread for the new CPU.
5105 static int
5106 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5108 int cpu = (long)hcpu;
5109 unsigned long flags;
5110 struct rq *rq = cpu_rq(cpu);
5112 switch (action & ~CPU_TASKS_FROZEN) {
5114 case CPU_UP_PREPARE:
5115 rq->calc_load_update = calc_load_update;
5116 break;
5118 case CPU_ONLINE:
5119 /* Update our root-domain */
5120 raw_spin_lock_irqsave(&rq->lock, flags);
5121 if (rq->rd) {
5122 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5124 set_rq_online(rq);
5126 raw_spin_unlock_irqrestore(&rq->lock, flags);
5127 break;
5129 #ifdef CONFIG_HOTPLUG_CPU
5130 case CPU_DYING:
5131 sched_ttwu_pending();
5132 /* Update our root-domain */
5133 raw_spin_lock_irqsave(&rq->lock, flags);
5134 if (rq->rd) {
5135 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5136 set_rq_offline(rq);
5138 migrate_tasks(cpu);
5139 BUG_ON(rq->nr_running != 1); /* the migration thread */
5140 raw_spin_unlock_irqrestore(&rq->lock, flags);
5141 break;
5143 case CPU_DEAD:
5144 calc_load_migrate(rq);
5145 break;
5146 #endif
5149 update_max_interval();
5151 return NOTIFY_OK;
5155 * Register at high priority so that task migration (migrate_all_tasks)
5156 * happens before everything else. This has to be lower priority than
5157 * the notifier in the perf_event subsystem, though.
5159 static struct notifier_block migration_notifier = {
5160 .notifier_call = migration_call,
5161 .priority = CPU_PRI_MIGRATION,
5164 static void __cpuinit set_cpu_rq_start_time(void)
5166 int cpu = smp_processor_id();
5167 struct rq *rq = cpu_rq(cpu);
5168 rq->age_stamp = sched_clock_cpu(cpu);
5171 static int sched_cpu_active(struct notifier_block *nfb,
5172 unsigned long action, void *hcpu)
5174 switch (action & ~CPU_TASKS_FROZEN) {
5175 case CPU_STARTING:
5176 set_cpu_rq_start_time();
5177 return NOTIFY_OK;
5178 case CPU_DOWN_FAILED:
5179 set_cpu_active((long)hcpu, true);
5180 return NOTIFY_OK;
5181 default:
5182 return NOTIFY_DONE;
5186 static int sched_cpu_inactive(struct notifier_block *nfb,
5187 unsigned long action, void *hcpu)
5189 unsigned long flags;
5190 long cpu = (long)hcpu;
5192 switch (action & ~CPU_TASKS_FROZEN) {
5193 case CPU_DOWN_PREPARE:
5194 set_cpu_active(cpu, false);
5196 /* explicitly allow suspend */
5197 if (!(action & CPU_TASKS_FROZEN)) {
5198 struct dl_bw *dl_b = dl_bw_of(cpu);
5199 bool overflow;
5200 int cpus;
5202 raw_spin_lock_irqsave(&dl_b->lock, flags);
5203 cpus = dl_bw_cpus(cpu);
5204 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5205 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5207 if (overflow)
5208 return notifier_from_errno(-EBUSY);
5210 return NOTIFY_OK;
5213 return NOTIFY_DONE;
5216 static int __init migration_init(void)
5218 void *cpu = (void *)(long)smp_processor_id();
5219 int err;
5221 /* Initialize migration for the boot CPU */
5222 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5223 BUG_ON(err == NOTIFY_BAD);
5224 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5225 register_cpu_notifier(&migration_notifier);
5227 /* Register cpu active notifiers */
5228 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5229 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5231 return 0;
5233 early_initcall(migration_init);
5234 #endif
5236 #ifdef CONFIG_SMP
5238 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5240 #ifdef CONFIG_SCHED_DEBUG
5242 static __read_mostly int sched_debug_enabled;
5244 static int __init sched_debug_setup(char *str)
5246 sched_debug_enabled = 1;
5248 return 0;
5250 early_param("sched_debug", sched_debug_setup);
5252 static inline bool sched_debug(void)
5254 return sched_debug_enabled;
5257 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5258 struct cpumask *groupmask)
5260 struct sched_group *group = sd->groups;
5261 char str[256];
5263 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5264 cpumask_clear(groupmask);
5266 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5268 if (!(sd->flags & SD_LOAD_BALANCE)) {
5269 printk("does not load-balance\n");
5270 if (sd->parent)
5271 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5272 " has parent");
5273 return -1;
5276 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5278 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5279 printk(KERN_ERR "ERROR: domain->span does not contain "
5280 "CPU%d\n", cpu);
5282 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5283 printk(KERN_ERR "ERROR: domain->groups does not contain"
5284 " CPU%d\n", cpu);
5287 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5288 do {
5289 if (!group) {
5290 printk("\n");
5291 printk(KERN_ERR "ERROR: group is NULL\n");
5292 break;
5296 * Even though we initialize ->capacity to something semi-sane,
5297 * we leave capacity_orig unset. This allows us to detect if
5298 * domain iteration is still funny without causing /0 traps.
5300 if (!group->sgc->capacity_orig) {
5301 printk(KERN_CONT "\n");
5302 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5303 break;
5306 if (!cpumask_weight(sched_group_cpus(group))) {
5307 printk(KERN_CONT "\n");
5308 printk(KERN_ERR "ERROR: empty group\n");
5309 break;
5312 if (!(sd->flags & SD_OVERLAP) &&
5313 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5314 printk(KERN_CONT "\n");
5315 printk(KERN_ERR "ERROR: repeated CPUs\n");
5316 break;
5319 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5321 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5323 printk(KERN_CONT " %s", str);
5324 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5325 printk(KERN_CONT " (cpu_capacity = %d)",
5326 group->sgc->capacity);
5329 group = group->next;
5330 } while (group != sd->groups);
5331 printk(KERN_CONT "\n");
5333 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5334 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5336 if (sd->parent &&
5337 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5338 printk(KERN_ERR "ERROR: parent span is not a superset "
5339 "of domain->span\n");
5340 return 0;
5343 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5345 int level = 0;
5347 if (!sched_debug_enabled)
5348 return;
5350 if (!sd) {
5351 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5352 return;
5355 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5357 for (;;) {
5358 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5359 break;
5360 level++;
5361 sd = sd->parent;
5362 if (!sd)
5363 break;
5366 #else /* !CONFIG_SCHED_DEBUG */
5367 # define sched_domain_debug(sd, cpu) do { } while (0)
5368 static inline bool sched_debug(void)
5370 return false;
5372 #endif /* CONFIG_SCHED_DEBUG */
5374 static int sd_degenerate(struct sched_domain *sd)
5376 if (cpumask_weight(sched_domain_span(sd)) == 1)
5377 return 1;
5379 /* Following flags need at least 2 groups */
5380 if (sd->flags & (SD_LOAD_BALANCE |
5381 SD_BALANCE_NEWIDLE |
5382 SD_BALANCE_FORK |
5383 SD_BALANCE_EXEC |
5384 SD_SHARE_CPUCAPACITY |
5385 SD_SHARE_PKG_RESOURCES |
5386 SD_SHARE_POWERDOMAIN)) {
5387 if (sd->groups != sd->groups->next)
5388 return 0;
5391 /* Following flags don't use groups */
5392 if (sd->flags & (SD_WAKE_AFFINE))
5393 return 0;
5395 return 1;
5398 static int
5399 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5401 unsigned long cflags = sd->flags, pflags = parent->flags;
5403 if (sd_degenerate(parent))
5404 return 1;
5406 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5407 return 0;
5409 /* Flags needing groups don't count if only 1 group in parent */
5410 if (parent->groups == parent->groups->next) {
5411 pflags &= ~(SD_LOAD_BALANCE |
5412 SD_BALANCE_NEWIDLE |
5413 SD_BALANCE_FORK |
5414 SD_BALANCE_EXEC |
5415 SD_SHARE_CPUCAPACITY |
5416 SD_SHARE_PKG_RESOURCES |
5417 SD_PREFER_SIBLING |
5418 SD_SHARE_POWERDOMAIN);
5419 if (nr_node_ids == 1)
5420 pflags &= ~SD_SERIALIZE;
5422 if (~cflags & pflags)
5423 return 0;
5425 return 1;
5428 static void free_rootdomain(struct rcu_head *rcu)
5430 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5432 cpupri_cleanup(&rd->cpupri);
5433 cpudl_cleanup(&rd->cpudl);
5434 free_cpumask_var(rd->dlo_mask);
5435 free_cpumask_var(rd->rto_mask);
5436 free_cpumask_var(rd->online);
5437 free_cpumask_var(rd->span);
5438 kfree(rd);
5441 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5443 struct root_domain *old_rd = NULL;
5444 unsigned long flags;
5446 raw_spin_lock_irqsave(&rq->lock, flags);
5448 if (rq->rd) {
5449 old_rd = rq->rd;
5451 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5452 set_rq_offline(rq);
5454 cpumask_clear_cpu(rq->cpu, old_rd->span);
5457 * If we dont want to free the old_rd yet then
5458 * set old_rd to NULL to skip the freeing later
5459 * in this function:
5461 if (!atomic_dec_and_test(&old_rd->refcount))
5462 old_rd = NULL;
5465 atomic_inc(&rd->refcount);
5466 rq->rd = rd;
5468 cpumask_set_cpu(rq->cpu, rd->span);
5469 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5470 set_rq_online(rq);
5472 raw_spin_unlock_irqrestore(&rq->lock, flags);
5474 if (old_rd)
5475 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5478 static int init_rootdomain(struct root_domain *rd)
5480 memset(rd, 0, sizeof(*rd));
5482 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5483 goto out;
5484 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5485 goto free_span;
5486 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5487 goto free_online;
5488 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5489 goto free_dlo_mask;
5491 init_dl_bw(&rd->dl_bw);
5492 if (cpudl_init(&rd->cpudl) != 0)
5493 goto free_dlo_mask;
5495 if (cpupri_init(&rd->cpupri) != 0)
5496 goto free_rto_mask;
5497 return 0;
5499 free_rto_mask:
5500 free_cpumask_var(rd->rto_mask);
5501 free_dlo_mask:
5502 free_cpumask_var(rd->dlo_mask);
5503 free_online:
5504 free_cpumask_var(rd->online);
5505 free_span:
5506 free_cpumask_var(rd->span);
5507 out:
5508 return -ENOMEM;
5512 * By default the system creates a single root-domain with all cpus as
5513 * members (mimicking the global state we have today).
5515 struct root_domain def_root_domain;
5517 static void init_defrootdomain(void)
5519 init_rootdomain(&def_root_domain);
5521 atomic_set(&def_root_domain.refcount, 1);
5524 static struct root_domain *alloc_rootdomain(void)
5526 struct root_domain *rd;
5528 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5529 if (!rd)
5530 return NULL;
5532 if (init_rootdomain(rd) != 0) {
5533 kfree(rd);
5534 return NULL;
5537 return rd;
5540 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5542 struct sched_group *tmp, *first;
5544 if (!sg)
5545 return;
5547 first = sg;
5548 do {
5549 tmp = sg->next;
5551 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5552 kfree(sg->sgc);
5554 kfree(sg);
5555 sg = tmp;
5556 } while (sg != first);
5559 static void free_sched_domain(struct rcu_head *rcu)
5561 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5564 * If its an overlapping domain it has private groups, iterate and
5565 * nuke them all.
5567 if (sd->flags & SD_OVERLAP) {
5568 free_sched_groups(sd->groups, 1);
5569 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5570 kfree(sd->groups->sgc);
5571 kfree(sd->groups);
5573 kfree(sd);
5576 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5578 call_rcu(&sd->rcu, free_sched_domain);
5581 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5583 for (; sd; sd = sd->parent)
5584 destroy_sched_domain(sd, cpu);
5588 * Keep a special pointer to the highest sched_domain that has
5589 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5590 * allows us to avoid some pointer chasing select_idle_sibling().
5592 * Also keep a unique ID per domain (we use the first cpu number in
5593 * the cpumask of the domain), this allows us to quickly tell if
5594 * two cpus are in the same cache domain, see cpus_share_cache().
5596 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5597 DEFINE_PER_CPU(int, sd_llc_size);
5598 DEFINE_PER_CPU(int, sd_llc_id);
5599 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5600 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5601 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5603 static void update_top_cache_domain(int cpu)
5605 struct sched_domain *sd;
5606 struct sched_domain *busy_sd = NULL;
5607 int id = cpu;
5608 int size = 1;
5610 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5611 if (sd) {
5612 id = cpumask_first(sched_domain_span(sd));
5613 size = cpumask_weight(sched_domain_span(sd));
5614 busy_sd = sd->parent; /* sd_busy */
5616 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5618 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5619 per_cpu(sd_llc_size, cpu) = size;
5620 per_cpu(sd_llc_id, cpu) = id;
5622 sd = lowest_flag_domain(cpu, SD_NUMA);
5623 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5625 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5626 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5630 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5631 * hold the hotplug lock.
5633 static void
5634 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5636 struct rq *rq = cpu_rq(cpu);
5637 struct sched_domain *tmp;
5639 /* Remove the sched domains which do not contribute to scheduling. */
5640 for (tmp = sd; tmp; ) {
5641 struct sched_domain *parent = tmp->parent;
5642 if (!parent)
5643 break;
5645 if (sd_parent_degenerate(tmp, parent)) {
5646 tmp->parent = parent->parent;
5647 if (parent->parent)
5648 parent->parent->child = tmp;
5650 * Transfer SD_PREFER_SIBLING down in case of a
5651 * degenerate parent; the spans match for this
5652 * so the property transfers.
5654 if (parent->flags & SD_PREFER_SIBLING)
5655 tmp->flags |= SD_PREFER_SIBLING;
5656 destroy_sched_domain(parent, cpu);
5657 } else
5658 tmp = tmp->parent;
5661 if (sd && sd_degenerate(sd)) {
5662 tmp = sd;
5663 sd = sd->parent;
5664 destroy_sched_domain(tmp, cpu);
5665 if (sd)
5666 sd->child = NULL;
5669 sched_domain_debug(sd, cpu);
5671 rq_attach_root(rq, rd);
5672 tmp = rq->sd;
5673 rcu_assign_pointer(rq->sd, sd);
5674 destroy_sched_domains(tmp, cpu);
5676 update_top_cache_domain(cpu);
5679 /* cpus with isolated domains */
5680 static cpumask_var_t cpu_isolated_map;
5682 /* Setup the mask of cpus configured for isolated domains */
5683 static int __init isolated_cpu_setup(char *str)
5685 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5686 cpulist_parse(str, cpu_isolated_map);
5687 return 1;
5690 __setup("isolcpus=", isolated_cpu_setup);
5692 struct s_data {
5693 struct sched_domain ** __percpu sd;
5694 struct root_domain *rd;
5697 enum s_alloc {
5698 sa_rootdomain,
5699 sa_sd,
5700 sa_sd_storage,
5701 sa_none,
5705 * Build an iteration mask that can exclude certain CPUs from the upwards
5706 * domain traversal.
5708 * Asymmetric node setups can result in situations where the domain tree is of
5709 * unequal depth, make sure to skip domains that already cover the entire
5710 * range.
5712 * In that case build_sched_domains() will have terminated the iteration early
5713 * and our sibling sd spans will be empty. Domains should always include the
5714 * cpu they're built on, so check that.
5717 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5719 const struct cpumask *span = sched_domain_span(sd);
5720 struct sd_data *sdd = sd->private;
5721 struct sched_domain *sibling;
5722 int i;
5724 for_each_cpu(i, span) {
5725 sibling = *per_cpu_ptr(sdd->sd, i);
5726 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5727 continue;
5729 cpumask_set_cpu(i, sched_group_mask(sg));
5734 * Return the canonical balance cpu for this group, this is the first cpu
5735 * of this group that's also in the iteration mask.
5737 int group_balance_cpu(struct sched_group *sg)
5739 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5742 static int
5743 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5745 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5746 const struct cpumask *span = sched_domain_span(sd);
5747 struct cpumask *covered = sched_domains_tmpmask;
5748 struct sd_data *sdd = sd->private;
5749 struct sched_domain *child;
5750 int i;
5752 cpumask_clear(covered);
5754 for_each_cpu(i, span) {
5755 struct cpumask *sg_span;
5757 if (cpumask_test_cpu(i, covered))
5758 continue;
5760 child = *per_cpu_ptr(sdd->sd, i);
5762 /* See the comment near build_group_mask(). */
5763 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5764 continue;
5766 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5767 GFP_KERNEL, cpu_to_node(cpu));
5769 if (!sg)
5770 goto fail;
5772 sg_span = sched_group_cpus(sg);
5773 if (child->child) {
5774 child = child->child;
5775 cpumask_copy(sg_span, sched_domain_span(child));
5776 } else
5777 cpumask_set_cpu(i, sg_span);
5779 cpumask_or(covered, covered, sg_span);
5781 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5782 if (atomic_inc_return(&sg->sgc->ref) == 1)
5783 build_group_mask(sd, sg);
5786 * Initialize sgc->capacity such that even if we mess up the
5787 * domains and no possible iteration will get us here, we won't
5788 * die on a /0 trap.
5790 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5791 sg->sgc->capacity_orig = sg->sgc->capacity;
5794 * Make sure the first group of this domain contains the
5795 * canonical balance cpu. Otherwise the sched_domain iteration
5796 * breaks. See update_sg_lb_stats().
5798 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5799 group_balance_cpu(sg) == cpu)
5800 groups = sg;
5802 if (!first)
5803 first = sg;
5804 if (last)
5805 last->next = sg;
5806 last = sg;
5807 last->next = first;
5809 sd->groups = groups;
5811 return 0;
5813 fail:
5814 free_sched_groups(first, 0);
5816 return -ENOMEM;
5819 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5821 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5822 struct sched_domain *child = sd->child;
5824 if (child)
5825 cpu = cpumask_first(sched_domain_span(child));
5827 if (sg) {
5828 *sg = *per_cpu_ptr(sdd->sg, cpu);
5829 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5830 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5833 return cpu;
5837 * build_sched_groups will build a circular linked list of the groups
5838 * covered by the given span, and will set each group's ->cpumask correctly,
5839 * and ->cpu_capacity to 0.
5841 * Assumes the sched_domain tree is fully constructed
5843 static int
5844 build_sched_groups(struct sched_domain *sd, int cpu)
5846 struct sched_group *first = NULL, *last = NULL;
5847 struct sd_data *sdd = sd->private;
5848 const struct cpumask *span = sched_domain_span(sd);
5849 struct cpumask *covered;
5850 int i;
5852 get_group(cpu, sdd, &sd->groups);
5853 atomic_inc(&sd->groups->ref);
5855 if (cpu != cpumask_first(span))
5856 return 0;
5858 lockdep_assert_held(&sched_domains_mutex);
5859 covered = sched_domains_tmpmask;
5861 cpumask_clear(covered);
5863 for_each_cpu(i, span) {
5864 struct sched_group *sg;
5865 int group, j;
5867 if (cpumask_test_cpu(i, covered))
5868 continue;
5870 group = get_group(i, sdd, &sg);
5871 cpumask_setall(sched_group_mask(sg));
5873 for_each_cpu(j, span) {
5874 if (get_group(j, sdd, NULL) != group)
5875 continue;
5877 cpumask_set_cpu(j, covered);
5878 cpumask_set_cpu(j, sched_group_cpus(sg));
5881 if (!first)
5882 first = sg;
5883 if (last)
5884 last->next = sg;
5885 last = sg;
5887 last->next = first;
5889 return 0;
5893 * Initialize sched groups cpu_capacity.
5895 * cpu_capacity indicates the capacity of sched group, which is used while
5896 * distributing the load between different sched groups in a sched domain.
5897 * Typically cpu_capacity for all the groups in a sched domain will be same
5898 * unless there are asymmetries in the topology. If there are asymmetries,
5899 * group having more cpu_capacity will pickup more load compared to the
5900 * group having less cpu_capacity.
5902 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5904 struct sched_group *sg = sd->groups;
5906 WARN_ON(!sg);
5908 do {
5909 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5910 sg = sg->next;
5911 } while (sg != sd->groups);
5913 if (cpu != group_balance_cpu(sg))
5914 return;
5916 update_group_capacity(sd, cpu);
5917 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5921 * Initializers for schedule domains
5922 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5925 static int default_relax_domain_level = -1;
5926 int sched_domain_level_max;
5928 static int __init setup_relax_domain_level(char *str)
5930 if (kstrtoint(str, 0, &default_relax_domain_level))
5931 pr_warn("Unable to set relax_domain_level\n");
5933 return 1;
5935 __setup("relax_domain_level=", setup_relax_domain_level);
5937 static void set_domain_attribute(struct sched_domain *sd,
5938 struct sched_domain_attr *attr)
5940 int request;
5942 if (!attr || attr->relax_domain_level < 0) {
5943 if (default_relax_domain_level < 0)
5944 return;
5945 else
5946 request = default_relax_domain_level;
5947 } else
5948 request = attr->relax_domain_level;
5949 if (request < sd->level) {
5950 /* turn off idle balance on this domain */
5951 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5952 } else {
5953 /* turn on idle balance on this domain */
5954 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5958 static void __sdt_free(const struct cpumask *cpu_map);
5959 static int __sdt_alloc(const struct cpumask *cpu_map);
5961 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5962 const struct cpumask *cpu_map)
5964 switch (what) {
5965 case sa_rootdomain:
5966 if (!atomic_read(&d->rd->refcount))
5967 free_rootdomain(&d->rd->rcu); /* fall through */
5968 case sa_sd:
5969 free_percpu(d->sd); /* fall through */
5970 case sa_sd_storage:
5971 __sdt_free(cpu_map); /* fall through */
5972 case sa_none:
5973 break;
5977 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5978 const struct cpumask *cpu_map)
5980 memset(d, 0, sizeof(*d));
5982 if (__sdt_alloc(cpu_map))
5983 return sa_sd_storage;
5984 d->sd = alloc_percpu(struct sched_domain *);
5985 if (!d->sd)
5986 return sa_sd_storage;
5987 d->rd = alloc_rootdomain();
5988 if (!d->rd)
5989 return sa_sd;
5990 return sa_rootdomain;
5994 * NULL the sd_data elements we've used to build the sched_domain and
5995 * sched_group structure so that the subsequent __free_domain_allocs()
5996 * will not free the data we're using.
5998 static void claim_allocations(int cpu, struct sched_domain *sd)
6000 struct sd_data *sdd = sd->private;
6002 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6003 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6005 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6006 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6008 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6009 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6012 #ifdef CONFIG_NUMA
6013 static int sched_domains_numa_levels;
6014 static int *sched_domains_numa_distance;
6015 static struct cpumask ***sched_domains_numa_masks;
6016 static int sched_domains_curr_level;
6017 #endif
6020 * SD_flags allowed in topology descriptions.
6022 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6023 * SD_SHARE_PKG_RESOURCES - describes shared caches
6024 * SD_NUMA - describes NUMA topologies
6025 * SD_SHARE_POWERDOMAIN - describes shared power domain
6027 * Odd one out:
6028 * SD_ASYM_PACKING - describes SMT quirks
6030 #define TOPOLOGY_SD_FLAGS \
6031 (SD_SHARE_CPUCAPACITY | \
6032 SD_SHARE_PKG_RESOURCES | \
6033 SD_NUMA | \
6034 SD_ASYM_PACKING | \
6035 SD_SHARE_POWERDOMAIN)
6037 static struct sched_domain *
6038 sd_init(struct sched_domain_topology_level *tl, int cpu)
6040 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6041 int sd_weight, sd_flags = 0;
6043 #ifdef CONFIG_NUMA
6045 * Ugly hack to pass state to sd_numa_mask()...
6047 sched_domains_curr_level = tl->numa_level;
6048 #endif
6050 sd_weight = cpumask_weight(tl->mask(cpu));
6052 if (tl->sd_flags)
6053 sd_flags = (*tl->sd_flags)();
6054 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6055 "wrong sd_flags in topology description\n"))
6056 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6058 *sd = (struct sched_domain){
6059 .min_interval = sd_weight,
6060 .max_interval = 2*sd_weight,
6061 .busy_factor = 32,
6062 .imbalance_pct = 125,
6064 .cache_nice_tries = 0,
6065 .busy_idx = 0,
6066 .idle_idx = 0,
6067 .newidle_idx = 0,
6068 .wake_idx = 0,
6069 .forkexec_idx = 0,
6071 .flags = 1*SD_LOAD_BALANCE
6072 | 1*SD_BALANCE_NEWIDLE
6073 | 1*SD_BALANCE_EXEC
6074 | 1*SD_BALANCE_FORK
6075 | 0*SD_BALANCE_WAKE
6076 | 1*SD_WAKE_AFFINE
6077 | 0*SD_SHARE_CPUCAPACITY
6078 | 0*SD_SHARE_PKG_RESOURCES
6079 | 0*SD_SERIALIZE
6080 | 0*SD_PREFER_SIBLING
6081 | 0*SD_NUMA
6082 | sd_flags
6085 .last_balance = jiffies,
6086 .balance_interval = sd_weight,
6087 .smt_gain = 0,
6088 .max_newidle_lb_cost = 0,
6089 .next_decay_max_lb_cost = jiffies,
6090 #ifdef CONFIG_SCHED_DEBUG
6091 .name = tl->name,
6092 #endif
6096 * Convert topological properties into behaviour.
6099 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6100 sd->imbalance_pct = 110;
6101 sd->smt_gain = 1178; /* ~15% */
6103 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6104 sd->imbalance_pct = 117;
6105 sd->cache_nice_tries = 1;
6106 sd->busy_idx = 2;
6108 #ifdef CONFIG_NUMA
6109 } else if (sd->flags & SD_NUMA) {
6110 sd->cache_nice_tries = 2;
6111 sd->busy_idx = 3;
6112 sd->idle_idx = 2;
6114 sd->flags |= SD_SERIALIZE;
6115 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6116 sd->flags &= ~(SD_BALANCE_EXEC |
6117 SD_BALANCE_FORK |
6118 SD_WAKE_AFFINE);
6121 #endif
6122 } else {
6123 sd->flags |= SD_PREFER_SIBLING;
6124 sd->cache_nice_tries = 1;
6125 sd->busy_idx = 2;
6126 sd->idle_idx = 1;
6129 sd->private = &tl->data;
6131 return sd;
6135 * Topology list, bottom-up.
6137 static struct sched_domain_topology_level default_topology[] = {
6138 #ifdef CONFIG_SCHED_SMT
6139 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6140 #endif
6141 #ifdef CONFIG_SCHED_MC
6142 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6143 #endif
6144 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6145 { NULL, },
6148 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6150 #define for_each_sd_topology(tl) \
6151 for (tl = sched_domain_topology; tl->mask; tl++)
6153 void set_sched_topology(struct sched_domain_topology_level *tl)
6155 sched_domain_topology = tl;
6158 #ifdef CONFIG_NUMA
6160 static const struct cpumask *sd_numa_mask(int cpu)
6162 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6165 static void sched_numa_warn(const char *str)
6167 static int done = false;
6168 int i,j;
6170 if (done)
6171 return;
6173 done = true;
6175 printk(KERN_WARNING "ERROR: %s\n\n", str);
6177 for (i = 0; i < nr_node_ids; i++) {
6178 printk(KERN_WARNING " ");
6179 for (j = 0; j < nr_node_ids; j++)
6180 printk(KERN_CONT "%02d ", node_distance(i,j));
6181 printk(KERN_CONT "\n");
6183 printk(KERN_WARNING "\n");
6186 static bool find_numa_distance(int distance)
6188 int i;
6190 if (distance == node_distance(0, 0))
6191 return true;
6193 for (i = 0; i < sched_domains_numa_levels; i++) {
6194 if (sched_domains_numa_distance[i] == distance)
6195 return true;
6198 return false;
6201 static void sched_init_numa(void)
6203 int next_distance, curr_distance = node_distance(0, 0);
6204 struct sched_domain_topology_level *tl;
6205 int level = 0;
6206 int i, j, k;
6208 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6209 if (!sched_domains_numa_distance)
6210 return;
6213 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6214 * unique distances in the node_distance() table.
6216 * Assumes node_distance(0,j) includes all distances in
6217 * node_distance(i,j) in order to avoid cubic time.
6219 next_distance = curr_distance;
6220 for (i = 0; i < nr_node_ids; i++) {
6221 for (j = 0; j < nr_node_ids; j++) {
6222 for (k = 0; k < nr_node_ids; k++) {
6223 int distance = node_distance(i, k);
6225 if (distance > curr_distance &&
6226 (distance < next_distance ||
6227 next_distance == curr_distance))
6228 next_distance = distance;
6231 * While not a strong assumption it would be nice to know
6232 * about cases where if node A is connected to B, B is not
6233 * equally connected to A.
6235 if (sched_debug() && node_distance(k, i) != distance)
6236 sched_numa_warn("Node-distance not symmetric");
6238 if (sched_debug() && i && !find_numa_distance(distance))
6239 sched_numa_warn("Node-0 not representative");
6241 if (next_distance != curr_distance) {
6242 sched_domains_numa_distance[level++] = next_distance;
6243 sched_domains_numa_levels = level;
6244 curr_distance = next_distance;
6245 } else break;
6249 * In case of sched_debug() we verify the above assumption.
6251 if (!sched_debug())
6252 break;
6255 * 'level' contains the number of unique distances, excluding the
6256 * identity distance node_distance(i,i).
6258 * The sched_domains_numa_distance[] array includes the actual distance
6259 * numbers.
6263 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6264 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6265 * the array will contain less then 'level' members. This could be
6266 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6267 * in other functions.
6269 * We reset it to 'level' at the end of this function.
6271 sched_domains_numa_levels = 0;
6273 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6274 if (!sched_domains_numa_masks)
6275 return;
6278 * Now for each level, construct a mask per node which contains all
6279 * cpus of nodes that are that many hops away from us.
6281 for (i = 0; i < level; i++) {
6282 sched_domains_numa_masks[i] =
6283 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6284 if (!sched_domains_numa_masks[i])
6285 return;
6287 for (j = 0; j < nr_node_ids; j++) {
6288 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6289 if (!mask)
6290 return;
6292 sched_domains_numa_masks[i][j] = mask;
6294 for (k = 0; k < nr_node_ids; k++) {
6295 if (node_distance(j, k) > sched_domains_numa_distance[i])
6296 continue;
6298 cpumask_or(mask, mask, cpumask_of_node(k));
6303 /* Compute default topology size */
6304 for (i = 0; sched_domain_topology[i].mask; i++);
6306 tl = kzalloc((i + level + 1) *
6307 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6308 if (!tl)
6309 return;
6312 * Copy the default topology bits..
6314 for (i = 0; sched_domain_topology[i].mask; i++)
6315 tl[i] = sched_domain_topology[i];
6318 * .. and append 'j' levels of NUMA goodness.
6320 for (j = 0; j < level; i++, j++) {
6321 tl[i] = (struct sched_domain_topology_level){
6322 .mask = sd_numa_mask,
6323 .sd_flags = cpu_numa_flags,
6324 .flags = SDTL_OVERLAP,
6325 .numa_level = j,
6326 SD_INIT_NAME(NUMA)
6330 sched_domain_topology = tl;
6332 sched_domains_numa_levels = level;
6335 static void sched_domains_numa_masks_set(int cpu)
6337 int i, j;
6338 int node = cpu_to_node(cpu);
6340 for (i = 0; i < sched_domains_numa_levels; i++) {
6341 for (j = 0; j < nr_node_ids; j++) {
6342 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6343 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6348 static void sched_domains_numa_masks_clear(int cpu)
6350 int i, j;
6351 for (i = 0; i < sched_domains_numa_levels; i++) {
6352 for (j = 0; j < nr_node_ids; j++)
6353 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6358 * Update sched_domains_numa_masks[level][node] array when new cpus
6359 * are onlined.
6361 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6362 unsigned long action,
6363 void *hcpu)
6365 int cpu = (long)hcpu;
6367 switch (action & ~CPU_TASKS_FROZEN) {
6368 case CPU_ONLINE:
6369 sched_domains_numa_masks_set(cpu);
6370 break;
6372 case CPU_DEAD:
6373 sched_domains_numa_masks_clear(cpu);
6374 break;
6376 default:
6377 return NOTIFY_DONE;
6380 return NOTIFY_OK;
6382 #else
6383 static inline void sched_init_numa(void)
6387 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6388 unsigned long action,
6389 void *hcpu)
6391 return 0;
6393 #endif /* CONFIG_NUMA */
6395 static int __sdt_alloc(const struct cpumask *cpu_map)
6397 struct sched_domain_topology_level *tl;
6398 int j;
6400 for_each_sd_topology(tl) {
6401 struct sd_data *sdd = &tl->data;
6403 sdd->sd = alloc_percpu(struct sched_domain *);
6404 if (!sdd->sd)
6405 return -ENOMEM;
6407 sdd->sg = alloc_percpu(struct sched_group *);
6408 if (!sdd->sg)
6409 return -ENOMEM;
6411 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6412 if (!sdd->sgc)
6413 return -ENOMEM;
6415 for_each_cpu(j, cpu_map) {
6416 struct sched_domain *sd;
6417 struct sched_group *sg;
6418 struct sched_group_capacity *sgc;
6420 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6421 GFP_KERNEL, cpu_to_node(j));
6422 if (!sd)
6423 return -ENOMEM;
6425 *per_cpu_ptr(sdd->sd, j) = sd;
6427 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6428 GFP_KERNEL, cpu_to_node(j));
6429 if (!sg)
6430 return -ENOMEM;
6432 sg->next = sg;
6434 *per_cpu_ptr(sdd->sg, j) = sg;
6436 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6437 GFP_KERNEL, cpu_to_node(j));
6438 if (!sgc)
6439 return -ENOMEM;
6441 *per_cpu_ptr(sdd->sgc, j) = sgc;
6445 return 0;
6448 static void __sdt_free(const struct cpumask *cpu_map)
6450 struct sched_domain_topology_level *tl;
6451 int j;
6453 for_each_sd_topology(tl) {
6454 struct sd_data *sdd = &tl->data;
6456 for_each_cpu(j, cpu_map) {
6457 struct sched_domain *sd;
6459 if (sdd->sd) {
6460 sd = *per_cpu_ptr(sdd->sd, j);
6461 if (sd && (sd->flags & SD_OVERLAP))
6462 free_sched_groups(sd->groups, 0);
6463 kfree(*per_cpu_ptr(sdd->sd, j));
6466 if (sdd->sg)
6467 kfree(*per_cpu_ptr(sdd->sg, j));
6468 if (sdd->sgc)
6469 kfree(*per_cpu_ptr(sdd->sgc, j));
6471 free_percpu(sdd->sd);
6472 sdd->sd = NULL;
6473 free_percpu(sdd->sg);
6474 sdd->sg = NULL;
6475 free_percpu(sdd->sgc);
6476 sdd->sgc = NULL;
6480 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6481 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6482 struct sched_domain *child, int cpu)
6484 struct sched_domain *sd = sd_init(tl, cpu);
6485 if (!sd)
6486 return child;
6488 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6489 if (child) {
6490 sd->level = child->level + 1;
6491 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6492 child->parent = sd;
6493 sd->child = child;
6495 if (!cpumask_subset(sched_domain_span(child),
6496 sched_domain_span(sd))) {
6497 pr_err("BUG: arch topology borken\n");
6498 #ifdef CONFIG_SCHED_DEBUG
6499 pr_err(" the %s domain not a subset of the %s domain\n",
6500 child->name, sd->name);
6501 #endif
6502 /* Fixup, ensure @sd has at least @child cpus. */
6503 cpumask_or(sched_domain_span(sd),
6504 sched_domain_span(sd),
6505 sched_domain_span(child));
6509 set_domain_attribute(sd, attr);
6511 return sd;
6515 * Build sched domains for a given set of cpus and attach the sched domains
6516 * to the individual cpus
6518 static int build_sched_domains(const struct cpumask *cpu_map,
6519 struct sched_domain_attr *attr)
6521 enum s_alloc alloc_state;
6522 struct sched_domain *sd;
6523 struct s_data d;
6524 int i, ret = -ENOMEM;
6526 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6527 if (alloc_state != sa_rootdomain)
6528 goto error;
6530 /* Set up domains for cpus specified by the cpu_map. */
6531 for_each_cpu(i, cpu_map) {
6532 struct sched_domain_topology_level *tl;
6534 sd = NULL;
6535 for_each_sd_topology(tl) {
6536 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6537 if (tl == sched_domain_topology)
6538 *per_cpu_ptr(d.sd, i) = sd;
6539 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6540 sd->flags |= SD_OVERLAP;
6541 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6542 break;
6546 /* Build the groups for the domains */
6547 for_each_cpu(i, cpu_map) {
6548 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6549 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6550 if (sd->flags & SD_OVERLAP) {
6551 if (build_overlap_sched_groups(sd, i))
6552 goto error;
6553 } else {
6554 if (build_sched_groups(sd, i))
6555 goto error;
6560 /* Calculate CPU capacity for physical packages and nodes */
6561 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6562 if (!cpumask_test_cpu(i, cpu_map))
6563 continue;
6565 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6566 claim_allocations(i, sd);
6567 init_sched_groups_capacity(i, sd);
6571 /* Attach the domains */
6572 rcu_read_lock();
6573 for_each_cpu(i, cpu_map) {
6574 sd = *per_cpu_ptr(d.sd, i);
6575 cpu_attach_domain(sd, d.rd, i);
6577 rcu_read_unlock();
6579 ret = 0;
6580 error:
6581 __free_domain_allocs(&d, alloc_state, cpu_map);
6582 return ret;
6585 static cpumask_var_t *doms_cur; /* current sched domains */
6586 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6587 static struct sched_domain_attr *dattr_cur;
6588 /* attribues of custom domains in 'doms_cur' */
6591 * Special case: If a kmalloc of a doms_cur partition (array of
6592 * cpumask) fails, then fallback to a single sched domain,
6593 * as determined by the single cpumask fallback_doms.
6595 static cpumask_var_t fallback_doms;
6598 * arch_update_cpu_topology lets virtualized architectures update the
6599 * cpu core maps. It is supposed to return 1 if the topology changed
6600 * or 0 if it stayed the same.
6602 int __weak arch_update_cpu_topology(void)
6604 return 0;
6607 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6609 int i;
6610 cpumask_var_t *doms;
6612 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6613 if (!doms)
6614 return NULL;
6615 for (i = 0; i < ndoms; i++) {
6616 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6617 free_sched_domains(doms, i);
6618 return NULL;
6621 return doms;
6624 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6626 unsigned int i;
6627 for (i = 0; i < ndoms; i++)
6628 free_cpumask_var(doms[i]);
6629 kfree(doms);
6633 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6634 * For now this just excludes isolated cpus, but could be used to
6635 * exclude other special cases in the future.
6637 static int init_sched_domains(const struct cpumask *cpu_map)
6639 int err;
6641 arch_update_cpu_topology();
6642 ndoms_cur = 1;
6643 doms_cur = alloc_sched_domains(ndoms_cur);
6644 if (!doms_cur)
6645 doms_cur = &fallback_doms;
6646 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6647 err = build_sched_domains(doms_cur[0], NULL);
6648 register_sched_domain_sysctl();
6650 return err;
6654 * Detach sched domains from a group of cpus specified in cpu_map
6655 * These cpus will now be attached to the NULL domain
6657 static void detach_destroy_domains(const struct cpumask *cpu_map)
6659 int i;
6661 rcu_read_lock();
6662 for_each_cpu(i, cpu_map)
6663 cpu_attach_domain(NULL, &def_root_domain, i);
6664 rcu_read_unlock();
6667 /* handle null as "default" */
6668 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6669 struct sched_domain_attr *new, int idx_new)
6671 struct sched_domain_attr tmp;
6673 /* fast path */
6674 if (!new && !cur)
6675 return 1;
6677 tmp = SD_ATTR_INIT;
6678 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6679 new ? (new + idx_new) : &tmp,
6680 sizeof(struct sched_domain_attr));
6684 * Partition sched domains as specified by the 'ndoms_new'
6685 * cpumasks in the array doms_new[] of cpumasks. This compares
6686 * doms_new[] to the current sched domain partitioning, doms_cur[].
6687 * It destroys each deleted domain and builds each new domain.
6689 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6690 * The masks don't intersect (don't overlap.) We should setup one
6691 * sched domain for each mask. CPUs not in any of the cpumasks will
6692 * not be load balanced. If the same cpumask appears both in the
6693 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6694 * it as it is.
6696 * The passed in 'doms_new' should be allocated using
6697 * alloc_sched_domains. This routine takes ownership of it and will
6698 * free_sched_domains it when done with it. If the caller failed the
6699 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6700 * and partition_sched_domains() will fallback to the single partition
6701 * 'fallback_doms', it also forces the domains to be rebuilt.
6703 * If doms_new == NULL it will be replaced with cpu_online_mask.
6704 * ndoms_new == 0 is a special case for destroying existing domains,
6705 * and it will not create the default domain.
6707 * Call with hotplug lock held
6709 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6710 struct sched_domain_attr *dattr_new)
6712 int i, j, n;
6713 int new_topology;
6715 mutex_lock(&sched_domains_mutex);
6717 /* always unregister in case we don't destroy any domains */
6718 unregister_sched_domain_sysctl();
6720 /* Let architecture update cpu core mappings. */
6721 new_topology = arch_update_cpu_topology();
6723 n = doms_new ? ndoms_new : 0;
6725 /* Destroy deleted domains */
6726 for (i = 0; i < ndoms_cur; i++) {
6727 for (j = 0; j < n && !new_topology; j++) {
6728 if (cpumask_equal(doms_cur[i], doms_new[j])
6729 && dattrs_equal(dattr_cur, i, dattr_new, j))
6730 goto match1;
6732 /* no match - a current sched domain not in new doms_new[] */
6733 detach_destroy_domains(doms_cur[i]);
6734 match1:
6738 n = ndoms_cur;
6739 if (doms_new == NULL) {
6740 n = 0;
6741 doms_new = &fallback_doms;
6742 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6743 WARN_ON_ONCE(dattr_new);
6746 /* Build new domains */
6747 for (i = 0; i < ndoms_new; i++) {
6748 for (j = 0; j < n && !new_topology; j++) {
6749 if (cpumask_equal(doms_new[i], doms_cur[j])
6750 && dattrs_equal(dattr_new, i, dattr_cur, j))
6751 goto match2;
6753 /* no match - add a new doms_new */
6754 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6755 match2:
6759 /* Remember the new sched domains */
6760 if (doms_cur != &fallback_doms)
6761 free_sched_domains(doms_cur, ndoms_cur);
6762 kfree(dattr_cur); /* kfree(NULL) is safe */
6763 doms_cur = doms_new;
6764 dattr_cur = dattr_new;
6765 ndoms_cur = ndoms_new;
6767 register_sched_domain_sysctl();
6769 mutex_unlock(&sched_domains_mutex);
6772 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6775 * Update cpusets according to cpu_active mask. If cpusets are
6776 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6777 * around partition_sched_domains().
6779 * If we come here as part of a suspend/resume, don't touch cpusets because we
6780 * want to restore it back to its original state upon resume anyway.
6782 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6783 void *hcpu)
6785 switch (action) {
6786 case CPU_ONLINE_FROZEN:
6787 case CPU_DOWN_FAILED_FROZEN:
6790 * num_cpus_frozen tracks how many CPUs are involved in suspend
6791 * resume sequence. As long as this is not the last online
6792 * operation in the resume sequence, just build a single sched
6793 * domain, ignoring cpusets.
6795 num_cpus_frozen--;
6796 if (likely(num_cpus_frozen)) {
6797 partition_sched_domains(1, NULL, NULL);
6798 break;
6802 * This is the last CPU online operation. So fall through and
6803 * restore the original sched domains by considering the
6804 * cpuset configurations.
6807 case CPU_ONLINE:
6808 case CPU_DOWN_FAILED:
6809 cpuset_update_active_cpus(true);
6810 break;
6811 default:
6812 return NOTIFY_DONE;
6814 return NOTIFY_OK;
6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 void *hcpu)
6820 switch (action) {
6821 case CPU_DOWN_PREPARE:
6822 cpuset_update_active_cpus(false);
6823 break;
6824 case CPU_DOWN_PREPARE_FROZEN:
6825 num_cpus_frozen++;
6826 partition_sched_domains(1, NULL, NULL);
6827 break;
6828 default:
6829 return NOTIFY_DONE;
6831 return NOTIFY_OK;
6834 void __init sched_init_smp(void)
6836 cpumask_var_t non_isolated_cpus;
6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6841 sched_init_numa();
6844 * There's no userspace yet to cause hotplug operations; hence all the
6845 * cpu masks are stable and all blatant races in the below code cannot
6846 * happen.
6848 mutex_lock(&sched_domains_mutex);
6849 init_sched_domains(cpu_active_mask);
6850 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6851 if (cpumask_empty(non_isolated_cpus))
6852 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6853 mutex_unlock(&sched_domains_mutex);
6855 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6856 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6857 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6859 init_hrtick();
6861 /* Move init over to a non-isolated CPU */
6862 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6863 BUG();
6864 sched_init_granularity();
6865 free_cpumask_var(non_isolated_cpus);
6867 init_sched_rt_class();
6868 init_sched_dl_class();
6870 #else
6871 void __init sched_init_smp(void)
6873 sched_init_granularity();
6875 #endif /* CONFIG_SMP */
6877 const_debug unsigned int sysctl_timer_migration = 1;
6879 int in_sched_functions(unsigned long addr)
6881 return in_lock_functions(addr) ||
6882 (addr >= (unsigned long)__sched_text_start
6883 && addr < (unsigned long)__sched_text_end);
6886 #ifdef CONFIG_CGROUP_SCHED
6888 * Default task group.
6889 * Every task in system belongs to this group at bootup.
6891 struct task_group root_task_group;
6892 LIST_HEAD(task_groups);
6893 #endif
6895 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6897 void __init sched_init(void)
6899 int i, j;
6900 unsigned long alloc_size = 0, ptr;
6902 #ifdef CONFIG_FAIR_GROUP_SCHED
6903 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6904 #endif
6905 #ifdef CONFIG_RT_GROUP_SCHED
6906 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6907 #endif
6908 #ifdef CONFIG_CPUMASK_OFFSTACK
6909 alloc_size += num_possible_cpus() * cpumask_size();
6910 #endif
6911 if (alloc_size) {
6912 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6914 #ifdef CONFIG_FAIR_GROUP_SCHED
6915 root_task_group.se = (struct sched_entity **)ptr;
6916 ptr += nr_cpu_ids * sizeof(void **);
6918 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6919 ptr += nr_cpu_ids * sizeof(void **);
6921 #endif /* CONFIG_FAIR_GROUP_SCHED */
6922 #ifdef CONFIG_RT_GROUP_SCHED
6923 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6924 ptr += nr_cpu_ids * sizeof(void **);
6926 root_task_group.rt_rq = (struct rt_rq **)ptr;
6927 ptr += nr_cpu_ids * sizeof(void **);
6929 #endif /* CONFIG_RT_GROUP_SCHED */
6930 #ifdef CONFIG_CPUMASK_OFFSTACK
6931 for_each_possible_cpu(i) {
6932 per_cpu(load_balance_mask, i) = (void *)ptr;
6933 ptr += cpumask_size();
6935 #endif /* CONFIG_CPUMASK_OFFSTACK */
6938 init_rt_bandwidth(&def_rt_bandwidth,
6939 global_rt_period(), global_rt_runtime());
6940 init_dl_bandwidth(&def_dl_bandwidth,
6941 global_rt_period(), global_rt_runtime());
6943 #ifdef CONFIG_SMP
6944 init_defrootdomain();
6945 #endif
6947 #ifdef CONFIG_RT_GROUP_SCHED
6948 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6949 global_rt_period(), global_rt_runtime());
6950 #endif /* CONFIG_RT_GROUP_SCHED */
6952 #ifdef CONFIG_CGROUP_SCHED
6953 list_add(&root_task_group.list, &task_groups);
6954 INIT_LIST_HEAD(&root_task_group.children);
6955 INIT_LIST_HEAD(&root_task_group.siblings);
6956 autogroup_init(&init_task);
6958 #endif /* CONFIG_CGROUP_SCHED */
6960 for_each_possible_cpu(i) {
6961 struct rq *rq;
6963 rq = cpu_rq(i);
6964 raw_spin_lock_init(&rq->lock);
6965 rq->nr_running = 0;
6966 rq->calc_load_active = 0;
6967 rq->calc_load_update = jiffies + LOAD_FREQ;
6968 init_cfs_rq(&rq->cfs);
6969 init_rt_rq(&rq->rt, rq);
6970 init_dl_rq(&rq->dl, rq);
6971 #ifdef CONFIG_FAIR_GROUP_SCHED
6972 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6973 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6975 * How much cpu bandwidth does root_task_group get?
6977 * In case of task-groups formed thr' the cgroup filesystem, it
6978 * gets 100% of the cpu resources in the system. This overall
6979 * system cpu resource is divided among the tasks of
6980 * root_task_group and its child task-groups in a fair manner,
6981 * based on each entity's (task or task-group's) weight
6982 * (se->load.weight).
6984 * In other words, if root_task_group has 10 tasks of weight
6985 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6986 * then A0's share of the cpu resource is:
6988 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6990 * We achieve this by letting root_task_group's tasks sit
6991 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6993 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6994 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6995 #endif /* CONFIG_FAIR_GROUP_SCHED */
6997 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6998 #ifdef CONFIG_RT_GROUP_SCHED
6999 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7000 #endif
7002 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7003 rq->cpu_load[j] = 0;
7005 rq->last_load_update_tick = jiffies;
7007 #ifdef CONFIG_SMP
7008 rq->sd = NULL;
7009 rq->rd = NULL;
7010 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7011 rq->post_schedule = 0;
7012 rq->active_balance = 0;
7013 rq->next_balance = jiffies;
7014 rq->push_cpu = 0;
7015 rq->cpu = i;
7016 rq->online = 0;
7017 rq->idle_stamp = 0;
7018 rq->avg_idle = 2*sysctl_sched_migration_cost;
7019 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7021 INIT_LIST_HEAD(&rq->cfs_tasks);
7023 rq_attach_root(rq, &def_root_domain);
7024 #ifdef CONFIG_NO_HZ_COMMON
7025 rq->nohz_flags = 0;
7026 #endif
7027 #ifdef CONFIG_NO_HZ_FULL
7028 rq->last_sched_tick = 0;
7029 #endif
7030 #endif
7031 init_rq_hrtick(rq);
7032 atomic_set(&rq->nr_iowait, 0);
7035 set_load_weight(&init_task);
7037 #ifdef CONFIG_PREEMPT_NOTIFIERS
7038 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7039 #endif
7042 * The boot idle thread does lazy MMU switching as well:
7044 atomic_inc(&init_mm.mm_count);
7045 enter_lazy_tlb(&init_mm, current);
7048 * Make us the idle thread. Technically, schedule() should not be
7049 * called from this thread, however somewhere below it might be,
7050 * but because we are the idle thread, we just pick up running again
7051 * when this runqueue becomes "idle".
7053 init_idle(current, smp_processor_id());
7055 calc_load_update = jiffies + LOAD_FREQ;
7058 * During early bootup we pretend to be a normal task:
7060 current->sched_class = &fair_sched_class;
7062 #ifdef CONFIG_SMP
7063 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7064 /* May be allocated at isolcpus cmdline parse time */
7065 if (cpu_isolated_map == NULL)
7066 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7067 idle_thread_set_boot_cpu();
7068 set_cpu_rq_start_time();
7069 #endif
7070 init_sched_fair_class();
7072 scheduler_running = 1;
7075 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7076 static inline int preempt_count_equals(int preempt_offset)
7078 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7080 return (nested == preempt_offset);
7083 void __might_sleep(const char *file, int line, int preempt_offset)
7085 static unsigned long prev_jiffy; /* ratelimiting */
7087 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7088 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7089 !is_idle_task(current)) ||
7090 system_state != SYSTEM_RUNNING || oops_in_progress)
7091 return;
7092 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7093 return;
7094 prev_jiffy = jiffies;
7096 printk(KERN_ERR
7097 "BUG: sleeping function called from invalid context at %s:%d\n",
7098 file, line);
7099 printk(KERN_ERR
7100 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7101 in_atomic(), irqs_disabled(),
7102 current->pid, current->comm);
7104 debug_show_held_locks(current);
7105 if (irqs_disabled())
7106 print_irqtrace_events(current);
7107 #ifdef CONFIG_DEBUG_PREEMPT
7108 if (!preempt_count_equals(preempt_offset)) {
7109 pr_err("Preemption disabled at:");
7110 print_ip_sym(current->preempt_disable_ip);
7111 pr_cont("\n");
7113 #endif
7114 dump_stack();
7116 EXPORT_SYMBOL(__might_sleep);
7117 #endif
7119 #ifdef CONFIG_MAGIC_SYSRQ
7120 static void normalize_task(struct rq *rq, struct task_struct *p)
7122 const struct sched_class *prev_class = p->sched_class;
7123 struct sched_attr attr = {
7124 .sched_policy = SCHED_NORMAL,
7126 int old_prio = p->prio;
7127 int on_rq;
7129 on_rq = p->on_rq;
7130 if (on_rq)
7131 dequeue_task(rq, p, 0);
7132 __setscheduler(rq, p, &attr);
7133 if (on_rq) {
7134 enqueue_task(rq, p, 0);
7135 resched_curr(rq);
7138 check_class_changed(rq, p, prev_class, old_prio);
7141 void normalize_rt_tasks(void)
7143 struct task_struct *g, *p;
7144 unsigned long flags;
7145 struct rq *rq;
7147 read_lock_irqsave(&tasklist_lock, flags);
7148 do_each_thread(g, p) {
7150 * Only normalize user tasks:
7152 if (!p->mm)
7153 continue;
7155 p->se.exec_start = 0;
7156 #ifdef CONFIG_SCHEDSTATS
7157 p->se.statistics.wait_start = 0;
7158 p->se.statistics.sleep_start = 0;
7159 p->se.statistics.block_start = 0;
7160 #endif
7162 if (!dl_task(p) && !rt_task(p)) {
7164 * Renice negative nice level userspace
7165 * tasks back to 0:
7167 if (task_nice(p) < 0 && p->mm)
7168 set_user_nice(p, 0);
7169 continue;
7172 raw_spin_lock(&p->pi_lock);
7173 rq = __task_rq_lock(p);
7175 normalize_task(rq, p);
7177 __task_rq_unlock(rq);
7178 raw_spin_unlock(&p->pi_lock);
7179 } while_each_thread(g, p);
7181 read_unlock_irqrestore(&tasklist_lock, flags);
7184 #endif /* CONFIG_MAGIC_SYSRQ */
7186 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7188 * These functions are only useful for the IA64 MCA handling, or kdb.
7190 * They can only be called when the whole system has been
7191 * stopped - every CPU needs to be quiescent, and no scheduling
7192 * activity can take place. Using them for anything else would
7193 * be a serious bug, and as a result, they aren't even visible
7194 * under any other configuration.
7198 * curr_task - return the current task for a given cpu.
7199 * @cpu: the processor in question.
7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7203 * Return: The current task for @cpu.
7205 struct task_struct *curr_task(int cpu)
7207 return cpu_curr(cpu);
7210 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7212 #ifdef CONFIG_IA64
7214 * set_curr_task - set the current task for a given cpu.
7215 * @cpu: the processor in question.
7216 * @p: the task pointer to set.
7218 * Description: This function must only be used when non-maskable interrupts
7219 * are serviced on a separate stack. It allows the architecture to switch the
7220 * notion of the current task on a cpu in a non-blocking manner. This function
7221 * must be called with all CPU's synchronized, and interrupts disabled, the
7222 * and caller must save the original value of the current task (see
7223 * curr_task() above) and restore that value before reenabling interrupts and
7224 * re-starting the system.
7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7228 void set_curr_task(int cpu, struct task_struct *p)
7230 cpu_curr(cpu) = p;
7233 #endif
7235 #ifdef CONFIG_CGROUP_SCHED
7236 /* task_group_lock serializes the addition/removal of task groups */
7237 static DEFINE_SPINLOCK(task_group_lock);
7239 static void free_sched_group(struct task_group *tg)
7241 free_fair_sched_group(tg);
7242 free_rt_sched_group(tg);
7243 autogroup_free(tg);
7244 kfree(tg);
7247 /* allocate runqueue etc for a new task group */
7248 struct task_group *sched_create_group(struct task_group *parent)
7250 struct task_group *tg;
7252 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7253 if (!tg)
7254 return ERR_PTR(-ENOMEM);
7256 if (!alloc_fair_sched_group(tg, parent))
7257 goto err;
7259 if (!alloc_rt_sched_group(tg, parent))
7260 goto err;
7262 return tg;
7264 err:
7265 free_sched_group(tg);
7266 return ERR_PTR(-ENOMEM);
7269 void sched_online_group(struct task_group *tg, struct task_group *parent)
7271 unsigned long flags;
7273 spin_lock_irqsave(&task_group_lock, flags);
7274 list_add_rcu(&tg->list, &task_groups);
7276 WARN_ON(!parent); /* root should already exist */
7278 tg->parent = parent;
7279 INIT_LIST_HEAD(&tg->children);
7280 list_add_rcu(&tg->siblings, &parent->children);
7281 spin_unlock_irqrestore(&task_group_lock, flags);
7284 /* rcu callback to free various structures associated with a task group */
7285 static void free_sched_group_rcu(struct rcu_head *rhp)
7287 /* now it should be safe to free those cfs_rqs */
7288 free_sched_group(container_of(rhp, struct task_group, rcu));
7291 /* Destroy runqueue etc associated with a task group */
7292 void sched_destroy_group(struct task_group *tg)
7294 /* wait for possible concurrent references to cfs_rqs complete */
7295 call_rcu(&tg->rcu, free_sched_group_rcu);
7298 void sched_offline_group(struct task_group *tg)
7300 unsigned long flags;
7301 int i;
7303 /* end participation in shares distribution */
7304 for_each_possible_cpu(i)
7305 unregister_fair_sched_group(tg, i);
7307 spin_lock_irqsave(&task_group_lock, flags);
7308 list_del_rcu(&tg->list);
7309 list_del_rcu(&tg->siblings);
7310 spin_unlock_irqrestore(&task_group_lock, flags);
7313 /* change task's runqueue when it moves between groups.
7314 * The caller of this function should have put the task in its new group
7315 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7316 * reflect its new group.
7318 void sched_move_task(struct task_struct *tsk)
7320 struct task_group *tg;
7321 int on_rq, running;
7322 unsigned long flags;
7323 struct rq *rq;
7325 rq = task_rq_lock(tsk, &flags);
7327 running = task_current(rq, tsk);
7328 on_rq = tsk->on_rq;
7330 if (on_rq)
7331 dequeue_task(rq, tsk, 0);
7332 if (unlikely(running))
7333 tsk->sched_class->put_prev_task(rq, tsk);
7335 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7336 lockdep_is_held(&tsk->sighand->siglock)),
7337 struct task_group, css);
7338 tg = autogroup_task_group(tsk, tg);
7339 tsk->sched_task_group = tg;
7341 #ifdef CONFIG_FAIR_GROUP_SCHED
7342 if (tsk->sched_class->task_move_group)
7343 tsk->sched_class->task_move_group(tsk, on_rq);
7344 else
7345 #endif
7346 set_task_rq(tsk, task_cpu(tsk));
7348 if (unlikely(running))
7349 tsk->sched_class->set_curr_task(rq);
7350 if (on_rq)
7351 enqueue_task(rq, tsk, 0);
7353 task_rq_unlock(rq, tsk, &flags);
7355 #endif /* CONFIG_CGROUP_SCHED */
7357 #ifdef CONFIG_RT_GROUP_SCHED
7359 * Ensure that the real time constraints are schedulable.
7361 static DEFINE_MUTEX(rt_constraints_mutex);
7363 /* Must be called with tasklist_lock held */
7364 static inline int tg_has_rt_tasks(struct task_group *tg)
7366 struct task_struct *g, *p;
7368 do_each_thread(g, p) {
7369 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7370 return 1;
7371 } while_each_thread(g, p);
7373 return 0;
7376 struct rt_schedulable_data {
7377 struct task_group *tg;
7378 u64 rt_period;
7379 u64 rt_runtime;
7382 static int tg_rt_schedulable(struct task_group *tg, void *data)
7384 struct rt_schedulable_data *d = data;
7385 struct task_group *child;
7386 unsigned long total, sum = 0;
7387 u64 period, runtime;
7389 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7390 runtime = tg->rt_bandwidth.rt_runtime;
7392 if (tg == d->tg) {
7393 period = d->rt_period;
7394 runtime = d->rt_runtime;
7398 * Cannot have more runtime than the period.
7400 if (runtime > period && runtime != RUNTIME_INF)
7401 return -EINVAL;
7404 * Ensure we don't starve existing RT tasks.
7406 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7407 return -EBUSY;
7409 total = to_ratio(period, runtime);
7412 * Nobody can have more than the global setting allows.
7414 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7415 return -EINVAL;
7418 * The sum of our children's runtime should not exceed our own.
7420 list_for_each_entry_rcu(child, &tg->children, siblings) {
7421 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7422 runtime = child->rt_bandwidth.rt_runtime;
7424 if (child == d->tg) {
7425 period = d->rt_period;
7426 runtime = d->rt_runtime;
7429 sum += to_ratio(period, runtime);
7432 if (sum > total)
7433 return -EINVAL;
7435 return 0;
7438 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7440 int ret;
7442 struct rt_schedulable_data data = {
7443 .tg = tg,
7444 .rt_period = period,
7445 .rt_runtime = runtime,
7448 rcu_read_lock();
7449 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7450 rcu_read_unlock();
7452 return ret;
7455 static int tg_set_rt_bandwidth(struct task_group *tg,
7456 u64 rt_period, u64 rt_runtime)
7458 int i, err = 0;
7460 mutex_lock(&rt_constraints_mutex);
7461 read_lock(&tasklist_lock);
7462 err = __rt_schedulable(tg, rt_period, rt_runtime);
7463 if (err)
7464 goto unlock;
7466 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7467 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7468 tg->rt_bandwidth.rt_runtime = rt_runtime;
7470 for_each_possible_cpu(i) {
7471 struct rt_rq *rt_rq = tg->rt_rq[i];
7473 raw_spin_lock(&rt_rq->rt_runtime_lock);
7474 rt_rq->rt_runtime = rt_runtime;
7475 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7477 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7478 unlock:
7479 read_unlock(&tasklist_lock);
7480 mutex_unlock(&rt_constraints_mutex);
7482 return err;
7485 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7487 u64 rt_runtime, rt_period;
7489 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7490 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7491 if (rt_runtime_us < 0)
7492 rt_runtime = RUNTIME_INF;
7494 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7497 static long sched_group_rt_runtime(struct task_group *tg)
7499 u64 rt_runtime_us;
7501 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7502 return -1;
7504 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7505 do_div(rt_runtime_us, NSEC_PER_USEC);
7506 return rt_runtime_us;
7509 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7511 u64 rt_runtime, rt_period;
7513 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7514 rt_runtime = tg->rt_bandwidth.rt_runtime;
7516 if (rt_period == 0)
7517 return -EINVAL;
7519 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7522 static long sched_group_rt_period(struct task_group *tg)
7524 u64 rt_period_us;
7526 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7527 do_div(rt_period_us, NSEC_PER_USEC);
7528 return rt_period_us;
7530 #endif /* CONFIG_RT_GROUP_SCHED */
7532 #ifdef CONFIG_RT_GROUP_SCHED
7533 static int sched_rt_global_constraints(void)
7535 int ret = 0;
7537 mutex_lock(&rt_constraints_mutex);
7538 read_lock(&tasklist_lock);
7539 ret = __rt_schedulable(NULL, 0, 0);
7540 read_unlock(&tasklist_lock);
7541 mutex_unlock(&rt_constraints_mutex);
7543 return ret;
7546 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7548 /* Don't accept realtime tasks when there is no way for them to run */
7549 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7550 return 0;
7552 return 1;
7555 #else /* !CONFIG_RT_GROUP_SCHED */
7556 static int sched_rt_global_constraints(void)
7558 unsigned long flags;
7559 int i, ret = 0;
7561 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7562 for_each_possible_cpu(i) {
7563 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7565 raw_spin_lock(&rt_rq->rt_runtime_lock);
7566 rt_rq->rt_runtime = global_rt_runtime();
7567 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7569 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7571 return ret;
7573 #endif /* CONFIG_RT_GROUP_SCHED */
7575 static int sched_dl_global_constraints(void)
7577 u64 runtime = global_rt_runtime();
7578 u64 period = global_rt_period();
7579 u64 new_bw = to_ratio(period, runtime);
7580 int cpu, ret = 0;
7581 unsigned long flags;
7584 * Here we want to check the bandwidth not being set to some
7585 * value smaller than the currently allocated bandwidth in
7586 * any of the root_domains.
7588 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7589 * cycling on root_domains... Discussion on different/better
7590 * solutions is welcome!
7592 for_each_possible_cpu(cpu) {
7593 struct dl_bw *dl_b = dl_bw_of(cpu);
7595 raw_spin_lock_irqsave(&dl_b->lock, flags);
7596 if (new_bw < dl_b->total_bw)
7597 ret = -EBUSY;
7598 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7600 if (ret)
7601 break;
7604 return ret;
7607 static void sched_dl_do_global(void)
7609 u64 new_bw = -1;
7610 int cpu;
7611 unsigned long flags;
7613 def_dl_bandwidth.dl_period = global_rt_period();
7614 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7616 if (global_rt_runtime() != RUNTIME_INF)
7617 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7620 * FIXME: As above...
7622 for_each_possible_cpu(cpu) {
7623 struct dl_bw *dl_b = dl_bw_of(cpu);
7625 raw_spin_lock_irqsave(&dl_b->lock, flags);
7626 dl_b->bw = new_bw;
7627 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7631 static int sched_rt_global_validate(void)
7633 if (sysctl_sched_rt_period <= 0)
7634 return -EINVAL;
7636 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7637 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7638 return -EINVAL;
7640 return 0;
7643 static void sched_rt_do_global(void)
7645 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7646 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7649 int sched_rt_handler(struct ctl_table *table, int write,
7650 void __user *buffer, size_t *lenp,
7651 loff_t *ppos)
7653 int old_period, old_runtime;
7654 static DEFINE_MUTEX(mutex);
7655 int ret;
7657 mutex_lock(&mutex);
7658 old_period = sysctl_sched_rt_period;
7659 old_runtime = sysctl_sched_rt_runtime;
7661 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7663 if (!ret && write) {
7664 ret = sched_rt_global_validate();
7665 if (ret)
7666 goto undo;
7668 ret = sched_rt_global_constraints();
7669 if (ret)
7670 goto undo;
7672 ret = sched_dl_global_constraints();
7673 if (ret)
7674 goto undo;
7676 sched_rt_do_global();
7677 sched_dl_do_global();
7679 if (0) {
7680 undo:
7681 sysctl_sched_rt_period = old_period;
7682 sysctl_sched_rt_runtime = old_runtime;
7684 mutex_unlock(&mutex);
7686 return ret;
7689 int sched_rr_handler(struct ctl_table *table, int write,
7690 void __user *buffer, size_t *lenp,
7691 loff_t *ppos)
7693 int ret;
7694 static DEFINE_MUTEX(mutex);
7696 mutex_lock(&mutex);
7697 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7698 /* make sure that internally we keep jiffies */
7699 /* also, writing zero resets timeslice to default */
7700 if (!ret && write) {
7701 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7702 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7704 mutex_unlock(&mutex);
7705 return ret;
7708 #ifdef CONFIG_CGROUP_SCHED
7710 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7712 return css ? container_of(css, struct task_group, css) : NULL;
7715 static struct cgroup_subsys_state *
7716 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7718 struct task_group *parent = css_tg(parent_css);
7719 struct task_group *tg;
7721 if (!parent) {
7722 /* This is early initialization for the top cgroup */
7723 return &root_task_group.css;
7726 tg = sched_create_group(parent);
7727 if (IS_ERR(tg))
7728 return ERR_PTR(-ENOMEM);
7730 return &tg->css;
7733 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7735 struct task_group *tg = css_tg(css);
7736 struct task_group *parent = css_tg(css->parent);
7738 if (parent)
7739 sched_online_group(tg, parent);
7740 return 0;
7743 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7745 struct task_group *tg = css_tg(css);
7747 sched_destroy_group(tg);
7750 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7752 struct task_group *tg = css_tg(css);
7754 sched_offline_group(tg);
7757 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7758 struct cgroup_taskset *tset)
7760 struct task_struct *task;
7762 cgroup_taskset_for_each(task, tset) {
7763 #ifdef CONFIG_RT_GROUP_SCHED
7764 if (!sched_rt_can_attach(css_tg(css), task))
7765 return -EINVAL;
7766 #else
7767 /* We don't support RT-tasks being in separate groups */
7768 if (task->sched_class != &fair_sched_class)
7769 return -EINVAL;
7770 #endif
7772 return 0;
7775 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7776 struct cgroup_taskset *tset)
7778 struct task_struct *task;
7780 cgroup_taskset_for_each(task, tset)
7781 sched_move_task(task);
7784 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7785 struct cgroup_subsys_state *old_css,
7786 struct task_struct *task)
7789 * cgroup_exit() is called in the copy_process() failure path.
7790 * Ignore this case since the task hasn't ran yet, this avoids
7791 * trying to poke a half freed task state from generic code.
7793 if (!(task->flags & PF_EXITING))
7794 return;
7796 sched_move_task(task);
7799 #ifdef CONFIG_FAIR_GROUP_SCHED
7800 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7801 struct cftype *cftype, u64 shareval)
7803 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7806 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7807 struct cftype *cft)
7809 struct task_group *tg = css_tg(css);
7811 return (u64) scale_load_down(tg->shares);
7814 #ifdef CONFIG_CFS_BANDWIDTH
7815 static DEFINE_MUTEX(cfs_constraints_mutex);
7817 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7818 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7820 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7822 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7824 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7825 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7827 if (tg == &root_task_group)
7828 return -EINVAL;
7831 * Ensure we have at some amount of bandwidth every period. This is
7832 * to prevent reaching a state of large arrears when throttled via
7833 * entity_tick() resulting in prolonged exit starvation.
7835 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7836 return -EINVAL;
7839 * Likewise, bound things on the otherside by preventing insane quota
7840 * periods. This also allows us to normalize in computing quota
7841 * feasibility.
7843 if (period > max_cfs_quota_period)
7844 return -EINVAL;
7847 * Prevent race between setting of cfs_rq->runtime_enabled and
7848 * unthrottle_offline_cfs_rqs().
7850 get_online_cpus();
7851 mutex_lock(&cfs_constraints_mutex);
7852 ret = __cfs_schedulable(tg, period, quota);
7853 if (ret)
7854 goto out_unlock;
7856 runtime_enabled = quota != RUNTIME_INF;
7857 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7859 * If we need to toggle cfs_bandwidth_used, off->on must occur
7860 * before making related changes, and on->off must occur afterwards
7862 if (runtime_enabled && !runtime_was_enabled)
7863 cfs_bandwidth_usage_inc();
7864 raw_spin_lock_irq(&cfs_b->lock);
7865 cfs_b->period = ns_to_ktime(period);
7866 cfs_b->quota = quota;
7868 __refill_cfs_bandwidth_runtime(cfs_b);
7869 /* restart the period timer (if active) to handle new period expiry */
7870 if (runtime_enabled && cfs_b->timer_active) {
7871 /* force a reprogram */
7872 __start_cfs_bandwidth(cfs_b, true);
7874 raw_spin_unlock_irq(&cfs_b->lock);
7876 for_each_online_cpu(i) {
7877 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7878 struct rq *rq = cfs_rq->rq;
7880 raw_spin_lock_irq(&rq->lock);
7881 cfs_rq->runtime_enabled = runtime_enabled;
7882 cfs_rq->runtime_remaining = 0;
7884 if (cfs_rq->throttled)
7885 unthrottle_cfs_rq(cfs_rq);
7886 raw_spin_unlock_irq(&rq->lock);
7888 if (runtime_was_enabled && !runtime_enabled)
7889 cfs_bandwidth_usage_dec();
7890 out_unlock:
7891 mutex_unlock(&cfs_constraints_mutex);
7892 put_online_cpus();
7894 return ret;
7897 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7899 u64 quota, period;
7901 period = ktime_to_ns(tg->cfs_bandwidth.period);
7902 if (cfs_quota_us < 0)
7903 quota = RUNTIME_INF;
7904 else
7905 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7907 return tg_set_cfs_bandwidth(tg, period, quota);
7910 long tg_get_cfs_quota(struct task_group *tg)
7912 u64 quota_us;
7914 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7915 return -1;
7917 quota_us = tg->cfs_bandwidth.quota;
7918 do_div(quota_us, NSEC_PER_USEC);
7920 return quota_us;
7923 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7925 u64 quota, period;
7927 period = (u64)cfs_period_us * NSEC_PER_USEC;
7928 quota = tg->cfs_bandwidth.quota;
7930 return tg_set_cfs_bandwidth(tg, period, quota);
7933 long tg_get_cfs_period(struct task_group *tg)
7935 u64 cfs_period_us;
7937 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7938 do_div(cfs_period_us, NSEC_PER_USEC);
7940 return cfs_period_us;
7943 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7944 struct cftype *cft)
7946 return tg_get_cfs_quota(css_tg(css));
7949 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7950 struct cftype *cftype, s64 cfs_quota_us)
7952 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7955 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7956 struct cftype *cft)
7958 return tg_get_cfs_period(css_tg(css));
7961 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7962 struct cftype *cftype, u64 cfs_period_us)
7964 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7967 struct cfs_schedulable_data {
7968 struct task_group *tg;
7969 u64 period, quota;
7973 * normalize group quota/period to be quota/max_period
7974 * note: units are usecs
7976 static u64 normalize_cfs_quota(struct task_group *tg,
7977 struct cfs_schedulable_data *d)
7979 u64 quota, period;
7981 if (tg == d->tg) {
7982 period = d->period;
7983 quota = d->quota;
7984 } else {
7985 period = tg_get_cfs_period(tg);
7986 quota = tg_get_cfs_quota(tg);
7989 /* note: these should typically be equivalent */
7990 if (quota == RUNTIME_INF || quota == -1)
7991 return RUNTIME_INF;
7993 return to_ratio(period, quota);
7996 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7998 struct cfs_schedulable_data *d = data;
7999 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8000 s64 quota = 0, parent_quota = -1;
8002 if (!tg->parent) {
8003 quota = RUNTIME_INF;
8004 } else {
8005 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8007 quota = normalize_cfs_quota(tg, d);
8008 parent_quota = parent_b->hierarchal_quota;
8011 * ensure max(child_quota) <= parent_quota, inherit when no
8012 * limit is set
8014 if (quota == RUNTIME_INF)
8015 quota = parent_quota;
8016 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8017 return -EINVAL;
8019 cfs_b->hierarchal_quota = quota;
8021 return 0;
8024 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8026 int ret;
8027 struct cfs_schedulable_data data = {
8028 .tg = tg,
8029 .period = period,
8030 .quota = quota,
8033 if (quota != RUNTIME_INF) {
8034 do_div(data.period, NSEC_PER_USEC);
8035 do_div(data.quota, NSEC_PER_USEC);
8038 rcu_read_lock();
8039 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8040 rcu_read_unlock();
8042 return ret;
8045 static int cpu_stats_show(struct seq_file *sf, void *v)
8047 struct task_group *tg = css_tg(seq_css(sf));
8048 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8050 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8051 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8052 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8054 return 0;
8056 #endif /* CONFIG_CFS_BANDWIDTH */
8057 #endif /* CONFIG_FAIR_GROUP_SCHED */
8059 #ifdef CONFIG_RT_GROUP_SCHED
8060 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8061 struct cftype *cft, s64 val)
8063 return sched_group_set_rt_runtime(css_tg(css), val);
8066 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8067 struct cftype *cft)
8069 return sched_group_rt_runtime(css_tg(css));
8072 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8073 struct cftype *cftype, u64 rt_period_us)
8075 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8078 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8079 struct cftype *cft)
8081 return sched_group_rt_period(css_tg(css));
8083 #endif /* CONFIG_RT_GROUP_SCHED */
8085 static struct cftype cpu_files[] = {
8086 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 .name = "shares",
8089 .read_u64 = cpu_shares_read_u64,
8090 .write_u64 = cpu_shares_write_u64,
8092 #endif
8093 #ifdef CONFIG_CFS_BANDWIDTH
8095 .name = "cfs_quota_us",
8096 .read_s64 = cpu_cfs_quota_read_s64,
8097 .write_s64 = cpu_cfs_quota_write_s64,
8100 .name = "cfs_period_us",
8101 .read_u64 = cpu_cfs_period_read_u64,
8102 .write_u64 = cpu_cfs_period_write_u64,
8105 .name = "stat",
8106 .seq_show = cpu_stats_show,
8108 #endif
8109 #ifdef CONFIG_RT_GROUP_SCHED
8111 .name = "rt_runtime_us",
8112 .read_s64 = cpu_rt_runtime_read,
8113 .write_s64 = cpu_rt_runtime_write,
8116 .name = "rt_period_us",
8117 .read_u64 = cpu_rt_period_read_uint,
8118 .write_u64 = cpu_rt_period_write_uint,
8120 #endif
8121 { } /* terminate */
8124 struct cgroup_subsys cpu_cgrp_subsys = {
8125 .css_alloc = cpu_cgroup_css_alloc,
8126 .css_free = cpu_cgroup_css_free,
8127 .css_online = cpu_cgroup_css_online,
8128 .css_offline = cpu_cgroup_css_offline,
8129 .can_attach = cpu_cgroup_can_attach,
8130 .attach = cpu_cgroup_attach,
8131 .exit = cpu_cgroup_exit,
8132 .legacy_cftypes = cpu_files,
8133 .early_init = 1,
8136 #endif /* CONFIG_CGROUP_SCHED */
8138 void dump_cpu_task(int cpu)
8140 pr_info("Task dump for CPU %d:\n", cpu);
8141 sched_show_task(cpu_curr(cpu));