8 1.1 Scope of this Document
9 1.2 Limitations of the current implementation
17 4 Writing an MCB driver
18 4.1 The driver structure
19 4.2 Probing and attaching
20 4.3 Initializing the driver
26 This document describes the architecture and implementation of the MEN
27 Chameleon Bus (called MCB throughout this document).
29 Scope of this Document
30 ----------------------
32 This document is intended to be a short overview of the current
33 implementation and does by no means describe the complete possibilities of MCB
36 Limitations of the current implementation
37 -----------------------------------------
39 The current implementation is limited to PCI and PCIe based carrier devices
40 that only use a single memory resource and share the PCI legacy IRQ. Not
43 - Multi-resource MCB devices like the VME Controller or M-Module carrier.
44 - MCB devices that need another MCB device, like SRAM for a DMA Controller's
45 buffer descriptors or a video controller's video memory.
46 - A per-carrier IRQ domain for carrier devices that have one (or more) IRQs
47 per MCB device like PCIe based carriers with MSI or MSI-X support.
52 MCB is divided into 3 functional blocks:
54 - The MEN Chameleon Bus itself,
55 - drivers for MCB Carrier Devices and
56 - the parser for the Chameleon table.
61 The MEN Chameleon Bus is an artificial bus system that attaches to a so
62 called Chameleon FPGA device found on some hardware produced my MEN Mikro
63 Elektronik GmbH. These devices are multi-function devices implemented in a
64 single FPGA and usually attached via some sort of PCI or PCIe link. Each
65 FPGA contains a header section describing the content of the FPGA. The
66 header lists the device id, PCI BAR, offset from the beginning of the PCI
67 BAR, size in the FPGA, interrupt number and some other properties currently
68 not handled by the MCB implementation.
73 A carrier device is just an abstraction for the real world physical bus the
74 Chameleon FPGA is attached to. Some IP Core drivers may need to interact with
75 properties of the carrier device (like querying the IRQ number of a PCI
76 device). To provide abstraction from the real hardware bus, an MCB carrier
77 device provides callback methods to translate the driver's MCB function calls
78 to hardware related function calls. For example a carrier device may
79 implement the get_irq() method which can be translated into a hardware bus
80 query for the IRQ number the device should use.
85 The parser reads the first 512 bytes of a Chameleon device and parses the
86 Chameleon table. Currently the parser only supports the Chameleon v2 variant
87 of the Chameleon table but can easily be adopted to support an older or
88 possible future variant. While parsing the table's entries new MCB devices
89 are allocated and their resources are assigned according to the resource
90 assignment in the Chameleon table. After resource assignment is finished, the
91 MCB devices are registered at the MCB and thus at the driver core of the
97 The current implementation assigns exactly one memory and one IRQ resource
98 per MCB device. But this is likely going to change in the future.
103 Each MCB device has exactly one memory resource, which can be requested from
104 the MCB bus. This memory resource is the physical address of the MCB device
105 inside the carrier and is intended to be passed to ioremap() and friends. It
106 is already requested from the kernel by calling request_mem_region().
111 Each MCB device has exactly one IRQ resource, which can be requested from the
112 MCB bus. If a carrier device driver implements the ->get_irq() callback
113 method, the IRQ number assigned by the carrier device will be returned,
114 otherwise the IRQ number inside the Chameleon table will be returned. This
115 number is suitable to be passed to request_irq().
117 Writing an MCB driver
118 =====================
123 Each MCB driver has a structure to identify the device driver as well as
124 device ids which identify the IP Core inside the FPGA. The driver structure
125 also contains callback methods which get executed on driver probe and
126 removal from the system::
128 static const struct mcb_device_id foo_ids[] = {
132 MODULE_DEVICE_TABLE(mcb, foo_ids);
134 static struct mcb_driver foo_driver = {
137 .owner = THIS_MODULE,
140 .remove = foo_remove,
144 Probing and attaching
145 ---------------------
147 When a driver is loaded and the MCB devices it services are found, the MCB
148 core will call the driver's probe callback method. When the driver is removed
149 from the system, the MCB core will call the driver's remove callback method::
151 static init foo_probe(struct mcb_device *mdev, const struct mcb_device_id *id);
152 static void foo_remove(struct mcb_device *mdev);
154 Initializing the driver
155 -----------------------
157 When the kernel is booted or your foo driver module is inserted, you have to
158 perform driver initialization. Usually it is enough to register your driver
159 module at the MCB core::
161 static int __init foo_init(void)
163 return mcb_register_driver(&foo_driver);
165 module_init(foo_init);
167 static void __exit foo_exit(void)
169 mcb_unregister_driver(&foo_driver);
171 module_exit(foo_exit);
173 The module_mcb_driver() macro can be used to reduce the above code::
175 module_mcb_driver(foo_driver);