seccomp: simplify seccomp_prepare_filter and reuse bpf_prepare_filter
[linux-2.6/btrfs-unstable.git] / fs / fs-writeback.c
blob32a8bbd7a9ad1121f9b100da08f80500736bcebf
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
57 * If an inode is constantly having its pages dirtied, but then the
58 * updates stop dirtytime_expire_interval seconds in the past, it's
59 * possible for the worst case time between when an inode has its
60 * timestamps updated and when they finally get written out to be two
61 * dirtytime_expire_intervals. We set the default to 12 hours (in
62 * seconds), which means most of the time inodes will have their
63 * timestamps written to disk after 12 hours, but in the worst case a
64 * few inodes might not their timestamps updated for 24 hours.
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
68 /**
69 * writeback_in_progress - determine whether there is writeback in progress
70 * @bdi: the device's backing_dev_info structure.
72 * Determine whether there is writeback waiting to be handled against a
73 * backing device.
75 int writeback_in_progress(struct backing_dev_info *bdi)
77 return test_bit(BDI_writeback_running, &bdi->state);
79 EXPORT_SYMBOL(writeback_in_progress);
81 struct backing_dev_info *inode_to_bdi(struct inode *inode)
83 struct super_block *sb;
85 if (!inode)
86 return &noop_backing_dev_info;
88 sb = inode->i_sb;
89 #ifdef CONFIG_BLOCK
90 if (sb_is_blkdev_sb(sb))
91 return blk_get_backing_dev_info(I_BDEV(inode));
92 #endif
93 return sb->s_bdi;
95 EXPORT_SYMBOL_GPL(inode_to_bdi);
97 static inline struct inode *wb_inode(struct list_head *head)
99 return list_entry(head, struct inode, i_wb_list);
103 * Include the creation of the trace points after defining the
104 * wb_writeback_work structure and inline functions so that the definition
105 * remains local to this file.
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/writeback.h>
110 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
112 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
114 spin_lock_bh(&bdi->wb_lock);
115 if (test_bit(BDI_registered, &bdi->state))
116 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117 spin_unlock_bh(&bdi->wb_lock);
120 static void bdi_queue_work(struct backing_dev_info *bdi,
121 struct wb_writeback_work *work)
123 trace_writeback_queue(bdi, work);
125 spin_lock_bh(&bdi->wb_lock);
126 if (!test_bit(BDI_registered, &bdi->state)) {
127 if (work->done)
128 complete(work->done);
129 goto out_unlock;
131 list_add_tail(&work->list, &bdi->work_list);
132 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
133 out_unlock:
134 spin_unlock_bh(&bdi->wb_lock);
137 static void
138 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
139 bool range_cyclic, enum wb_reason reason)
141 struct wb_writeback_work *work;
144 * This is WB_SYNC_NONE writeback, so if allocation fails just
145 * wakeup the thread for old dirty data writeback
147 work = kzalloc(sizeof(*work), GFP_ATOMIC);
148 if (!work) {
149 trace_writeback_nowork(bdi);
150 bdi_wakeup_thread(bdi);
151 return;
154 work->sync_mode = WB_SYNC_NONE;
155 work->nr_pages = nr_pages;
156 work->range_cyclic = range_cyclic;
157 work->reason = reason;
159 bdi_queue_work(bdi, work);
163 * bdi_start_writeback - start writeback
164 * @bdi: the backing device to write from
165 * @nr_pages: the number of pages to write
166 * @reason: reason why some writeback work was initiated
168 * Description:
169 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
170 * started when this function returns, we make no guarantees on
171 * completion. Caller need not hold sb s_umount semaphore.
174 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
175 enum wb_reason reason)
177 __bdi_start_writeback(bdi, nr_pages, true, reason);
181 * bdi_start_background_writeback - start background writeback
182 * @bdi: the backing device to write from
184 * Description:
185 * This makes sure WB_SYNC_NONE background writeback happens. When
186 * this function returns, it is only guaranteed that for given BDI
187 * some IO is happening if we are over background dirty threshold.
188 * Caller need not hold sb s_umount semaphore.
190 void bdi_start_background_writeback(struct backing_dev_info *bdi)
193 * We just wake up the flusher thread. It will perform background
194 * writeback as soon as there is no other work to do.
196 trace_writeback_wake_background(bdi);
197 bdi_wakeup_thread(bdi);
201 * Remove the inode from the writeback list it is on.
203 void inode_wb_list_del(struct inode *inode)
205 struct backing_dev_info *bdi = inode_to_bdi(inode);
207 spin_lock(&bdi->wb.list_lock);
208 list_del_init(&inode->i_wb_list);
209 spin_unlock(&bdi->wb.list_lock);
213 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
214 * furthest end of its superblock's dirty-inode list.
216 * Before stamping the inode's ->dirtied_when, we check to see whether it is
217 * already the most-recently-dirtied inode on the b_dirty list. If that is
218 * the case then the inode must have been redirtied while it was being written
219 * out and we don't reset its dirtied_when.
221 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
223 assert_spin_locked(&wb->list_lock);
224 if (!list_empty(&wb->b_dirty)) {
225 struct inode *tail;
227 tail = wb_inode(wb->b_dirty.next);
228 if (time_before(inode->dirtied_when, tail->dirtied_when))
229 inode->dirtied_when = jiffies;
231 list_move(&inode->i_wb_list, &wb->b_dirty);
235 * requeue inode for re-scanning after bdi->b_io list is exhausted.
237 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
239 assert_spin_locked(&wb->list_lock);
240 list_move(&inode->i_wb_list, &wb->b_more_io);
243 static void inode_sync_complete(struct inode *inode)
245 inode->i_state &= ~I_SYNC;
246 /* If inode is clean an unused, put it into LRU now... */
247 inode_add_lru(inode);
248 /* Waiters must see I_SYNC cleared before being woken up */
249 smp_mb();
250 wake_up_bit(&inode->i_state, __I_SYNC);
253 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
255 bool ret = time_after(inode->dirtied_when, t);
256 #ifndef CONFIG_64BIT
258 * For inodes being constantly redirtied, dirtied_when can get stuck.
259 * It _appears_ to be in the future, but is actually in distant past.
260 * This test is necessary to prevent such wrapped-around relative times
261 * from permanently stopping the whole bdi writeback.
263 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
264 #endif
265 return ret;
268 #define EXPIRE_DIRTY_ATIME 0x0001
271 * Move expired (dirtied before work->older_than_this) dirty inodes from
272 * @delaying_queue to @dispatch_queue.
274 static int move_expired_inodes(struct list_head *delaying_queue,
275 struct list_head *dispatch_queue,
276 int flags,
277 struct wb_writeback_work *work)
279 unsigned long *older_than_this = NULL;
280 unsigned long expire_time;
281 LIST_HEAD(tmp);
282 struct list_head *pos, *node;
283 struct super_block *sb = NULL;
284 struct inode *inode;
285 int do_sb_sort = 0;
286 int moved = 0;
288 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
289 older_than_this = work->older_than_this;
290 else if (!work->for_sync) {
291 expire_time = jiffies - (dirtytime_expire_interval * HZ);
292 older_than_this = &expire_time;
294 while (!list_empty(delaying_queue)) {
295 inode = wb_inode(delaying_queue->prev);
296 if (older_than_this &&
297 inode_dirtied_after(inode, *older_than_this))
298 break;
299 list_move(&inode->i_wb_list, &tmp);
300 moved++;
301 if (flags & EXPIRE_DIRTY_ATIME)
302 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
303 if (sb_is_blkdev_sb(inode->i_sb))
304 continue;
305 if (sb && sb != inode->i_sb)
306 do_sb_sort = 1;
307 sb = inode->i_sb;
310 /* just one sb in list, splice to dispatch_queue and we're done */
311 if (!do_sb_sort) {
312 list_splice(&tmp, dispatch_queue);
313 goto out;
316 /* Move inodes from one superblock together */
317 while (!list_empty(&tmp)) {
318 sb = wb_inode(tmp.prev)->i_sb;
319 list_for_each_prev_safe(pos, node, &tmp) {
320 inode = wb_inode(pos);
321 if (inode->i_sb == sb)
322 list_move(&inode->i_wb_list, dispatch_queue);
325 out:
326 return moved;
330 * Queue all expired dirty inodes for io, eldest first.
331 * Before
332 * newly dirtied b_dirty b_io b_more_io
333 * =============> gf edc BA
334 * After
335 * newly dirtied b_dirty b_io b_more_io
336 * =============> g fBAedc
338 * +--> dequeue for IO
340 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
342 int moved;
344 assert_spin_locked(&wb->list_lock);
345 list_splice_init(&wb->b_more_io, &wb->b_io);
346 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
347 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
348 EXPIRE_DIRTY_ATIME, work);
349 trace_writeback_queue_io(wb, work, moved);
352 static int write_inode(struct inode *inode, struct writeback_control *wbc)
354 int ret;
356 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
357 trace_writeback_write_inode_start(inode, wbc);
358 ret = inode->i_sb->s_op->write_inode(inode, wbc);
359 trace_writeback_write_inode(inode, wbc);
360 return ret;
362 return 0;
366 * Wait for writeback on an inode to complete. Called with i_lock held.
367 * Caller must make sure inode cannot go away when we drop i_lock.
369 static void __inode_wait_for_writeback(struct inode *inode)
370 __releases(inode->i_lock)
371 __acquires(inode->i_lock)
373 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
374 wait_queue_head_t *wqh;
376 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
377 while (inode->i_state & I_SYNC) {
378 spin_unlock(&inode->i_lock);
379 __wait_on_bit(wqh, &wq, bit_wait,
380 TASK_UNINTERRUPTIBLE);
381 spin_lock(&inode->i_lock);
386 * Wait for writeback on an inode to complete. Caller must have inode pinned.
388 void inode_wait_for_writeback(struct inode *inode)
390 spin_lock(&inode->i_lock);
391 __inode_wait_for_writeback(inode);
392 spin_unlock(&inode->i_lock);
396 * Sleep until I_SYNC is cleared. This function must be called with i_lock
397 * held and drops it. It is aimed for callers not holding any inode reference
398 * so once i_lock is dropped, inode can go away.
400 static void inode_sleep_on_writeback(struct inode *inode)
401 __releases(inode->i_lock)
403 DEFINE_WAIT(wait);
404 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
405 int sleep;
407 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
408 sleep = inode->i_state & I_SYNC;
409 spin_unlock(&inode->i_lock);
410 if (sleep)
411 schedule();
412 finish_wait(wqh, &wait);
416 * Find proper writeback list for the inode depending on its current state and
417 * possibly also change of its state while we were doing writeback. Here we
418 * handle things such as livelock prevention or fairness of writeback among
419 * inodes. This function can be called only by flusher thread - noone else
420 * processes all inodes in writeback lists and requeueing inodes behind flusher
421 * thread's back can have unexpected consequences.
423 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
424 struct writeback_control *wbc)
426 if (inode->i_state & I_FREEING)
427 return;
430 * Sync livelock prevention. Each inode is tagged and synced in one
431 * shot. If still dirty, it will be redirty_tail()'ed below. Update
432 * the dirty time to prevent enqueue and sync it again.
434 if ((inode->i_state & I_DIRTY) &&
435 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
436 inode->dirtied_when = jiffies;
438 if (wbc->pages_skipped) {
440 * writeback is not making progress due to locked
441 * buffers. Skip this inode for now.
443 redirty_tail(inode, wb);
444 return;
447 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
449 * We didn't write back all the pages. nfs_writepages()
450 * sometimes bales out without doing anything.
452 if (wbc->nr_to_write <= 0) {
453 /* Slice used up. Queue for next turn. */
454 requeue_io(inode, wb);
455 } else {
457 * Writeback blocked by something other than
458 * congestion. Delay the inode for some time to
459 * avoid spinning on the CPU (100% iowait)
460 * retrying writeback of the dirty page/inode
461 * that cannot be performed immediately.
463 redirty_tail(inode, wb);
465 } else if (inode->i_state & I_DIRTY) {
467 * Filesystems can dirty the inode during writeback operations,
468 * such as delayed allocation during submission or metadata
469 * updates after data IO completion.
471 redirty_tail(inode, wb);
472 } else if (inode->i_state & I_DIRTY_TIME) {
473 inode->dirtied_when = jiffies;
474 list_move(&inode->i_wb_list, &wb->b_dirty_time);
475 } else {
476 /* The inode is clean. Remove from writeback lists. */
477 list_del_init(&inode->i_wb_list);
482 * Write out an inode and its dirty pages. Do not update the writeback list
483 * linkage. That is left to the caller. The caller is also responsible for
484 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
486 static int
487 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
489 struct address_space *mapping = inode->i_mapping;
490 long nr_to_write = wbc->nr_to_write;
491 unsigned dirty;
492 int ret;
494 WARN_ON(!(inode->i_state & I_SYNC));
496 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
498 ret = do_writepages(mapping, wbc);
501 * Make sure to wait on the data before writing out the metadata.
502 * This is important for filesystems that modify metadata on data
503 * I/O completion. We don't do it for sync(2) writeback because it has a
504 * separate, external IO completion path and ->sync_fs for guaranteeing
505 * inode metadata is written back correctly.
507 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
508 int err = filemap_fdatawait(mapping);
509 if (ret == 0)
510 ret = err;
514 * Some filesystems may redirty the inode during the writeback
515 * due to delalloc, clear dirty metadata flags right before
516 * write_inode()
518 spin_lock(&inode->i_lock);
520 dirty = inode->i_state & I_DIRTY;
521 if (inode->i_state & I_DIRTY_TIME) {
522 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
523 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
524 unlikely(time_after(jiffies,
525 (inode->dirtied_time_when +
526 dirtytime_expire_interval * HZ)))) {
527 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
528 trace_writeback_lazytime(inode);
530 } else
531 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
532 inode->i_state &= ~dirty;
535 * Paired with smp_mb() in __mark_inode_dirty(). This allows
536 * __mark_inode_dirty() to test i_state without grabbing i_lock -
537 * either they see the I_DIRTY bits cleared or we see the dirtied
538 * inode.
540 * I_DIRTY_PAGES is always cleared together above even if @mapping
541 * still has dirty pages. The flag is reinstated after smp_mb() if
542 * necessary. This guarantees that either __mark_inode_dirty()
543 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
545 smp_mb();
547 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
548 inode->i_state |= I_DIRTY_PAGES;
550 spin_unlock(&inode->i_lock);
552 if (dirty & I_DIRTY_TIME)
553 mark_inode_dirty_sync(inode);
554 /* Don't write the inode if only I_DIRTY_PAGES was set */
555 if (dirty & ~I_DIRTY_PAGES) {
556 int err = write_inode(inode, wbc);
557 if (ret == 0)
558 ret = err;
560 trace_writeback_single_inode(inode, wbc, nr_to_write);
561 return ret;
565 * Write out an inode's dirty pages. Either the caller has an active reference
566 * on the inode or the inode has I_WILL_FREE set.
568 * This function is designed to be called for writing back one inode which
569 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
570 * and does more profound writeback list handling in writeback_sb_inodes().
572 static int
573 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
574 struct writeback_control *wbc)
576 int ret = 0;
578 spin_lock(&inode->i_lock);
579 if (!atomic_read(&inode->i_count))
580 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
581 else
582 WARN_ON(inode->i_state & I_WILL_FREE);
584 if (inode->i_state & I_SYNC) {
585 if (wbc->sync_mode != WB_SYNC_ALL)
586 goto out;
588 * It's a data-integrity sync. We must wait. Since callers hold
589 * inode reference or inode has I_WILL_FREE set, it cannot go
590 * away under us.
592 __inode_wait_for_writeback(inode);
594 WARN_ON(inode->i_state & I_SYNC);
596 * Skip inode if it is clean and we have no outstanding writeback in
597 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
598 * function since flusher thread may be doing for example sync in
599 * parallel and if we move the inode, it could get skipped. So here we
600 * make sure inode is on some writeback list and leave it there unless
601 * we have completely cleaned the inode.
603 if (!(inode->i_state & I_DIRTY_ALL) &&
604 (wbc->sync_mode != WB_SYNC_ALL ||
605 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
606 goto out;
607 inode->i_state |= I_SYNC;
608 spin_unlock(&inode->i_lock);
610 ret = __writeback_single_inode(inode, wbc);
612 spin_lock(&wb->list_lock);
613 spin_lock(&inode->i_lock);
615 * If inode is clean, remove it from writeback lists. Otherwise don't
616 * touch it. See comment above for explanation.
618 if (!(inode->i_state & I_DIRTY_ALL))
619 list_del_init(&inode->i_wb_list);
620 spin_unlock(&wb->list_lock);
621 inode_sync_complete(inode);
622 out:
623 spin_unlock(&inode->i_lock);
624 return ret;
627 static long writeback_chunk_size(struct backing_dev_info *bdi,
628 struct wb_writeback_work *work)
630 long pages;
633 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
634 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
635 * here avoids calling into writeback_inodes_wb() more than once.
637 * The intended call sequence for WB_SYNC_ALL writeback is:
639 * wb_writeback()
640 * writeback_sb_inodes() <== called only once
641 * write_cache_pages() <== called once for each inode
642 * (quickly) tag currently dirty pages
643 * (maybe slowly) sync all tagged pages
645 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
646 pages = LONG_MAX;
647 else {
648 pages = min(bdi->avg_write_bandwidth / 2,
649 global_dirty_limit / DIRTY_SCOPE);
650 pages = min(pages, work->nr_pages);
651 pages = round_down(pages + MIN_WRITEBACK_PAGES,
652 MIN_WRITEBACK_PAGES);
655 return pages;
659 * Write a portion of b_io inodes which belong to @sb.
661 * Return the number of pages and/or inodes written.
663 static long writeback_sb_inodes(struct super_block *sb,
664 struct bdi_writeback *wb,
665 struct wb_writeback_work *work)
667 struct writeback_control wbc = {
668 .sync_mode = work->sync_mode,
669 .tagged_writepages = work->tagged_writepages,
670 .for_kupdate = work->for_kupdate,
671 .for_background = work->for_background,
672 .for_sync = work->for_sync,
673 .range_cyclic = work->range_cyclic,
674 .range_start = 0,
675 .range_end = LLONG_MAX,
677 unsigned long start_time = jiffies;
678 long write_chunk;
679 long wrote = 0; /* count both pages and inodes */
681 while (!list_empty(&wb->b_io)) {
682 struct inode *inode = wb_inode(wb->b_io.prev);
684 if (inode->i_sb != sb) {
685 if (work->sb) {
687 * We only want to write back data for this
688 * superblock, move all inodes not belonging
689 * to it back onto the dirty list.
691 redirty_tail(inode, wb);
692 continue;
696 * The inode belongs to a different superblock.
697 * Bounce back to the caller to unpin this and
698 * pin the next superblock.
700 break;
704 * Don't bother with new inodes or inodes being freed, first
705 * kind does not need periodic writeout yet, and for the latter
706 * kind writeout is handled by the freer.
708 spin_lock(&inode->i_lock);
709 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
710 spin_unlock(&inode->i_lock);
711 redirty_tail(inode, wb);
712 continue;
714 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
716 * If this inode is locked for writeback and we are not
717 * doing writeback-for-data-integrity, move it to
718 * b_more_io so that writeback can proceed with the
719 * other inodes on s_io.
721 * We'll have another go at writing back this inode
722 * when we completed a full scan of b_io.
724 spin_unlock(&inode->i_lock);
725 requeue_io(inode, wb);
726 trace_writeback_sb_inodes_requeue(inode);
727 continue;
729 spin_unlock(&wb->list_lock);
732 * We already requeued the inode if it had I_SYNC set and we
733 * are doing WB_SYNC_NONE writeback. So this catches only the
734 * WB_SYNC_ALL case.
736 if (inode->i_state & I_SYNC) {
737 /* Wait for I_SYNC. This function drops i_lock... */
738 inode_sleep_on_writeback(inode);
739 /* Inode may be gone, start again */
740 spin_lock(&wb->list_lock);
741 continue;
743 inode->i_state |= I_SYNC;
744 spin_unlock(&inode->i_lock);
746 write_chunk = writeback_chunk_size(wb->bdi, work);
747 wbc.nr_to_write = write_chunk;
748 wbc.pages_skipped = 0;
751 * We use I_SYNC to pin the inode in memory. While it is set
752 * evict_inode() will wait so the inode cannot be freed.
754 __writeback_single_inode(inode, &wbc);
756 work->nr_pages -= write_chunk - wbc.nr_to_write;
757 wrote += write_chunk - wbc.nr_to_write;
758 spin_lock(&wb->list_lock);
759 spin_lock(&inode->i_lock);
760 if (!(inode->i_state & I_DIRTY_ALL))
761 wrote++;
762 requeue_inode(inode, wb, &wbc);
763 inode_sync_complete(inode);
764 spin_unlock(&inode->i_lock);
765 cond_resched_lock(&wb->list_lock);
767 * bail out to wb_writeback() often enough to check
768 * background threshold and other termination conditions.
770 if (wrote) {
771 if (time_is_before_jiffies(start_time + HZ / 10UL))
772 break;
773 if (work->nr_pages <= 0)
774 break;
777 return wrote;
780 static long __writeback_inodes_wb(struct bdi_writeback *wb,
781 struct wb_writeback_work *work)
783 unsigned long start_time = jiffies;
784 long wrote = 0;
786 while (!list_empty(&wb->b_io)) {
787 struct inode *inode = wb_inode(wb->b_io.prev);
788 struct super_block *sb = inode->i_sb;
790 if (!trylock_super(sb)) {
792 * trylock_super() may fail consistently due to
793 * s_umount being grabbed by someone else. Don't use
794 * requeue_io() to avoid busy retrying the inode/sb.
796 redirty_tail(inode, wb);
797 continue;
799 wrote += writeback_sb_inodes(sb, wb, work);
800 up_read(&sb->s_umount);
802 /* refer to the same tests at the end of writeback_sb_inodes */
803 if (wrote) {
804 if (time_is_before_jiffies(start_time + HZ / 10UL))
805 break;
806 if (work->nr_pages <= 0)
807 break;
810 /* Leave any unwritten inodes on b_io */
811 return wrote;
814 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
815 enum wb_reason reason)
817 struct wb_writeback_work work = {
818 .nr_pages = nr_pages,
819 .sync_mode = WB_SYNC_NONE,
820 .range_cyclic = 1,
821 .reason = reason,
824 spin_lock(&wb->list_lock);
825 if (list_empty(&wb->b_io))
826 queue_io(wb, &work);
827 __writeback_inodes_wb(wb, &work);
828 spin_unlock(&wb->list_lock);
830 return nr_pages - work.nr_pages;
833 static bool over_bground_thresh(struct backing_dev_info *bdi)
835 unsigned long background_thresh, dirty_thresh;
837 global_dirty_limits(&background_thresh, &dirty_thresh);
839 if (global_page_state(NR_FILE_DIRTY) +
840 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
841 return true;
843 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
844 bdi_dirty_limit(bdi, background_thresh))
845 return true;
847 return false;
851 * Called under wb->list_lock. If there are multiple wb per bdi,
852 * only the flusher working on the first wb should do it.
854 static void wb_update_bandwidth(struct bdi_writeback *wb,
855 unsigned long start_time)
857 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
861 * Explicit flushing or periodic writeback of "old" data.
863 * Define "old": the first time one of an inode's pages is dirtied, we mark the
864 * dirtying-time in the inode's address_space. So this periodic writeback code
865 * just walks the superblock inode list, writing back any inodes which are
866 * older than a specific point in time.
868 * Try to run once per dirty_writeback_interval. But if a writeback event
869 * takes longer than a dirty_writeback_interval interval, then leave a
870 * one-second gap.
872 * older_than_this takes precedence over nr_to_write. So we'll only write back
873 * all dirty pages if they are all attached to "old" mappings.
875 static long wb_writeback(struct bdi_writeback *wb,
876 struct wb_writeback_work *work)
878 unsigned long wb_start = jiffies;
879 long nr_pages = work->nr_pages;
880 unsigned long oldest_jif;
881 struct inode *inode;
882 long progress;
884 oldest_jif = jiffies;
885 work->older_than_this = &oldest_jif;
887 spin_lock(&wb->list_lock);
888 for (;;) {
890 * Stop writeback when nr_pages has been consumed
892 if (work->nr_pages <= 0)
893 break;
896 * Background writeout and kupdate-style writeback may
897 * run forever. Stop them if there is other work to do
898 * so that e.g. sync can proceed. They'll be restarted
899 * after the other works are all done.
901 if ((work->for_background || work->for_kupdate) &&
902 !list_empty(&wb->bdi->work_list))
903 break;
906 * For background writeout, stop when we are below the
907 * background dirty threshold
909 if (work->for_background && !over_bground_thresh(wb->bdi))
910 break;
913 * Kupdate and background works are special and we want to
914 * include all inodes that need writing. Livelock avoidance is
915 * handled by these works yielding to any other work so we are
916 * safe.
918 if (work->for_kupdate) {
919 oldest_jif = jiffies -
920 msecs_to_jiffies(dirty_expire_interval * 10);
921 } else if (work->for_background)
922 oldest_jif = jiffies;
924 trace_writeback_start(wb->bdi, work);
925 if (list_empty(&wb->b_io))
926 queue_io(wb, work);
927 if (work->sb)
928 progress = writeback_sb_inodes(work->sb, wb, work);
929 else
930 progress = __writeback_inodes_wb(wb, work);
931 trace_writeback_written(wb->bdi, work);
933 wb_update_bandwidth(wb, wb_start);
936 * Did we write something? Try for more
938 * Dirty inodes are moved to b_io for writeback in batches.
939 * The completion of the current batch does not necessarily
940 * mean the overall work is done. So we keep looping as long
941 * as made some progress on cleaning pages or inodes.
943 if (progress)
944 continue;
946 * No more inodes for IO, bail
948 if (list_empty(&wb->b_more_io))
949 break;
951 * Nothing written. Wait for some inode to
952 * become available for writeback. Otherwise
953 * we'll just busyloop.
955 if (!list_empty(&wb->b_more_io)) {
956 trace_writeback_wait(wb->bdi, work);
957 inode = wb_inode(wb->b_more_io.prev);
958 spin_lock(&inode->i_lock);
959 spin_unlock(&wb->list_lock);
960 /* This function drops i_lock... */
961 inode_sleep_on_writeback(inode);
962 spin_lock(&wb->list_lock);
965 spin_unlock(&wb->list_lock);
967 return nr_pages - work->nr_pages;
971 * Return the next wb_writeback_work struct that hasn't been processed yet.
973 static struct wb_writeback_work *
974 get_next_work_item(struct backing_dev_info *bdi)
976 struct wb_writeback_work *work = NULL;
978 spin_lock_bh(&bdi->wb_lock);
979 if (!list_empty(&bdi->work_list)) {
980 work = list_entry(bdi->work_list.next,
981 struct wb_writeback_work, list);
982 list_del_init(&work->list);
984 spin_unlock_bh(&bdi->wb_lock);
985 return work;
989 * Add in the number of potentially dirty inodes, because each inode
990 * write can dirty pagecache in the underlying blockdev.
992 static unsigned long get_nr_dirty_pages(void)
994 return global_page_state(NR_FILE_DIRTY) +
995 global_page_state(NR_UNSTABLE_NFS) +
996 get_nr_dirty_inodes();
999 static long wb_check_background_flush(struct bdi_writeback *wb)
1001 if (over_bground_thresh(wb->bdi)) {
1003 struct wb_writeback_work work = {
1004 .nr_pages = LONG_MAX,
1005 .sync_mode = WB_SYNC_NONE,
1006 .for_background = 1,
1007 .range_cyclic = 1,
1008 .reason = WB_REASON_BACKGROUND,
1011 return wb_writeback(wb, &work);
1014 return 0;
1017 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1019 unsigned long expired;
1020 long nr_pages;
1023 * When set to zero, disable periodic writeback
1025 if (!dirty_writeback_interval)
1026 return 0;
1028 expired = wb->last_old_flush +
1029 msecs_to_jiffies(dirty_writeback_interval * 10);
1030 if (time_before(jiffies, expired))
1031 return 0;
1033 wb->last_old_flush = jiffies;
1034 nr_pages = get_nr_dirty_pages();
1036 if (nr_pages) {
1037 struct wb_writeback_work work = {
1038 .nr_pages = nr_pages,
1039 .sync_mode = WB_SYNC_NONE,
1040 .for_kupdate = 1,
1041 .range_cyclic = 1,
1042 .reason = WB_REASON_PERIODIC,
1045 return wb_writeback(wb, &work);
1048 return 0;
1052 * Retrieve work items and do the writeback they describe
1054 static long wb_do_writeback(struct bdi_writeback *wb)
1056 struct backing_dev_info *bdi = wb->bdi;
1057 struct wb_writeback_work *work;
1058 long wrote = 0;
1060 set_bit(BDI_writeback_running, &wb->bdi->state);
1061 while ((work = get_next_work_item(bdi)) != NULL) {
1063 trace_writeback_exec(bdi, work);
1065 wrote += wb_writeback(wb, work);
1068 * Notify the caller of completion if this is a synchronous
1069 * work item, otherwise just free it.
1071 if (work->done)
1072 complete(work->done);
1073 else
1074 kfree(work);
1078 * Check for periodic writeback, kupdated() style
1080 wrote += wb_check_old_data_flush(wb);
1081 wrote += wb_check_background_flush(wb);
1082 clear_bit(BDI_writeback_running, &wb->bdi->state);
1084 return wrote;
1088 * Handle writeback of dirty data for the device backed by this bdi. Also
1089 * reschedules periodically and does kupdated style flushing.
1091 void bdi_writeback_workfn(struct work_struct *work)
1093 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1094 struct bdi_writeback, dwork);
1095 struct backing_dev_info *bdi = wb->bdi;
1096 long pages_written;
1098 set_worker_desc("flush-%s", dev_name(bdi->dev));
1099 current->flags |= PF_SWAPWRITE;
1101 if (likely(!current_is_workqueue_rescuer() ||
1102 !test_bit(BDI_registered, &bdi->state))) {
1104 * The normal path. Keep writing back @bdi until its
1105 * work_list is empty. Note that this path is also taken
1106 * if @bdi is shutting down even when we're running off the
1107 * rescuer as work_list needs to be drained.
1109 do {
1110 pages_written = wb_do_writeback(wb);
1111 trace_writeback_pages_written(pages_written);
1112 } while (!list_empty(&bdi->work_list));
1113 } else {
1115 * bdi_wq can't get enough workers and we're running off
1116 * the emergency worker. Don't hog it. Hopefully, 1024 is
1117 * enough for efficient IO.
1119 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1120 WB_REASON_FORKER_THREAD);
1121 trace_writeback_pages_written(pages_written);
1124 if (!list_empty(&bdi->work_list))
1125 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1126 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1127 bdi_wakeup_thread_delayed(bdi);
1129 current->flags &= ~PF_SWAPWRITE;
1133 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1134 * the whole world.
1136 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1138 struct backing_dev_info *bdi;
1140 if (!nr_pages)
1141 nr_pages = get_nr_dirty_pages();
1143 rcu_read_lock();
1144 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1145 if (!bdi_has_dirty_io(bdi))
1146 continue;
1147 __bdi_start_writeback(bdi, nr_pages, false, reason);
1149 rcu_read_unlock();
1153 * Wake up bdi's periodically to make sure dirtytime inodes gets
1154 * written back periodically. We deliberately do *not* check the
1155 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1156 * kernel to be constantly waking up once there are any dirtytime
1157 * inodes on the system. So instead we define a separate delayed work
1158 * function which gets called much more rarely. (By default, only
1159 * once every 12 hours.)
1161 * If there is any other write activity going on in the file system,
1162 * this function won't be necessary. But if the only thing that has
1163 * happened on the file system is a dirtytime inode caused by an atime
1164 * update, we need this infrastructure below to make sure that inode
1165 * eventually gets pushed out to disk.
1167 static void wakeup_dirtytime_writeback(struct work_struct *w);
1168 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1170 static void wakeup_dirtytime_writeback(struct work_struct *w)
1172 struct backing_dev_info *bdi;
1174 rcu_read_lock();
1175 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1176 if (list_empty(&bdi->wb.b_dirty_time))
1177 continue;
1178 bdi_wakeup_thread(bdi);
1180 rcu_read_unlock();
1181 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1184 static int __init start_dirtytime_writeback(void)
1186 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1187 return 0;
1189 __initcall(start_dirtytime_writeback);
1191 int dirtytime_interval_handler(struct ctl_table *table, int write,
1192 void __user *buffer, size_t *lenp, loff_t *ppos)
1194 int ret;
1196 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1197 if (ret == 0 && write)
1198 mod_delayed_work(system_wq, &dirtytime_work, 0);
1199 return ret;
1202 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1204 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1205 struct dentry *dentry;
1206 const char *name = "?";
1208 dentry = d_find_alias(inode);
1209 if (dentry) {
1210 spin_lock(&dentry->d_lock);
1211 name = (const char *) dentry->d_name.name;
1213 printk(KERN_DEBUG
1214 "%s(%d): dirtied inode %lu (%s) on %s\n",
1215 current->comm, task_pid_nr(current), inode->i_ino,
1216 name, inode->i_sb->s_id);
1217 if (dentry) {
1218 spin_unlock(&dentry->d_lock);
1219 dput(dentry);
1225 * __mark_inode_dirty - internal function
1226 * @inode: inode to mark
1227 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1228 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1229 * mark_inode_dirty_sync.
1231 * Put the inode on the super block's dirty list.
1233 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1234 * dirty list only if it is hashed or if it refers to a blockdev.
1235 * If it was not hashed, it will never be added to the dirty list
1236 * even if it is later hashed, as it will have been marked dirty already.
1238 * In short, make sure you hash any inodes _before_ you start marking
1239 * them dirty.
1241 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1242 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1243 * the kernel-internal blockdev inode represents the dirtying time of the
1244 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1245 * page->mapping->host, so the page-dirtying time is recorded in the internal
1246 * blockdev inode.
1248 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1249 void __mark_inode_dirty(struct inode *inode, int flags)
1251 struct super_block *sb = inode->i_sb;
1252 struct backing_dev_info *bdi = NULL;
1253 int dirtytime;
1255 trace_writeback_mark_inode_dirty(inode, flags);
1258 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1259 * dirty the inode itself
1261 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1262 trace_writeback_dirty_inode_start(inode, flags);
1264 if (sb->s_op->dirty_inode)
1265 sb->s_op->dirty_inode(inode, flags);
1267 trace_writeback_dirty_inode(inode, flags);
1269 if (flags & I_DIRTY_INODE)
1270 flags &= ~I_DIRTY_TIME;
1271 dirtytime = flags & I_DIRTY_TIME;
1274 * Paired with smp_mb() in __writeback_single_inode() for the
1275 * following lockless i_state test. See there for details.
1277 smp_mb();
1279 if (((inode->i_state & flags) == flags) ||
1280 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1281 return;
1283 if (unlikely(block_dump))
1284 block_dump___mark_inode_dirty(inode);
1286 spin_lock(&inode->i_lock);
1287 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1288 goto out_unlock_inode;
1289 if ((inode->i_state & flags) != flags) {
1290 const int was_dirty = inode->i_state & I_DIRTY;
1292 if (flags & I_DIRTY_INODE)
1293 inode->i_state &= ~I_DIRTY_TIME;
1294 inode->i_state |= flags;
1297 * If the inode is being synced, just update its dirty state.
1298 * The unlocker will place the inode on the appropriate
1299 * superblock list, based upon its state.
1301 if (inode->i_state & I_SYNC)
1302 goto out_unlock_inode;
1305 * Only add valid (hashed) inodes to the superblock's
1306 * dirty list. Add blockdev inodes as well.
1308 if (!S_ISBLK(inode->i_mode)) {
1309 if (inode_unhashed(inode))
1310 goto out_unlock_inode;
1312 if (inode->i_state & I_FREEING)
1313 goto out_unlock_inode;
1316 * If the inode was already on b_dirty/b_io/b_more_io, don't
1317 * reposition it (that would break b_dirty time-ordering).
1319 if (!was_dirty) {
1320 bool wakeup_bdi = false;
1321 bdi = inode_to_bdi(inode);
1323 spin_unlock(&inode->i_lock);
1324 spin_lock(&bdi->wb.list_lock);
1325 if (bdi_cap_writeback_dirty(bdi)) {
1326 WARN(!test_bit(BDI_registered, &bdi->state),
1327 "bdi-%s not registered\n", bdi->name);
1330 * If this is the first dirty inode for this
1331 * bdi, we have to wake-up the corresponding
1332 * bdi thread to make sure background
1333 * write-back happens later.
1335 if (!wb_has_dirty_io(&bdi->wb))
1336 wakeup_bdi = true;
1339 inode->dirtied_when = jiffies;
1340 if (dirtytime)
1341 inode->dirtied_time_when = jiffies;
1342 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1343 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1344 else
1345 list_move(&inode->i_wb_list,
1346 &bdi->wb.b_dirty_time);
1347 spin_unlock(&bdi->wb.list_lock);
1348 trace_writeback_dirty_inode_enqueue(inode);
1350 if (wakeup_bdi)
1351 bdi_wakeup_thread_delayed(bdi);
1352 return;
1355 out_unlock_inode:
1356 spin_unlock(&inode->i_lock);
1359 EXPORT_SYMBOL(__mark_inode_dirty);
1361 static void wait_sb_inodes(struct super_block *sb)
1363 struct inode *inode, *old_inode = NULL;
1366 * We need to be protected against the filesystem going from
1367 * r/o to r/w or vice versa.
1369 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1371 spin_lock(&inode_sb_list_lock);
1374 * Data integrity sync. Must wait for all pages under writeback,
1375 * because there may have been pages dirtied before our sync
1376 * call, but which had writeout started before we write it out.
1377 * In which case, the inode may not be on the dirty list, but
1378 * we still have to wait for that writeout.
1380 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1381 struct address_space *mapping = inode->i_mapping;
1383 spin_lock(&inode->i_lock);
1384 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1385 (mapping->nrpages == 0)) {
1386 spin_unlock(&inode->i_lock);
1387 continue;
1389 __iget(inode);
1390 spin_unlock(&inode->i_lock);
1391 spin_unlock(&inode_sb_list_lock);
1394 * We hold a reference to 'inode' so it couldn't have been
1395 * removed from s_inodes list while we dropped the
1396 * inode_sb_list_lock. We cannot iput the inode now as we can
1397 * be holding the last reference and we cannot iput it under
1398 * inode_sb_list_lock. So we keep the reference and iput it
1399 * later.
1401 iput(old_inode);
1402 old_inode = inode;
1404 filemap_fdatawait(mapping);
1406 cond_resched();
1408 spin_lock(&inode_sb_list_lock);
1410 spin_unlock(&inode_sb_list_lock);
1411 iput(old_inode);
1415 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1416 * @sb: the superblock
1417 * @nr: the number of pages to write
1418 * @reason: reason why some writeback work initiated
1420 * Start writeback on some inodes on this super_block. No guarantees are made
1421 * on how many (if any) will be written, and this function does not wait
1422 * for IO completion of submitted IO.
1424 void writeback_inodes_sb_nr(struct super_block *sb,
1425 unsigned long nr,
1426 enum wb_reason reason)
1428 DECLARE_COMPLETION_ONSTACK(done);
1429 struct wb_writeback_work work = {
1430 .sb = sb,
1431 .sync_mode = WB_SYNC_NONE,
1432 .tagged_writepages = 1,
1433 .done = &done,
1434 .nr_pages = nr,
1435 .reason = reason,
1438 if (sb->s_bdi == &noop_backing_dev_info)
1439 return;
1440 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1441 bdi_queue_work(sb->s_bdi, &work);
1442 wait_for_completion(&done);
1444 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1447 * writeback_inodes_sb - writeback dirty inodes from given super_block
1448 * @sb: the superblock
1449 * @reason: reason why some writeback work was initiated
1451 * Start writeback on some inodes on this super_block. No guarantees are made
1452 * on how many (if any) will be written, and this function does not wait
1453 * for IO completion of submitted IO.
1455 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1457 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1459 EXPORT_SYMBOL(writeback_inodes_sb);
1462 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1463 * @sb: the superblock
1464 * @nr: the number of pages to write
1465 * @reason: the reason of writeback
1467 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1468 * Returns 1 if writeback was started, 0 if not.
1470 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1471 unsigned long nr,
1472 enum wb_reason reason)
1474 if (writeback_in_progress(sb->s_bdi))
1475 return 1;
1477 if (!down_read_trylock(&sb->s_umount))
1478 return 0;
1480 writeback_inodes_sb_nr(sb, nr, reason);
1481 up_read(&sb->s_umount);
1482 return 1;
1484 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1487 * try_to_writeback_inodes_sb - try to start writeback if none underway
1488 * @sb: the superblock
1489 * @reason: reason why some writeback work was initiated
1491 * Implement by try_to_writeback_inodes_sb_nr()
1492 * Returns 1 if writeback was started, 0 if not.
1494 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1496 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1498 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1501 * sync_inodes_sb - sync sb inode pages
1502 * @sb: the superblock
1504 * This function writes and waits on any dirty inode belonging to this
1505 * super_block.
1507 void sync_inodes_sb(struct super_block *sb)
1509 DECLARE_COMPLETION_ONSTACK(done);
1510 struct wb_writeback_work work = {
1511 .sb = sb,
1512 .sync_mode = WB_SYNC_ALL,
1513 .nr_pages = LONG_MAX,
1514 .range_cyclic = 0,
1515 .done = &done,
1516 .reason = WB_REASON_SYNC,
1517 .for_sync = 1,
1520 /* Nothing to do? */
1521 if (sb->s_bdi == &noop_backing_dev_info)
1522 return;
1523 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1525 bdi_queue_work(sb->s_bdi, &work);
1526 wait_for_completion(&done);
1528 wait_sb_inodes(sb);
1530 EXPORT_SYMBOL(sync_inodes_sb);
1533 * write_inode_now - write an inode to disk
1534 * @inode: inode to write to disk
1535 * @sync: whether the write should be synchronous or not
1537 * This function commits an inode to disk immediately if it is dirty. This is
1538 * primarily needed by knfsd.
1540 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1542 int write_inode_now(struct inode *inode, int sync)
1544 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1545 struct writeback_control wbc = {
1546 .nr_to_write = LONG_MAX,
1547 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1548 .range_start = 0,
1549 .range_end = LLONG_MAX,
1552 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1553 wbc.nr_to_write = 0;
1555 might_sleep();
1556 return writeback_single_inode(inode, wb, &wbc);
1558 EXPORT_SYMBOL(write_inode_now);
1561 * sync_inode - write an inode and its pages to disk.
1562 * @inode: the inode to sync
1563 * @wbc: controls the writeback mode
1565 * sync_inode() will write an inode and its pages to disk. It will also
1566 * correctly update the inode on its superblock's dirty inode lists and will
1567 * update inode->i_state.
1569 * The caller must have a ref on the inode.
1571 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1573 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1575 EXPORT_SYMBOL(sync_inode);
1578 * sync_inode_metadata - write an inode to disk
1579 * @inode: the inode to sync
1580 * @wait: wait for I/O to complete.
1582 * Write an inode to disk and adjust its dirty state after completion.
1584 * Note: only writes the actual inode, no associated data or other metadata.
1586 int sync_inode_metadata(struct inode *inode, int wait)
1588 struct writeback_control wbc = {
1589 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1590 .nr_to_write = 0, /* metadata-only */
1593 return sync_inode(inode, &wbc);
1595 EXPORT_SYMBOL(sync_inode_metadata);