2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
29 * Regular page slots are stabilized by the page lock even without the tree
30 * itself locked. These unlocked entries need verification under the tree
33 static inline void __clear_shadow_entry(struct address_space
*mapping
,
34 pgoff_t index
, void *entry
)
36 struct radix_tree_node
*node
;
39 if (!__radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &slot
))
43 __radix_tree_replace(&mapping
->page_tree
, node
, slot
, NULL
,
44 workingset_update_node
);
45 mapping
->nrexceptional
--;
48 static void clear_shadow_entry(struct address_space
*mapping
, pgoff_t index
,
51 spin_lock_irq(&mapping
->tree_lock
);
52 __clear_shadow_entry(mapping
, index
, entry
);
53 spin_unlock_irq(&mapping
->tree_lock
);
57 * Unconditionally remove exceptional entries. Usually called from truncate
58 * path. Note that the pagevec may be altered by this function by removing
59 * exceptional entries similar to what pagevec_remove_exceptionals does.
61 static void truncate_exceptional_pvec_entries(struct address_space
*mapping
,
62 struct pagevec
*pvec
, pgoff_t
*indices
,
68 /* Handled by shmem itself */
69 if (shmem_mapping(mapping
))
72 for (j
= 0; j
< pagevec_count(pvec
); j
++)
73 if (radix_tree_exceptional_entry(pvec
->pages
[j
]))
76 if (j
== pagevec_count(pvec
))
79 dax
= dax_mapping(mapping
);
80 lock
= !dax
&& indices
[j
] < end
;
82 spin_lock_irq(&mapping
->tree_lock
);
84 for (i
= j
; i
< pagevec_count(pvec
); i
++) {
85 struct page
*page
= pvec
->pages
[i
];
86 pgoff_t index
= indices
[i
];
88 if (!radix_tree_exceptional_entry(page
)) {
89 pvec
->pages
[j
++] = page
;
97 dax_delete_mapping_entry(mapping
, index
);
101 __clear_shadow_entry(mapping
, index
, page
);
105 spin_unlock_irq(&mapping
->tree_lock
);
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
113 static int invalidate_exceptional_entry(struct address_space
*mapping
,
114 pgoff_t index
, void *entry
)
116 /* Handled by shmem itself, or for DAX we do nothing. */
117 if (shmem_mapping(mapping
) || dax_mapping(mapping
))
119 clear_shadow_entry(mapping
, index
, entry
);
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
127 static int invalidate_exceptional_entry2(struct address_space
*mapping
,
128 pgoff_t index
, void *entry
)
130 /* Handled by shmem itself */
131 if (shmem_mapping(mapping
))
133 if (dax_mapping(mapping
))
134 return dax_invalidate_mapping_entry_sync(mapping
, index
);
135 clear_shadow_entry(mapping
, index
, entry
);
140 * do_invalidatepage - invalidate part or all of a page
141 * @page: the page which is affected
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
145 * do_invalidatepage() is called when all or part of the page has become
146 * invalidated by a truncate operation.
148 * do_invalidatepage() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point. Because the caller is about to free (and possibly reuse) those
154 void do_invalidatepage(struct page
*page
, unsigned int offset
,
157 void (*invalidatepage
)(struct page
*, unsigned int, unsigned int);
159 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
162 invalidatepage
= block_invalidatepage
;
165 (*invalidatepage
)(page
, offset
, length
);
169 * If truncate cannot remove the fs-private metadata from the page, the page
170 * becomes orphaned. It will be left on the LRU and may even be mapped into
171 * user pagetables if we're racing with filemap_fault().
173 * We need to bale out if page->mapping is no longer equal to the original
174 * mapping. This happens a) when the VM reclaimed the page while we waited on
175 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
176 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
179 truncate_cleanup_page(struct address_space
*mapping
, struct page
*page
)
181 if (page_mapped(page
)) {
182 pgoff_t nr
= PageTransHuge(page
) ? HPAGE_PMD_NR
: 1;
183 unmap_mapping_pages(mapping
, page
->index
, nr
, false);
186 if (page_has_private(page
))
187 do_invalidatepage(page
, 0, PAGE_SIZE
);
190 * Some filesystems seem to re-dirty the page even after
191 * the VM has canceled the dirty bit (eg ext3 journaling).
192 * Hence dirty accounting check is placed after invalidation.
194 cancel_dirty_page(page
);
195 ClearPageMappedToDisk(page
);
199 * This is for invalidate_mapping_pages(). That function can be called at
200 * any time, and is not supposed to throw away dirty pages. But pages can
201 * be marked dirty at any time too, so use remove_mapping which safely
202 * discards clean, unused pages.
204 * Returns non-zero if the page was successfully invalidated.
207 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
211 if (page
->mapping
!= mapping
)
214 if (page_has_private(page
) && !try_to_release_page(page
, 0))
217 ret
= remove_mapping(mapping
, page
);
222 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
224 VM_BUG_ON_PAGE(PageTail(page
), page
);
226 if (page
->mapping
!= mapping
)
229 truncate_cleanup_page(mapping
, page
);
230 delete_from_page_cache(page
);
235 * Used to get rid of pages on hardware memory corruption.
237 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
242 * Only punch for normal data pages for now.
243 * Handling other types like directories would need more auditing.
245 if (!S_ISREG(mapping
->host
->i_mode
))
247 return truncate_inode_page(mapping
, page
);
249 EXPORT_SYMBOL(generic_error_remove_page
);
252 * Safely invalidate one page from its pagecache mapping.
253 * It only drops clean, unused pages. The page must be locked.
255 * Returns 1 if the page is successfully invalidated, otherwise 0.
257 int invalidate_inode_page(struct page
*page
)
259 struct address_space
*mapping
= page_mapping(page
);
262 if (PageDirty(page
) || PageWriteback(page
))
264 if (page_mapped(page
))
266 return invalidate_complete_page(mapping
, page
);
270 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
271 * @mapping: mapping to truncate
272 * @lstart: offset from which to truncate
273 * @lend: offset to which to truncate (inclusive)
275 * Truncate the page cache, removing the pages that are between
276 * specified offsets (and zeroing out partial pages
277 * if lstart or lend + 1 is not page aligned).
279 * Truncate takes two passes - the first pass is nonblocking. It will not
280 * block on page locks and it will not block on writeback. The second pass
281 * will wait. This is to prevent as much IO as possible in the affected region.
282 * The first pass will remove most pages, so the search cost of the second pass
285 * We pass down the cache-hot hint to the page freeing code. Even if the
286 * mapping is large, it is probably the case that the final pages are the most
287 * recently touched, and freeing happens in ascending file offset order.
289 * Note that since ->invalidatepage() accepts range to invalidate
290 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
291 * page aligned properly.
293 void truncate_inode_pages_range(struct address_space
*mapping
,
294 loff_t lstart
, loff_t lend
)
296 pgoff_t start
; /* inclusive */
297 pgoff_t end
; /* exclusive */
298 unsigned int partial_start
; /* inclusive */
299 unsigned int partial_end
; /* exclusive */
301 pgoff_t indices
[PAGEVEC_SIZE
];
305 if (mapping
->nrpages
== 0 && mapping
->nrexceptional
== 0)
308 /* Offsets within partial pages */
309 partial_start
= lstart
& (PAGE_SIZE
- 1);
310 partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
313 * 'start' and 'end' always covers the range of pages to be fully
314 * truncated. Partial pages are covered with 'partial_start' at the
315 * start of the range and 'partial_end' at the end of the range.
316 * Note that 'end' is exclusive while 'lend' is inclusive.
318 start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
321 * lend == -1 indicates end-of-file so we have to set 'end'
322 * to the highest possible pgoff_t and since the type is
323 * unsigned we're using -1.
327 end
= (lend
+ 1) >> PAGE_SHIFT
;
331 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
332 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
335 * Pagevec array has exceptional entries and we may also fail
336 * to lock some pages. So we store pages that can be deleted
339 struct pagevec locked_pvec
;
341 pagevec_init(&locked_pvec
);
342 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
343 struct page
*page
= pvec
.pages
[i
];
345 /* We rely upon deletion not changing page->index */
350 if (radix_tree_exceptional_entry(page
))
353 if (!trylock_page(page
))
355 WARN_ON(page_to_index(page
) != index
);
356 if (PageWriteback(page
)) {
360 if (page
->mapping
!= mapping
) {
364 pagevec_add(&locked_pvec
, page
);
366 for (i
= 0; i
< pagevec_count(&locked_pvec
); i
++)
367 truncate_cleanup_page(mapping
, locked_pvec
.pages
[i
]);
368 delete_from_page_cache_batch(mapping
, &locked_pvec
);
369 for (i
= 0; i
< pagevec_count(&locked_pvec
); i
++)
370 unlock_page(locked_pvec
.pages
[i
]);
371 truncate_exceptional_pvec_entries(mapping
, &pvec
, indices
, end
);
372 pagevec_release(&pvec
);
377 struct page
*page
= find_lock_page(mapping
, start
- 1);
379 unsigned int top
= PAGE_SIZE
;
381 /* Truncation within a single page */
385 wait_on_page_writeback(page
);
386 zero_user_segment(page
, partial_start
, top
);
387 cleancache_invalidate_page(mapping
, page
);
388 if (page_has_private(page
))
389 do_invalidatepage(page
, partial_start
,
390 top
- partial_start
);
396 struct page
*page
= find_lock_page(mapping
, end
);
398 wait_on_page_writeback(page
);
399 zero_user_segment(page
, 0, partial_end
);
400 cleancache_invalidate_page(mapping
, page
);
401 if (page_has_private(page
))
402 do_invalidatepage(page
, 0,
409 * If the truncation happened within a single page no pages
410 * will be released, just zeroed, so we can bail out now.
418 if (!pagevec_lookup_entries(&pvec
, mapping
, index
,
419 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
), indices
)) {
420 /* If all gone from start onwards, we're done */
423 /* Otherwise restart to make sure all gone */
427 if (index
== start
&& indices
[0] >= end
) {
428 /* All gone out of hole to be punched, we're done */
429 pagevec_remove_exceptionals(&pvec
);
430 pagevec_release(&pvec
);
434 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
435 struct page
*page
= pvec
.pages
[i
];
437 /* We rely upon deletion not changing page->index */
440 /* Restart punch to make sure all gone */
445 if (radix_tree_exceptional_entry(page
))
449 WARN_ON(page_to_index(page
) != index
);
450 wait_on_page_writeback(page
);
451 truncate_inode_page(mapping
, page
);
454 truncate_exceptional_pvec_entries(mapping
, &pvec
, indices
, end
);
455 pagevec_release(&pvec
);
460 cleancache_invalidate_inode(mapping
);
462 EXPORT_SYMBOL(truncate_inode_pages_range
);
465 * truncate_inode_pages - truncate *all* the pages from an offset
466 * @mapping: mapping to truncate
467 * @lstart: offset from which to truncate
469 * Called under (and serialised by) inode->i_mutex.
471 * Note: When this function returns, there can be a page in the process of
472 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
473 * mapping->nrpages can be non-zero when this function returns even after
474 * truncation of the whole mapping.
476 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
478 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
480 EXPORT_SYMBOL(truncate_inode_pages
);
483 * truncate_inode_pages_final - truncate *all* pages before inode dies
484 * @mapping: mapping to truncate
486 * Called under (and serialized by) inode->i_mutex.
488 * Filesystems have to use this in the .evict_inode path to inform the
489 * VM that this is the final truncate and the inode is going away.
491 void truncate_inode_pages_final(struct address_space
*mapping
)
493 unsigned long nrexceptional
;
494 unsigned long nrpages
;
497 * Page reclaim can not participate in regular inode lifetime
498 * management (can't call iput()) and thus can race with the
499 * inode teardown. Tell it when the address space is exiting,
500 * so that it does not install eviction information after the
501 * final truncate has begun.
503 mapping_set_exiting(mapping
);
506 * When reclaim installs eviction entries, it increases
507 * nrexceptional first, then decreases nrpages. Make sure we see
508 * this in the right order or we might miss an entry.
510 nrpages
= mapping
->nrpages
;
512 nrexceptional
= mapping
->nrexceptional
;
514 if (nrpages
|| nrexceptional
) {
516 * As truncation uses a lockless tree lookup, cycle
517 * the tree lock to make sure any ongoing tree
518 * modification that does not see AS_EXITING is
519 * completed before starting the final truncate.
521 spin_lock_irq(&mapping
->tree_lock
);
522 spin_unlock_irq(&mapping
->tree_lock
);
524 truncate_inode_pages(mapping
, 0);
527 EXPORT_SYMBOL(truncate_inode_pages_final
);
530 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
531 * @mapping: the address_space which holds the pages to invalidate
532 * @start: the offset 'from' which to invalidate
533 * @end: the offset 'to' which to invalidate (inclusive)
535 * This function only removes the unlocked pages, if you want to
536 * remove all the pages of one inode, you must call truncate_inode_pages.
538 * invalidate_mapping_pages() will not block on IO activity. It will not
539 * invalidate pages which are dirty, locked, under writeback or mapped into
542 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
543 pgoff_t start
, pgoff_t end
)
545 pgoff_t indices
[PAGEVEC_SIZE
];
547 pgoff_t index
= start
;
549 unsigned long count
= 0;
553 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
554 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
556 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
557 struct page
*page
= pvec
.pages
[i
];
559 /* We rely upon deletion not changing page->index */
564 if (radix_tree_exceptional_entry(page
)) {
565 invalidate_exceptional_entry(mapping
, index
,
570 if (!trylock_page(page
))
573 WARN_ON(page_to_index(page
) != index
);
575 /* Middle of THP: skip */
576 if (PageTransTail(page
)) {
579 } else if (PageTransHuge(page
)) {
580 index
+= HPAGE_PMD_NR
- 1;
581 i
+= HPAGE_PMD_NR
- 1;
583 * 'end' is in the middle of THP. Don't
584 * invalidate the page as the part outside of
585 * 'end' could be still useful.
593 ret
= invalidate_inode_page(page
);
596 * Invalidation is a hint that the page is no longer
597 * of interest and try to speed up its reclaim.
600 deactivate_file_page(page
);
603 pagevec_remove_exceptionals(&pvec
);
604 pagevec_release(&pvec
);
610 EXPORT_SYMBOL(invalidate_mapping_pages
);
613 * This is like invalidate_complete_page(), except it ignores the page's
614 * refcount. We do this because invalidate_inode_pages2() needs stronger
615 * invalidation guarantees, and cannot afford to leave pages behind because
616 * shrink_page_list() has a temp ref on them, or because they're transiently
617 * sitting in the lru_cache_add() pagevecs.
620 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
624 if (page
->mapping
!= mapping
)
627 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
630 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
634 BUG_ON(page_has_private(page
));
635 __delete_from_page_cache(page
, NULL
);
636 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
638 if (mapping
->a_ops
->freepage
)
639 mapping
->a_ops
->freepage(page
);
641 put_page(page
); /* pagecache ref */
644 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
648 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
650 if (!PageDirty(page
))
652 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
654 return mapping
->a_ops
->launder_page(page
);
658 * invalidate_inode_pages2_range - remove range of pages from an address_space
659 * @mapping: the address_space
660 * @start: the page offset 'from' which to invalidate
661 * @end: the page offset 'to' which to invalidate (inclusive)
663 * Any pages which are found to be mapped into pagetables are unmapped prior to
666 * Returns -EBUSY if any pages could not be invalidated.
668 int invalidate_inode_pages2_range(struct address_space
*mapping
,
669 pgoff_t start
, pgoff_t end
)
671 pgoff_t indices
[PAGEVEC_SIZE
];
677 int did_range_unmap
= 0;
679 if (mapping
->nrpages
== 0 && mapping
->nrexceptional
== 0)
684 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
685 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
687 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
688 struct page
*page
= pvec
.pages
[i
];
690 /* We rely upon deletion not changing page->index */
695 if (radix_tree_exceptional_entry(page
)) {
696 if (!invalidate_exceptional_entry2(mapping
,
703 WARN_ON(page_to_index(page
) != index
);
704 if (page
->mapping
!= mapping
) {
708 wait_on_page_writeback(page
);
709 if (page_mapped(page
)) {
710 if (!did_range_unmap
) {
712 * Zap the rest of the file in one hit.
714 unmap_mapping_pages(mapping
, index
,
715 (1 + end
- index
), false);
721 unmap_mapping_pages(mapping
, index
,
725 BUG_ON(page_mapped(page
));
726 ret2
= do_launder_page(mapping
, page
);
728 if (!invalidate_complete_page2(mapping
, page
))
735 pagevec_remove_exceptionals(&pvec
);
736 pagevec_release(&pvec
);
741 * For DAX we invalidate page tables after invalidating radix tree. We
742 * could invalidate page tables while invalidating each entry however
743 * that would be expensive. And doing range unmapping before doesn't
744 * work as we have no cheap way to find whether radix tree entry didn't
745 * get remapped later.
747 if (dax_mapping(mapping
)) {
748 unmap_mapping_pages(mapping
, start
, end
- start
+ 1, false);
751 cleancache_invalidate_inode(mapping
);
754 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
757 * invalidate_inode_pages2 - remove all pages from an address_space
758 * @mapping: the address_space
760 * Any pages which are found to be mapped into pagetables are unmapped prior to
763 * Returns -EBUSY if any pages could not be invalidated.
765 int invalidate_inode_pages2(struct address_space
*mapping
)
767 return invalidate_inode_pages2_range(mapping
, 0, -1);
769 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
772 * truncate_pagecache - unmap and remove pagecache that has been truncated
774 * @newsize: new file size
776 * inode's new i_size must already be written before truncate_pagecache
779 * This function should typically be called before the filesystem
780 * releases resources associated with the freed range (eg. deallocates
781 * blocks). This way, pagecache will always stay logically coherent
782 * with on-disk format, and the filesystem would not have to deal with
783 * situations such as writepage being called for a page that has already
784 * had its underlying blocks deallocated.
786 void truncate_pagecache(struct inode
*inode
, loff_t newsize
)
788 struct address_space
*mapping
= inode
->i_mapping
;
789 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
792 * unmap_mapping_range is called twice, first simply for
793 * efficiency so that truncate_inode_pages does fewer
794 * single-page unmaps. However after this first call, and
795 * before truncate_inode_pages finishes, it is possible for
796 * private pages to be COWed, which remain after
797 * truncate_inode_pages finishes, hence the second
798 * unmap_mapping_range call must be made for correctness.
800 unmap_mapping_range(mapping
, holebegin
, 0, 1);
801 truncate_inode_pages(mapping
, newsize
);
802 unmap_mapping_range(mapping
, holebegin
, 0, 1);
804 EXPORT_SYMBOL(truncate_pagecache
);
807 * truncate_setsize - update inode and pagecache for a new file size
809 * @newsize: new file size
811 * truncate_setsize updates i_size and performs pagecache truncation (if
812 * necessary) to @newsize. It will be typically be called from the filesystem's
813 * setattr function when ATTR_SIZE is passed in.
815 * Must be called with a lock serializing truncates and writes (generally
816 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
817 * specific block truncation has been performed.
819 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
821 loff_t oldsize
= inode
->i_size
;
823 i_size_write(inode
, newsize
);
824 if (newsize
> oldsize
)
825 pagecache_isize_extended(inode
, oldsize
, newsize
);
826 truncate_pagecache(inode
, newsize
);
828 EXPORT_SYMBOL(truncate_setsize
);
831 * pagecache_isize_extended - update pagecache after extension of i_size
832 * @inode: inode for which i_size was extended
833 * @from: original inode size
834 * @to: new inode size
836 * Handle extension of inode size either caused by extending truncate or by
837 * write starting after current i_size. We mark the page straddling current
838 * i_size RO so that page_mkwrite() is called on the nearest write access to
839 * the page. This way filesystem can be sure that page_mkwrite() is called on
840 * the page before user writes to the page via mmap after the i_size has been
843 * The function must be called after i_size is updated so that page fault
844 * coming after we unlock the page will already see the new i_size.
845 * The function must be called while we still hold i_mutex - this not only
846 * makes sure i_size is stable but also that userspace cannot observe new
847 * i_size value before we are prepared to store mmap writes at new inode size.
849 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
)
851 int bsize
= i_blocksize(inode
);
856 WARN_ON(to
> inode
->i_size
);
858 if (from
>= to
|| bsize
== PAGE_SIZE
)
860 /* Page straddling @from will not have any hole block created? */
861 rounded_from
= round_up(from
, bsize
);
862 if (to
<= rounded_from
|| !(rounded_from
& (PAGE_SIZE
- 1)))
865 index
= from
>> PAGE_SHIFT
;
866 page
= find_lock_page(inode
->i_mapping
, index
);
867 /* Page not cached? Nothing to do */
871 * See clear_page_dirty_for_io() for details why set_page_dirty()
874 if (page_mkclean(page
))
875 set_page_dirty(page
);
879 EXPORT_SYMBOL(pagecache_isize_extended
);
882 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
884 * @lstart: offset of beginning of hole
885 * @lend: offset of last byte of hole
887 * This function should typically be called before the filesystem
888 * releases resources associated with the freed range (eg. deallocates
889 * blocks). This way, pagecache will always stay logically coherent
890 * with on-disk format, and the filesystem would not have to deal with
891 * situations such as writepage being called for a page that has already
892 * had its underlying blocks deallocated.
894 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
896 struct address_space
*mapping
= inode
->i_mapping
;
897 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
898 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
900 * This rounding is currently just for example: unmap_mapping_range
901 * expands its hole outwards, whereas we want it to contract the hole
902 * inwards. However, existing callers of truncate_pagecache_range are
903 * doing their own page rounding first. Note that unmap_mapping_range
904 * allows holelen 0 for all, and we allow lend -1 for end of file.
908 * Unlike in truncate_pagecache, unmap_mapping_range is called only
909 * once (before truncating pagecache), and without "even_cows" flag:
910 * hole-punching should not remove private COWed pages from the hole.
912 if ((u64
)unmap_end
> (u64
)unmap_start
)
913 unmap_mapping_range(mapping
, unmap_start
,
914 1 + unmap_end
- unmap_start
, 0);
915 truncate_inode_pages_range(mapping
, lstart
, lend
);
917 EXPORT_SYMBOL(truncate_pagecache_range
);