Staging: bcm: Remove typedef for _stLocalSFAddIndication and call directly.
[linux-2.6/btrfs-unstable.git] / kernel / timer.c
blob8c5e7b908c6814ed5342e63c65b69d4acb9ea037
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 unsigned long active_timers;
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
86 } ____cacheline_aligned;
88 struct tvec_base boot_tvec_bases;
89 EXPORT_SYMBOL(boot_tvec_bases);
90 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
103 static inline void timer_set_deferrable(struct timer_list *timer)
105 timer->base = TBASE_MAKE_DEFERRED(timer->base);
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
118 int rem;
119 unsigned long original = j;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
129 j += cpu * 3;
131 rem = j % HZ;
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
171 * The return value is the rounded version of the @j parameter.
173 unsigned long __round_jiffies(unsigned long j, int cpu)
175 return round_jiffies_common(j, cpu, false);
177 EXPORT_SYMBOL_GPL(__round_jiffies);
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
197 * The return value is the rounded version of the @j parameter.
199 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201 unsigned long j0 = jiffies;
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
221 * The return value is the rounded version of the @j parameter.
223 unsigned long round_jiffies(unsigned long j)
225 return round_jiffies_common(j, raw_smp_processor_id(), false);
227 EXPORT_SYMBOL_GPL(round_jiffies);
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
242 * The return value is the rounded version of the @j parameter.
244 unsigned long round_jiffies_relative(unsigned long j)
246 return __round_jiffies_relative(j, raw_smp_processor_id());
248 EXPORT_SYMBOL_GPL(round_jiffies_relative);
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
260 unsigned long __round_jiffies_up(unsigned long j, int cpu)
262 return round_jiffies_common(j, cpu, true);
264 EXPORT_SYMBOL_GPL(__round_jiffies_up);
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
276 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278 unsigned long j0 = jiffies;
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
294 unsigned long round_jiffies_up(unsigned long j)
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
298 EXPORT_SYMBOL_GPL(round_jiffies_up);
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
309 unsigned long round_jiffies_up_relative(unsigned long j)
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
316 * set_timer_slack - set the allowed slack for a timer
317 * @timer: the timer to be modified
318 * @slack_hz: the amount of time (in jiffies) allowed for rounding
320 * Set the amount of time, in jiffies, that a certain timer has
321 * in terms of slack. By setting this value, the timer subsystem
322 * will schedule the actual timer somewhere between
323 * the time mod_timer() asks for, and that time plus the slack.
325 * By setting the slack to -1, a percentage of the delay is used
326 * instead.
328 void set_timer_slack(struct timer_list *timer, int slack_hz)
330 timer->slack = slack_hz;
332 EXPORT_SYMBOL_GPL(set_timer_slack);
334 static void
335 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
337 unsigned long expires = timer->expires;
338 unsigned long idx = expires - base->timer_jiffies;
339 struct list_head *vec;
341 if (idx < TVR_SIZE) {
342 int i = expires & TVR_MASK;
343 vec = base->tv1.vec + i;
344 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
345 int i = (expires >> TVR_BITS) & TVN_MASK;
346 vec = base->tv2.vec + i;
347 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
348 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
349 vec = base->tv3.vec + i;
350 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
351 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
352 vec = base->tv4.vec + i;
353 } else if ((signed long) idx < 0) {
355 * Can happen if you add a timer with expires == jiffies,
356 * or you set a timer to go off in the past
358 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
359 } else {
360 int i;
361 /* If the timeout is larger than 0xffffffff on 64-bit
362 * architectures then we use the maximum timeout:
364 if (idx > 0xffffffffUL) {
365 idx = 0xffffffffUL;
366 expires = idx + base->timer_jiffies;
368 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
369 vec = base->tv5.vec + i;
372 * Timers are FIFO:
374 list_add_tail(&timer->entry, vec);
377 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
379 __internal_add_timer(base, timer);
381 * Update base->active_timers and base->next_timer
383 if (!tbase_get_deferrable(timer->base)) {
384 if (time_before(timer->expires, base->next_timer))
385 base->next_timer = timer->expires;
386 base->active_timers++;
390 #ifdef CONFIG_TIMER_STATS
391 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
393 if (timer->start_site)
394 return;
396 timer->start_site = addr;
397 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
398 timer->start_pid = current->pid;
401 static void timer_stats_account_timer(struct timer_list *timer)
403 unsigned int flag = 0;
405 if (likely(!timer->start_site))
406 return;
407 if (unlikely(tbase_get_deferrable(timer->base)))
408 flag |= TIMER_STATS_FLAG_DEFERRABLE;
410 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
411 timer->function, timer->start_comm, flag);
414 #else
415 static void timer_stats_account_timer(struct timer_list *timer) {}
416 #endif
418 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420 static struct debug_obj_descr timer_debug_descr;
422 static void *timer_debug_hint(void *addr)
424 return ((struct timer_list *) addr)->function;
428 * fixup_init is called when:
429 * - an active object is initialized
431 static int timer_fixup_init(void *addr, enum debug_obj_state state)
433 struct timer_list *timer = addr;
435 switch (state) {
436 case ODEBUG_STATE_ACTIVE:
437 del_timer_sync(timer);
438 debug_object_init(timer, &timer_debug_descr);
439 return 1;
440 default:
441 return 0;
445 /* Stub timer callback for improperly used timers. */
446 static void stub_timer(unsigned long data)
448 WARN_ON(1);
452 * fixup_activate is called when:
453 * - an active object is activated
454 * - an unknown object is activated (might be a statically initialized object)
456 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
458 struct timer_list *timer = addr;
460 switch (state) {
462 case ODEBUG_STATE_NOTAVAILABLE:
464 * This is not really a fixup. The timer was
465 * statically initialized. We just make sure that it
466 * is tracked in the object tracker.
468 if (timer->entry.next == NULL &&
469 timer->entry.prev == TIMER_ENTRY_STATIC) {
470 debug_object_init(timer, &timer_debug_descr);
471 debug_object_activate(timer, &timer_debug_descr);
472 return 0;
473 } else {
474 setup_timer(timer, stub_timer, 0);
475 return 1;
477 return 0;
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
482 default:
483 return 0;
488 * fixup_free is called when:
489 * - an active object is freed
491 static int timer_fixup_free(void *addr, enum debug_obj_state state)
493 struct timer_list *timer = addr;
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 del_timer_sync(timer);
498 debug_object_free(timer, &timer_debug_descr);
499 return 1;
500 default:
501 return 0;
506 * fixup_assert_init is called when:
507 * - an untracked/uninit-ed object is found
509 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
511 struct timer_list *timer = addr;
513 switch (state) {
514 case ODEBUG_STATE_NOTAVAILABLE:
515 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
517 * This is not really a fixup. The timer was
518 * statically initialized. We just make sure that it
519 * is tracked in the object tracker.
521 debug_object_init(timer, &timer_debug_descr);
522 return 0;
523 } else {
524 setup_timer(timer, stub_timer, 0);
525 return 1;
527 default:
528 return 0;
532 static struct debug_obj_descr timer_debug_descr = {
533 .name = "timer_list",
534 .debug_hint = timer_debug_hint,
535 .fixup_init = timer_fixup_init,
536 .fixup_activate = timer_fixup_activate,
537 .fixup_free = timer_fixup_free,
538 .fixup_assert_init = timer_fixup_assert_init,
541 static inline void debug_timer_init(struct timer_list *timer)
543 debug_object_init(timer, &timer_debug_descr);
546 static inline void debug_timer_activate(struct timer_list *timer)
548 debug_object_activate(timer, &timer_debug_descr);
551 static inline void debug_timer_deactivate(struct timer_list *timer)
553 debug_object_deactivate(timer, &timer_debug_descr);
556 static inline void debug_timer_free(struct timer_list *timer)
558 debug_object_free(timer, &timer_debug_descr);
561 static inline void debug_timer_assert_init(struct timer_list *timer)
563 debug_object_assert_init(timer, &timer_debug_descr);
566 static void __init_timer(struct timer_list *timer,
567 const char *name,
568 struct lock_class_key *key);
570 void init_timer_on_stack_key(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
574 debug_object_init_on_stack(timer, &timer_debug_descr);
575 __init_timer(timer, name, key);
577 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
579 void destroy_timer_on_stack(struct timer_list *timer)
581 debug_object_free(timer, &timer_debug_descr);
583 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
585 #else
586 static inline void debug_timer_init(struct timer_list *timer) { }
587 static inline void debug_timer_activate(struct timer_list *timer) { }
588 static inline void debug_timer_deactivate(struct timer_list *timer) { }
589 static inline void debug_timer_assert_init(struct timer_list *timer) { }
590 #endif
592 static inline void debug_init(struct timer_list *timer)
594 debug_timer_init(timer);
595 trace_timer_init(timer);
598 static inline void
599 debug_activate(struct timer_list *timer, unsigned long expires)
601 debug_timer_activate(timer);
602 trace_timer_start(timer, expires);
605 static inline void debug_deactivate(struct timer_list *timer)
607 debug_timer_deactivate(timer);
608 trace_timer_cancel(timer);
611 static inline void debug_assert_init(struct timer_list *timer)
613 debug_timer_assert_init(timer);
616 static void __init_timer(struct timer_list *timer,
617 const char *name,
618 struct lock_class_key *key)
620 timer->entry.next = NULL;
621 timer->base = __raw_get_cpu_var(tvec_bases);
622 timer->slack = -1;
623 #ifdef CONFIG_TIMER_STATS
624 timer->start_site = NULL;
625 timer->start_pid = -1;
626 memset(timer->start_comm, 0, TASK_COMM_LEN);
627 #endif
628 lockdep_init_map(&timer->lockdep_map, name, key, 0);
631 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
632 const char *name,
633 struct lock_class_key *key,
634 void (*function)(unsigned long),
635 unsigned long data)
637 timer->function = function;
638 timer->data = data;
639 init_timer_on_stack_key(timer, name, key);
640 timer_set_deferrable(timer);
642 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
645 * init_timer_key - initialize a timer
646 * @timer: the timer to be initialized
647 * @name: name of the timer
648 * @key: lockdep class key of the fake lock used for tracking timer
649 * sync lock dependencies
651 * init_timer_key() must be done to a timer prior calling *any* of the
652 * other timer functions.
654 void init_timer_key(struct timer_list *timer,
655 const char *name,
656 struct lock_class_key *key)
658 debug_init(timer);
659 __init_timer(timer, name, key);
661 EXPORT_SYMBOL(init_timer_key);
663 void init_timer_deferrable_key(struct timer_list *timer,
664 const char *name,
665 struct lock_class_key *key)
667 init_timer_key(timer, name, key);
668 timer_set_deferrable(timer);
670 EXPORT_SYMBOL(init_timer_deferrable_key);
672 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
674 struct list_head *entry = &timer->entry;
676 debug_deactivate(timer);
678 __list_del(entry->prev, entry->next);
679 if (clear_pending)
680 entry->next = NULL;
681 entry->prev = LIST_POISON2;
684 static inline void
685 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
687 detach_timer(timer, true);
688 if (!tbase_get_deferrable(timer->base))
689 timer->base->active_timers--;
692 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
693 bool clear_pending)
695 if (!timer_pending(timer))
696 return 0;
698 detach_timer(timer, clear_pending);
699 if (!tbase_get_deferrable(timer->base)) {
700 timer->base->active_timers--;
701 if (timer->expires == base->next_timer)
702 base->next_timer = base->timer_jiffies;
704 return 1;
708 * We are using hashed locking: holding per_cpu(tvec_bases).lock
709 * means that all timers which are tied to this base via timer->base are
710 * locked, and the base itself is locked too.
712 * So __run_timers/migrate_timers can safely modify all timers which could
713 * be found on ->tvX lists.
715 * When the timer's base is locked, and the timer removed from list, it is
716 * possible to set timer->base = NULL and drop the lock: the timer remains
717 * locked.
719 static struct tvec_base *lock_timer_base(struct timer_list *timer,
720 unsigned long *flags)
721 __acquires(timer->base->lock)
723 struct tvec_base *base;
725 for (;;) {
726 struct tvec_base *prelock_base = timer->base;
727 base = tbase_get_base(prelock_base);
728 if (likely(base != NULL)) {
729 spin_lock_irqsave(&base->lock, *flags);
730 if (likely(prelock_base == timer->base))
731 return base;
732 /* The timer has migrated to another CPU */
733 spin_unlock_irqrestore(&base->lock, *flags);
735 cpu_relax();
739 static inline int
740 __mod_timer(struct timer_list *timer, unsigned long expires,
741 bool pending_only, int pinned)
743 struct tvec_base *base, *new_base;
744 unsigned long flags;
745 int ret = 0 , cpu;
747 timer_stats_timer_set_start_info(timer);
748 BUG_ON(!timer->function);
750 base = lock_timer_base(timer, &flags);
752 ret = detach_if_pending(timer, base, false);
753 if (!ret && pending_only)
754 goto out_unlock;
756 debug_activate(timer, expires);
758 cpu = smp_processor_id();
760 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
761 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
762 cpu = get_nohz_timer_target();
763 #endif
764 new_base = per_cpu(tvec_bases, cpu);
766 if (base != new_base) {
768 * We are trying to schedule the timer on the local CPU.
769 * However we can't change timer's base while it is running,
770 * otherwise del_timer_sync() can't detect that the timer's
771 * handler yet has not finished. This also guarantees that
772 * the timer is serialized wrt itself.
774 if (likely(base->running_timer != timer)) {
775 /* See the comment in lock_timer_base() */
776 timer_set_base(timer, NULL);
777 spin_unlock(&base->lock);
778 base = new_base;
779 spin_lock(&base->lock);
780 timer_set_base(timer, base);
784 timer->expires = expires;
785 internal_add_timer(base, timer);
787 out_unlock:
788 spin_unlock_irqrestore(&base->lock, flags);
790 return ret;
794 * mod_timer_pending - modify a pending timer's timeout
795 * @timer: the pending timer to be modified
796 * @expires: new timeout in jiffies
798 * mod_timer_pending() is the same for pending timers as mod_timer(),
799 * but will not re-activate and modify already deleted timers.
801 * It is useful for unserialized use of timers.
803 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
805 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
807 EXPORT_SYMBOL(mod_timer_pending);
810 * Decide where to put the timer while taking the slack into account
812 * Algorithm:
813 * 1) calculate the maximum (absolute) time
814 * 2) calculate the highest bit where the expires and new max are different
815 * 3) use this bit to make a mask
816 * 4) use the bitmask to round down the maximum time, so that all last
817 * bits are zeros
819 static inline
820 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
822 unsigned long expires_limit, mask;
823 int bit;
825 if (timer->slack >= 0) {
826 expires_limit = expires + timer->slack;
827 } else {
828 long delta = expires - jiffies;
830 if (delta < 256)
831 return expires;
833 expires_limit = expires + delta / 256;
835 mask = expires ^ expires_limit;
836 if (mask == 0)
837 return expires;
839 bit = find_last_bit(&mask, BITS_PER_LONG);
841 mask = (1 << bit) - 1;
843 expires_limit = expires_limit & ~(mask);
845 return expires_limit;
849 * mod_timer - modify a timer's timeout
850 * @timer: the timer to be modified
851 * @expires: new timeout in jiffies
853 * mod_timer() is a more efficient way to update the expire field of an
854 * active timer (if the timer is inactive it will be activated)
856 * mod_timer(timer, expires) is equivalent to:
858 * del_timer(timer); timer->expires = expires; add_timer(timer);
860 * Note that if there are multiple unserialized concurrent users of the
861 * same timer, then mod_timer() is the only safe way to modify the timeout,
862 * since add_timer() cannot modify an already running timer.
864 * The function returns whether it has modified a pending timer or not.
865 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
866 * active timer returns 1.)
868 int mod_timer(struct timer_list *timer, unsigned long expires)
870 expires = apply_slack(timer, expires);
873 * This is a common optimization triggered by the
874 * networking code - if the timer is re-modified
875 * to be the same thing then just return:
877 if (timer_pending(timer) && timer->expires == expires)
878 return 1;
880 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
882 EXPORT_SYMBOL(mod_timer);
885 * mod_timer_pinned - modify a timer's timeout
886 * @timer: the timer to be modified
887 * @expires: new timeout in jiffies
889 * mod_timer_pinned() is a way to update the expire field of an
890 * active timer (if the timer is inactive it will be activated)
891 * and to ensure that the timer is scheduled on the current CPU.
893 * Note that this does not prevent the timer from being migrated
894 * when the current CPU goes offline. If this is a problem for
895 * you, use CPU-hotplug notifiers to handle it correctly, for
896 * example, cancelling the timer when the corresponding CPU goes
897 * offline.
899 * mod_timer_pinned(timer, expires) is equivalent to:
901 * del_timer(timer); timer->expires = expires; add_timer(timer);
903 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
905 if (timer->expires == expires && timer_pending(timer))
906 return 1;
908 return __mod_timer(timer, expires, false, TIMER_PINNED);
910 EXPORT_SYMBOL(mod_timer_pinned);
913 * add_timer - start a timer
914 * @timer: the timer to be added
916 * The kernel will do a ->function(->data) callback from the
917 * timer interrupt at the ->expires point in the future. The
918 * current time is 'jiffies'.
920 * The timer's ->expires, ->function (and if the handler uses it, ->data)
921 * fields must be set prior calling this function.
923 * Timers with an ->expires field in the past will be executed in the next
924 * timer tick.
926 void add_timer(struct timer_list *timer)
928 BUG_ON(timer_pending(timer));
929 mod_timer(timer, timer->expires);
931 EXPORT_SYMBOL(add_timer);
934 * add_timer_on - start a timer on a particular CPU
935 * @timer: the timer to be added
936 * @cpu: the CPU to start it on
938 * This is not very scalable on SMP. Double adds are not possible.
940 void add_timer_on(struct timer_list *timer, int cpu)
942 struct tvec_base *base = per_cpu(tvec_bases, cpu);
943 unsigned long flags;
945 timer_stats_timer_set_start_info(timer);
946 BUG_ON(timer_pending(timer) || !timer->function);
947 spin_lock_irqsave(&base->lock, flags);
948 timer_set_base(timer, base);
949 debug_activate(timer, timer->expires);
950 internal_add_timer(base, timer);
952 * Check whether the other CPU is idle and needs to be
953 * triggered to reevaluate the timer wheel when nohz is
954 * active. We are protected against the other CPU fiddling
955 * with the timer by holding the timer base lock. This also
956 * makes sure that a CPU on the way to idle can not evaluate
957 * the timer wheel.
959 wake_up_idle_cpu(cpu);
960 spin_unlock_irqrestore(&base->lock, flags);
962 EXPORT_SYMBOL_GPL(add_timer_on);
965 * del_timer - deactive a timer.
966 * @timer: the timer to be deactivated
968 * del_timer() deactivates a timer - this works on both active and inactive
969 * timers.
971 * The function returns whether it has deactivated a pending timer or not.
972 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
973 * active timer returns 1.)
975 int del_timer(struct timer_list *timer)
977 struct tvec_base *base;
978 unsigned long flags;
979 int ret = 0;
981 debug_assert_init(timer);
983 timer_stats_timer_clear_start_info(timer);
984 if (timer_pending(timer)) {
985 base = lock_timer_base(timer, &flags);
986 ret = detach_if_pending(timer, base, true);
987 spin_unlock_irqrestore(&base->lock, flags);
990 return ret;
992 EXPORT_SYMBOL(del_timer);
995 * try_to_del_timer_sync - Try to deactivate a timer
996 * @timer: timer do del
998 * This function tries to deactivate a timer. Upon successful (ret >= 0)
999 * exit the timer is not queued and the handler is not running on any CPU.
1001 int try_to_del_timer_sync(struct timer_list *timer)
1003 struct tvec_base *base;
1004 unsigned long flags;
1005 int ret = -1;
1007 debug_assert_init(timer);
1009 base = lock_timer_base(timer, &flags);
1011 if (base->running_timer != timer) {
1012 timer_stats_timer_clear_start_info(timer);
1013 ret = detach_if_pending(timer, base, true);
1015 spin_unlock_irqrestore(&base->lock, flags);
1017 return ret;
1019 EXPORT_SYMBOL(try_to_del_timer_sync);
1021 #ifdef CONFIG_SMP
1023 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1024 * @timer: the timer to be deactivated
1026 * This function only differs from del_timer() on SMP: besides deactivating
1027 * the timer it also makes sure the handler has finished executing on other
1028 * CPUs.
1030 * Synchronization rules: Callers must prevent restarting of the timer,
1031 * otherwise this function is meaningless. It must not be called from
1032 * interrupt contexts. The caller must not hold locks which would prevent
1033 * completion of the timer's handler. The timer's handler must not call
1034 * add_timer_on(). Upon exit the timer is not queued and the handler is
1035 * not running on any CPU.
1037 * Note: You must not hold locks that are held in interrupt context
1038 * while calling this function. Even if the lock has nothing to do
1039 * with the timer in question. Here's why:
1041 * CPU0 CPU1
1042 * ---- ----
1043 * <SOFTIRQ>
1044 * call_timer_fn();
1045 * base->running_timer = mytimer;
1046 * spin_lock_irq(somelock);
1047 * <IRQ>
1048 * spin_lock(somelock);
1049 * del_timer_sync(mytimer);
1050 * while (base->running_timer == mytimer);
1052 * Now del_timer_sync() will never return and never release somelock.
1053 * The interrupt on the other CPU is waiting to grab somelock but
1054 * it has interrupted the softirq that CPU0 is waiting to finish.
1056 * The function returns whether it has deactivated a pending timer or not.
1058 int del_timer_sync(struct timer_list *timer)
1060 #ifdef CONFIG_LOCKDEP
1061 unsigned long flags;
1064 * If lockdep gives a backtrace here, please reference
1065 * the synchronization rules above.
1067 local_irq_save(flags);
1068 lock_map_acquire(&timer->lockdep_map);
1069 lock_map_release(&timer->lockdep_map);
1070 local_irq_restore(flags);
1071 #endif
1073 * don't use it in hardirq context, because it
1074 * could lead to deadlock.
1076 WARN_ON(in_irq());
1077 for (;;) {
1078 int ret = try_to_del_timer_sync(timer);
1079 if (ret >= 0)
1080 return ret;
1081 cpu_relax();
1084 EXPORT_SYMBOL(del_timer_sync);
1085 #endif
1087 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1089 /* cascade all the timers from tv up one level */
1090 struct timer_list *timer, *tmp;
1091 struct list_head tv_list;
1093 list_replace_init(tv->vec + index, &tv_list);
1096 * We are removing _all_ timers from the list, so we
1097 * don't have to detach them individually.
1099 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1100 BUG_ON(tbase_get_base(timer->base) != base);
1101 /* No accounting, while moving them */
1102 __internal_add_timer(base, timer);
1105 return index;
1108 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1109 unsigned long data)
1111 int preempt_count = preempt_count();
1113 #ifdef CONFIG_LOCKDEP
1115 * It is permissible to free the timer from inside the
1116 * function that is called from it, this we need to take into
1117 * account for lockdep too. To avoid bogus "held lock freed"
1118 * warnings as well as problems when looking into
1119 * timer->lockdep_map, make a copy and use that here.
1121 struct lockdep_map lockdep_map;
1123 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1124 #endif
1126 * Couple the lock chain with the lock chain at
1127 * del_timer_sync() by acquiring the lock_map around the fn()
1128 * call here and in del_timer_sync().
1130 lock_map_acquire(&lockdep_map);
1132 trace_timer_expire_entry(timer);
1133 fn(data);
1134 trace_timer_expire_exit(timer);
1136 lock_map_release(&lockdep_map);
1138 if (preempt_count != preempt_count()) {
1139 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1140 fn, preempt_count, preempt_count());
1142 * Restore the preempt count. That gives us a decent
1143 * chance to survive and extract information. If the
1144 * callback kept a lock held, bad luck, but not worse
1145 * than the BUG() we had.
1147 preempt_count() = preempt_count;
1151 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1154 * __run_timers - run all expired timers (if any) on this CPU.
1155 * @base: the timer vector to be processed.
1157 * This function cascades all vectors and executes all expired timer
1158 * vectors.
1160 static inline void __run_timers(struct tvec_base *base)
1162 struct timer_list *timer;
1164 spin_lock_irq(&base->lock);
1165 while (time_after_eq(jiffies, base->timer_jiffies)) {
1166 struct list_head work_list;
1167 struct list_head *head = &work_list;
1168 int index = base->timer_jiffies & TVR_MASK;
1171 * Cascade timers:
1173 if (!index &&
1174 (!cascade(base, &base->tv2, INDEX(0))) &&
1175 (!cascade(base, &base->tv3, INDEX(1))) &&
1176 !cascade(base, &base->tv4, INDEX(2)))
1177 cascade(base, &base->tv5, INDEX(3));
1178 ++base->timer_jiffies;
1179 list_replace_init(base->tv1.vec + index, &work_list);
1180 while (!list_empty(head)) {
1181 void (*fn)(unsigned long);
1182 unsigned long data;
1184 timer = list_first_entry(head, struct timer_list,entry);
1185 fn = timer->function;
1186 data = timer->data;
1188 timer_stats_account_timer(timer);
1190 base->running_timer = timer;
1191 detach_expired_timer(timer, base);
1193 spin_unlock_irq(&base->lock);
1194 call_timer_fn(timer, fn, data);
1195 spin_lock_irq(&base->lock);
1198 base->running_timer = NULL;
1199 spin_unlock_irq(&base->lock);
1202 #ifdef CONFIG_NO_HZ
1204 * Find out when the next timer event is due to happen. This
1205 * is used on S/390 to stop all activity when a CPU is idle.
1206 * This function needs to be called with interrupts disabled.
1208 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1210 unsigned long timer_jiffies = base->timer_jiffies;
1211 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1212 int index, slot, array, found = 0;
1213 struct timer_list *nte;
1214 struct tvec *varray[4];
1216 /* Look for timer events in tv1. */
1217 index = slot = timer_jiffies & TVR_MASK;
1218 do {
1219 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1220 if (tbase_get_deferrable(nte->base))
1221 continue;
1223 found = 1;
1224 expires = nte->expires;
1225 /* Look at the cascade bucket(s)? */
1226 if (!index || slot < index)
1227 goto cascade;
1228 return expires;
1230 slot = (slot + 1) & TVR_MASK;
1231 } while (slot != index);
1233 cascade:
1234 /* Calculate the next cascade event */
1235 if (index)
1236 timer_jiffies += TVR_SIZE - index;
1237 timer_jiffies >>= TVR_BITS;
1239 /* Check tv2-tv5. */
1240 varray[0] = &base->tv2;
1241 varray[1] = &base->tv3;
1242 varray[2] = &base->tv4;
1243 varray[3] = &base->tv5;
1245 for (array = 0; array < 4; array++) {
1246 struct tvec *varp = varray[array];
1248 index = slot = timer_jiffies & TVN_MASK;
1249 do {
1250 list_for_each_entry(nte, varp->vec + slot, entry) {
1251 if (tbase_get_deferrable(nte->base))
1252 continue;
1254 found = 1;
1255 if (time_before(nte->expires, expires))
1256 expires = nte->expires;
1259 * Do we still search for the first timer or are
1260 * we looking up the cascade buckets ?
1262 if (found) {
1263 /* Look at the cascade bucket(s)? */
1264 if (!index || slot < index)
1265 break;
1266 return expires;
1268 slot = (slot + 1) & TVN_MASK;
1269 } while (slot != index);
1271 if (index)
1272 timer_jiffies += TVN_SIZE - index;
1273 timer_jiffies >>= TVN_BITS;
1275 return expires;
1279 * Check, if the next hrtimer event is before the next timer wheel
1280 * event:
1282 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1283 unsigned long expires)
1285 ktime_t hr_delta = hrtimer_get_next_event();
1286 struct timespec tsdelta;
1287 unsigned long delta;
1289 if (hr_delta.tv64 == KTIME_MAX)
1290 return expires;
1293 * Expired timer available, let it expire in the next tick
1295 if (hr_delta.tv64 <= 0)
1296 return now + 1;
1298 tsdelta = ktime_to_timespec(hr_delta);
1299 delta = timespec_to_jiffies(&tsdelta);
1302 * Limit the delta to the max value, which is checked in
1303 * tick_nohz_stop_sched_tick():
1305 if (delta > NEXT_TIMER_MAX_DELTA)
1306 delta = NEXT_TIMER_MAX_DELTA;
1309 * Take rounding errors in to account and make sure, that it
1310 * expires in the next tick. Otherwise we go into an endless
1311 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1312 * the timer softirq
1314 if (delta < 1)
1315 delta = 1;
1316 now += delta;
1317 if (time_before(now, expires))
1318 return now;
1319 return expires;
1323 * get_next_timer_interrupt - return the jiffy of the next pending timer
1324 * @now: current time (in jiffies)
1326 unsigned long get_next_timer_interrupt(unsigned long now)
1328 struct tvec_base *base = __this_cpu_read(tvec_bases);
1329 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1332 * Pretend that there is no timer pending if the cpu is offline.
1333 * Possible pending timers will be migrated later to an active cpu.
1335 if (cpu_is_offline(smp_processor_id()))
1336 return expires;
1338 spin_lock(&base->lock);
1339 if (base->active_timers) {
1340 if (time_before_eq(base->next_timer, base->timer_jiffies))
1341 base->next_timer = __next_timer_interrupt(base);
1342 expires = base->next_timer;
1344 spin_unlock(&base->lock);
1346 if (time_before_eq(expires, now))
1347 return now;
1349 return cmp_next_hrtimer_event(now, expires);
1351 #endif
1354 * Called from the timer interrupt handler to charge one tick to the current
1355 * process. user_tick is 1 if the tick is user time, 0 for system.
1357 void update_process_times(int user_tick)
1359 struct task_struct *p = current;
1360 int cpu = smp_processor_id();
1362 /* Note: this timer irq context must be accounted for as well. */
1363 account_process_tick(p, user_tick);
1364 run_local_timers();
1365 rcu_check_callbacks(cpu, user_tick);
1366 printk_tick();
1367 #ifdef CONFIG_IRQ_WORK
1368 if (in_irq())
1369 irq_work_run();
1370 #endif
1371 scheduler_tick();
1372 run_posix_cpu_timers(p);
1376 * This function runs timers and the timer-tq in bottom half context.
1378 static void run_timer_softirq(struct softirq_action *h)
1380 struct tvec_base *base = __this_cpu_read(tvec_bases);
1382 hrtimer_run_pending();
1384 if (time_after_eq(jiffies, base->timer_jiffies))
1385 __run_timers(base);
1389 * Called by the local, per-CPU timer interrupt on SMP.
1391 void run_local_timers(void)
1393 hrtimer_run_queues();
1394 raise_softirq(TIMER_SOFTIRQ);
1397 #ifdef __ARCH_WANT_SYS_ALARM
1400 * For backwards compatibility? This can be done in libc so Alpha
1401 * and all newer ports shouldn't need it.
1403 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1405 return alarm_setitimer(seconds);
1408 #endif
1411 * sys_getpid - return the thread group id of the current process
1413 * Note, despite the name, this returns the tgid not the pid. The tgid and
1414 * the pid are identical unless CLONE_THREAD was specified on clone() in
1415 * which case the tgid is the same in all threads of the same group.
1417 * This is SMP safe as current->tgid does not change.
1419 SYSCALL_DEFINE0(getpid)
1421 return task_tgid_vnr(current);
1425 * Accessing ->real_parent is not SMP-safe, it could
1426 * change from under us. However, we can use a stale
1427 * value of ->real_parent under rcu_read_lock(), see
1428 * release_task()->call_rcu(delayed_put_task_struct).
1430 SYSCALL_DEFINE0(getppid)
1432 int pid;
1434 rcu_read_lock();
1435 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1436 rcu_read_unlock();
1438 return pid;
1441 SYSCALL_DEFINE0(getuid)
1443 /* Only we change this so SMP safe */
1444 return from_kuid_munged(current_user_ns(), current_uid());
1447 SYSCALL_DEFINE0(geteuid)
1449 /* Only we change this so SMP safe */
1450 return from_kuid_munged(current_user_ns(), current_euid());
1453 SYSCALL_DEFINE0(getgid)
1455 /* Only we change this so SMP safe */
1456 return from_kgid_munged(current_user_ns(), current_gid());
1459 SYSCALL_DEFINE0(getegid)
1461 /* Only we change this so SMP safe */
1462 return from_kgid_munged(current_user_ns(), current_egid());
1465 static void process_timeout(unsigned long __data)
1467 wake_up_process((struct task_struct *)__data);
1471 * schedule_timeout - sleep until timeout
1472 * @timeout: timeout value in jiffies
1474 * Make the current task sleep until @timeout jiffies have
1475 * elapsed. The routine will return immediately unless
1476 * the current task state has been set (see set_current_state()).
1478 * You can set the task state as follows -
1480 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1481 * pass before the routine returns. The routine will return 0
1483 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1484 * delivered to the current task. In this case the remaining time
1485 * in jiffies will be returned, or 0 if the timer expired in time
1487 * The current task state is guaranteed to be TASK_RUNNING when this
1488 * routine returns.
1490 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1491 * the CPU away without a bound on the timeout. In this case the return
1492 * value will be %MAX_SCHEDULE_TIMEOUT.
1494 * In all cases the return value is guaranteed to be non-negative.
1496 signed long __sched schedule_timeout(signed long timeout)
1498 struct timer_list timer;
1499 unsigned long expire;
1501 switch (timeout)
1503 case MAX_SCHEDULE_TIMEOUT:
1505 * These two special cases are useful to be comfortable
1506 * in the caller. Nothing more. We could take
1507 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1508 * but I' d like to return a valid offset (>=0) to allow
1509 * the caller to do everything it want with the retval.
1511 schedule();
1512 goto out;
1513 default:
1515 * Another bit of PARANOID. Note that the retval will be
1516 * 0 since no piece of kernel is supposed to do a check
1517 * for a negative retval of schedule_timeout() (since it
1518 * should never happens anyway). You just have the printk()
1519 * that will tell you if something is gone wrong and where.
1521 if (timeout < 0) {
1522 printk(KERN_ERR "schedule_timeout: wrong timeout "
1523 "value %lx\n", timeout);
1524 dump_stack();
1525 current->state = TASK_RUNNING;
1526 goto out;
1530 expire = timeout + jiffies;
1532 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1533 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1534 schedule();
1535 del_singleshot_timer_sync(&timer);
1537 /* Remove the timer from the object tracker */
1538 destroy_timer_on_stack(&timer);
1540 timeout = expire - jiffies;
1542 out:
1543 return timeout < 0 ? 0 : timeout;
1545 EXPORT_SYMBOL(schedule_timeout);
1548 * We can use __set_current_state() here because schedule_timeout() calls
1549 * schedule() unconditionally.
1551 signed long __sched schedule_timeout_interruptible(signed long timeout)
1553 __set_current_state(TASK_INTERRUPTIBLE);
1554 return schedule_timeout(timeout);
1556 EXPORT_SYMBOL(schedule_timeout_interruptible);
1558 signed long __sched schedule_timeout_killable(signed long timeout)
1560 __set_current_state(TASK_KILLABLE);
1561 return schedule_timeout(timeout);
1563 EXPORT_SYMBOL(schedule_timeout_killable);
1565 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1567 __set_current_state(TASK_UNINTERRUPTIBLE);
1568 return schedule_timeout(timeout);
1570 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1572 /* Thread ID - the internal kernel "pid" */
1573 SYSCALL_DEFINE0(gettid)
1575 return task_pid_vnr(current);
1579 * do_sysinfo - fill in sysinfo struct
1580 * @info: pointer to buffer to fill
1582 int do_sysinfo(struct sysinfo *info)
1584 unsigned long mem_total, sav_total;
1585 unsigned int mem_unit, bitcount;
1586 struct timespec tp;
1588 memset(info, 0, sizeof(struct sysinfo));
1590 ktime_get_ts(&tp);
1591 monotonic_to_bootbased(&tp);
1592 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1594 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1596 info->procs = nr_threads;
1598 si_meminfo(info);
1599 si_swapinfo(info);
1602 * If the sum of all the available memory (i.e. ram + swap)
1603 * is less than can be stored in a 32 bit unsigned long then
1604 * we can be binary compatible with 2.2.x kernels. If not,
1605 * well, in that case 2.2.x was broken anyways...
1607 * -Erik Andersen <andersee@debian.org>
1610 mem_total = info->totalram + info->totalswap;
1611 if (mem_total < info->totalram || mem_total < info->totalswap)
1612 goto out;
1613 bitcount = 0;
1614 mem_unit = info->mem_unit;
1615 while (mem_unit > 1) {
1616 bitcount++;
1617 mem_unit >>= 1;
1618 sav_total = mem_total;
1619 mem_total <<= 1;
1620 if (mem_total < sav_total)
1621 goto out;
1625 * If mem_total did not overflow, multiply all memory values by
1626 * info->mem_unit and set it to 1. This leaves things compatible
1627 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1628 * kernels...
1631 info->mem_unit = 1;
1632 info->totalram <<= bitcount;
1633 info->freeram <<= bitcount;
1634 info->sharedram <<= bitcount;
1635 info->bufferram <<= bitcount;
1636 info->totalswap <<= bitcount;
1637 info->freeswap <<= bitcount;
1638 info->totalhigh <<= bitcount;
1639 info->freehigh <<= bitcount;
1641 out:
1642 return 0;
1645 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1647 struct sysinfo val;
1649 do_sysinfo(&val);
1651 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1652 return -EFAULT;
1654 return 0;
1657 static int __cpuinit init_timers_cpu(int cpu)
1659 int j;
1660 struct tvec_base *base;
1661 static char __cpuinitdata tvec_base_done[NR_CPUS];
1663 if (!tvec_base_done[cpu]) {
1664 static char boot_done;
1666 if (boot_done) {
1668 * The APs use this path later in boot
1670 base = kmalloc_node(sizeof(*base),
1671 GFP_KERNEL | __GFP_ZERO,
1672 cpu_to_node(cpu));
1673 if (!base)
1674 return -ENOMEM;
1676 /* Make sure that tvec_base is 2 byte aligned */
1677 if (tbase_get_deferrable(base)) {
1678 WARN_ON(1);
1679 kfree(base);
1680 return -ENOMEM;
1682 per_cpu(tvec_bases, cpu) = base;
1683 } else {
1685 * This is for the boot CPU - we use compile-time
1686 * static initialisation because per-cpu memory isn't
1687 * ready yet and because the memory allocators are not
1688 * initialised either.
1690 boot_done = 1;
1691 base = &boot_tvec_bases;
1693 tvec_base_done[cpu] = 1;
1694 } else {
1695 base = per_cpu(tvec_bases, cpu);
1698 spin_lock_init(&base->lock);
1700 for (j = 0; j < TVN_SIZE; j++) {
1701 INIT_LIST_HEAD(base->tv5.vec + j);
1702 INIT_LIST_HEAD(base->tv4.vec + j);
1703 INIT_LIST_HEAD(base->tv3.vec + j);
1704 INIT_LIST_HEAD(base->tv2.vec + j);
1706 for (j = 0; j < TVR_SIZE; j++)
1707 INIT_LIST_HEAD(base->tv1.vec + j);
1709 base->timer_jiffies = jiffies;
1710 base->next_timer = base->timer_jiffies;
1711 base->active_timers = 0;
1712 return 0;
1715 #ifdef CONFIG_HOTPLUG_CPU
1716 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1718 struct timer_list *timer;
1720 while (!list_empty(head)) {
1721 timer = list_first_entry(head, struct timer_list, entry);
1722 /* We ignore the accounting on the dying cpu */
1723 detach_timer(timer, false);
1724 timer_set_base(timer, new_base);
1725 internal_add_timer(new_base, timer);
1729 static void __cpuinit migrate_timers(int cpu)
1731 struct tvec_base *old_base;
1732 struct tvec_base *new_base;
1733 int i;
1735 BUG_ON(cpu_online(cpu));
1736 old_base = per_cpu(tvec_bases, cpu);
1737 new_base = get_cpu_var(tvec_bases);
1739 * The caller is globally serialized and nobody else
1740 * takes two locks at once, deadlock is not possible.
1742 spin_lock_irq(&new_base->lock);
1743 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1745 BUG_ON(old_base->running_timer);
1747 for (i = 0; i < TVR_SIZE; i++)
1748 migrate_timer_list(new_base, old_base->tv1.vec + i);
1749 for (i = 0; i < TVN_SIZE; i++) {
1750 migrate_timer_list(new_base, old_base->tv2.vec + i);
1751 migrate_timer_list(new_base, old_base->tv3.vec + i);
1752 migrate_timer_list(new_base, old_base->tv4.vec + i);
1753 migrate_timer_list(new_base, old_base->tv5.vec + i);
1756 spin_unlock(&old_base->lock);
1757 spin_unlock_irq(&new_base->lock);
1758 put_cpu_var(tvec_bases);
1760 #endif /* CONFIG_HOTPLUG_CPU */
1762 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1763 unsigned long action, void *hcpu)
1765 long cpu = (long)hcpu;
1766 int err;
1768 switch(action) {
1769 case CPU_UP_PREPARE:
1770 case CPU_UP_PREPARE_FROZEN:
1771 err = init_timers_cpu(cpu);
1772 if (err < 0)
1773 return notifier_from_errno(err);
1774 break;
1775 #ifdef CONFIG_HOTPLUG_CPU
1776 case CPU_DEAD:
1777 case CPU_DEAD_FROZEN:
1778 migrate_timers(cpu);
1779 break;
1780 #endif
1781 default:
1782 break;
1784 return NOTIFY_OK;
1787 static struct notifier_block __cpuinitdata timers_nb = {
1788 .notifier_call = timer_cpu_notify,
1792 void __init init_timers(void)
1794 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1795 (void *)(long)smp_processor_id());
1797 init_timer_stats();
1799 BUG_ON(err != NOTIFY_OK);
1800 register_cpu_notifier(&timers_nb);
1801 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1805 * msleep - sleep safely even with waitqueue interruptions
1806 * @msecs: Time in milliseconds to sleep for
1808 void msleep(unsigned int msecs)
1810 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1812 while (timeout)
1813 timeout = schedule_timeout_uninterruptible(timeout);
1816 EXPORT_SYMBOL(msleep);
1819 * msleep_interruptible - sleep waiting for signals
1820 * @msecs: Time in milliseconds to sleep for
1822 unsigned long msleep_interruptible(unsigned int msecs)
1824 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1826 while (timeout && !signal_pending(current))
1827 timeout = schedule_timeout_interruptible(timeout);
1828 return jiffies_to_msecs(timeout);
1831 EXPORT_SYMBOL(msleep_interruptible);
1833 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1835 ktime_t kmin;
1836 unsigned long delta;
1838 kmin = ktime_set(0, min * NSEC_PER_USEC);
1839 delta = (max - min) * NSEC_PER_USEC;
1840 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1844 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1845 * @min: Minimum time in usecs to sleep
1846 * @max: Maximum time in usecs to sleep
1848 void usleep_range(unsigned long min, unsigned long max)
1850 __set_current_state(TASK_UNINTERRUPTIBLE);
1851 do_usleep_range(min, max);
1853 EXPORT_SYMBOL(usleep_range);