arm64: dts: Add dts files for Marvell Berlin4CT SoC
[linux-2.6/btrfs-unstable.git] / block / cfq-iosched.c
blobc62bb2e650b8c741e64ead5c9f32b090cbf19730
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
18 #include "blk.h"
21 * tunables
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache *cfq_pool;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_MIN 10
72 #define CFQ_WEIGHT_MAX 1000
73 #define CFQ_WEIGHT_DEFAULT 500
75 struct cfq_ttime {
76 unsigned long last_end_request;
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
89 struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
100 * Per process-grouping structure
102 struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
146 pid_t pid;
148 u32 seek_history;
149 sector_t last_request_pos;
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
162 enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
170 * Second index in the service_trees.
172 enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
178 struct cfqg_stats {
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* total bytes transferred */
181 struct blkg_rwstat service_bytes;
182 /* total IOs serviced, post merge */
183 struct blkg_rwstat serviced;
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total sectors transferred */
193 struct blkg_stat sectors;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time;
196 #ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time;
213 uint64_t start_idle_time;
214 uint64_t start_empty_time;
215 uint16_t flags;
216 #endif /* CONFIG_DEBUG_BLK_CGROUP */
217 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
220 /* Per-cgroup data */
221 struct cfq_group_data {
222 /* must be the first member */
223 struct blkcg_policy_data pd;
225 unsigned int weight;
226 unsigned int leaf_weight;
229 /* This is per cgroup per device grouping structure */
230 struct cfq_group {
231 /* must be the first member */
232 struct blkg_policy_data pd;
234 /* group service_tree member */
235 struct rb_node rb_node;
237 /* group service_tree key */
238 u64 vdisktime;
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
247 * of the parent.
249 int nr_active;
250 unsigned int children_weight;
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
262 unsigned int vfraction;
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
270 unsigned int weight;
271 unsigned int new_weight;
272 unsigned int dev_weight;
274 unsigned int leaf_weight;
275 unsigned int new_leaf_weight;
276 unsigned int dev_leaf_weight;
278 /* number of cfqq currently on this group */
279 int nr_cfqq;
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
287 unsigned int busy_queues_avg[CFQ_PRIO_NR];
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
296 struct cfq_rb_root service_trees[2][3];
297 struct cfq_rb_root service_tree_idle;
299 unsigned long saved_wl_slice;
300 enum wl_type_t saved_wl_type;
301 enum wl_class_t saved_wl_class;
303 /* number of requests that are on the dispatch list or inside driver */
304 int dispatched;
305 struct cfq_ttime ttime;
306 struct cfqg_stats stats; /* stats for this cfqg */
307 struct cfqg_stats dead_stats; /* stats pushed from dead children */
310 struct cfq_io_cq {
311 struct io_cq icq; /* must be the first member */
312 struct cfq_queue *cfqq[2];
313 struct cfq_ttime ttime;
314 int ioprio; /* the current ioprio */
315 #ifdef CONFIG_CFQ_GROUP_IOSCHED
316 uint64_t blkcg_serial_nr; /* the current blkcg serial */
317 #endif
321 * Per block device queue structure
323 struct cfq_data {
324 struct request_queue *queue;
325 /* Root service tree for cfq_groups */
326 struct cfq_rb_root grp_service_tree;
327 struct cfq_group *root_group;
330 * The priority currently being served
332 enum wl_class_t serving_wl_class;
333 enum wl_type_t serving_wl_type;
334 unsigned long workload_expires;
335 struct cfq_group *serving_group;
338 * Each priority tree is sorted by next_request position. These
339 * trees are used when determining if two or more queues are
340 * interleaving requests (see cfq_close_cooperator).
342 struct rb_root prio_trees[CFQ_PRIO_LISTS];
344 unsigned int busy_queues;
345 unsigned int busy_sync_queues;
347 int rq_in_driver;
348 int rq_in_flight[2];
351 * queue-depth detection
353 int rq_queued;
354 int hw_tag;
356 * hw_tag can be
357 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
358 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359 * 0 => no NCQ
361 int hw_tag_est_depth;
362 unsigned int hw_tag_samples;
365 * idle window management
367 struct timer_list idle_slice_timer;
368 struct work_struct unplug_work;
370 struct cfq_queue *active_queue;
371 struct cfq_io_cq *active_cic;
374 * async queue for each priority case
376 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
377 struct cfq_queue *async_idle_cfqq;
379 sector_t last_position;
382 * tunables, see top of file
384 unsigned int cfq_quantum;
385 unsigned int cfq_fifo_expire[2];
386 unsigned int cfq_back_penalty;
387 unsigned int cfq_back_max;
388 unsigned int cfq_slice[2];
389 unsigned int cfq_slice_async_rq;
390 unsigned int cfq_slice_idle;
391 unsigned int cfq_group_idle;
392 unsigned int cfq_latency;
393 unsigned int cfq_target_latency;
396 * Fallback dummy cfqq for extreme OOM conditions
398 struct cfq_queue oom_cfqq;
400 unsigned long last_delayed_sync;
403 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
405 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
406 enum wl_class_t class,
407 enum wl_type_t type)
409 if (!cfqg)
410 return NULL;
412 if (class == IDLE_WORKLOAD)
413 return &cfqg->service_tree_idle;
415 return &cfqg->service_trees[class][type];
418 enum cfqq_state_flags {
419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
434 #define CFQ_CFQQ_FNS(name) \
435 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
439 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
443 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
448 CFQ_CFQQ_FNS(on_rr);
449 CFQ_CFQQ_FNS(wait_request);
450 CFQ_CFQQ_FNS(must_dispatch);
451 CFQ_CFQQ_FNS(must_alloc_slice);
452 CFQ_CFQQ_FNS(fifo_expire);
453 CFQ_CFQQ_FNS(idle_window);
454 CFQ_CFQQ_FNS(prio_changed);
455 CFQ_CFQQ_FNS(slice_new);
456 CFQ_CFQQ_FNS(sync);
457 CFQ_CFQQ_FNS(coop);
458 CFQ_CFQQ_FNS(split_coop);
459 CFQ_CFQQ_FNS(deep);
460 CFQ_CFQQ_FNS(wait_busy);
461 #undef CFQ_CFQQ_FNS
463 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
465 /* cfqg stats flags */
466 enum cfqg_stats_flags {
467 CFQG_stats_waiting = 0,
468 CFQG_stats_idling,
469 CFQG_stats_empty,
472 #define CFQG_FLAG_FNS(name) \
473 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
475 stats->flags |= (1 << CFQG_stats_##name); \
477 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
479 stats->flags &= ~(1 << CFQG_stats_##name); \
481 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
486 CFQG_FLAG_FNS(waiting)
487 CFQG_FLAG_FNS(idling)
488 CFQG_FLAG_FNS(empty)
489 #undef CFQG_FLAG_FNS
491 /* This should be called with the queue_lock held. */
492 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
494 unsigned long long now;
496 if (!cfqg_stats_waiting(stats))
497 return;
499 now = sched_clock();
500 if (time_after64(now, stats->start_group_wait_time))
501 blkg_stat_add(&stats->group_wait_time,
502 now - stats->start_group_wait_time);
503 cfqg_stats_clear_waiting(stats);
506 /* This should be called with the queue_lock held. */
507 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
508 struct cfq_group *curr_cfqg)
510 struct cfqg_stats *stats = &cfqg->stats;
512 if (cfqg_stats_waiting(stats))
513 return;
514 if (cfqg == curr_cfqg)
515 return;
516 stats->start_group_wait_time = sched_clock();
517 cfqg_stats_mark_waiting(stats);
520 /* This should be called with the queue_lock held. */
521 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
523 unsigned long long now;
525 if (!cfqg_stats_empty(stats))
526 return;
528 now = sched_clock();
529 if (time_after64(now, stats->start_empty_time))
530 blkg_stat_add(&stats->empty_time,
531 now - stats->start_empty_time);
532 cfqg_stats_clear_empty(stats);
535 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
537 blkg_stat_add(&cfqg->stats.dequeue, 1);
540 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
542 struct cfqg_stats *stats = &cfqg->stats;
544 if (blkg_rwstat_total(&stats->queued))
545 return;
548 * group is already marked empty. This can happen if cfqq got new
549 * request in parent group and moved to this group while being added
550 * to service tree. Just ignore the event and move on.
552 if (cfqg_stats_empty(stats))
553 return;
555 stats->start_empty_time = sched_clock();
556 cfqg_stats_mark_empty(stats);
559 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
561 struct cfqg_stats *stats = &cfqg->stats;
563 if (cfqg_stats_idling(stats)) {
564 unsigned long long now = sched_clock();
566 if (time_after64(now, stats->start_idle_time))
567 blkg_stat_add(&stats->idle_time,
568 now - stats->start_idle_time);
569 cfqg_stats_clear_idling(stats);
573 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
575 struct cfqg_stats *stats = &cfqg->stats;
577 BUG_ON(cfqg_stats_idling(stats));
579 stats->start_idle_time = sched_clock();
580 cfqg_stats_mark_idling(stats);
583 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
585 struct cfqg_stats *stats = &cfqg->stats;
587 blkg_stat_add(&stats->avg_queue_size_sum,
588 blkg_rwstat_total(&stats->queued));
589 blkg_stat_add(&stats->avg_queue_size_samples, 1);
590 cfqg_stats_update_group_wait_time(stats);
593 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
595 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
596 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
597 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
598 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
599 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
600 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
601 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
603 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
605 #ifdef CONFIG_CFQ_GROUP_IOSCHED
607 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
609 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
612 static struct cfq_group_data
613 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
615 return cpd ? container_of(cpd, struct cfq_group_data, pd) : NULL;
618 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
620 return pd_to_blkg(&cfqg->pd);
623 static struct blkcg_policy blkcg_policy_cfq;
625 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
630 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
635 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
639 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
642 static inline void cfqg_get(struct cfq_group *cfqg)
644 return blkg_get(cfqg_to_blkg(cfqg));
647 static inline void cfqg_put(struct cfq_group *cfqg)
649 return blkg_put(cfqg_to_blkg(cfqg));
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660 } while (0)
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667 } while (0)
669 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int rw)
672 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
673 cfqg_stats_end_empty_time(&cfqg->stats);
674 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
677 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
678 unsigned long time, unsigned long unaccounted_time)
680 blkg_stat_add(&cfqg->stats.time, time);
681 #ifdef CONFIG_DEBUG_BLK_CGROUP
682 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
683 #endif
686 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
688 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
691 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
693 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
696 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
697 uint64_t bytes, int rw)
699 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
700 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
701 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
704 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
705 uint64_t start_time, uint64_t io_start_time, int rw)
707 struct cfqg_stats *stats = &cfqg->stats;
708 unsigned long long now = sched_clock();
710 if (time_after64(now, io_start_time))
711 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
712 if (time_after64(io_start_time, start_time))
713 blkg_rwstat_add(&stats->wait_time, rw,
714 io_start_time - start_time);
717 /* @stats = 0 */
718 static void cfqg_stats_reset(struct cfqg_stats *stats)
720 /* queued stats shouldn't be cleared */
721 blkg_rwstat_reset(&stats->service_bytes);
722 blkg_rwstat_reset(&stats->serviced);
723 blkg_rwstat_reset(&stats->merged);
724 blkg_rwstat_reset(&stats->service_time);
725 blkg_rwstat_reset(&stats->wait_time);
726 blkg_stat_reset(&stats->time);
727 #ifdef CONFIG_DEBUG_BLK_CGROUP
728 blkg_stat_reset(&stats->unaccounted_time);
729 blkg_stat_reset(&stats->avg_queue_size_sum);
730 blkg_stat_reset(&stats->avg_queue_size_samples);
731 blkg_stat_reset(&stats->dequeue);
732 blkg_stat_reset(&stats->group_wait_time);
733 blkg_stat_reset(&stats->idle_time);
734 blkg_stat_reset(&stats->empty_time);
735 #endif
738 /* @to += @from */
739 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
741 /* queued stats shouldn't be cleared */
742 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
743 blkg_rwstat_merge(&to->serviced, &from->serviced);
744 blkg_rwstat_merge(&to->merged, &from->merged);
745 blkg_rwstat_merge(&to->service_time, &from->service_time);
746 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
747 blkg_stat_merge(&from->time, &from->time);
748 #ifdef CONFIG_DEBUG_BLK_CGROUP
749 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
750 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
751 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
752 blkg_stat_merge(&to->dequeue, &from->dequeue);
753 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
754 blkg_stat_merge(&to->idle_time, &from->idle_time);
755 blkg_stat_merge(&to->empty_time, &from->empty_time);
756 #endif
760 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
761 * recursive stats can still account for the amount used by this cfqg after
762 * it's gone.
764 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
766 struct cfq_group *parent = cfqg_parent(cfqg);
768 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
770 if (unlikely(!parent))
771 return;
773 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
774 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
775 cfqg_stats_reset(&cfqg->stats);
776 cfqg_stats_reset(&cfqg->dead_stats);
779 #else /* CONFIG_CFQ_GROUP_IOSCHED */
781 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
782 static inline void cfqg_get(struct cfq_group *cfqg) { }
783 static inline void cfqg_put(struct cfq_group *cfqg) { }
785 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
786 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
787 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
788 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
789 ##args)
790 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
792 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
793 struct cfq_group *curr_cfqg, int rw) { }
794 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
795 unsigned long time, unsigned long unaccounted_time) { }
796 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
797 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
798 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
799 uint64_t bytes, int rw) { }
800 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
801 uint64_t start_time, uint64_t io_start_time, int rw) { }
803 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
805 #define cfq_log(cfqd, fmt, args...) \
806 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
808 /* Traverses through cfq group service trees */
809 #define for_each_cfqg_st(cfqg, i, j, st) \
810 for (i = 0; i <= IDLE_WORKLOAD; i++) \
811 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
812 : &cfqg->service_tree_idle; \
813 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
814 (i == IDLE_WORKLOAD && j == 0); \
815 j++, st = i < IDLE_WORKLOAD ? \
816 &cfqg->service_trees[i][j]: NULL) \
818 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
819 struct cfq_ttime *ttime, bool group_idle)
821 unsigned long slice;
822 if (!sample_valid(ttime->ttime_samples))
823 return false;
824 if (group_idle)
825 slice = cfqd->cfq_group_idle;
826 else
827 slice = cfqd->cfq_slice_idle;
828 return ttime->ttime_mean > slice;
831 static inline bool iops_mode(struct cfq_data *cfqd)
834 * If we are not idling on queues and it is a NCQ drive, parallel
835 * execution of requests is on and measuring time is not possible
836 * in most of the cases until and unless we drive shallower queue
837 * depths and that becomes a performance bottleneck. In such cases
838 * switch to start providing fairness in terms of number of IOs.
840 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
841 return true;
842 else
843 return false;
846 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
848 if (cfq_class_idle(cfqq))
849 return IDLE_WORKLOAD;
850 if (cfq_class_rt(cfqq))
851 return RT_WORKLOAD;
852 return BE_WORKLOAD;
856 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
858 if (!cfq_cfqq_sync(cfqq))
859 return ASYNC_WORKLOAD;
860 if (!cfq_cfqq_idle_window(cfqq))
861 return SYNC_NOIDLE_WORKLOAD;
862 return SYNC_WORKLOAD;
865 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
866 struct cfq_data *cfqd,
867 struct cfq_group *cfqg)
869 if (wl_class == IDLE_WORKLOAD)
870 return cfqg->service_tree_idle.count;
872 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
873 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
874 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
877 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
878 struct cfq_group *cfqg)
880 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
881 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
884 static void cfq_dispatch_insert(struct request_queue *, struct request *);
885 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
886 struct cfq_io_cq *cic, struct bio *bio,
887 gfp_t gfp_mask);
889 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
891 /* cic->icq is the first member, %NULL will convert to %NULL */
892 return container_of(icq, struct cfq_io_cq, icq);
895 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
896 struct io_context *ioc)
898 if (ioc)
899 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
900 return NULL;
903 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
905 return cic->cfqq[is_sync];
908 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
909 bool is_sync)
911 cic->cfqq[is_sync] = cfqq;
914 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
916 return cic->icq.q->elevator->elevator_data;
920 * We regard a request as SYNC, if it's either a read or has the SYNC bit
921 * set (in which case it could also be direct WRITE).
923 static inline bool cfq_bio_sync(struct bio *bio)
925 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
929 * scheduler run of queue, if there are requests pending and no one in the
930 * driver that will restart queueing
932 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
934 if (cfqd->busy_queues) {
935 cfq_log(cfqd, "schedule dispatch");
936 kblockd_schedule_work(&cfqd->unplug_work);
941 * Scale schedule slice based on io priority. Use the sync time slice only
942 * if a queue is marked sync and has sync io queued. A sync queue with async
943 * io only, should not get full sync slice length.
945 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
946 unsigned short prio)
948 const int base_slice = cfqd->cfq_slice[sync];
950 WARN_ON(prio >= IOPRIO_BE_NR);
952 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
955 static inline int
956 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
958 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
962 * cfqg_scale_charge - scale disk time charge according to cfqg weight
963 * @charge: disk time being charged
964 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
966 * Scale @charge according to @vfraction, which is in range (0, 1]. The
967 * scaling is inversely proportional.
969 * scaled = charge / vfraction
971 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
973 static inline u64 cfqg_scale_charge(unsigned long charge,
974 unsigned int vfraction)
976 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
978 /* charge / vfraction */
979 c <<= CFQ_SERVICE_SHIFT;
980 do_div(c, vfraction);
981 return c;
984 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
986 s64 delta = (s64)(vdisktime - min_vdisktime);
987 if (delta > 0)
988 min_vdisktime = vdisktime;
990 return min_vdisktime;
993 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
995 s64 delta = (s64)(vdisktime - min_vdisktime);
996 if (delta < 0)
997 min_vdisktime = vdisktime;
999 return min_vdisktime;
1002 static void update_min_vdisktime(struct cfq_rb_root *st)
1004 struct cfq_group *cfqg;
1006 if (st->left) {
1007 cfqg = rb_entry_cfqg(st->left);
1008 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1009 cfqg->vdisktime);
1014 * get averaged number of queues of RT/BE priority.
1015 * average is updated, with a formula that gives more weight to higher numbers,
1016 * to quickly follows sudden increases and decrease slowly
1019 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1020 struct cfq_group *cfqg, bool rt)
1022 unsigned min_q, max_q;
1023 unsigned mult = cfq_hist_divisor - 1;
1024 unsigned round = cfq_hist_divisor / 2;
1025 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1027 min_q = min(cfqg->busy_queues_avg[rt], busy);
1028 max_q = max(cfqg->busy_queues_avg[rt], busy);
1029 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1030 cfq_hist_divisor;
1031 return cfqg->busy_queues_avg[rt];
1034 static inline unsigned
1035 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1037 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1040 static inline unsigned
1041 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1043 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1044 if (cfqd->cfq_latency) {
1046 * interested queues (we consider only the ones with the same
1047 * priority class in the cfq group)
1049 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1050 cfq_class_rt(cfqq));
1051 unsigned sync_slice = cfqd->cfq_slice[1];
1052 unsigned expect_latency = sync_slice * iq;
1053 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1055 if (expect_latency > group_slice) {
1056 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1057 /* scale low_slice according to IO priority
1058 * and sync vs async */
1059 unsigned low_slice =
1060 min(slice, base_low_slice * slice / sync_slice);
1061 /* the adapted slice value is scaled to fit all iqs
1062 * into the target latency */
1063 slice = max(slice * group_slice / expect_latency,
1064 low_slice);
1067 return slice;
1070 static inline void
1071 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1073 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1075 cfqq->slice_start = jiffies;
1076 cfqq->slice_end = jiffies + slice;
1077 cfqq->allocated_slice = slice;
1078 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1082 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1083 * isn't valid until the first request from the dispatch is activated
1084 * and the slice time set.
1086 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1088 if (cfq_cfqq_slice_new(cfqq))
1089 return false;
1090 if (time_before(jiffies, cfqq->slice_end))
1091 return false;
1093 return true;
1097 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1098 * We choose the request that is closest to the head right now. Distance
1099 * behind the head is penalized and only allowed to a certain extent.
1101 static struct request *
1102 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1104 sector_t s1, s2, d1 = 0, d2 = 0;
1105 unsigned long back_max;
1106 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1107 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1108 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1110 if (rq1 == NULL || rq1 == rq2)
1111 return rq2;
1112 if (rq2 == NULL)
1113 return rq1;
1115 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1116 return rq_is_sync(rq1) ? rq1 : rq2;
1118 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1119 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1121 s1 = blk_rq_pos(rq1);
1122 s2 = blk_rq_pos(rq2);
1125 * by definition, 1KiB is 2 sectors
1127 back_max = cfqd->cfq_back_max * 2;
1130 * Strict one way elevator _except_ in the case where we allow
1131 * short backward seeks which are biased as twice the cost of a
1132 * similar forward seek.
1134 if (s1 >= last)
1135 d1 = s1 - last;
1136 else if (s1 + back_max >= last)
1137 d1 = (last - s1) * cfqd->cfq_back_penalty;
1138 else
1139 wrap |= CFQ_RQ1_WRAP;
1141 if (s2 >= last)
1142 d2 = s2 - last;
1143 else if (s2 + back_max >= last)
1144 d2 = (last - s2) * cfqd->cfq_back_penalty;
1145 else
1146 wrap |= CFQ_RQ2_WRAP;
1148 /* Found required data */
1151 * By doing switch() on the bit mask "wrap" we avoid having to
1152 * check two variables for all permutations: --> faster!
1154 switch (wrap) {
1155 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1156 if (d1 < d2)
1157 return rq1;
1158 else if (d2 < d1)
1159 return rq2;
1160 else {
1161 if (s1 >= s2)
1162 return rq1;
1163 else
1164 return rq2;
1167 case CFQ_RQ2_WRAP:
1168 return rq1;
1169 case CFQ_RQ1_WRAP:
1170 return rq2;
1171 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1172 default:
1174 * Since both rqs are wrapped,
1175 * start with the one that's further behind head
1176 * (--> only *one* back seek required),
1177 * since back seek takes more time than forward.
1179 if (s1 <= s2)
1180 return rq1;
1181 else
1182 return rq2;
1187 * The below is leftmost cache rbtree addon
1189 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1191 /* Service tree is empty */
1192 if (!root->count)
1193 return NULL;
1195 if (!root->left)
1196 root->left = rb_first(&root->rb);
1198 if (root->left)
1199 return rb_entry(root->left, struct cfq_queue, rb_node);
1201 return NULL;
1204 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1206 if (!root->left)
1207 root->left = rb_first(&root->rb);
1209 if (root->left)
1210 return rb_entry_cfqg(root->left);
1212 return NULL;
1215 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1217 rb_erase(n, root);
1218 RB_CLEAR_NODE(n);
1221 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1223 if (root->left == n)
1224 root->left = NULL;
1225 rb_erase_init(n, &root->rb);
1226 --root->count;
1230 * would be nice to take fifo expire time into account as well
1232 static struct request *
1233 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1234 struct request *last)
1236 struct rb_node *rbnext = rb_next(&last->rb_node);
1237 struct rb_node *rbprev = rb_prev(&last->rb_node);
1238 struct request *next = NULL, *prev = NULL;
1240 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1242 if (rbprev)
1243 prev = rb_entry_rq(rbprev);
1245 if (rbnext)
1246 next = rb_entry_rq(rbnext);
1247 else {
1248 rbnext = rb_first(&cfqq->sort_list);
1249 if (rbnext && rbnext != &last->rb_node)
1250 next = rb_entry_rq(rbnext);
1253 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1256 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1257 struct cfq_queue *cfqq)
1260 * just an approximation, should be ok.
1262 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1263 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1266 static inline s64
1267 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1269 return cfqg->vdisktime - st->min_vdisktime;
1272 static void
1273 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1275 struct rb_node **node = &st->rb.rb_node;
1276 struct rb_node *parent = NULL;
1277 struct cfq_group *__cfqg;
1278 s64 key = cfqg_key(st, cfqg);
1279 int left = 1;
1281 while (*node != NULL) {
1282 parent = *node;
1283 __cfqg = rb_entry_cfqg(parent);
1285 if (key < cfqg_key(st, __cfqg))
1286 node = &parent->rb_left;
1287 else {
1288 node = &parent->rb_right;
1289 left = 0;
1293 if (left)
1294 st->left = &cfqg->rb_node;
1296 rb_link_node(&cfqg->rb_node, parent, node);
1297 rb_insert_color(&cfqg->rb_node, &st->rb);
1301 * This has to be called only on activation of cfqg
1303 static void
1304 cfq_update_group_weight(struct cfq_group *cfqg)
1306 if (cfqg->new_weight) {
1307 cfqg->weight = cfqg->new_weight;
1308 cfqg->new_weight = 0;
1312 static void
1313 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1315 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1317 if (cfqg->new_leaf_weight) {
1318 cfqg->leaf_weight = cfqg->new_leaf_weight;
1319 cfqg->new_leaf_weight = 0;
1323 static void
1324 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1326 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1327 struct cfq_group *pos = cfqg;
1328 struct cfq_group *parent;
1329 bool propagate;
1331 /* add to the service tree */
1332 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1335 * Update leaf_weight. We cannot update weight at this point
1336 * because cfqg might already have been activated and is
1337 * contributing its current weight to the parent's child_weight.
1339 cfq_update_group_leaf_weight(cfqg);
1340 __cfq_group_service_tree_add(st, cfqg);
1343 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1344 * entitled to. vfraction is calculated by walking the tree
1345 * towards the root calculating the fraction it has at each level.
1346 * The compounded ratio is how much vfraction @cfqg owns.
1348 * Start with the proportion tasks in this cfqg has against active
1349 * children cfqgs - its leaf_weight against children_weight.
1351 propagate = !pos->nr_active++;
1352 pos->children_weight += pos->leaf_weight;
1353 vfr = vfr * pos->leaf_weight / pos->children_weight;
1356 * Compound ->weight walking up the tree. Both activation and
1357 * vfraction calculation are done in the same loop. Propagation
1358 * stops once an already activated node is met. vfraction
1359 * calculation should always continue to the root.
1361 while ((parent = cfqg_parent(pos))) {
1362 if (propagate) {
1363 cfq_update_group_weight(pos);
1364 propagate = !parent->nr_active++;
1365 parent->children_weight += pos->weight;
1367 vfr = vfr * pos->weight / parent->children_weight;
1368 pos = parent;
1371 cfqg->vfraction = max_t(unsigned, vfr, 1);
1374 static void
1375 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1377 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1378 struct cfq_group *__cfqg;
1379 struct rb_node *n;
1381 cfqg->nr_cfqq++;
1382 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1383 return;
1386 * Currently put the group at the end. Later implement something
1387 * so that groups get lesser vtime based on their weights, so that
1388 * if group does not loose all if it was not continuously backlogged.
1390 n = rb_last(&st->rb);
1391 if (n) {
1392 __cfqg = rb_entry_cfqg(n);
1393 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1394 } else
1395 cfqg->vdisktime = st->min_vdisktime;
1396 cfq_group_service_tree_add(st, cfqg);
1399 static void
1400 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1402 struct cfq_group *pos = cfqg;
1403 bool propagate;
1406 * Undo activation from cfq_group_service_tree_add(). Deactivate
1407 * @cfqg and propagate deactivation upwards.
1409 propagate = !--pos->nr_active;
1410 pos->children_weight -= pos->leaf_weight;
1412 while (propagate) {
1413 struct cfq_group *parent = cfqg_parent(pos);
1415 /* @pos has 0 nr_active at this point */
1416 WARN_ON_ONCE(pos->children_weight);
1417 pos->vfraction = 0;
1419 if (!parent)
1420 break;
1422 propagate = !--parent->nr_active;
1423 parent->children_weight -= pos->weight;
1424 pos = parent;
1427 /* remove from the service tree */
1428 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1429 cfq_rb_erase(&cfqg->rb_node, st);
1432 static void
1433 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1435 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1437 BUG_ON(cfqg->nr_cfqq < 1);
1438 cfqg->nr_cfqq--;
1440 /* If there are other cfq queues under this group, don't delete it */
1441 if (cfqg->nr_cfqq)
1442 return;
1444 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1445 cfq_group_service_tree_del(st, cfqg);
1446 cfqg->saved_wl_slice = 0;
1447 cfqg_stats_update_dequeue(cfqg);
1450 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1451 unsigned int *unaccounted_time)
1453 unsigned int slice_used;
1456 * Queue got expired before even a single request completed or
1457 * got expired immediately after first request completion.
1459 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1461 * Also charge the seek time incurred to the group, otherwise
1462 * if there are mutiple queues in the group, each can dispatch
1463 * a single request on seeky media and cause lots of seek time
1464 * and group will never know it.
1466 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1468 } else {
1469 slice_used = jiffies - cfqq->slice_start;
1470 if (slice_used > cfqq->allocated_slice) {
1471 *unaccounted_time = slice_used - cfqq->allocated_slice;
1472 slice_used = cfqq->allocated_slice;
1474 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1475 *unaccounted_time += cfqq->slice_start -
1476 cfqq->dispatch_start;
1479 return slice_used;
1482 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1483 struct cfq_queue *cfqq)
1485 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1486 unsigned int used_sl, charge, unaccounted_sl = 0;
1487 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1488 - cfqg->service_tree_idle.count;
1489 unsigned int vfr;
1491 BUG_ON(nr_sync < 0);
1492 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1494 if (iops_mode(cfqd))
1495 charge = cfqq->slice_dispatch;
1496 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1497 charge = cfqq->allocated_slice;
1500 * Can't update vdisktime while on service tree and cfqg->vfraction
1501 * is valid only while on it. Cache vfr, leave the service tree,
1502 * update vdisktime and go back on. The re-addition to the tree
1503 * will also update the weights as necessary.
1505 vfr = cfqg->vfraction;
1506 cfq_group_service_tree_del(st, cfqg);
1507 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1508 cfq_group_service_tree_add(st, cfqg);
1510 /* This group is being expired. Save the context */
1511 if (time_after(cfqd->workload_expires, jiffies)) {
1512 cfqg->saved_wl_slice = cfqd->workload_expires
1513 - jiffies;
1514 cfqg->saved_wl_type = cfqd->serving_wl_type;
1515 cfqg->saved_wl_class = cfqd->serving_wl_class;
1516 } else
1517 cfqg->saved_wl_slice = 0;
1519 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1520 st->min_vdisktime);
1521 cfq_log_cfqq(cfqq->cfqd, cfqq,
1522 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1523 used_sl, cfqq->slice_dispatch, charge,
1524 iops_mode(cfqd), cfqq->nr_sectors);
1525 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1526 cfqg_stats_set_start_empty_time(cfqg);
1530 * cfq_init_cfqg_base - initialize base part of a cfq_group
1531 * @cfqg: cfq_group to initialize
1533 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1534 * is enabled or not.
1536 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1538 struct cfq_rb_root *st;
1539 int i, j;
1541 for_each_cfqg_st(cfqg, i, j, st)
1542 *st = CFQ_RB_ROOT;
1543 RB_CLEAR_NODE(&cfqg->rb_node);
1545 cfqg->ttime.last_end_request = jiffies;
1548 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1549 static void cfqg_stats_init(struct cfqg_stats *stats)
1551 blkg_rwstat_init(&stats->service_bytes);
1552 blkg_rwstat_init(&stats->serviced);
1553 blkg_rwstat_init(&stats->merged);
1554 blkg_rwstat_init(&stats->service_time);
1555 blkg_rwstat_init(&stats->wait_time);
1556 blkg_rwstat_init(&stats->queued);
1558 blkg_stat_init(&stats->sectors);
1559 blkg_stat_init(&stats->time);
1561 #ifdef CONFIG_DEBUG_BLK_CGROUP
1562 blkg_stat_init(&stats->unaccounted_time);
1563 blkg_stat_init(&stats->avg_queue_size_sum);
1564 blkg_stat_init(&stats->avg_queue_size_samples);
1565 blkg_stat_init(&stats->dequeue);
1566 blkg_stat_init(&stats->group_wait_time);
1567 blkg_stat_init(&stats->idle_time);
1568 blkg_stat_init(&stats->empty_time);
1569 #endif
1572 static void cfq_cpd_init(const struct blkcg *blkcg)
1574 struct cfq_group_data *cgd =
1575 cpd_to_cfqgd(blkcg->pd[blkcg_policy_cfq.plid]);
1577 if (blkcg == &blkcg_root) {
1578 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1579 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1580 } else {
1581 cgd->weight = CFQ_WEIGHT_DEFAULT;
1582 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1586 static void cfq_pd_init(struct blkcg_gq *blkg)
1588 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1589 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkg->blkcg);
1591 cfq_init_cfqg_base(cfqg);
1592 cfqg->weight = cgd->weight;
1593 cfqg->leaf_weight = cgd->leaf_weight;
1594 cfqg_stats_init(&cfqg->stats);
1595 cfqg_stats_init(&cfqg->dead_stats);
1598 static void cfq_pd_offline(struct blkcg_gq *blkg)
1601 * @blkg is going offline and will be ignored by
1602 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1603 * that they don't get lost. If IOs complete after this point, the
1604 * stats for them will be lost. Oh well...
1606 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1609 /* offset delta from cfqg->stats to cfqg->dead_stats */
1610 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1611 offsetof(struct cfq_group, stats);
1613 /* to be used by recursive prfill, sums live and dead stats recursively */
1614 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1616 u64 sum = 0;
1618 sum += blkg_stat_recursive_sum(pd, off);
1619 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1620 return sum;
1623 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1624 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1625 int off)
1627 struct blkg_rwstat a, b;
1629 a = blkg_rwstat_recursive_sum(pd, off);
1630 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1631 blkg_rwstat_merge(&a, &b);
1632 return a;
1635 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1637 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1639 cfqg_stats_reset(&cfqg->stats);
1640 cfqg_stats_reset(&cfqg->dead_stats);
1644 * Search for the cfq group current task belongs to. request_queue lock must
1645 * be held.
1647 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1648 struct blkcg *blkcg)
1650 struct request_queue *q = cfqd->queue;
1651 struct cfq_group *cfqg = NULL;
1653 /* avoid lookup for the common case where there's no blkcg */
1654 if (blkcg == &blkcg_root) {
1655 cfqg = cfqd->root_group;
1656 } else {
1657 struct blkcg_gq *blkg;
1659 blkg = blkg_lookup_create(blkcg, q);
1660 if (!IS_ERR(blkg))
1661 cfqg = blkg_to_cfqg(blkg);
1664 return cfqg;
1667 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1669 /* Currently, all async queues are mapped to root group */
1670 if (!cfq_cfqq_sync(cfqq))
1671 cfqg = cfqq->cfqd->root_group;
1673 cfqq->cfqg = cfqg;
1674 /* cfqq reference on cfqg */
1675 cfqg_get(cfqg);
1678 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1679 struct blkg_policy_data *pd, int off)
1681 struct cfq_group *cfqg = pd_to_cfqg(pd);
1683 if (!cfqg->dev_weight)
1684 return 0;
1685 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1688 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1690 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1691 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1692 0, false);
1693 return 0;
1696 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1697 struct blkg_policy_data *pd, int off)
1699 struct cfq_group *cfqg = pd_to_cfqg(pd);
1701 if (!cfqg->dev_leaf_weight)
1702 return 0;
1703 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1706 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1708 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1709 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1710 0, false);
1711 return 0;
1714 static int cfq_print_weight(struct seq_file *sf, void *v)
1716 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1717 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1718 unsigned int val = 0;
1720 if (cgd)
1721 val = cgd->weight;
1723 seq_printf(sf, "%u\n", val);
1724 return 0;
1727 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1729 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1730 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1731 unsigned int val = 0;
1733 if (cgd)
1734 val = cgd->leaf_weight;
1736 seq_printf(sf, "%u\n", val);
1737 return 0;
1740 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1741 char *buf, size_t nbytes, loff_t off,
1742 bool is_leaf_weight)
1744 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1745 struct blkg_conf_ctx ctx;
1746 struct cfq_group *cfqg;
1747 struct cfq_group_data *cfqgd;
1748 int ret;
1750 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1751 if (ret)
1752 return ret;
1754 ret = -EINVAL;
1755 cfqg = blkg_to_cfqg(ctx.blkg);
1756 cfqgd = blkcg_to_cfqgd(blkcg);
1757 if (!cfqg || !cfqgd)
1758 goto err;
1760 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1761 if (!is_leaf_weight) {
1762 cfqg->dev_weight = ctx.v;
1763 cfqg->new_weight = ctx.v ?: cfqgd->weight;
1764 } else {
1765 cfqg->dev_leaf_weight = ctx.v;
1766 cfqg->new_leaf_weight = ctx.v ?: cfqgd->leaf_weight;
1768 ret = 0;
1771 err:
1772 blkg_conf_finish(&ctx);
1773 return ret ?: nbytes;
1776 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1777 char *buf, size_t nbytes, loff_t off)
1779 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1782 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1783 char *buf, size_t nbytes, loff_t off)
1785 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1788 static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1789 u64 val, bool is_leaf_weight)
1791 struct blkcg *blkcg = css_to_blkcg(css);
1792 struct blkcg_gq *blkg;
1793 struct cfq_group_data *cfqgd;
1794 int ret = 0;
1796 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1797 return -EINVAL;
1799 spin_lock_irq(&blkcg->lock);
1800 cfqgd = blkcg_to_cfqgd(blkcg);
1801 if (!cfqgd) {
1802 ret = -EINVAL;
1803 goto out;
1806 if (!is_leaf_weight)
1807 cfqgd->weight = val;
1808 else
1809 cfqgd->leaf_weight = val;
1811 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1812 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1814 if (!cfqg)
1815 continue;
1817 if (!is_leaf_weight) {
1818 if (!cfqg->dev_weight)
1819 cfqg->new_weight = cfqgd->weight;
1820 } else {
1821 if (!cfqg->dev_leaf_weight)
1822 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1826 out:
1827 spin_unlock_irq(&blkcg->lock);
1828 return ret;
1831 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1832 u64 val)
1834 return __cfq_set_weight(css, cft, val, false);
1837 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1838 struct cftype *cft, u64 val)
1840 return __cfq_set_weight(css, cft, val, true);
1843 static int cfqg_print_stat(struct seq_file *sf, void *v)
1845 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1846 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1847 return 0;
1850 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1852 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1853 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1854 return 0;
1857 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1858 struct blkg_policy_data *pd, int off)
1860 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1862 return __blkg_prfill_u64(sf, pd, sum);
1865 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1866 struct blkg_policy_data *pd, int off)
1868 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1870 return __blkg_prfill_rwstat(sf, pd, &sum);
1873 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1875 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1876 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1877 seq_cft(sf)->private, false);
1878 return 0;
1881 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1883 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1884 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1885 seq_cft(sf)->private, true);
1886 return 0;
1889 #ifdef CONFIG_DEBUG_BLK_CGROUP
1890 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1891 struct blkg_policy_data *pd, int off)
1893 struct cfq_group *cfqg = pd_to_cfqg(pd);
1894 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1895 u64 v = 0;
1897 if (samples) {
1898 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1899 v = div64_u64(v, samples);
1901 __blkg_prfill_u64(sf, pd, v);
1902 return 0;
1905 /* print avg_queue_size */
1906 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1908 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1909 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1910 0, false);
1911 return 0;
1913 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1915 static struct cftype cfq_blkcg_files[] = {
1916 /* on root, weight is mapped to leaf_weight */
1918 .name = "weight_device",
1919 .flags = CFTYPE_ONLY_ON_ROOT,
1920 .seq_show = cfqg_print_leaf_weight_device,
1921 .write = cfqg_set_leaf_weight_device,
1924 .name = "weight",
1925 .flags = CFTYPE_ONLY_ON_ROOT,
1926 .seq_show = cfq_print_leaf_weight,
1927 .write_u64 = cfq_set_leaf_weight,
1930 /* no such mapping necessary for !roots */
1932 .name = "weight_device",
1933 .flags = CFTYPE_NOT_ON_ROOT,
1934 .seq_show = cfqg_print_weight_device,
1935 .write = cfqg_set_weight_device,
1938 .name = "weight",
1939 .flags = CFTYPE_NOT_ON_ROOT,
1940 .seq_show = cfq_print_weight,
1941 .write_u64 = cfq_set_weight,
1945 .name = "leaf_weight_device",
1946 .seq_show = cfqg_print_leaf_weight_device,
1947 .write = cfqg_set_leaf_weight_device,
1950 .name = "leaf_weight",
1951 .seq_show = cfq_print_leaf_weight,
1952 .write_u64 = cfq_set_leaf_weight,
1955 /* statistics, covers only the tasks in the cfqg */
1957 .name = "time",
1958 .private = offsetof(struct cfq_group, stats.time),
1959 .seq_show = cfqg_print_stat,
1962 .name = "sectors",
1963 .private = offsetof(struct cfq_group, stats.sectors),
1964 .seq_show = cfqg_print_stat,
1967 .name = "io_service_bytes",
1968 .private = offsetof(struct cfq_group, stats.service_bytes),
1969 .seq_show = cfqg_print_rwstat,
1972 .name = "io_serviced",
1973 .private = offsetof(struct cfq_group, stats.serviced),
1974 .seq_show = cfqg_print_rwstat,
1977 .name = "io_service_time",
1978 .private = offsetof(struct cfq_group, stats.service_time),
1979 .seq_show = cfqg_print_rwstat,
1982 .name = "io_wait_time",
1983 .private = offsetof(struct cfq_group, stats.wait_time),
1984 .seq_show = cfqg_print_rwstat,
1987 .name = "io_merged",
1988 .private = offsetof(struct cfq_group, stats.merged),
1989 .seq_show = cfqg_print_rwstat,
1992 .name = "io_queued",
1993 .private = offsetof(struct cfq_group, stats.queued),
1994 .seq_show = cfqg_print_rwstat,
1997 /* the same statictics which cover the cfqg and its descendants */
1999 .name = "time_recursive",
2000 .private = offsetof(struct cfq_group, stats.time),
2001 .seq_show = cfqg_print_stat_recursive,
2004 .name = "sectors_recursive",
2005 .private = offsetof(struct cfq_group, stats.sectors),
2006 .seq_show = cfqg_print_stat_recursive,
2009 .name = "io_service_bytes_recursive",
2010 .private = offsetof(struct cfq_group, stats.service_bytes),
2011 .seq_show = cfqg_print_rwstat_recursive,
2014 .name = "io_serviced_recursive",
2015 .private = offsetof(struct cfq_group, stats.serviced),
2016 .seq_show = cfqg_print_rwstat_recursive,
2019 .name = "io_service_time_recursive",
2020 .private = offsetof(struct cfq_group, stats.service_time),
2021 .seq_show = cfqg_print_rwstat_recursive,
2024 .name = "io_wait_time_recursive",
2025 .private = offsetof(struct cfq_group, stats.wait_time),
2026 .seq_show = cfqg_print_rwstat_recursive,
2029 .name = "io_merged_recursive",
2030 .private = offsetof(struct cfq_group, stats.merged),
2031 .seq_show = cfqg_print_rwstat_recursive,
2034 .name = "io_queued_recursive",
2035 .private = offsetof(struct cfq_group, stats.queued),
2036 .seq_show = cfqg_print_rwstat_recursive,
2038 #ifdef CONFIG_DEBUG_BLK_CGROUP
2040 .name = "avg_queue_size",
2041 .seq_show = cfqg_print_avg_queue_size,
2044 .name = "group_wait_time",
2045 .private = offsetof(struct cfq_group, stats.group_wait_time),
2046 .seq_show = cfqg_print_stat,
2049 .name = "idle_time",
2050 .private = offsetof(struct cfq_group, stats.idle_time),
2051 .seq_show = cfqg_print_stat,
2054 .name = "empty_time",
2055 .private = offsetof(struct cfq_group, stats.empty_time),
2056 .seq_show = cfqg_print_stat,
2059 .name = "dequeue",
2060 .private = offsetof(struct cfq_group, stats.dequeue),
2061 .seq_show = cfqg_print_stat,
2064 .name = "unaccounted_time",
2065 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2066 .seq_show = cfqg_print_stat,
2068 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2069 { } /* terminate */
2071 #else /* GROUP_IOSCHED */
2072 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
2073 struct blkcg *blkcg)
2075 return cfqd->root_group;
2078 static inline void
2079 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2080 cfqq->cfqg = cfqg;
2083 #endif /* GROUP_IOSCHED */
2086 * The cfqd->service_trees holds all pending cfq_queue's that have
2087 * requests waiting to be processed. It is sorted in the order that
2088 * we will service the queues.
2090 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2091 bool add_front)
2093 struct rb_node **p, *parent;
2094 struct cfq_queue *__cfqq;
2095 unsigned long rb_key;
2096 struct cfq_rb_root *st;
2097 int left;
2098 int new_cfqq = 1;
2100 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2101 if (cfq_class_idle(cfqq)) {
2102 rb_key = CFQ_IDLE_DELAY;
2103 parent = rb_last(&st->rb);
2104 if (parent && parent != &cfqq->rb_node) {
2105 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2106 rb_key += __cfqq->rb_key;
2107 } else
2108 rb_key += jiffies;
2109 } else if (!add_front) {
2111 * Get our rb key offset. Subtract any residual slice
2112 * value carried from last service. A negative resid
2113 * count indicates slice overrun, and this should position
2114 * the next service time further away in the tree.
2116 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2117 rb_key -= cfqq->slice_resid;
2118 cfqq->slice_resid = 0;
2119 } else {
2120 rb_key = -HZ;
2121 __cfqq = cfq_rb_first(st);
2122 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2125 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2126 new_cfqq = 0;
2128 * same position, nothing more to do
2130 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2131 return;
2133 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2134 cfqq->service_tree = NULL;
2137 left = 1;
2138 parent = NULL;
2139 cfqq->service_tree = st;
2140 p = &st->rb.rb_node;
2141 while (*p) {
2142 parent = *p;
2143 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2146 * sort by key, that represents service time.
2148 if (time_before(rb_key, __cfqq->rb_key))
2149 p = &parent->rb_left;
2150 else {
2151 p = &parent->rb_right;
2152 left = 0;
2156 if (left)
2157 st->left = &cfqq->rb_node;
2159 cfqq->rb_key = rb_key;
2160 rb_link_node(&cfqq->rb_node, parent, p);
2161 rb_insert_color(&cfqq->rb_node, &st->rb);
2162 st->count++;
2163 if (add_front || !new_cfqq)
2164 return;
2165 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2168 static struct cfq_queue *
2169 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2170 sector_t sector, struct rb_node **ret_parent,
2171 struct rb_node ***rb_link)
2173 struct rb_node **p, *parent;
2174 struct cfq_queue *cfqq = NULL;
2176 parent = NULL;
2177 p = &root->rb_node;
2178 while (*p) {
2179 struct rb_node **n;
2181 parent = *p;
2182 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2185 * Sort strictly based on sector. Smallest to the left,
2186 * largest to the right.
2188 if (sector > blk_rq_pos(cfqq->next_rq))
2189 n = &(*p)->rb_right;
2190 else if (sector < blk_rq_pos(cfqq->next_rq))
2191 n = &(*p)->rb_left;
2192 else
2193 break;
2194 p = n;
2195 cfqq = NULL;
2198 *ret_parent = parent;
2199 if (rb_link)
2200 *rb_link = p;
2201 return cfqq;
2204 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2206 struct rb_node **p, *parent;
2207 struct cfq_queue *__cfqq;
2209 if (cfqq->p_root) {
2210 rb_erase(&cfqq->p_node, cfqq->p_root);
2211 cfqq->p_root = NULL;
2214 if (cfq_class_idle(cfqq))
2215 return;
2216 if (!cfqq->next_rq)
2217 return;
2219 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2220 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2221 blk_rq_pos(cfqq->next_rq), &parent, &p);
2222 if (!__cfqq) {
2223 rb_link_node(&cfqq->p_node, parent, p);
2224 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2225 } else
2226 cfqq->p_root = NULL;
2230 * Update cfqq's position in the service tree.
2232 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2235 * Resorting requires the cfqq to be on the RR list already.
2237 if (cfq_cfqq_on_rr(cfqq)) {
2238 cfq_service_tree_add(cfqd, cfqq, 0);
2239 cfq_prio_tree_add(cfqd, cfqq);
2244 * add to busy list of queues for service, trying to be fair in ordering
2245 * the pending list according to last request service
2247 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2249 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2250 BUG_ON(cfq_cfqq_on_rr(cfqq));
2251 cfq_mark_cfqq_on_rr(cfqq);
2252 cfqd->busy_queues++;
2253 if (cfq_cfqq_sync(cfqq))
2254 cfqd->busy_sync_queues++;
2256 cfq_resort_rr_list(cfqd, cfqq);
2260 * Called when the cfqq no longer has requests pending, remove it from
2261 * the service tree.
2263 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2265 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2266 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2267 cfq_clear_cfqq_on_rr(cfqq);
2269 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2270 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2271 cfqq->service_tree = NULL;
2273 if (cfqq->p_root) {
2274 rb_erase(&cfqq->p_node, cfqq->p_root);
2275 cfqq->p_root = NULL;
2278 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2279 BUG_ON(!cfqd->busy_queues);
2280 cfqd->busy_queues--;
2281 if (cfq_cfqq_sync(cfqq))
2282 cfqd->busy_sync_queues--;
2286 * rb tree support functions
2288 static void cfq_del_rq_rb(struct request *rq)
2290 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2291 const int sync = rq_is_sync(rq);
2293 BUG_ON(!cfqq->queued[sync]);
2294 cfqq->queued[sync]--;
2296 elv_rb_del(&cfqq->sort_list, rq);
2298 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2300 * Queue will be deleted from service tree when we actually
2301 * expire it later. Right now just remove it from prio tree
2302 * as it is empty.
2304 if (cfqq->p_root) {
2305 rb_erase(&cfqq->p_node, cfqq->p_root);
2306 cfqq->p_root = NULL;
2311 static void cfq_add_rq_rb(struct request *rq)
2313 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2314 struct cfq_data *cfqd = cfqq->cfqd;
2315 struct request *prev;
2317 cfqq->queued[rq_is_sync(rq)]++;
2319 elv_rb_add(&cfqq->sort_list, rq);
2321 if (!cfq_cfqq_on_rr(cfqq))
2322 cfq_add_cfqq_rr(cfqd, cfqq);
2325 * check if this request is a better next-serve candidate
2327 prev = cfqq->next_rq;
2328 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2331 * adjust priority tree position, if ->next_rq changes
2333 if (prev != cfqq->next_rq)
2334 cfq_prio_tree_add(cfqd, cfqq);
2336 BUG_ON(!cfqq->next_rq);
2339 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2341 elv_rb_del(&cfqq->sort_list, rq);
2342 cfqq->queued[rq_is_sync(rq)]--;
2343 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2344 cfq_add_rq_rb(rq);
2345 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2346 rq->cmd_flags);
2349 static struct request *
2350 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2352 struct task_struct *tsk = current;
2353 struct cfq_io_cq *cic;
2354 struct cfq_queue *cfqq;
2356 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2357 if (!cic)
2358 return NULL;
2360 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2361 if (cfqq)
2362 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2364 return NULL;
2367 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2369 struct cfq_data *cfqd = q->elevator->elevator_data;
2371 cfqd->rq_in_driver++;
2372 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2373 cfqd->rq_in_driver);
2375 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2378 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2380 struct cfq_data *cfqd = q->elevator->elevator_data;
2382 WARN_ON(!cfqd->rq_in_driver);
2383 cfqd->rq_in_driver--;
2384 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2385 cfqd->rq_in_driver);
2388 static void cfq_remove_request(struct request *rq)
2390 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2392 if (cfqq->next_rq == rq)
2393 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2395 list_del_init(&rq->queuelist);
2396 cfq_del_rq_rb(rq);
2398 cfqq->cfqd->rq_queued--;
2399 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2400 if (rq->cmd_flags & REQ_PRIO) {
2401 WARN_ON(!cfqq->prio_pending);
2402 cfqq->prio_pending--;
2406 static int cfq_merge(struct request_queue *q, struct request **req,
2407 struct bio *bio)
2409 struct cfq_data *cfqd = q->elevator->elevator_data;
2410 struct request *__rq;
2412 __rq = cfq_find_rq_fmerge(cfqd, bio);
2413 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2414 *req = __rq;
2415 return ELEVATOR_FRONT_MERGE;
2418 return ELEVATOR_NO_MERGE;
2421 static void cfq_merged_request(struct request_queue *q, struct request *req,
2422 int type)
2424 if (type == ELEVATOR_FRONT_MERGE) {
2425 struct cfq_queue *cfqq = RQ_CFQQ(req);
2427 cfq_reposition_rq_rb(cfqq, req);
2431 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2432 struct bio *bio)
2434 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2437 static void
2438 cfq_merged_requests(struct request_queue *q, struct request *rq,
2439 struct request *next)
2441 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2442 struct cfq_data *cfqd = q->elevator->elevator_data;
2445 * reposition in fifo if next is older than rq
2447 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2448 time_before(next->fifo_time, rq->fifo_time) &&
2449 cfqq == RQ_CFQQ(next)) {
2450 list_move(&rq->queuelist, &next->queuelist);
2451 rq->fifo_time = next->fifo_time;
2454 if (cfqq->next_rq == next)
2455 cfqq->next_rq = rq;
2456 cfq_remove_request(next);
2457 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2459 cfqq = RQ_CFQQ(next);
2461 * all requests of this queue are merged to other queues, delete it
2462 * from the service tree. If it's the active_queue,
2463 * cfq_dispatch_requests() will choose to expire it or do idle
2465 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2466 cfqq != cfqd->active_queue)
2467 cfq_del_cfqq_rr(cfqd, cfqq);
2470 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2471 struct bio *bio)
2473 struct cfq_data *cfqd = q->elevator->elevator_data;
2474 struct cfq_io_cq *cic;
2475 struct cfq_queue *cfqq;
2478 * Disallow merge of a sync bio into an async request.
2480 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2481 return false;
2484 * Lookup the cfqq that this bio will be queued with and allow
2485 * merge only if rq is queued there.
2487 cic = cfq_cic_lookup(cfqd, current->io_context);
2488 if (!cic)
2489 return false;
2491 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2492 return cfqq == RQ_CFQQ(rq);
2495 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2497 del_timer(&cfqd->idle_slice_timer);
2498 cfqg_stats_update_idle_time(cfqq->cfqg);
2501 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2502 struct cfq_queue *cfqq)
2504 if (cfqq) {
2505 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2506 cfqd->serving_wl_class, cfqd->serving_wl_type);
2507 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2508 cfqq->slice_start = 0;
2509 cfqq->dispatch_start = jiffies;
2510 cfqq->allocated_slice = 0;
2511 cfqq->slice_end = 0;
2512 cfqq->slice_dispatch = 0;
2513 cfqq->nr_sectors = 0;
2515 cfq_clear_cfqq_wait_request(cfqq);
2516 cfq_clear_cfqq_must_dispatch(cfqq);
2517 cfq_clear_cfqq_must_alloc_slice(cfqq);
2518 cfq_clear_cfqq_fifo_expire(cfqq);
2519 cfq_mark_cfqq_slice_new(cfqq);
2521 cfq_del_timer(cfqd, cfqq);
2524 cfqd->active_queue = cfqq;
2528 * current cfqq expired its slice (or was too idle), select new one
2530 static void
2531 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2532 bool timed_out)
2534 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2536 if (cfq_cfqq_wait_request(cfqq))
2537 cfq_del_timer(cfqd, cfqq);
2539 cfq_clear_cfqq_wait_request(cfqq);
2540 cfq_clear_cfqq_wait_busy(cfqq);
2543 * If this cfqq is shared between multiple processes, check to
2544 * make sure that those processes are still issuing I/Os within
2545 * the mean seek distance. If not, it may be time to break the
2546 * queues apart again.
2548 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2549 cfq_mark_cfqq_split_coop(cfqq);
2552 * store what was left of this slice, if the queue idled/timed out
2554 if (timed_out) {
2555 if (cfq_cfqq_slice_new(cfqq))
2556 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2557 else
2558 cfqq->slice_resid = cfqq->slice_end - jiffies;
2559 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2562 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2564 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2565 cfq_del_cfqq_rr(cfqd, cfqq);
2567 cfq_resort_rr_list(cfqd, cfqq);
2569 if (cfqq == cfqd->active_queue)
2570 cfqd->active_queue = NULL;
2572 if (cfqd->active_cic) {
2573 put_io_context(cfqd->active_cic->icq.ioc);
2574 cfqd->active_cic = NULL;
2578 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2580 struct cfq_queue *cfqq = cfqd->active_queue;
2582 if (cfqq)
2583 __cfq_slice_expired(cfqd, cfqq, timed_out);
2587 * Get next queue for service. Unless we have a queue preemption,
2588 * we'll simply select the first cfqq in the service tree.
2590 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2592 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2593 cfqd->serving_wl_class, cfqd->serving_wl_type);
2595 if (!cfqd->rq_queued)
2596 return NULL;
2598 /* There is nothing to dispatch */
2599 if (!st)
2600 return NULL;
2601 if (RB_EMPTY_ROOT(&st->rb))
2602 return NULL;
2603 return cfq_rb_first(st);
2606 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2608 struct cfq_group *cfqg;
2609 struct cfq_queue *cfqq;
2610 int i, j;
2611 struct cfq_rb_root *st;
2613 if (!cfqd->rq_queued)
2614 return NULL;
2616 cfqg = cfq_get_next_cfqg(cfqd);
2617 if (!cfqg)
2618 return NULL;
2620 for_each_cfqg_st(cfqg, i, j, st)
2621 if ((cfqq = cfq_rb_first(st)) != NULL)
2622 return cfqq;
2623 return NULL;
2627 * Get and set a new active queue for service.
2629 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2630 struct cfq_queue *cfqq)
2632 if (!cfqq)
2633 cfqq = cfq_get_next_queue(cfqd);
2635 __cfq_set_active_queue(cfqd, cfqq);
2636 return cfqq;
2639 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2640 struct request *rq)
2642 if (blk_rq_pos(rq) >= cfqd->last_position)
2643 return blk_rq_pos(rq) - cfqd->last_position;
2644 else
2645 return cfqd->last_position - blk_rq_pos(rq);
2648 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2649 struct request *rq)
2651 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2654 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2655 struct cfq_queue *cur_cfqq)
2657 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2658 struct rb_node *parent, *node;
2659 struct cfq_queue *__cfqq;
2660 sector_t sector = cfqd->last_position;
2662 if (RB_EMPTY_ROOT(root))
2663 return NULL;
2666 * First, if we find a request starting at the end of the last
2667 * request, choose it.
2669 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2670 if (__cfqq)
2671 return __cfqq;
2674 * If the exact sector wasn't found, the parent of the NULL leaf
2675 * will contain the closest sector.
2677 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2678 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2679 return __cfqq;
2681 if (blk_rq_pos(__cfqq->next_rq) < sector)
2682 node = rb_next(&__cfqq->p_node);
2683 else
2684 node = rb_prev(&__cfqq->p_node);
2685 if (!node)
2686 return NULL;
2688 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2689 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2690 return __cfqq;
2692 return NULL;
2696 * cfqd - obvious
2697 * cur_cfqq - passed in so that we don't decide that the current queue is
2698 * closely cooperating with itself.
2700 * So, basically we're assuming that that cur_cfqq has dispatched at least
2701 * one request, and that cfqd->last_position reflects a position on the disk
2702 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2703 * assumption.
2705 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2706 struct cfq_queue *cur_cfqq)
2708 struct cfq_queue *cfqq;
2710 if (cfq_class_idle(cur_cfqq))
2711 return NULL;
2712 if (!cfq_cfqq_sync(cur_cfqq))
2713 return NULL;
2714 if (CFQQ_SEEKY(cur_cfqq))
2715 return NULL;
2718 * Don't search priority tree if it's the only queue in the group.
2720 if (cur_cfqq->cfqg->nr_cfqq == 1)
2721 return NULL;
2724 * We should notice if some of the queues are cooperating, eg
2725 * working closely on the same area of the disk. In that case,
2726 * we can group them together and don't waste time idling.
2728 cfqq = cfqq_close(cfqd, cur_cfqq);
2729 if (!cfqq)
2730 return NULL;
2732 /* If new queue belongs to different cfq_group, don't choose it */
2733 if (cur_cfqq->cfqg != cfqq->cfqg)
2734 return NULL;
2737 * It only makes sense to merge sync queues.
2739 if (!cfq_cfqq_sync(cfqq))
2740 return NULL;
2741 if (CFQQ_SEEKY(cfqq))
2742 return NULL;
2745 * Do not merge queues of different priority classes
2747 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2748 return NULL;
2750 return cfqq;
2754 * Determine whether we should enforce idle window for this queue.
2757 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2759 enum wl_class_t wl_class = cfqq_class(cfqq);
2760 struct cfq_rb_root *st = cfqq->service_tree;
2762 BUG_ON(!st);
2763 BUG_ON(!st->count);
2765 if (!cfqd->cfq_slice_idle)
2766 return false;
2768 /* We never do for idle class queues. */
2769 if (wl_class == IDLE_WORKLOAD)
2770 return false;
2772 /* We do for queues that were marked with idle window flag. */
2773 if (cfq_cfqq_idle_window(cfqq) &&
2774 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2775 return true;
2778 * Otherwise, we do only if they are the last ones
2779 * in their service tree.
2781 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2782 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2783 return true;
2784 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2785 return false;
2788 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2790 struct cfq_queue *cfqq = cfqd->active_queue;
2791 struct cfq_io_cq *cic;
2792 unsigned long sl, group_idle = 0;
2795 * SSD device without seek penalty, disable idling. But only do so
2796 * for devices that support queuing, otherwise we still have a problem
2797 * with sync vs async workloads.
2799 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2800 return;
2802 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2803 WARN_ON(cfq_cfqq_slice_new(cfqq));
2806 * idle is disabled, either manually or by past process history
2808 if (!cfq_should_idle(cfqd, cfqq)) {
2809 /* no queue idling. Check for group idling */
2810 if (cfqd->cfq_group_idle)
2811 group_idle = cfqd->cfq_group_idle;
2812 else
2813 return;
2817 * still active requests from this queue, don't idle
2819 if (cfqq->dispatched)
2820 return;
2823 * task has exited, don't wait
2825 cic = cfqd->active_cic;
2826 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2827 return;
2830 * If our average think time is larger than the remaining time
2831 * slice, then don't idle. This avoids overrunning the allotted
2832 * time slice.
2834 if (sample_valid(cic->ttime.ttime_samples) &&
2835 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2836 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2837 cic->ttime.ttime_mean);
2838 return;
2841 /* There are other queues in the group, don't do group idle */
2842 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2843 return;
2845 cfq_mark_cfqq_wait_request(cfqq);
2847 if (group_idle)
2848 sl = cfqd->cfq_group_idle;
2849 else
2850 sl = cfqd->cfq_slice_idle;
2852 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2853 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2854 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2855 group_idle ? 1 : 0);
2859 * Move request from internal lists to the request queue dispatch list.
2861 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2863 struct cfq_data *cfqd = q->elevator->elevator_data;
2864 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2866 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2868 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2869 cfq_remove_request(rq);
2870 cfqq->dispatched++;
2871 (RQ_CFQG(rq))->dispatched++;
2872 elv_dispatch_sort(q, rq);
2874 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2875 cfqq->nr_sectors += blk_rq_sectors(rq);
2876 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2880 * return expired entry, or NULL to just start from scratch in rbtree
2882 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2884 struct request *rq = NULL;
2886 if (cfq_cfqq_fifo_expire(cfqq))
2887 return NULL;
2889 cfq_mark_cfqq_fifo_expire(cfqq);
2891 if (list_empty(&cfqq->fifo))
2892 return NULL;
2894 rq = rq_entry_fifo(cfqq->fifo.next);
2895 if (time_before(jiffies, rq->fifo_time))
2896 rq = NULL;
2898 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2899 return rq;
2902 static inline int
2903 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2905 const int base_rq = cfqd->cfq_slice_async_rq;
2907 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2909 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2913 * Must be called with the queue_lock held.
2915 static int cfqq_process_refs(struct cfq_queue *cfqq)
2917 int process_refs, io_refs;
2919 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2920 process_refs = cfqq->ref - io_refs;
2921 BUG_ON(process_refs < 0);
2922 return process_refs;
2925 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2927 int process_refs, new_process_refs;
2928 struct cfq_queue *__cfqq;
2931 * If there are no process references on the new_cfqq, then it is
2932 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2933 * chain may have dropped their last reference (not just their
2934 * last process reference).
2936 if (!cfqq_process_refs(new_cfqq))
2937 return;
2939 /* Avoid a circular list and skip interim queue merges */
2940 while ((__cfqq = new_cfqq->new_cfqq)) {
2941 if (__cfqq == cfqq)
2942 return;
2943 new_cfqq = __cfqq;
2946 process_refs = cfqq_process_refs(cfqq);
2947 new_process_refs = cfqq_process_refs(new_cfqq);
2949 * If the process for the cfqq has gone away, there is no
2950 * sense in merging the queues.
2952 if (process_refs == 0 || new_process_refs == 0)
2953 return;
2956 * Merge in the direction of the lesser amount of work.
2958 if (new_process_refs >= process_refs) {
2959 cfqq->new_cfqq = new_cfqq;
2960 new_cfqq->ref += process_refs;
2961 } else {
2962 new_cfqq->new_cfqq = cfqq;
2963 cfqq->ref += new_process_refs;
2967 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2968 struct cfq_group *cfqg, enum wl_class_t wl_class)
2970 struct cfq_queue *queue;
2971 int i;
2972 bool key_valid = false;
2973 unsigned long lowest_key = 0;
2974 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2976 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2977 /* select the one with lowest rb_key */
2978 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2979 if (queue &&
2980 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2981 lowest_key = queue->rb_key;
2982 cur_best = i;
2983 key_valid = true;
2987 return cur_best;
2990 static void
2991 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2993 unsigned slice;
2994 unsigned count;
2995 struct cfq_rb_root *st;
2996 unsigned group_slice;
2997 enum wl_class_t original_class = cfqd->serving_wl_class;
2999 /* Choose next priority. RT > BE > IDLE */
3000 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3001 cfqd->serving_wl_class = RT_WORKLOAD;
3002 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3003 cfqd->serving_wl_class = BE_WORKLOAD;
3004 else {
3005 cfqd->serving_wl_class = IDLE_WORKLOAD;
3006 cfqd->workload_expires = jiffies + 1;
3007 return;
3010 if (original_class != cfqd->serving_wl_class)
3011 goto new_workload;
3014 * For RT and BE, we have to choose also the type
3015 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3016 * expiration time
3018 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3019 count = st->count;
3022 * check workload expiration, and that we still have other queues ready
3024 if (count && !time_after(jiffies, cfqd->workload_expires))
3025 return;
3027 new_workload:
3028 /* otherwise select new workload type */
3029 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3030 cfqd->serving_wl_class);
3031 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3032 count = st->count;
3035 * the workload slice is computed as a fraction of target latency
3036 * proportional to the number of queues in that workload, over
3037 * all the queues in the same priority class
3039 group_slice = cfq_group_slice(cfqd, cfqg);
3041 slice = group_slice * count /
3042 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3043 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3044 cfqg));
3046 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3047 unsigned int tmp;
3050 * Async queues are currently system wide. Just taking
3051 * proportion of queues with-in same group will lead to higher
3052 * async ratio system wide as generally root group is going
3053 * to have higher weight. A more accurate thing would be to
3054 * calculate system wide asnc/sync ratio.
3056 tmp = cfqd->cfq_target_latency *
3057 cfqg_busy_async_queues(cfqd, cfqg);
3058 tmp = tmp/cfqd->busy_queues;
3059 slice = min_t(unsigned, slice, tmp);
3061 /* async workload slice is scaled down according to
3062 * the sync/async slice ratio. */
3063 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3064 } else
3065 /* sync workload slice is at least 2 * cfq_slice_idle */
3066 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3068 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3069 cfq_log(cfqd, "workload slice:%d", slice);
3070 cfqd->workload_expires = jiffies + slice;
3073 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3075 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3076 struct cfq_group *cfqg;
3078 if (RB_EMPTY_ROOT(&st->rb))
3079 return NULL;
3080 cfqg = cfq_rb_first_group(st);
3081 update_min_vdisktime(st);
3082 return cfqg;
3085 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3087 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3089 cfqd->serving_group = cfqg;
3091 /* Restore the workload type data */
3092 if (cfqg->saved_wl_slice) {
3093 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3094 cfqd->serving_wl_type = cfqg->saved_wl_type;
3095 cfqd->serving_wl_class = cfqg->saved_wl_class;
3096 } else
3097 cfqd->workload_expires = jiffies - 1;
3099 choose_wl_class_and_type(cfqd, cfqg);
3103 * Select a queue for service. If we have a current active queue,
3104 * check whether to continue servicing it, or retrieve and set a new one.
3106 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3108 struct cfq_queue *cfqq, *new_cfqq = NULL;
3110 cfqq = cfqd->active_queue;
3111 if (!cfqq)
3112 goto new_queue;
3114 if (!cfqd->rq_queued)
3115 return NULL;
3118 * We were waiting for group to get backlogged. Expire the queue
3120 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3121 goto expire;
3124 * The active queue has run out of time, expire it and select new.
3126 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3128 * If slice had not expired at the completion of last request
3129 * we might not have turned on wait_busy flag. Don't expire
3130 * the queue yet. Allow the group to get backlogged.
3132 * The very fact that we have used the slice, that means we
3133 * have been idling all along on this queue and it should be
3134 * ok to wait for this request to complete.
3136 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3137 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3138 cfqq = NULL;
3139 goto keep_queue;
3140 } else
3141 goto check_group_idle;
3145 * The active queue has requests and isn't expired, allow it to
3146 * dispatch.
3148 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3149 goto keep_queue;
3152 * If another queue has a request waiting within our mean seek
3153 * distance, let it run. The expire code will check for close
3154 * cooperators and put the close queue at the front of the service
3155 * tree. If possible, merge the expiring queue with the new cfqq.
3157 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3158 if (new_cfqq) {
3159 if (!cfqq->new_cfqq)
3160 cfq_setup_merge(cfqq, new_cfqq);
3161 goto expire;
3165 * No requests pending. If the active queue still has requests in
3166 * flight or is idling for a new request, allow either of these
3167 * conditions to happen (or time out) before selecting a new queue.
3169 if (timer_pending(&cfqd->idle_slice_timer)) {
3170 cfqq = NULL;
3171 goto keep_queue;
3175 * This is a deep seek queue, but the device is much faster than
3176 * the queue can deliver, don't idle
3178 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3179 (cfq_cfqq_slice_new(cfqq) ||
3180 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3181 cfq_clear_cfqq_deep(cfqq);
3182 cfq_clear_cfqq_idle_window(cfqq);
3185 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3186 cfqq = NULL;
3187 goto keep_queue;
3191 * If group idle is enabled and there are requests dispatched from
3192 * this group, wait for requests to complete.
3194 check_group_idle:
3195 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3196 cfqq->cfqg->dispatched &&
3197 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3198 cfqq = NULL;
3199 goto keep_queue;
3202 expire:
3203 cfq_slice_expired(cfqd, 0);
3204 new_queue:
3206 * Current queue expired. Check if we have to switch to a new
3207 * service tree
3209 if (!new_cfqq)
3210 cfq_choose_cfqg(cfqd);
3212 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3213 keep_queue:
3214 return cfqq;
3217 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3219 int dispatched = 0;
3221 while (cfqq->next_rq) {
3222 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3223 dispatched++;
3226 BUG_ON(!list_empty(&cfqq->fifo));
3228 /* By default cfqq is not expired if it is empty. Do it explicitly */
3229 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3230 return dispatched;
3234 * Drain our current requests. Used for barriers and when switching
3235 * io schedulers on-the-fly.
3237 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3239 struct cfq_queue *cfqq;
3240 int dispatched = 0;
3242 /* Expire the timeslice of the current active queue first */
3243 cfq_slice_expired(cfqd, 0);
3244 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3245 __cfq_set_active_queue(cfqd, cfqq);
3246 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3249 BUG_ON(cfqd->busy_queues);
3251 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3252 return dispatched;
3255 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3256 struct cfq_queue *cfqq)
3258 /* the queue hasn't finished any request, can't estimate */
3259 if (cfq_cfqq_slice_new(cfqq))
3260 return true;
3261 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3262 cfqq->slice_end))
3263 return true;
3265 return false;
3268 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3270 unsigned int max_dispatch;
3273 * Drain async requests before we start sync IO
3275 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3276 return false;
3279 * If this is an async queue and we have sync IO in flight, let it wait
3281 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3282 return false;
3284 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3285 if (cfq_class_idle(cfqq))
3286 max_dispatch = 1;
3289 * Does this cfqq already have too much IO in flight?
3291 if (cfqq->dispatched >= max_dispatch) {
3292 bool promote_sync = false;
3294 * idle queue must always only have a single IO in flight
3296 if (cfq_class_idle(cfqq))
3297 return false;
3300 * If there is only one sync queue
3301 * we can ignore async queue here and give the sync
3302 * queue no dispatch limit. The reason is a sync queue can
3303 * preempt async queue, limiting the sync queue doesn't make
3304 * sense. This is useful for aiostress test.
3306 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3307 promote_sync = true;
3310 * We have other queues, don't allow more IO from this one
3312 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3313 !promote_sync)
3314 return false;
3317 * Sole queue user, no limit
3319 if (cfqd->busy_queues == 1 || promote_sync)
3320 max_dispatch = -1;
3321 else
3323 * Normally we start throttling cfqq when cfq_quantum/2
3324 * requests have been dispatched. But we can drive
3325 * deeper queue depths at the beginning of slice
3326 * subjected to upper limit of cfq_quantum.
3327 * */
3328 max_dispatch = cfqd->cfq_quantum;
3332 * Async queues must wait a bit before being allowed dispatch.
3333 * We also ramp up the dispatch depth gradually for async IO,
3334 * based on the last sync IO we serviced
3336 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3337 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3338 unsigned int depth;
3340 depth = last_sync / cfqd->cfq_slice[1];
3341 if (!depth && !cfqq->dispatched)
3342 depth = 1;
3343 if (depth < max_dispatch)
3344 max_dispatch = depth;
3348 * If we're below the current max, allow a dispatch
3350 return cfqq->dispatched < max_dispatch;
3354 * Dispatch a request from cfqq, moving them to the request queue
3355 * dispatch list.
3357 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3359 struct request *rq;
3361 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3363 if (!cfq_may_dispatch(cfqd, cfqq))
3364 return false;
3367 * follow expired path, else get first next available
3369 rq = cfq_check_fifo(cfqq);
3370 if (!rq)
3371 rq = cfqq->next_rq;
3374 * insert request into driver dispatch list
3376 cfq_dispatch_insert(cfqd->queue, rq);
3378 if (!cfqd->active_cic) {
3379 struct cfq_io_cq *cic = RQ_CIC(rq);
3381 atomic_long_inc(&cic->icq.ioc->refcount);
3382 cfqd->active_cic = cic;
3385 return true;
3389 * Find the cfqq that we need to service and move a request from that to the
3390 * dispatch list
3392 static int cfq_dispatch_requests(struct request_queue *q, int force)
3394 struct cfq_data *cfqd = q->elevator->elevator_data;
3395 struct cfq_queue *cfqq;
3397 if (!cfqd->busy_queues)
3398 return 0;
3400 if (unlikely(force))
3401 return cfq_forced_dispatch(cfqd);
3403 cfqq = cfq_select_queue(cfqd);
3404 if (!cfqq)
3405 return 0;
3408 * Dispatch a request from this cfqq, if it is allowed
3410 if (!cfq_dispatch_request(cfqd, cfqq))
3411 return 0;
3413 cfqq->slice_dispatch++;
3414 cfq_clear_cfqq_must_dispatch(cfqq);
3417 * expire an async queue immediately if it has used up its slice. idle
3418 * queue always expire after 1 dispatch round.
3420 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3421 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3422 cfq_class_idle(cfqq))) {
3423 cfqq->slice_end = jiffies + 1;
3424 cfq_slice_expired(cfqd, 0);
3427 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3428 return 1;
3432 * task holds one reference to the queue, dropped when task exits. each rq
3433 * in-flight on this queue also holds a reference, dropped when rq is freed.
3435 * Each cfq queue took a reference on the parent group. Drop it now.
3436 * queue lock must be held here.
3438 static void cfq_put_queue(struct cfq_queue *cfqq)
3440 struct cfq_data *cfqd = cfqq->cfqd;
3441 struct cfq_group *cfqg;
3443 BUG_ON(cfqq->ref <= 0);
3445 cfqq->ref--;
3446 if (cfqq->ref)
3447 return;
3449 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3450 BUG_ON(rb_first(&cfqq->sort_list));
3451 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3452 cfqg = cfqq->cfqg;
3454 if (unlikely(cfqd->active_queue == cfqq)) {
3455 __cfq_slice_expired(cfqd, cfqq, 0);
3456 cfq_schedule_dispatch(cfqd);
3459 BUG_ON(cfq_cfqq_on_rr(cfqq));
3460 kmem_cache_free(cfq_pool, cfqq);
3461 cfqg_put(cfqg);
3464 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3466 struct cfq_queue *__cfqq, *next;
3469 * If this queue was scheduled to merge with another queue, be
3470 * sure to drop the reference taken on that queue (and others in
3471 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3473 __cfqq = cfqq->new_cfqq;
3474 while (__cfqq) {
3475 if (__cfqq == cfqq) {
3476 WARN(1, "cfqq->new_cfqq loop detected\n");
3477 break;
3479 next = __cfqq->new_cfqq;
3480 cfq_put_queue(__cfqq);
3481 __cfqq = next;
3485 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3487 if (unlikely(cfqq == cfqd->active_queue)) {
3488 __cfq_slice_expired(cfqd, cfqq, 0);
3489 cfq_schedule_dispatch(cfqd);
3492 cfq_put_cooperator(cfqq);
3494 cfq_put_queue(cfqq);
3497 static void cfq_init_icq(struct io_cq *icq)
3499 struct cfq_io_cq *cic = icq_to_cic(icq);
3501 cic->ttime.last_end_request = jiffies;
3504 static void cfq_exit_icq(struct io_cq *icq)
3506 struct cfq_io_cq *cic = icq_to_cic(icq);
3507 struct cfq_data *cfqd = cic_to_cfqd(cic);
3509 if (cic->cfqq[BLK_RW_ASYNC]) {
3510 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3511 cic->cfqq[BLK_RW_ASYNC] = NULL;
3514 if (cic->cfqq[BLK_RW_SYNC]) {
3515 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3516 cic->cfqq[BLK_RW_SYNC] = NULL;
3520 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3522 struct task_struct *tsk = current;
3523 int ioprio_class;
3525 if (!cfq_cfqq_prio_changed(cfqq))
3526 return;
3528 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3529 switch (ioprio_class) {
3530 default:
3531 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3532 case IOPRIO_CLASS_NONE:
3534 * no prio set, inherit CPU scheduling settings
3536 cfqq->ioprio = task_nice_ioprio(tsk);
3537 cfqq->ioprio_class = task_nice_ioclass(tsk);
3538 break;
3539 case IOPRIO_CLASS_RT:
3540 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3541 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3542 break;
3543 case IOPRIO_CLASS_BE:
3544 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3545 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3546 break;
3547 case IOPRIO_CLASS_IDLE:
3548 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3549 cfqq->ioprio = 7;
3550 cfq_clear_cfqq_idle_window(cfqq);
3551 break;
3555 * keep track of original prio settings in case we have to temporarily
3556 * elevate the priority of this queue
3558 cfqq->org_ioprio = cfqq->ioprio;
3559 cfq_clear_cfqq_prio_changed(cfqq);
3562 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3564 int ioprio = cic->icq.ioc->ioprio;
3565 struct cfq_data *cfqd = cic_to_cfqd(cic);
3566 struct cfq_queue *cfqq;
3569 * Check whether ioprio has changed. The condition may trigger
3570 * spuriously on a newly created cic but there's no harm.
3572 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3573 return;
3575 cfqq = cic->cfqq[BLK_RW_ASYNC];
3576 if (cfqq) {
3577 struct cfq_queue *new_cfqq;
3578 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3579 GFP_ATOMIC);
3580 if (new_cfqq) {
3581 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3582 cfq_put_queue(cfqq);
3586 cfqq = cic->cfqq[BLK_RW_SYNC];
3587 if (cfqq)
3588 cfq_mark_cfqq_prio_changed(cfqq);
3590 cic->ioprio = ioprio;
3593 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3594 pid_t pid, bool is_sync)
3596 RB_CLEAR_NODE(&cfqq->rb_node);
3597 RB_CLEAR_NODE(&cfqq->p_node);
3598 INIT_LIST_HEAD(&cfqq->fifo);
3600 cfqq->ref = 0;
3601 cfqq->cfqd = cfqd;
3603 cfq_mark_cfqq_prio_changed(cfqq);
3605 if (is_sync) {
3606 if (!cfq_class_idle(cfqq))
3607 cfq_mark_cfqq_idle_window(cfqq);
3608 cfq_mark_cfqq_sync(cfqq);
3610 cfqq->pid = pid;
3613 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3614 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3616 struct cfq_data *cfqd = cic_to_cfqd(cic);
3617 struct cfq_queue *sync_cfqq;
3618 uint64_t serial_nr;
3620 rcu_read_lock();
3621 serial_nr = bio_blkcg(bio)->css.serial_nr;
3622 rcu_read_unlock();
3625 * Check whether blkcg has changed. The condition may trigger
3626 * spuriously on a newly created cic but there's no harm.
3628 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3629 return;
3631 sync_cfqq = cic_to_cfqq(cic, 1);
3632 if (sync_cfqq) {
3634 * Drop reference to sync queue. A new sync queue will be
3635 * assigned in new group upon arrival of a fresh request.
3637 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3638 cic_set_cfqq(cic, NULL, 1);
3639 cfq_put_queue(sync_cfqq);
3642 cic->blkcg_serial_nr = serial_nr;
3644 #else
3645 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3646 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3648 static struct cfq_queue *
3649 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3650 struct bio *bio, gfp_t gfp_mask)
3652 struct blkcg *blkcg;
3653 struct cfq_queue *cfqq, *new_cfqq = NULL;
3654 struct cfq_group *cfqg;
3656 retry:
3657 rcu_read_lock();
3659 blkcg = bio_blkcg(bio);
3660 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3661 if (!cfqg) {
3662 cfqq = &cfqd->oom_cfqq;
3663 goto out;
3666 cfqq = cic_to_cfqq(cic, is_sync);
3669 * Always try a new alloc if we fell back to the OOM cfqq
3670 * originally, since it should just be a temporary situation.
3672 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3673 cfqq = NULL;
3674 if (new_cfqq) {
3675 cfqq = new_cfqq;
3676 new_cfqq = NULL;
3677 } else if (gfp_mask & __GFP_WAIT) {
3678 rcu_read_unlock();
3679 spin_unlock_irq(cfqd->queue->queue_lock);
3680 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3681 gfp_mask | __GFP_ZERO,
3682 cfqd->queue->node);
3683 spin_lock_irq(cfqd->queue->queue_lock);
3684 if (new_cfqq)
3685 goto retry;
3686 else
3687 return &cfqd->oom_cfqq;
3688 } else {
3689 cfqq = kmem_cache_alloc_node(cfq_pool,
3690 gfp_mask | __GFP_ZERO,
3691 cfqd->queue->node);
3694 if (cfqq) {
3695 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3696 cfq_init_prio_data(cfqq, cic);
3697 cfq_link_cfqq_cfqg(cfqq, cfqg);
3698 cfq_log_cfqq(cfqd, cfqq, "alloced");
3699 } else
3700 cfqq = &cfqd->oom_cfqq;
3702 out:
3703 if (new_cfqq)
3704 kmem_cache_free(cfq_pool, new_cfqq);
3706 rcu_read_unlock();
3707 return cfqq;
3710 static struct cfq_queue **
3711 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3713 switch (ioprio_class) {
3714 case IOPRIO_CLASS_RT:
3715 return &cfqd->async_cfqq[0][ioprio];
3716 case IOPRIO_CLASS_NONE:
3717 ioprio = IOPRIO_NORM;
3718 /* fall through */
3719 case IOPRIO_CLASS_BE:
3720 return &cfqd->async_cfqq[1][ioprio];
3721 case IOPRIO_CLASS_IDLE:
3722 return &cfqd->async_idle_cfqq;
3723 default:
3724 BUG();
3728 static struct cfq_queue *
3729 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3730 struct bio *bio, gfp_t gfp_mask)
3732 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3733 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3734 struct cfq_queue **async_cfqq = NULL;
3735 struct cfq_queue *cfqq = NULL;
3737 if (!is_sync) {
3738 if (!ioprio_valid(cic->ioprio)) {
3739 struct task_struct *tsk = current;
3740 ioprio = task_nice_ioprio(tsk);
3741 ioprio_class = task_nice_ioclass(tsk);
3743 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3744 cfqq = *async_cfqq;
3747 if (!cfqq)
3748 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3751 * pin the queue now that it's allocated, scheduler exit will prune it
3753 if (!is_sync && !(*async_cfqq)) {
3754 cfqq->ref++;
3755 *async_cfqq = cfqq;
3758 cfqq->ref++;
3759 return cfqq;
3762 static void
3763 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3765 unsigned long elapsed = jiffies - ttime->last_end_request;
3766 elapsed = min(elapsed, 2UL * slice_idle);
3768 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3769 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3770 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3773 static void
3774 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3775 struct cfq_io_cq *cic)
3777 if (cfq_cfqq_sync(cfqq)) {
3778 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3779 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3780 cfqd->cfq_slice_idle);
3782 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3783 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3784 #endif
3787 static void
3788 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3789 struct request *rq)
3791 sector_t sdist = 0;
3792 sector_t n_sec = blk_rq_sectors(rq);
3793 if (cfqq->last_request_pos) {
3794 if (cfqq->last_request_pos < blk_rq_pos(rq))
3795 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3796 else
3797 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3800 cfqq->seek_history <<= 1;
3801 if (blk_queue_nonrot(cfqd->queue))
3802 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3803 else
3804 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3808 * Disable idle window if the process thinks too long or seeks so much that
3809 * it doesn't matter
3811 static void
3812 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3813 struct cfq_io_cq *cic)
3815 int old_idle, enable_idle;
3818 * Don't idle for async or idle io prio class
3820 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3821 return;
3823 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3825 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3826 cfq_mark_cfqq_deep(cfqq);
3828 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3829 enable_idle = 0;
3830 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3831 !cfqd->cfq_slice_idle ||
3832 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3833 enable_idle = 0;
3834 else if (sample_valid(cic->ttime.ttime_samples)) {
3835 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3836 enable_idle = 0;
3837 else
3838 enable_idle = 1;
3841 if (old_idle != enable_idle) {
3842 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3843 if (enable_idle)
3844 cfq_mark_cfqq_idle_window(cfqq);
3845 else
3846 cfq_clear_cfqq_idle_window(cfqq);
3851 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3852 * no or if we aren't sure, a 1 will cause a preempt.
3854 static bool
3855 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3856 struct request *rq)
3858 struct cfq_queue *cfqq;
3860 cfqq = cfqd->active_queue;
3861 if (!cfqq)
3862 return false;
3864 if (cfq_class_idle(new_cfqq))
3865 return false;
3867 if (cfq_class_idle(cfqq))
3868 return true;
3871 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3873 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3874 return false;
3877 * if the new request is sync, but the currently running queue is
3878 * not, let the sync request have priority.
3880 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3881 return true;
3883 if (new_cfqq->cfqg != cfqq->cfqg)
3884 return false;
3886 if (cfq_slice_used(cfqq))
3887 return true;
3889 /* Allow preemption only if we are idling on sync-noidle tree */
3890 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3891 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3892 new_cfqq->service_tree->count == 2 &&
3893 RB_EMPTY_ROOT(&cfqq->sort_list))
3894 return true;
3897 * So both queues are sync. Let the new request get disk time if
3898 * it's a metadata request and the current queue is doing regular IO.
3900 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3901 return true;
3904 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3906 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3907 return true;
3909 /* An idle queue should not be idle now for some reason */
3910 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3911 return true;
3913 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3914 return false;
3917 * if this request is as-good as one we would expect from the
3918 * current cfqq, let it preempt
3920 if (cfq_rq_close(cfqd, cfqq, rq))
3921 return true;
3923 return false;
3927 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3928 * let it have half of its nominal slice.
3930 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3932 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3934 cfq_log_cfqq(cfqd, cfqq, "preempt");
3935 cfq_slice_expired(cfqd, 1);
3938 * workload type is changed, don't save slice, otherwise preempt
3939 * doesn't happen
3941 if (old_type != cfqq_type(cfqq))
3942 cfqq->cfqg->saved_wl_slice = 0;
3945 * Put the new queue at the front of the of the current list,
3946 * so we know that it will be selected next.
3948 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3950 cfq_service_tree_add(cfqd, cfqq, 1);
3952 cfqq->slice_end = 0;
3953 cfq_mark_cfqq_slice_new(cfqq);
3957 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3958 * something we should do about it
3960 static void
3961 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3962 struct request *rq)
3964 struct cfq_io_cq *cic = RQ_CIC(rq);
3966 cfqd->rq_queued++;
3967 if (rq->cmd_flags & REQ_PRIO)
3968 cfqq->prio_pending++;
3970 cfq_update_io_thinktime(cfqd, cfqq, cic);
3971 cfq_update_io_seektime(cfqd, cfqq, rq);
3972 cfq_update_idle_window(cfqd, cfqq, cic);
3974 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3976 if (cfqq == cfqd->active_queue) {
3978 * Remember that we saw a request from this process, but
3979 * don't start queuing just yet. Otherwise we risk seeing lots
3980 * of tiny requests, because we disrupt the normal plugging
3981 * and merging. If the request is already larger than a single
3982 * page, let it rip immediately. For that case we assume that
3983 * merging is already done. Ditto for a busy system that
3984 * has other work pending, don't risk delaying until the
3985 * idle timer unplug to continue working.
3987 if (cfq_cfqq_wait_request(cfqq)) {
3988 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3989 cfqd->busy_queues > 1) {
3990 cfq_del_timer(cfqd, cfqq);
3991 cfq_clear_cfqq_wait_request(cfqq);
3992 __blk_run_queue(cfqd->queue);
3993 } else {
3994 cfqg_stats_update_idle_time(cfqq->cfqg);
3995 cfq_mark_cfqq_must_dispatch(cfqq);
3998 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4000 * not the active queue - expire current slice if it is
4001 * idle and has expired it's mean thinktime or this new queue
4002 * has some old slice time left and is of higher priority or
4003 * this new queue is RT and the current one is BE
4005 cfq_preempt_queue(cfqd, cfqq);
4006 __blk_run_queue(cfqd->queue);
4010 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4012 struct cfq_data *cfqd = q->elevator->elevator_data;
4013 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4015 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4016 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4018 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4019 list_add_tail(&rq->queuelist, &cfqq->fifo);
4020 cfq_add_rq_rb(rq);
4021 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4022 rq->cmd_flags);
4023 cfq_rq_enqueued(cfqd, cfqq, rq);
4027 * Update hw_tag based on peak queue depth over 50 samples under
4028 * sufficient load.
4030 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4032 struct cfq_queue *cfqq = cfqd->active_queue;
4034 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4035 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4037 if (cfqd->hw_tag == 1)
4038 return;
4040 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4041 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4042 return;
4045 * If active queue hasn't enough requests and can idle, cfq might not
4046 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4047 * case
4049 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4050 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4051 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4052 return;
4054 if (cfqd->hw_tag_samples++ < 50)
4055 return;
4057 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4058 cfqd->hw_tag = 1;
4059 else
4060 cfqd->hw_tag = 0;
4063 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4065 struct cfq_io_cq *cic = cfqd->active_cic;
4067 /* If the queue already has requests, don't wait */
4068 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4069 return false;
4071 /* If there are other queues in the group, don't wait */
4072 if (cfqq->cfqg->nr_cfqq > 1)
4073 return false;
4075 /* the only queue in the group, but think time is big */
4076 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4077 return false;
4079 if (cfq_slice_used(cfqq))
4080 return true;
4082 /* if slice left is less than think time, wait busy */
4083 if (cic && sample_valid(cic->ttime.ttime_samples)
4084 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4085 return true;
4088 * If think times is less than a jiffy than ttime_mean=0 and above
4089 * will not be true. It might happen that slice has not expired yet
4090 * but will expire soon (4-5 ns) during select_queue(). To cover the
4091 * case where think time is less than a jiffy, mark the queue wait
4092 * busy if only 1 jiffy is left in the slice.
4094 if (cfqq->slice_end - jiffies == 1)
4095 return true;
4097 return false;
4100 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4102 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4103 struct cfq_data *cfqd = cfqq->cfqd;
4104 const int sync = rq_is_sync(rq);
4105 unsigned long now;
4107 now = jiffies;
4108 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4109 !!(rq->cmd_flags & REQ_NOIDLE));
4111 cfq_update_hw_tag(cfqd);
4113 WARN_ON(!cfqd->rq_in_driver);
4114 WARN_ON(!cfqq->dispatched);
4115 cfqd->rq_in_driver--;
4116 cfqq->dispatched--;
4117 (RQ_CFQG(rq))->dispatched--;
4118 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4119 rq_io_start_time_ns(rq), rq->cmd_flags);
4121 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4123 if (sync) {
4124 struct cfq_rb_root *st;
4126 RQ_CIC(rq)->ttime.last_end_request = now;
4128 if (cfq_cfqq_on_rr(cfqq))
4129 st = cfqq->service_tree;
4130 else
4131 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4132 cfqq_type(cfqq));
4134 st->ttime.last_end_request = now;
4135 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4136 cfqd->last_delayed_sync = now;
4139 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4140 cfqq->cfqg->ttime.last_end_request = now;
4141 #endif
4144 * If this is the active queue, check if it needs to be expired,
4145 * or if we want to idle in case it has no pending requests.
4147 if (cfqd->active_queue == cfqq) {
4148 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4150 if (cfq_cfqq_slice_new(cfqq)) {
4151 cfq_set_prio_slice(cfqd, cfqq);
4152 cfq_clear_cfqq_slice_new(cfqq);
4156 * Should we wait for next request to come in before we expire
4157 * the queue.
4159 if (cfq_should_wait_busy(cfqd, cfqq)) {
4160 unsigned long extend_sl = cfqd->cfq_slice_idle;
4161 if (!cfqd->cfq_slice_idle)
4162 extend_sl = cfqd->cfq_group_idle;
4163 cfqq->slice_end = jiffies + extend_sl;
4164 cfq_mark_cfqq_wait_busy(cfqq);
4165 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4169 * Idling is not enabled on:
4170 * - expired queues
4171 * - idle-priority queues
4172 * - async queues
4173 * - queues with still some requests queued
4174 * - when there is a close cooperator
4176 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4177 cfq_slice_expired(cfqd, 1);
4178 else if (sync && cfqq_empty &&
4179 !cfq_close_cooperator(cfqd, cfqq)) {
4180 cfq_arm_slice_timer(cfqd);
4184 if (!cfqd->rq_in_driver)
4185 cfq_schedule_dispatch(cfqd);
4188 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4190 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4191 cfq_mark_cfqq_must_alloc_slice(cfqq);
4192 return ELV_MQUEUE_MUST;
4195 return ELV_MQUEUE_MAY;
4198 static int cfq_may_queue(struct request_queue *q, int rw)
4200 struct cfq_data *cfqd = q->elevator->elevator_data;
4201 struct task_struct *tsk = current;
4202 struct cfq_io_cq *cic;
4203 struct cfq_queue *cfqq;
4206 * don't force setup of a queue from here, as a call to may_queue
4207 * does not necessarily imply that a request actually will be queued.
4208 * so just lookup a possibly existing queue, or return 'may queue'
4209 * if that fails
4211 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4212 if (!cic)
4213 return ELV_MQUEUE_MAY;
4215 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4216 if (cfqq) {
4217 cfq_init_prio_data(cfqq, cic);
4219 return __cfq_may_queue(cfqq);
4222 return ELV_MQUEUE_MAY;
4226 * queue lock held here
4228 static void cfq_put_request(struct request *rq)
4230 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4232 if (cfqq) {
4233 const int rw = rq_data_dir(rq);
4235 BUG_ON(!cfqq->allocated[rw]);
4236 cfqq->allocated[rw]--;
4238 /* Put down rq reference on cfqg */
4239 cfqg_put(RQ_CFQG(rq));
4240 rq->elv.priv[0] = NULL;
4241 rq->elv.priv[1] = NULL;
4243 cfq_put_queue(cfqq);
4247 static struct cfq_queue *
4248 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4249 struct cfq_queue *cfqq)
4251 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4252 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4253 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4254 cfq_put_queue(cfqq);
4255 return cic_to_cfqq(cic, 1);
4259 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4260 * was the last process referring to said cfqq.
4262 static struct cfq_queue *
4263 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4265 if (cfqq_process_refs(cfqq) == 1) {
4266 cfqq->pid = current->pid;
4267 cfq_clear_cfqq_coop(cfqq);
4268 cfq_clear_cfqq_split_coop(cfqq);
4269 return cfqq;
4272 cic_set_cfqq(cic, NULL, 1);
4274 cfq_put_cooperator(cfqq);
4276 cfq_put_queue(cfqq);
4277 return NULL;
4280 * Allocate cfq data structures associated with this request.
4282 static int
4283 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4284 gfp_t gfp_mask)
4286 struct cfq_data *cfqd = q->elevator->elevator_data;
4287 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4288 const int rw = rq_data_dir(rq);
4289 const bool is_sync = rq_is_sync(rq);
4290 struct cfq_queue *cfqq;
4292 might_sleep_if(gfp_mask & __GFP_WAIT);
4294 spin_lock_irq(q->queue_lock);
4296 check_ioprio_changed(cic, bio);
4297 check_blkcg_changed(cic, bio);
4298 new_queue:
4299 cfqq = cic_to_cfqq(cic, is_sync);
4300 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4301 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4302 cic_set_cfqq(cic, cfqq, is_sync);
4303 } else {
4305 * If the queue was seeky for too long, break it apart.
4307 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4308 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4309 cfqq = split_cfqq(cic, cfqq);
4310 if (!cfqq)
4311 goto new_queue;
4315 * Check to see if this queue is scheduled to merge with
4316 * another, closely cooperating queue. The merging of
4317 * queues happens here as it must be done in process context.
4318 * The reference on new_cfqq was taken in merge_cfqqs.
4320 if (cfqq->new_cfqq)
4321 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4324 cfqq->allocated[rw]++;
4326 cfqq->ref++;
4327 cfqg_get(cfqq->cfqg);
4328 rq->elv.priv[0] = cfqq;
4329 rq->elv.priv[1] = cfqq->cfqg;
4330 spin_unlock_irq(q->queue_lock);
4331 return 0;
4334 static void cfq_kick_queue(struct work_struct *work)
4336 struct cfq_data *cfqd =
4337 container_of(work, struct cfq_data, unplug_work);
4338 struct request_queue *q = cfqd->queue;
4340 spin_lock_irq(q->queue_lock);
4341 __blk_run_queue(cfqd->queue);
4342 spin_unlock_irq(q->queue_lock);
4346 * Timer running if the active_queue is currently idling inside its time slice
4348 static void cfq_idle_slice_timer(unsigned long data)
4350 struct cfq_data *cfqd = (struct cfq_data *) data;
4351 struct cfq_queue *cfqq;
4352 unsigned long flags;
4353 int timed_out = 1;
4355 cfq_log(cfqd, "idle timer fired");
4357 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4359 cfqq = cfqd->active_queue;
4360 if (cfqq) {
4361 timed_out = 0;
4364 * We saw a request before the queue expired, let it through
4366 if (cfq_cfqq_must_dispatch(cfqq))
4367 goto out_kick;
4370 * expired
4372 if (cfq_slice_used(cfqq))
4373 goto expire;
4376 * only expire and reinvoke request handler, if there are
4377 * other queues with pending requests
4379 if (!cfqd->busy_queues)
4380 goto out_cont;
4383 * not expired and it has a request pending, let it dispatch
4385 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4386 goto out_kick;
4389 * Queue depth flag is reset only when the idle didn't succeed
4391 cfq_clear_cfqq_deep(cfqq);
4393 expire:
4394 cfq_slice_expired(cfqd, timed_out);
4395 out_kick:
4396 cfq_schedule_dispatch(cfqd);
4397 out_cont:
4398 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4401 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4403 del_timer_sync(&cfqd->idle_slice_timer);
4404 cancel_work_sync(&cfqd->unplug_work);
4407 static void cfq_put_async_queues(struct cfq_data *cfqd)
4409 int i;
4411 for (i = 0; i < IOPRIO_BE_NR; i++) {
4412 if (cfqd->async_cfqq[0][i])
4413 cfq_put_queue(cfqd->async_cfqq[0][i]);
4414 if (cfqd->async_cfqq[1][i])
4415 cfq_put_queue(cfqd->async_cfqq[1][i]);
4418 if (cfqd->async_idle_cfqq)
4419 cfq_put_queue(cfqd->async_idle_cfqq);
4422 static void cfq_exit_queue(struct elevator_queue *e)
4424 struct cfq_data *cfqd = e->elevator_data;
4425 struct request_queue *q = cfqd->queue;
4427 cfq_shutdown_timer_wq(cfqd);
4429 spin_lock_irq(q->queue_lock);
4431 if (cfqd->active_queue)
4432 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4434 cfq_put_async_queues(cfqd);
4436 spin_unlock_irq(q->queue_lock);
4438 cfq_shutdown_timer_wq(cfqd);
4440 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4441 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4442 #else
4443 kfree(cfqd->root_group);
4444 #endif
4445 kfree(cfqd);
4448 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4450 struct cfq_data *cfqd;
4451 struct blkcg_gq *blkg __maybe_unused;
4452 int i, ret;
4453 struct elevator_queue *eq;
4455 eq = elevator_alloc(q, e);
4456 if (!eq)
4457 return -ENOMEM;
4459 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4460 if (!cfqd) {
4461 kobject_put(&eq->kobj);
4462 return -ENOMEM;
4464 eq->elevator_data = cfqd;
4466 cfqd->queue = q;
4467 spin_lock_irq(q->queue_lock);
4468 q->elevator = eq;
4469 spin_unlock_irq(q->queue_lock);
4471 /* Init root service tree */
4472 cfqd->grp_service_tree = CFQ_RB_ROOT;
4474 /* Init root group and prefer root group over other groups by default */
4475 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4476 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4477 if (ret)
4478 goto out_free;
4480 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4481 #else
4482 ret = -ENOMEM;
4483 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4484 GFP_KERNEL, cfqd->queue->node);
4485 if (!cfqd->root_group)
4486 goto out_free;
4488 cfq_init_cfqg_base(cfqd->root_group);
4489 #endif
4490 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4491 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4494 * Not strictly needed (since RB_ROOT just clears the node and we
4495 * zeroed cfqd on alloc), but better be safe in case someone decides
4496 * to add magic to the rb code
4498 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4499 cfqd->prio_trees[i] = RB_ROOT;
4502 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4503 * Grab a permanent reference to it, so that the normal code flow
4504 * will not attempt to free it. oom_cfqq is linked to root_group
4505 * but shouldn't hold a reference as it'll never be unlinked. Lose
4506 * the reference from linking right away.
4508 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4509 cfqd->oom_cfqq.ref++;
4511 spin_lock_irq(q->queue_lock);
4512 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4513 cfqg_put(cfqd->root_group);
4514 spin_unlock_irq(q->queue_lock);
4516 init_timer(&cfqd->idle_slice_timer);
4517 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4518 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4520 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4522 cfqd->cfq_quantum = cfq_quantum;
4523 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4524 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4525 cfqd->cfq_back_max = cfq_back_max;
4526 cfqd->cfq_back_penalty = cfq_back_penalty;
4527 cfqd->cfq_slice[0] = cfq_slice_async;
4528 cfqd->cfq_slice[1] = cfq_slice_sync;
4529 cfqd->cfq_target_latency = cfq_target_latency;
4530 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4531 cfqd->cfq_slice_idle = cfq_slice_idle;
4532 cfqd->cfq_group_idle = cfq_group_idle;
4533 cfqd->cfq_latency = 1;
4534 cfqd->hw_tag = -1;
4536 * we optimistically start assuming sync ops weren't delayed in last
4537 * second, in order to have larger depth for async operations.
4539 cfqd->last_delayed_sync = jiffies - HZ;
4540 return 0;
4542 out_free:
4543 kfree(cfqd);
4544 kobject_put(&eq->kobj);
4545 return ret;
4548 static void cfq_registered_queue(struct request_queue *q)
4550 struct elevator_queue *e = q->elevator;
4551 struct cfq_data *cfqd = e->elevator_data;
4554 * Default to IOPS mode with no idling for SSDs
4556 if (blk_queue_nonrot(q))
4557 cfqd->cfq_slice_idle = 0;
4561 * sysfs parts below -->
4563 static ssize_t
4564 cfq_var_show(unsigned int var, char *page)
4566 return sprintf(page, "%u\n", var);
4569 static ssize_t
4570 cfq_var_store(unsigned int *var, const char *page, size_t count)
4572 char *p = (char *) page;
4574 *var = simple_strtoul(p, &p, 10);
4575 return count;
4578 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4579 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4581 struct cfq_data *cfqd = e->elevator_data; \
4582 unsigned int __data = __VAR; \
4583 if (__CONV) \
4584 __data = jiffies_to_msecs(__data); \
4585 return cfq_var_show(__data, (page)); \
4587 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4588 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4589 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4590 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4591 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4592 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4593 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4594 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4595 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4596 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4597 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4598 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4599 #undef SHOW_FUNCTION
4601 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4602 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4604 struct cfq_data *cfqd = e->elevator_data; \
4605 unsigned int __data; \
4606 int ret = cfq_var_store(&__data, (page), count); \
4607 if (__data < (MIN)) \
4608 __data = (MIN); \
4609 else if (__data > (MAX)) \
4610 __data = (MAX); \
4611 if (__CONV) \
4612 *(__PTR) = msecs_to_jiffies(__data); \
4613 else \
4614 *(__PTR) = __data; \
4615 return ret; \
4617 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4618 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4619 UINT_MAX, 1);
4620 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4621 UINT_MAX, 1);
4622 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4623 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4624 UINT_MAX, 0);
4625 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4626 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4627 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4628 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4629 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4630 UINT_MAX, 0);
4631 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4632 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4633 #undef STORE_FUNCTION
4635 #define CFQ_ATTR(name) \
4636 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4638 static struct elv_fs_entry cfq_attrs[] = {
4639 CFQ_ATTR(quantum),
4640 CFQ_ATTR(fifo_expire_sync),
4641 CFQ_ATTR(fifo_expire_async),
4642 CFQ_ATTR(back_seek_max),
4643 CFQ_ATTR(back_seek_penalty),
4644 CFQ_ATTR(slice_sync),
4645 CFQ_ATTR(slice_async),
4646 CFQ_ATTR(slice_async_rq),
4647 CFQ_ATTR(slice_idle),
4648 CFQ_ATTR(group_idle),
4649 CFQ_ATTR(low_latency),
4650 CFQ_ATTR(target_latency),
4651 __ATTR_NULL
4654 static struct elevator_type iosched_cfq = {
4655 .ops = {
4656 .elevator_merge_fn = cfq_merge,
4657 .elevator_merged_fn = cfq_merged_request,
4658 .elevator_merge_req_fn = cfq_merged_requests,
4659 .elevator_allow_merge_fn = cfq_allow_merge,
4660 .elevator_bio_merged_fn = cfq_bio_merged,
4661 .elevator_dispatch_fn = cfq_dispatch_requests,
4662 .elevator_add_req_fn = cfq_insert_request,
4663 .elevator_activate_req_fn = cfq_activate_request,
4664 .elevator_deactivate_req_fn = cfq_deactivate_request,
4665 .elevator_completed_req_fn = cfq_completed_request,
4666 .elevator_former_req_fn = elv_rb_former_request,
4667 .elevator_latter_req_fn = elv_rb_latter_request,
4668 .elevator_init_icq_fn = cfq_init_icq,
4669 .elevator_exit_icq_fn = cfq_exit_icq,
4670 .elevator_set_req_fn = cfq_set_request,
4671 .elevator_put_req_fn = cfq_put_request,
4672 .elevator_may_queue_fn = cfq_may_queue,
4673 .elevator_init_fn = cfq_init_queue,
4674 .elevator_exit_fn = cfq_exit_queue,
4675 .elevator_registered_fn = cfq_registered_queue,
4677 .icq_size = sizeof(struct cfq_io_cq),
4678 .icq_align = __alignof__(struct cfq_io_cq),
4679 .elevator_attrs = cfq_attrs,
4680 .elevator_name = "cfq",
4681 .elevator_owner = THIS_MODULE,
4684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4685 static struct blkcg_policy blkcg_policy_cfq = {
4686 .pd_size = sizeof(struct cfq_group),
4687 .cpd_size = sizeof(struct cfq_group_data),
4688 .cftypes = cfq_blkcg_files,
4690 .cpd_init_fn = cfq_cpd_init,
4691 .pd_init_fn = cfq_pd_init,
4692 .pd_offline_fn = cfq_pd_offline,
4693 .pd_reset_stats_fn = cfq_pd_reset_stats,
4695 #endif
4697 static int __init cfq_init(void)
4699 int ret;
4702 * could be 0 on HZ < 1000 setups
4704 if (!cfq_slice_async)
4705 cfq_slice_async = 1;
4706 if (!cfq_slice_idle)
4707 cfq_slice_idle = 1;
4709 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4710 if (!cfq_group_idle)
4711 cfq_group_idle = 1;
4713 ret = blkcg_policy_register(&blkcg_policy_cfq);
4714 if (ret)
4715 return ret;
4716 #else
4717 cfq_group_idle = 0;
4718 #endif
4720 ret = -ENOMEM;
4721 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4722 if (!cfq_pool)
4723 goto err_pol_unreg;
4725 ret = elv_register(&iosched_cfq);
4726 if (ret)
4727 goto err_free_pool;
4729 return 0;
4731 err_free_pool:
4732 kmem_cache_destroy(cfq_pool);
4733 err_pol_unreg:
4734 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4735 blkcg_policy_unregister(&blkcg_policy_cfq);
4736 #endif
4737 return ret;
4740 static void __exit cfq_exit(void)
4742 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4743 blkcg_policy_unregister(&blkcg_policy_cfq);
4744 #endif
4745 elv_unregister(&iosched_cfq);
4746 kmem_cache_destroy(cfq_pool);
4749 module_init(cfq_init);
4750 module_exit(cfq_exit);
4752 MODULE_AUTHOR("Jens Axboe");
4753 MODULE_LICENSE("GPL");
4754 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");