cxgb4/cxgb4vf: read the correct bits of PL Who Am I register
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
blob5c63ceb463d669702dba269d1f121200fc77040f
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
41 /**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
81 /**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
88 * Sets a register field specified by the supplied mask to the
89 * given value.
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147 * mechanism. This guarantees that we get the real value even if we're
148 * operating within a Virtual Machine and the Hypervisor is trapping our
149 * Configuration Space accesses.
151 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
156 req |= ENABLE_F;
157 else
158 req |= T6_ENABLE_F;
160 if (is_t4(adap->params.chip))
161 req |= LOCALCFG_F;
163 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
164 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
167 * Configuration Space read. (None of the other fields matter when
168 * ENABLE is 0 so a simple register write is easier than a
169 * read-modify-write via t4_set_reg_field().)
171 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
175 * t4_report_fw_error - report firmware error
176 * @adap: the adapter
178 * The adapter firmware can indicate error conditions to the host.
179 * If the firmware has indicated an error, print out the reason for
180 * the firmware error.
182 static void t4_report_fw_error(struct adapter *adap)
184 static const char *const reason[] = {
185 "Crash", /* PCIE_FW_EVAL_CRASH */
186 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
187 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
188 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
189 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
190 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
191 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
192 "Reserved", /* reserved */
194 u32 pcie_fw;
196 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
197 if (pcie_fw & PCIE_FW_ERR_F)
198 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
199 reason[PCIE_FW_EVAL_G(pcie_fw)]);
203 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
206 u32 mbox_addr)
208 for ( ; nflit; nflit--, mbox_addr += 8)
209 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 * Handle a FW assertion reported in a mailbox.
215 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 struct fw_debug_cmd asrt;
219 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
220 dev_alert(adap->pdev_dev,
221 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
222 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
223 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
226 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 dev_err(adap->pdev_dev,
229 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
230 (unsigned long long)t4_read_reg64(adap, data_reg),
231 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
241 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
242 * @adap: the adapter
243 * @mbox: index of the mailbox to use
244 * @cmd: the command to write
245 * @size: command length in bytes
246 * @rpl: where to optionally store the reply
247 * @sleep_ok: if true we may sleep while awaiting command completion
248 * @timeout: time to wait for command to finish before timing out
250 * Sends the given command to FW through the selected mailbox and waits
251 * for the FW to execute the command. If @rpl is not %NULL it is used to
252 * store the FW's reply to the command. The command and its optional
253 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
254 * to respond. @sleep_ok determines whether we may sleep while awaiting
255 * the response. If sleeping is allowed we use progressive backoff
256 * otherwise we spin.
258 * The return value is 0 on success or a negative errno on failure. A
259 * failure can happen either because we are not able to execute the
260 * command or FW executes it but signals an error. In the latter case
261 * the return value is the error code indicated by FW (negated).
263 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
264 int size, void *rpl, bool sleep_ok, int timeout)
266 static const int delay[] = {
267 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
270 u32 v;
271 u64 res;
272 int i, ms, delay_idx;
273 const __be64 *p = cmd;
274 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
275 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277 if ((size & 15) || size > MBOX_LEN)
278 return -EINVAL;
281 * If the device is off-line, as in EEH, commands will time out.
282 * Fail them early so we don't waste time waiting.
284 if (adap->pdev->error_state != pci_channel_io_normal)
285 return -EIO;
287 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
288 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
289 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291 if (v != MBOX_OWNER_DRV)
292 return v ? -EBUSY : -ETIMEDOUT;
294 for (i = 0; i < size; i += 8)
295 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
298 t4_read_reg(adap, ctl_reg); /* flush write */
300 delay_idx = 0;
301 ms = delay[0];
303 for (i = 0; i < timeout; i += ms) {
304 if (sleep_ok) {
305 ms = delay[delay_idx]; /* last element may repeat */
306 if (delay_idx < ARRAY_SIZE(delay) - 1)
307 delay_idx++;
308 msleep(ms);
309 } else
310 mdelay(ms);
312 v = t4_read_reg(adap, ctl_reg);
313 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
314 if (!(v & MBMSGVALID_F)) {
315 t4_write_reg(adap, ctl_reg, 0);
316 continue;
319 res = t4_read_reg64(adap, data_reg);
320 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
321 fw_asrt(adap, data_reg);
322 res = FW_CMD_RETVAL_V(EIO);
323 } else if (rpl) {
324 get_mbox_rpl(adap, rpl, size / 8, data_reg);
327 if (FW_CMD_RETVAL_G((int)res))
328 dump_mbox(adap, mbox, data_reg);
329 t4_write_reg(adap, ctl_reg, 0);
330 return -FW_CMD_RETVAL_G((int)res);
334 dump_mbox(adap, mbox, data_reg);
335 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
336 *(const u8 *)cmd, mbox);
337 t4_report_fw_error(adap);
338 return -ETIMEDOUT;
341 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
342 void *rpl, bool sleep_ok)
344 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
345 FW_CMD_MAX_TIMEOUT);
348 static int t4_edc_err_read(struct adapter *adap, int idx)
350 u32 edc_ecc_err_addr_reg;
351 u32 rdata_reg;
353 if (is_t4(adap->params.chip)) {
354 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
355 return 0;
357 if (idx != 0 && idx != 1) {
358 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
359 return 0;
362 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
363 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365 CH_WARN(adap,
366 "edc%d err addr 0x%x: 0x%x.\n",
367 idx, edc_ecc_err_addr_reg,
368 t4_read_reg(adap, edc_ecc_err_addr_reg));
369 CH_WARN(adap,
370 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
371 rdata_reg,
372 (unsigned long long)t4_read_reg64(adap, rdata_reg),
373 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382 return 0;
386 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
387 * @adap: the adapter
388 * @win: PCI-E Memory Window to use
389 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
390 * @addr: address within indicated memory type
391 * @len: amount of memory to transfer
392 * @hbuf: host memory buffer
393 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395 * Reads/writes an [almost] arbitrary memory region in the firmware: the
396 * firmware memory address and host buffer must be aligned on 32-bit
397 * boudaries; the length may be arbitrary. The memory is transferred as
398 * a raw byte sequence from/to the firmware's memory. If this memory
399 * contains data structures which contain multi-byte integers, it's the
400 * caller's responsibility to perform appropriate byte order conversions.
402 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
403 u32 len, void *hbuf, int dir)
405 u32 pos, offset, resid, memoffset;
406 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
407 u32 *buf;
409 /* Argument sanity checks ...
411 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
412 return -EINVAL;
413 buf = (u32 *)hbuf;
415 /* It's convenient to be able to handle lengths which aren't a
416 * multiple of 32-bits because we often end up transferring files to
417 * the firmware. So we'll handle that by normalizing the length here
418 * and then handling any residual transfer at the end.
420 resid = len & 0x3;
421 len -= resid;
423 /* Offset into the region of memory which is being accessed
424 * MEM_EDC0 = 0
425 * MEM_EDC1 = 1
426 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
427 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
429 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
430 if (mtype != MEM_MC1)
431 memoffset = (mtype * (edc_size * 1024 * 1024));
432 else {
433 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
434 MA_EXT_MEMORY0_BAR_A));
435 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
438 /* Determine the PCIE_MEM_ACCESS_OFFSET */
439 addr = addr + memoffset;
441 /* Each PCI-E Memory Window is programmed with a window size -- or
442 * "aperture" -- which controls the granularity of its mapping onto
443 * adapter memory. We need to grab that aperture in order to know
444 * how to use the specified window. The window is also programmed
445 * with the base address of the Memory Window in BAR0's address
446 * space. For T4 this is an absolute PCI-E Bus Address. For T5
447 * the address is relative to BAR0.
449 mem_reg = t4_read_reg(adap,
450 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
451 win));
452 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
453 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
454 if (is_t4(adap->params.chip))
455 mem_base -= adap->t4_bar0;
456 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458 /* Calculate our initial PCI-E Memory Window Position and Offset into
459 * that Window.
461 pos = addr & ~(mem_aperture-1);
462 offset = addr - pos;
464 /* Set up initial PCI-E Memory Window to cover the start of our
465 * transfer. (Read it back to ensure that changes propagate before we
466 * attempt to use the new value.)
468 t4_write_reg(adap,
469 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
470 pos | win_pf);
471 t4_read_reg(adap,
472 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474 /* Transfer data to/from the adapter as long as there's an integral
475 * number of 32-bit transfers to complete.
477 * A note on Endianness issues:
479 * The "register" reads and writes below from/to the PCI-E Memory
480 * Window invoke the standard adapter Big-Endian to PCI-E Link
481 * Little-Endian "swizzel." As a result, if we have the following
482 * data in adapter memory:
484 * Memory: ... | b0 | b1 | b2 | b3 | ...
485 * Address: i+0 i+1 i+2 i+3
487 * Then a read of the adapter memory via the PCI-E Memory Window
488 * will yield:
490 * x = readl(i)
491 * 31 0
492 * [ b3 | b2 | b1 | b0 ]
494 * If this value is stored into local memory on a Little-Endian system
495 * it will show up correctly in local memory as:
497 * ( ..., b0, b1, b2, b3, ... )
499 * But on a Big-Endian system, the store will show up in memory
500 * incorrectly swizzled as:
502 * ( ..., b3, b2, b1, b0, ... )
504 * So we need to account for this in the reads and writes to the
505 * PCI-E Memory Window below by undoing the register read/write
506 * swizzels.
508 while (len > 0) {
509 if (dir == T4_MEMORY_READ)
510 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
511 mem_base + offset));
512 else
513 t4_write_reg(adap, mem_base + offset,
514 (__force u32)cpu_to_le32(*buf++));
515 offset += sizeof(__be32);
516 len -= sizeof(__be32);
518 /* If we've reached the end of our current window aperture,
519 * move the PCI-E Memory Window on to the next. Note that
520 * doing this here after "len" may be 0 allows us to set up
521 * the PCI-E Memory Window for a possible final residual
522 * transfer below ...
524 if (offset == mem_aperture) {
525 pos += mem_aperture;
526 offset = 0;
527 t4_write_reg(adap,
528 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
529 win), pos | win_pf);
530 t4_read_reg(adap,
531 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
532 win));
536 /* If the original transfer had a length which wasn't a multiple of
537 * 32-bits, now's where we need to finish off the transfer of the
538 * residual amount. The PCI-E Memory Window has already been moved
539 * above (if necessary) to cover this final transfer.
541 if (resid) {
542 union {
543 u32 word;
544 char byte[4];
545 } last;
546 unsigned char *bp;
547 int i;
549 if (dir == T4_MEMORY_READ) {
550 last.word = le32_to_cpu(
551 (__force __le32)t4_read_reg(adap,
552 mem_base + offset));
553 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
554 bp[i] = last.byte[i];
555 } else {
556 last.word = *buf;
557 for (i = resid; i < 4; i++)
558 last.byte[i] = 0;
559 t4_write_reg(adap, mem_base + offset,
560 (__force u32)cpu_to_le32(last.word));
564 return 0;
567 /* Return the specified PCI-E Configuration Space register from our Physical
568 * Function. We try first via a Firmware LDST Command since we prefer to let
569 * the firmware own all of these registers, but if that fails we go for it
570 * directly ourselves.
572 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 u32 val, ldst_addrspace;
576 /* If fw_attach != 0, construct and send the Firmware LDST Command to
577 * retrieve the specified PCI-E Configuration Space register.
579 struct fw_ldst_cmd ldst_cmd;
580 int ret;
582 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
583 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
584 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
585 FW_CMD_REQUEST_F |
586 FW_CMD_READ_F |
587 ldst_addrspace);
588 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
589 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
590 ldst_cmd.u.pcie.ctrl_to_fn =
591 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
592 ldst_cmd.u.pcie.r = reg;
594 /* If the LDST Command succeeds, return the result, otherwise
595 * fall through to reading it directly ourselves ...
597 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
598 &ldst_cmd);
599 if (ret == 0)
600 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
601 else
602 /* Read the desired Configuration Space register via the PCI-E
603 * Backdoor mechanism.
605 t4_hw_pci_read_cfg4(adap, reg, &val);
606 return val;
609 /* Get the window based on base passed to it.
610 * Window aperture is currently unhandled, but there is no use case for it
611 * right now
613 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
614 u32 memwin_base)
616 u32 ret;
618 if (is_t4(adap->params.chip)) {
619 u32 bar0;
621 /* Truncation intentional: we only read the bottom 32-bits of
622 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
623 * mechanism to read BAR0 instead of using
624 * pci_resource_start() because we could be operating from
625 * within a Virtual Machine which is trapping our accesses to
626 * our Configuration Space and we need to set up the PCI-E
627 * Memory Window decoders with the actual addresses which will
628 * be coming across the PCI-E link.
630 bar0 = t4_read_pcie_cfg4(adap, pci_base);
631 bar0 &= pci_mask;
632 adap->t4_bar0 = bar0;
634 ret = bar0 + memwin_base;
635 } else {
636 /* For T5, only relative offset inside the PCIe BAR is passed */
637 ret = memwin_base;
639 return ret;
642 /* Get the default utility window (win0) used by everyone */
643 u32 t4_get_util_window(struct adapter *adap)
645 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
646 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
649 /* Set up memory window for accessing adapter memory ranges. (Read
650 * back MA register to ensure that changes propagate before we attempt
651 * to use the new values.)
653 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 t4_write_reg(adap,
656 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
657 memwin_base | BIR_V(0) |
658 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
659 t4_read_reg(adap,
660 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
664 * t4_get_regs_len - return the size of the chips register set
665 * @adapter: the adapter
667 * Returns the size of the chip's BAR0 register space.
669 unsigned int t4_get_regs_len(struct adapter *adapter)
671 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673 switch (chip_version) {
674 case CHELSIO_T4:
675 return T4_REGMAP_SIZE;
677 case CHELSIO_T5:
678 case CHELSIO_T6:
679 return T5_REGMAP_SIZE;
682 dev_err(adapter->pdev_dev,
683 "Unsupported chip version %d\n", chip_version);
684 return 0;
688 * t4_get_regs - read chip registers into provided buffer
689 * @adap: the adapter
690 * @buf: register buffer
691 * @buf_size: size (in bytes) of register buffer
693 * If the provided register buffer isn't large enough for the chip's
694 * full register range, the register dump will be truncated to the
695 * register buffer's size.
697 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 static const unsigned int t4_reg_ranges[] = {
700 0x1008, 0x1108,
701 0x1180, 0x11b4,
702 0x11fc, 0x123c,
703 0x1300, 0x173c,
704 0x1800, 0x18fc,
705 0x3000, 0x305c,
706 0x3068, 0x30d8,
707 0x30e0, 0x5924,
708 0x5960, 0x59d4,
709 0x5a00, 0x5af8,
710 0x6000, 0x6098,
711 0x6100, 0x6150,
712 0x6200, 0x6208,
713 0x6240, 0x6248,
714 0x6280, 0x6338,
715 0x6370, 0x638c,
716 0x6400, 0x643c,
717 0x6500, 0x6524,
718 0x6a00, 0x6a38,
719 0x6a60, 0x6a78,
720 0x6b00, 0x6b84,
721 0x6bf0, 0x6c84,
722 0x6cf0, 0x6d84,
723 0x6df0, 0x6e84,
724 0x6ef0, 0x6f84,
725 0x6ff0, 0x7084,
726 0x70f0, 0x7184,
727 0x71f0, 0x7284,
728 0x72f0, 0x7384,
729 0x73f0, 0x7450,
730 0x7500, 0x7530,
731 0x7600, 0x761c,
732 0x7680, 0x76cc,
733 0x7700, 0x7798,
734 0x77c0, 0x77fc,
735 0x7900, 0x79fc,
736 0x7b00, 0x7c38,
737 0x7d00, 0x7efc,
738 0x8dc0, 0x8e1c,
739 0x8e30, 0x8e78,
740 0x8ea0, 0x8f6c,
741 0x8fc0, 0x9074,
742 0x90fc, 0x90fc,
743 0x9400, 0x9458,
744 0x9600, 0x96bc,
745 0x9800, 0x9808,
746 0x9820, 0x983c,
747 0x9850, 0x9864,
748 0x9c00, 0x9c6c,
749 0x9c80, 0x9cec,
750 0x9d00, 0x9d6c,
751 0x9d80, 0x9dec,
752 0x9e00, 0x9e6c,
753 0x9e80, 0x9eec,
754 0x9f00, 0x9f6c,
755 0x9f80, 0x9fec,
756 0xd004, 0xd03c,
757 0xdfc0, 0xdfe0,
758 0xe000, 0xea7c,
759 0xf000, 0x11110,
760 0x11118, 0x11190,
761 0x19040, 0x1906c,
762 0x19078, 0x19080,
763 0x1908c, 0x19124,
764 0x19150, 0x191b0,
765 0x191d0, 0x191e8,
766 0x19238, 0x1924c,
767 0x193f8, 0x19474,
768 0x19490, 0x194f8,
769 0x19800, 0x19f4c,
770 0x1a000, 0x1a06c,
771 0x1a0b0, 0x1a120,
772 0x1a128, 0x1a138,
773 0x1a190, 0x1a1c4,
774 0x1a1fc, 0x1a1fc,
775 0x1e040, 0x1e04c,
776 0x1e284, 0x1e28c,
777 0x1e2c0, 0x1e2c0,
778 0x1e2e0, 0x1e2e0,
779 0x1e300, 0x1e384,
780 0x1e3c0, 0x1e3c8,
781 0x1e440, 0x1e44c,
782 0x1e684, 0x1e68c,
783 0x1e6c0, 0x1e6c0,
784 0x1e6e0, 0x1e6e0,
785 0x1e700, 0x1e784,
786 0x1e7c0, 0x1e7c8,
787 0x1e840, 0x1e84c,
788 0x1ea84, 0x1ea8c,
789 0x1eac0, 0x1eac0,
790 0x1eae0, 0x1eae0,
791 0x1eb00, 0x1eb84,
792 0x1ebc0, 0x1ebc8,
793 0x1ec40, 0x1ec4c,
794 0x1ee84, 0x1ee8c,
795 0x1eec0, 0x1eec0,
796 0x1eee0, 0x1eee0,
797 0x1ef00, 0x1ef84,
798 0x1efc0, 0x1efc8,
799 0x1f040, 0x1f04c,
800 0x1f284, 0x1f28c,
801 0x1f2c0, 0x1f2c0,
802 0x1f2e0, 0x1f2e0,
803 0x1f300, 0x1f384,
804 0x1f3c0, 0x1f3c8,
805 0x1f440, 0x1f44c,
806 0x1f684, 0x1f68c,
807 0x1f6c0, 0x1f6c0,
808 0x1f6e0, 0x1f6e0,
809 0x1f700, 0x1f784,
810 0x1f7c0, 0x1f7c8,
811 0x1f840, 0x1f84c,
812 0x1fa84, 0x1fa8c,
813 0x1fac0, 0x1fac0,
814 0x1fae0, 0x1fae0,
815 0x1fb00, 0x1fb84,
816 0x1fbc0, 0x1fbc8,
817 0x1fc40, 0x1fc4c,
818 0x1fe84, 0x1fe8c,
819 0x1fec0, 0x1fec0,
820 0x1fee0, 0x1fee0,
821 0x1ff00, 0x1ff84,
822 0x1ffc0, 0x1ffc8,
823 0x20000, 0x2002c,
824 0x20100, 0x2013c,
825 0x20190, 0x201c8,
826 0x20200, 0x20318,
827 0x20400, 0x20528,
828 0x20540, 0x20614,
829 0x21000, 0x21040,
830 0x2104c, 0x21060,
831 0x210c0, 0x210ec,
832 0x21200, 0x21268,
833 0x21270, 0x21284,
834 0x212fc, 0x21388,
835 0x21400, 0x21404,
836 0x21500, 0x21518,
837 0x2152c, 0x2153c,
838 0x21550, 0x21554,
839 0x21600, 0x21600,
840 0x21608, 0x21628,
841 0x21630, 0x2163c,
842 0x21700, 0x2171c,
843 0x21780, 0x2178c,
844 0x21800, 0x21c38,
845 0x21c80, 0x21d7c,
846 0x21e00, 0x21e04,
847 0x22000, 0x2202c,
848 0x22100, 0x2213c,
849 0x22190, 0x221c8,
850 0x22200, 0x22318,
851 0x22400, 0x22528,
852 0x22540, 0x22614,
853 0x23000, 0x23040,
854 0x2304c, 0x23060,
855 0x230c0, 0x230ec,
856 0x23200, 0x23268,
857 0x23270, 0x23284,
858 0x232fc, 0x23388,
859 0x23400, 0x23404,
860 0x23500, 0x23518,
861 0x2352c, 0x2353c,
862 0x23550, 0x23554,
863 0x23600, 0x23600,
864 0x23608, 0x23628,
865 0x23630, 0x2363c,
866 0x23700, 0x2371c,
867 0x23780, 0x2378c,
868 0x23800, 0x23c38,
869 0x23c80, 0x23d7c,
870 0x23e00, 0x23e04,
871 0x24000, 0x2402c,
872 0x24100, 0x2413c,
873 0x24190, 0x241c8,
874 0x24200, 0x24318,
875 0x24400, 0x24528,
876 0x24540, 0x24614,
877 0x25000, 0x25040,
878 0x2504c, 0x25060,
879 0x250c0, 0x250ec,
880 0x25200, 0x25268,
881 0x25270, 0x25284,
882 0x252fc, 0x25388,
883 0x25400, 0x25404,
884 0x25500, 0x25518,
885 0x2552c, 0x2553c,
886 0x25550, 0x25554,
887 0x25600, 0x25600,
888 0x25608, 0x25628,
889 0x25630, 0x2563c,
890 0x25700, 0x2571c,
891 0x25780, 0x2578c,
892 0x25800, 0x25c38,
893 0x25c80, 0x25d7c,
894 0x25e00, 0x25e04,
895 0x26000, 0x2602c,
896 0x26100, 0x2613c,
897 0x26190, 0x261c8,
898 0x26200, 0x26318,
899 0x26400, 0x26528,
900 0x26540, 0x26614,
901 0x27000, 0x27040,
902 0x2704c, 0x27060,
903 0x270c0, 0x270ec,
904 0x27200, 0x27268,
905 0x27270, 0x27284,
906 0x272fc, 0x27388,
907 0x27400, 0x27404,
908 0x27500, 0x27518,
909 0x2752c, 0x2753c,
910 0x27550, 0x27554,
911 0x27600, 0x27600,
912 0x27608, 0x27628,
913 0x27630, 0x2763c,
914 0x27700, 0x2771c,
915 0x27780, 0x2778c,
916 0x27800, 0x27c38,
917 0x27c80, 0x27d7c,
918 0x27e00, 0x27e04,
921 static const unsigned int t5_reg_ranges[] = {
922 0x1008, 0x1148,
923 0x1180, 0x11b4,
924 0x11fc, 0x123c,
925 0x1280, 0x173c,
926 0x1800, 0x18fc,
927 0x3000, 0x3028,
928 0x3068, 0x30d8,
929 0x30e0, 0x30fc,
930 0x3140, 0x357c,
931 0x35a8, 0x35cc,
932 0x35ec, 0x35ec,
933 0x3600, 0x5624,
934 0x56cc, 0x575c,
935 0x580c, 0x5814,
936 0x5890, 0x58bc,
937 0x5940, 0x59dc,
938 0x59fc, 0x5a18,
939 0x5a60, 0x5a9c,
940 0x5b94, 0x5bfc,
941 0x6000, 0x6040,
942 0x6058, 0x614c,
943 0x7700, 0x7798,
944 0x77c0, 0x78fc,
945 0x7b00, 0x7c54,
946 0x7d00, 0x7efc,
947 0x8dc0, 0x8de0,
948 0x8df8, 0x8e84,
949 0x8ea0, 0x8f84,
950 0x8fc0, 0x90f8,
951 0x9400, 0x9470,
952 0x9600, 0x96f4,
953 0x9800, 0x9808,
954 0x9820, 0x983c,
955 0x9850, 0x9864,
956 0x9c00, 0x9c6c,
957 0x9c80, 0x9cec,
958 0x9d00, 0x9d6c,
959 0x9d80, 0x9dec,
960 0x9e00, 0x9e6c,
961 0x9e80, 0x9eec,
962 0x9f00, 0x9f6c,
963 0x9f80, 0xa020,
964 0xd004, 0xd03c,
965 0xdfc0, 0xdfe0,
966 0xe000, 0x11088,
967 0x1109c, 0x11110,
968 0x11118, 0x1117c,
969 0x11190, 0x11204,
970 0x19040, 0x1906c,
971 0x19078, 0x19080,
972 0x1908c, 0x19124,
973 0x19150, 0x191b0,
974 0x191d0, 0x191e8,
975 0x19238, 0x19290,
976 0x193f8, 0x19474,
977 0x19490, 0x194cc,
978 0x194f0, 0x194f8,
979 0x19c00, 0x19c60,
980 0x19c94, 0x19e10,
981 0x19e50, 0x19f34,
982 0x19f40, 0x19f50,
983 0x19f90, 0x19fe4,
984 0x1a000, 0x1a06c,
985 0x1a0b0, 0x1a120,
986 0x1a128, 0x1a138,
987 0x1a190, 0x1a1c4,
988 0x1a1fc, 0x1a1fc,
989 0x1e008, 0x1e00c,
990 0x1e040, 0x1e04c,
991 0x1e284, 0x1e290,
992 0x1e2c0, 0x1e2c0,
993 0x1e2e0, 0x1e2e0,
994 0x1e300, 0x1e384,
995 0x1e3c0, 0x1e3c8,
996 0x1e408, 0x1e40c,
997 0x1e440, 0x1e44c,
998 0x1e684, 0x1e690,
999 0x1e6c0, 0x1e6c0,
1000 0x1e6e0, 0x1e6e0,
1001 0x1e700, 0x1e784,
1002 0x1e7c0, 0x1e7c8,
1003 0x1e808, 0x1e80c,
1004 0x1e840, 0x1e84c,
1005 0x1ea84, 0x1ea90,
1006 0x1eac0, 0x1eac0,
1007 0x1eae0, 0x1eae0,
1008 0x1eb00, 0x1eb84,
1009 0x1ebc0, 0x1ebc8,
1010 0x1ec08, 0x1ec0c,
1011 0x1ec40, 0x1ec4c,
1012 0x1ee84, 0x1ee90,
1013 0x1eec0, 0x1eec0,
1014 0x1eee0, 0x1eee0,
1015 0x1ef00, 0x1ef84,
1016 0x1efc0, 0x1efc8,
1017 0x1f008, 0x1f00c,
1018 0x1f040, 0x1f04c,
1019 0x1f284, 0x1f290,
1020 0x1f2c0, 0x1f2c0,
1021 0x1f2e0, 0x1f2e0,
1022 0x1f300, 0x1f384,
1023 0x1f3c0, 0x1f3c8,
1024 0x1f408, 0x1f40c,
1025 0x1f440, 0x1f44c,
1026 0x1f684, 0x1f690,
1027 0x1f6c0, 0x1f6c0,
1028 0x1f6e0, 0x1f6e0,
1029 0x1f700, 0x1f784,
1030 0x1f7c0, 0x1f7c8,
1031 0x1f808, 0x1f80c,
1032 0x1f840, 0x1f84c,
1033 0x1fa84, 0x1fa90,
1034 0x1fac0, 0x1fac0,
1035 0x1fae0, 0x1fae0,
1036 0x1fb00, 0x1fb84,
1037 0x1fbc0, 0x1fbc8,
1038 0x1fc08, 0x1fc0c,
1039 0x1fc40, 0x1fc4c,
1040 0x1fe84, 0x1fe90,
1041 0x1fec0, 0x1fec0,
1042 0x1fee0, 0x1fee0,
1043 0x1ff00, 0x1ff84,
1044 0x1ffc0, 0x1ffc8,
1045 0x30000, 0x30030,
1046 0x30100, 0x30144,
1047 0x30190, 0x301d0,
1048 0x30200, 0x30318,
1049 0x30400, 0x3052c,
1050 0x30540, 0x3061c,
1051 0x30800, 0x30834,
1052 0x308c0, 0x30908,
1053 0x30910, 0x309ac,
1054 0x30a00, 0x30a2c,
1055 0x30a44, 0x30a50,
1056 0x30a74, 0x30c24,
1057 0x30d00, 0x30d00,
1058 0x30d08, 0x30d14,
1059 0x30d1c, 0x30d20,
1060 0x30d3c, 0x30d50,
1061 0x31200, 0x3120c,
1062 0x31220, 0x31220,
1063 0x31240, 0x31240,
1064 0x31600, 0x3160c,
1065 0x31a00, 0x31a1c,
1066 0x31e00, 0x31e20,
1067 0x31e38, 0x31e3c,
1068 0x31e80, 0x31e80,
1069 0x31e88, 0x31ea8,
1070 0x31eb0, 0x31eb4,
1071 0x31ec8, 0x31ed4,
1072 0x31fb8, 0x32004,
1073 0x32200, 0x32200,
1074 0x32208, 0x32240,
1075 0x32248, 0x32280,
1076 0x32288, 0x322c0,
1077 0x322c8, 0x322fc,
1078 0x32600, 0x32630,
1079 0x32a00, 0x32abc,
1080 0x32b00, 0x32b70,
1081 0x33000, 0x33048,
1082 0x33060, 0x3309c,
1083 0x330f0, 0x33148,
1084 0x33160, 0x3319c,
1085 0x331f0, 0x332e4,
1086 0x332f8, 0x333e4,
1087 0x333f8, 0x33448,
1088 0x33460, 0x3349c,
1089 0x334f0, 0x33548,
1090 0x33560, 0x3359c,
1091 0x335f0, 0x336e4,
1092 0x336f8, 0x337e4,
1093 0x337f8, 0x337fc,
1094 0x33814, 0x33814,
1095 0x3382c, 0x3382c,
1096 0x33880, 0x3388c,
1097 0x338e8, 0x338ec,
1098 0x33900, 0x33948,
1099 0x33960, 0x3399c,
1100 0x339f0, 0x33ae4,
1101 0x33af8, 0x33b10,
1102 0x33b28, 0x33b28,
1103 0x33b3c, 0x33b50,
1104 0x33bf0, 0x33c10,
1105 0x33c28, 0x33c28,
1106 0x33c3c, 0x33c50,
1107 0x33cf0, 0x33cfc,
1108 0x34000, 0x34030,
1109 0x34100, 0x34144,
1110 0x34190, 0x341d0,
1111 0x34200, 0x34318,
1112 0x34400, 0x3452c,
1113 0x34540, 0x3461c,
1114 0x34800, 0x34834,
1115 0x348c0, 0x34908,
1116 0x34910, 0x349ac,
1117 0x34a00, 0x34a2c,
1118 0x34a44, 0x34a50,
1119 0x34a74, 0x34c24,
1120 0x34d00, 0x34d00,
1121 0x34d08, 0x34d14,
1122 0x34d1c, 0x34d20,
1123 0x34d3c, 0x34d50,
1124 0x35200, 0x3520c,
1125 0x35220, 0x35220,
1126 0x35240, 0x35240,
1127 0x35600, 0x3560c,
1128 0x35a00, 0x35a1c,
1129 0x35e00, 0x35e20,
1130 0x35e38, 0x35e3c,
1131 0x35e80, 0x35e80,
1132 0x35e88, 0x35ea8,
1133 0x35eb0, 0x35eb4,
1134 0x35ec8, 0x35ed4,
1135 0x35fb8, 0x36004,
1136 0x36200, 0x36200,
1137 0x36208, 0x36240,
1138 0x36248, 0x36280,
1139 0x36288, 0x362c0,
1140 0x362c8, 0x362fc,
1141 0x36600, 0x36630,
1142 0x36a00, 0x36abc,
1143 0x36b00, 0x36b70,
1144 0x37000, 0x37048,
1145 0x37060, 0x3709c,
1146 0x370f0, 0x37148,
1147 0x37160, 0x3719c,
1148 0x371f0, 0x372e4,
1149 0x372f8, 0x373e4,
1150 0x373f8, 0x37448,
1151 0x37460, 0x3749c,
1152 0x374f0, 0x37548,
1153 0x37560, 0x3759c,
1154 0x375f0, 0x376e4,
1155 0x376f8, 0x377e4,
1156 0x377f8, 0x377fc,
1157 0x37814, 0x37814,
1158 0x3782c, 0x3782c,
1159 0x37880, 0x3788c,
1160 0x378e8, 0x378ec,
1161 0x37900, 0x37948,
1162 0x37960, 0x3799c,
1163 0x379f0, 0x37ae4,
1164 0x37af8, 0x37b10,
1165 0x37b28, 0x37b28,
1166 0x37b3c, 0x37b50,
1167 0x37bf0, 0x37c10,
1168 0x37c28, 0x37c28,
1169 0x37c3c, 0x37c50,
1170 0x37cf0, 0x37cfc,
1171 0x38000, 0x38030,
1172 0x38100, 0x38144,
1173 0x38190, 0x381d0,
1174 0x38200, 0x38318,
1175 0x38400, 0x3852c,
1176 0x38540, 0x3861c,
1177 0x38800, 0x38834,
1178 0x388c0, 0x38908,
1179 0x38910, 0x389ac,
1180 0x38a00, 0x38a2c,
1181 0x38a44, 0x38a50,
1182 0x38a74, 0x38c24,
1183 0x38d00, 0x38d00,
1184 0x38d08, 0x38d14,
1185 0x38d1c, 0x38d20,
1186 0x38d3c, 0x38d50,
1187 0x39200, 0x3920c,
1188 0x39220, 0x39220,
1189 0x39240, 0x39240,
1190 0x39600, 0x3960c,
1191 0x39a00, 0x39a1c,
1192 0x39e00, 0x39e20,
1193 0x39e38, 0x39e3c,
1194 0x39e80, 0x39e80,
1195 0x39e88, 0x39ea8,
1196 0x39eb0, 0x39eb4,
1197 0x39ec8, 0x39ed4,
1198 0x39fb8, 0x3a004,
1199 0x3a200, 0x3a200,
1200 0x3a208, 0x3a240,
1201 0x3a248, 0x3a280,
1202 0x3a288, 0x3a2c0,
1203 0x3a2c8, 0x3a2fc,
1204 0x3a600, 0x3a630,
1205 0x3aa00, 0x3aabc,
1206 0x3ab00, 0x3ab70,
1207 0x3b000, 0x3b048,
1208 0x3b060, 0x3b09c,
1209 0x3b0f0, 0x3b148,
1210 0x3b160, 0x3b19c,
1211 0x3b1f0, 0x3b2e4,
1212 0x3b2f8, 0x3b3e4,
1213 0x3b3f8, 0x3b448,
1214 0x3b460, 0x3b49c,
1215 0x3b4f0, 0x3b548,
1216 0x3b560, 0x3b59c,
1217 0x3b5f0, 0x3b6e4,
1218 0x3b6f8, 0x3b7e4,
1219 0x3b7f8, 0x3b7fc,
1220 0x3b814, 0x3b814,
1221 0x3b82c, 0x3b82c,
1222 0x3b880, 0x3b88c,
1223 0x3b8e8, 0x3b8ec,
1224 0x3b900, 0x3b948,
1225 0x3b960, 0x3b99c,
1226 0x3b9f0, 0x3bae4,
1227 0x3baf8, 0x3bb10,
1228 0x3bb28, 0x3bb28,
1229 0x3bb3c, 0x3bb50,
1230 0x3bbf0, 0x3bc10,
1231 0x3bc28, 0x3bc28,
1232 0x3bc3c, 0x3bc50,
1233 0x3bcf0, 0x3bcfc,
1234 0x3c000, 0x3c030,
1235 0x3c100, 0x3c144,
1236 0x3c190, 0x3c1d0,
1237 0x3c200, 0x3c318,
1238 0x3c400, 0x3c52c,
1239 0x3c540, 0x3c61c,
1240 0x3c800, 0x3c834,
1241 0x3c8c0, 0x3c908,
1242 0x3c910, 0x3c9ac,
1243 0x3ca00, 0x3ca2c,
1244 0x3ca44, 0x3ca50,
1245 0x3ca74, 0x3cc24,
1246 0x3cd00, 0x3cd00,
1247 0x3cd08, 0x3cd14,
1248 0x3cd1c, 0x3cd20,
1249 0x3cd3c, 0x3cd50,
1250 0x3d200, 0x3d20c,
1251 0x3d220, 0x3d220,
1252 0x3d240, 0x3d240,
1253 0x3d600, 0x3d60c,
1254 0x3da00, 0x3da1c,
1255 0x3de00, 0x3de20,
1256 0x3de38, 0x3de3c,
1257 0x3de80, 0x3de80,
1258 0x3de88, 0x3dea8,
1259 0x3deb0, 0x3deb4,
1260 0x3dec8, 0x3ded4,
1261 0x3dfb8, 0x3e004,
1262 0x3e200, 0x3e200,
1263 0x3e208, 0x3e240,
1264 0x3e248, 0x3e280,
1265 0x3e288, 0x3e2c0,
1266 0x3e2c8, 0x3e2fc,
1267 0x3e600, 0x3e630,
1268 0x3ea00, 0x3eabc,
1269 0x3eb00, 0x3eb70,
1270 0x3f000, 0x3f048,
1271 0x3f060, 0x3f09c,
1272 0x3f0f0, 0x3f148,
1273 0x3f160, 0x3f19c,
1274 0x3f1f0, 0x3f2e4,
1275 0x3f2f8, 0x3f3e4,
1276 0x3f3f8, 0x3f448,
1277 0x3f460, 0x3f49c,
1278 0x3f4f0, 0x3f548,
1279 0x3f560, 0x3f59c,
1280 0x3f5f0, 0x3f6e4,
1281 0x3f6f8, 0x3f7e4,
1282 0x3f7f8, 0x3f7fc,
1283 0x3f814, 0x3f814,
1284 0x3f82c, 0x3f82c,
1285 0x3f880, 0x3f88c,
1286 0x3f8e8, 0x3f8ec,
1287 0x3f900, 0x3f948,
1288 0x3f960, 0x3f99c,
1289 0x3f9f0, 0x3fae4,
1290 0x3faf8, 0x3fb10,
1291 0x3fb28, 0x3fb28,
1292 0x3fb3c, 0x3fb50,
1293 0x3fbf0, 0x3fc10,
1294 0x3fc28, 0x3fc28,
1295 0x3fc3c, 0x3fc50,
1296 0x3fcf0, 0x3fcfc,
1297 0x40000, 0x4000c,
1298 0x40040, 0x40068,
1299 0x4007c, 0x40144,
1300 0x40180, 0x4018c,
1301 0x40200, 0x40298,
1302 0x402ac, 0x4033c,
1303 0x403f8, 0x403fc,
1304 0x41304, 0x413c4,
1305 0x41400, 0x4141c,
1306 0x41480, 0x414d0,
1307 0x44000, 0x44078,
1308 0x440c0, 0x44278,
1309 0x442c0, 0x44478,
1310 0x444c0, 0x44678,
1311 0x446c0, 0x44878,
1312 0x448c0, 0x449fc,
1313 0x45000, 0x45068,
1314 0x45080, 0x45084,
1315 0x450a0, 0x450b0,
1316 0x45200, 0x45268,
1317 0x45280, 0x45284,
1318 0x452a0, 0x452b0,
1319 0x460c0, 0x460e4,
1320 0x47000, 0x4708c,
1321 0x47200, 0x47250,
1322 0x47400, 0x47420,
1323 0x47600, 0x47618,
1324 0x47800, 0x47814,
1325 0x48000, 0x4800c,
1326 0x48040, 0x48068,
1327 0x4807c, 0x48144,
1328 0x48180, 0x4818c,
1329 0x48200, 0x48298,
1330 0x482ac, 0x4833c,
1331 0x483f8, 0x483fc,
1332 0x49304, 0x493c4,
1333 0x49400, 0x4941c,
1334 0x49480, 0x494d0,
1335 0x4c000, 0x4c078,
1336 0x4c0c0, 0x4c278,
1337 0x4c2c0, 0x4c478,
1338 0x4c4c0, 0x4c678,
1339 0x4c6c0, 0x4c878,
1340 0x4c8c0, 0x4c9fc,
1341 0x4d000, 0x4d068,
1342 0x4d080, 0x4d084,
1343 0x4d0a0, 0x4d0b0,
1344 0x4d200, 0x4d268,
1345 0x4d280, 0x4d284,
1346 0x4d2a0, 0x4d2b0,
1347 0x4e0c0, 0x4e0e4,
1348 0x4f000, 0x4f08c,
1349 0x4f200, 0x4f250,
1350 0x4f400, 0x4f420,
1351 0x4f600, 0x4f618,
1352 0x4f800, 0x4f814,
1353 0x50000, 0x500cc,
1354 0x50400, 0x50400,
1355 0x50800, 0x508cc,
1356 0x50c00, 0x50c00,
1357 0x51000, 0x5101c,
1358 0x51300, 0x51308,
1361 static const unsigned int t6_reg_ranges[] = {
1362 0x1008, 0x114c,
1363 0x1180, 0x11b4,
1364 0x11fc, 0x1250,
1365 0x1280, 0x133c,
1366 0x1800, 0x18fc,
1367 0x3000, 0x302c,
1368 0x3060, 0x30d8,
1369 0x30e0, 0x30fc,
1370 0x3140, 0x357c,
1371 0x35a8, 0x35cc,
1372 0x35ec, 0x35ec,
1373 0x3600, 0x5624,
1374 0x56cc, 0x575c,
1375 0x580c, 0x5814,
1376 0x5890, 0x58bc,
1377 0x5940, 0x595c,
1378 0x5980, 0x598c,
1379 0x59b0, 0x59dc,
1380 0x59fc, 0x5a18,
1381 0x5a60, 0x5a6c,
1382 0x5a80, 0x5a9c,
1383 0x5b94, 0x5bfc,
1384 0x5c10, 0x5ec0,
1385 0x5ec8, 0x5ecc,
1386 0x6000, 0x6040,
1387 0x6058, 0x615c,
1388 0x7700, 0x7798,
1389 0x77c0, 0x7880,
1390 0x78cc, 0x78fc,
1391 0x7b00, 0x7c54,
1392 0x7d00, 0x7efc,
1393 0x8dc0, 0x8de0,
1394 0x8df8, 0x8e84,
1395 0x8ea0, 0x8f88,
1396 0x8fb8, 0x911c,
1397 0x9400, 0x9470,
1398 0x9600, 0x971c,
1399 0x9800, 0x9808,
1400 0x9820, 0x983c,
1401 0x9850, 0x9864,
1402 0x9c00, 0x9c6c,
1403 0x9c80, 0x9cec,
1404 0x9d00, 0x9d6c,
1405 0x9d80, 0x9dec,
1406 0x9e00, 0x9e6c,
1407 0x9e80, 0x9eec,
1408 0x9f00, 0x9f6c,
1409 0x9f80, 0xa020,
1410 0xd004, 0xd03c,
1411 0xd100, 0xd118,
1412 0xd200, 0xd31c,
1413 0xdfc0, 0xdfe0,
1414 0xe000, 0xf008,
1415 0x11000, 0x11014,
1416 0x11048, 0x11110,
1417 0x11118, 0x1117c,
1418 0x11190, 0x11264,
1419 0x11300, 0x1130c,
1420 0x12000, 0x1206c,
1421 0x19040, 0x1906c,
1422 0x19078, 0x19080,
1423 0x1908c, 0x19124,
1424 0x19150, 0x191b0,
1425 0x191d0, 0x191e8,
1426 0x19238, 0x192bc,
1427 0x193f8, 0x19474,
1428 0x19490, 0x194cc,
1429 0x194f0, 0x194f8,
1430 0x19c00, 0x19c80,
1431 0x19c94, 0x19cbc,
1432 0x19ce4, 0x19d28,
1433 0x19d50, 0x19d78,
1434 0x19d94, 0x19dc8,
1435 0x19df0, 0x19e10,
1436 0x19e50, 0x19e6c,
1437 0x19ea0, 0x19f34,
1438 0x19f40, 0x19f50,
1439 0x19f90, 0x19fac,
1440 0x19fc4, 0x19fe4,
1441 0x1a000, 0x1a06c,
1442 0x1a0b0, 0x1a120,
1443 0x1a128, 0x1a138,
1444 0x1a190, 0x1a1c4,
1445 0x1a1fc, 0x1a1fc,
1446 0x1e008, 0x1e00c,
1447 0x1e040, 0x1e04c,
1448 0x1e284, 0x1e290,
1449 0x1e2c0, 0x1e2c0,
1450 0x1e2e0, 0x1e2e0,
1451 0x1e300, 0x1e384,
1452 0x1e3c0, 0x1e3c8,
1453 0x1e408, 0x1e40c,
1454 0x1e440, 0x1e44c,
1455 0x1e684, 0x1e690,
1456 0x1e6c0, 0x1e6c0,
1457 0x1e6e0, 0x1e6e0,
1458 0x1e700, 0x1e784,
1459 0x1e7c0, 0x1e7c8,
1460 0x1e808, 0x1e80c,
1461 0x1e840, 0x1e84c,
1462 0x1ea84, 0x1ea90,
1463 0x1eac0, 0x1eac0,
1464 0x1eae0, 0x1eae0,
1465 0x1eb00, 0x1eb84,
1466 0x1ebc0, 0x1ebc8,
1467 0x1ec08, 0x1ec0c,
1468 0x1ec40, 0x1ec4c,
1469 0x1ee84, 0x1ee90,
1470 0x1eec0, 0x1eec0,
1471 0x1eee0, 0x1eee0,
1472 0x1ef00, 0x1ef84,
1473 0x1efc0, 0x1efc8,
1474 0x1f008, 0x1f00c,
1475 0x1f040, 0x1f04c,
1476 0x1f284, 0x1f290,
1477 0x1f2c0, 0x1f2c0,
1478 0x1f2e0, 0x1f2e0,
1479 0x1f300, 0x1f384,
1480 0x1f3c0, 0x1f3c8,
1481 0x1f408, 0x1f40c,
1482 0x1f440, 0x1f44c,
1483 0x1f684, 0x1f690,
1484 0x1f6c0, 0x1f6c0,
1485 0x1f6e0, 0x1f6e0,
1486 0x1f700, 0x1f784,
1487 0x1f7c0, 0x1f7c8,
1488 0x1f808, 0x1f80c,
1489 0x1f840, 0x1f84c,
1490 0x1fa84, 0x1fa90,
1491 0x1fac0, 0x1fac0,
1492 0x1fae0, 0x1fae0,
1493 0x1fb00, 0x1fb84,
1494 0x1fbc0, 0x1fbc8,
1495 0x1fc08, 0x1fc0c,
1496 0x1fc40, 0x1fc4c,
1497 0x1fe84, 0x1fe90,
1498 0x1fec0, 0x1fec0,
1499 0x1fee0, 0x1fee0,
1500 0x1ff00, 0x1ff84,
1501 0x1ffc0, 0x1ffc8,
1502 0x30000, 0x30070,
1503 0x30100, 0x3015c,
1504 0x30190, 0x301d0,
1505 0x30200, 0x30318,
1506 0x30400, 0x3052c,
1507 0x30540, 0x3061c,
1508 0x30800, 0x30890,
1509 0x308c0, 0x30908,
1510 0x30910, 0x309b8,
1511 0x30a00, 0x30a04,
1512 0x30a0c, 0x30a2c,
1513 0x30a44, 0x30a50,
1514 0x30a74, 0x30c24,
1515 0x30d00, 0x30d3c,
1516 0x30d44, 0x30d7c,
1517 0x30de0, 0x30de0,
1518 0x30e00, 0x30ed4,
1519 0x30f00, 0x30fa4,
1520 0x30fc0, 0x30fc4,
1521 0x31000, 0x31004,
1522 0x31080, 0x310fc,
1523 0x31208, 0x31220,
1524 0x3123c, 0x31254,
1525 0x31300, 0x31300,
1526 0x31308, 0x3131c,
1527 0x31338, 0x3133c,
1528 0x31380, 0x31380,
1529 0x31388, 0x313a8,
1530 0x313b4, 0x313b4,
1531 0x31400, 0x31420,
1532 0x31438, 0x3143c,
1533 0x31480, 0x31480,
1534 0x314a8, 0x314a8,
1535 0x314b0, 0x314b4,
1536 0x314c8, 0x314d4,
1537 0x31a40, 0x31a4c,
1538 0x31af0, 0x31b20,
1539 0x31b38, 0x31b3c,
1540 0x31b80, 0x31b80,
1541 0x31ba8, 0x31ba8,
1542 0x31bb0, 0x31bb4,
1543 0x31bc8, 0x31bd4,
1544 0x32140, 0x3218c,
1545 0x321f0, 0x32200,
1546 0x32218, 0x32218,
1547 0x32400, 0x32400,
1548 0x32408, 0x3241c,
1549 0x32618, 0x32620,
1550 0x32664, 0x32664,
1551 0x326a8, 0x326a8,
1552 0x326ec, 0x326ec,
1553 0x32a00, 0x32abc,
1554 0x32b00, 0x32b78,
1555 0x32c00, 0x32c00,
1556 0x32c08, 0x32c3c,
1557 0x32e00, 0x32e2c,
1558 0x32f00, 0x32f2c,
1559 0x33000, 0x330ac,
1560 0x330c0, 0x331ac,
1561 0x331c0, 0x332c4,
1562 0x332e4, 0x333c4,
1563 0x333e4, 0x334ac,
1564 0x334c0, 0x335ac,
1565 0x335c0, 0x336c4,
1566 0x336e4, 0x337c4,
1567 0x337e4, 0x337fc,
1568 0x33814, 0x33814,
1569 0x33854, 0x33868,
1570 0x33880, 0x3388c,
1571 0x338c0, 0x338d0,
1572 0x338e8, 0x338ec,
1573 0x33900, 0x339ac,
1574 0x339c0, 0x33ac4,
1575 0x33ae4, 0x33b10,
1576 0x33b24, 0x33b50,
1577 0x33bf0, 0x33c10,
1578 0x33c24, 0x33c50,
1579 0x33cf0, 0x33cfc,
1580 0x34000, 0x34070,
1581 0x34100, 0x3415c,
1582 0x34190, 0x341d0,
1583 0x34200, 0x34318,
1584 0x34400, 0x3452c,
1585 0x34540, 0x3461c,
1586 0x34800, 0x34890,
1587 0x348c0, 0x34908,
1588 0x34910, 0x349b8,
1589 0x34a00, 0x34a04,
1590 0x34a0c, 0x34a2c,
1591 0x34a44, 0x34a50,
1592 0x34a74, 0x34c24,
1593 0x34d00, 0x34d3c,
1594 0x34d44, 0x34d7c,
1595 0x34de0, 0x34de0,
1596 0x34e00, 0x34ed4,
1597 0x34f00, 0x34fa4,
1598 0x34fc0, 0x34fc4,
1599 0x35000, 0x35004,
1600 0x35080, 0x350fc,
1601 0x35208, 0x35220,
1602 0x3523c, 0x35254,
1603 0x35300, 0x35300,
1604 0x35308, 0x3531c,
1605 0x35338, 0x3533c,
1606 0x35380, 0x35380,
1607 0x35388, 0x353a8,
1608 0x353b4, 0x353b4,
1609 0x35400, 0x35420,
1610 0x35438, 0x3543c,
1611 0x35480, 0x35480,
1612 0x354a8, 0x354a8,
1613 0x354b0, 0x354b4,
1614 0x354c8, 0x354d4,
1615 0x35a40, 0x35a4c,
1616 0x35af0, 0x35b20,
1617 0x35b38, 0x35b3c,
1618 0x35b80, 0x35b80,
1619 0x35ba8, 0x35ba8,
1620 0x35bb0, 0x35bb4,
1621 0x35bc8, 0x35bd4,
1622 0x36140, 0x3618c,
1623 0x361f0, 0x36200,
1624 0x36218, 0x36218,
1625 0x36400, 0x36400,
1626 0x36408, 0x3641c,
1627 0x36618, 0x36620,
1628 0x36664, 0x36664,
1629 0x366a8, 0x366a8,
1630 0x366ec, 0x366ec,
1631 0x36a00, 0x36abc,
1632 0x36b00, 0x36b78,
1633 0x36c00, 0x36c00,
1634 0x36c08, 0x36c3c,
1635 0x36e00, 0x36e2c,
1636 0x36f00, 0x36f2c,
1637 0x37000, 0x370ac,
1638 0x370c0, 0x371ac,
1639 0x371c0, 0x372c4,
1640 0x372e4, 0x373c4,
1641 0x373e4, 0x374ac,
1642 0x374c0, 0x375ac,
1643 0x375c0, 0x376c4,
1644 0x376e4, 0x377c4,
1645 0x377e4, 0x377fc,
1646 0x37814, 0x37814,
1647 0x37854, 0x37868,
1648 0x37880, 0x3788c,
1649 0x378c0, 0x378d0,
1650 0x378e8, 0x378ec,
1651 0x37900, 0x379ac,
1652 0x379c0, 0x37ac4,
1653 0x37ae4, 0x37b10,
1654 0x37b24, 0x37b50,
1655 0x37bf0, 0x37c10,
1656 0x37c24, 0x37c50,
1657 0x37cf0, 0x37cfc,
1658 0x40040, 0x40040,
1659 0x40080, 0x40084,
1660 0x40100, 0x40100,
1661 0x40140, 0x401bc,
1662 0x40200, 0x40214,
1663 0x40228, 0x40228,
1664 0x40240, 0x40258,
1665 0x40280, 0x40280,
1666 0x40304, 0x40304,
1667 0x40330, 0x4033c,
1668 0x41304, 0x413dc,
1669 0x41400, 0x4141c,
1670 0x41480, 0x414d0,
1671 0x44000, 0x4407c,
1672 0x440c0, 0x4427c,
1673 0x442c0, 0x4447c,
1674 0x444c0, 0x4467c,
1675 0x446c0, 0x4487c,
1676 0x448c0, 0x44a7c,
1677 0x44ac0, 0x44c7c,
1678 0x44cc0, 0x44e7c,
1679 0x44ec0, 0x4507c,
1680 0x450c0, 0x451fc,
1681 0x45800, 0x45868,
1682 0x45880, 0x45884,
1683 0x458a0, 0x458b0,
1684 0x45a00, 0x45a68,
1685 0x45a80, 0x45a84,
1686 0x45aa0, 0x45ab0,
1687 0x460c0, 0x460e4,
1688 0x47000, 0x4708c,
1689 0x47200, 0x47250,
1690 0x47400, 0x47420,
1691 0x47600, 0x47618,
1692 0x47800, 0x4782c,
1693 0x50000, 0x500cc,
1694 0x50400, 0x50400,
1695 0x50800, 0x508cc,
1696 0x50c00, 0x50c00,
1697 0x51000, 0x510b0,
1698 0x51300, 0x51324,
1701 u32 *buf_end = (u32 *)((char *)buf + buf_size);
1702 const unsigned int *reg_ranges;
1703 int reg_ranges_size, range;
1704 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1706 /* Select the right set of register ranges to dump depending on the
1707 * adapter chip type.
1709 switch (chip_version) {
1710 case CHELSIO_T4:
1711 reg_ranges = t4_reg_ranges;
1712 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1713 break;
1715 case CHELSIO_T5:
1716 reg_ranges = t5_reg_ranges;
1717 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1718 break;
1720 case CHELSIO_T6:
1721 reg_ranges = t6_reg_ranges;
1722 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1723 break;
1725 default:
1726 dev_err(adap->pdev_dev,
1727 "Unsupported chip version %d\n", chip_version);
1728 return;
1731 /* Clear the register buffer and insert the appropriate register
1732 * values selected by the above register ranges.
1734 memset(buf, 0, buf_size);
1735 for (range = 0; range < reg_ranges_size; range += 2) {
1736 unsigned int reg = reg_ranges[range];
1737 unsigned int last_reg = reg_ranges[range + 1];
1738 u32 *bufp = (u32 *)((char *)buf + reg);
1740 /* Iterate across the register range filling in the register
1741 * buffer but don't write past the end of the register buffer.
1743 while (reg <= last_reg && bufp < buf_end) {
1744 *bufp++ = t4_read_reg(adap, reg);
1745 reg += sizeof(u32);
1750 #define EEPROM_STAT_ADDR 0x7bfc
1751 #define VPD_BASE 0x400
1752 #define VPD_BASE_OLD 0
1753 #define VPD_LEN 1024
1754 #define CHELSIO_VPD_UNIQUE_ID 0x82
1757 * t4_seeprom_wp - enable/disable EEPROM write protection
1758 * @adapter: the adapter
1759 * @enable: whether to enable or disable write protection
1761 * Enables or disables write protection on the serial EEPROM.
1763 int t4_seeprom_wp(struct adapter *adapter, bool enable)
1765 unsigned int v = enable ? 0xc : 0;
1766 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1767 return ret < 0 ? ret : 0;
1771 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
1772 * @adapter: adapter to read
1773 * @p: where to store the parameters
1775 * Reads card parameters stored in VPD EEPROM.
1777 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
1779 int i, ret = 0, addr;
1780 int ec, sn, pn, na;
1781 u8 *vpd, csum;
1782 unsigned int vpdr_len, kw_offset, id_len;
1784 vpd = vmalloc(VPD_LEN);
1785 if (!vpd)
1786 return -ENOMEM;
1788 /* Card information normally starts at VPD_BASE but early cards had
1789 * it at 0.
1791 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1792 if (ret < 0)
1793 goto out;
1795 /* The VPD shall have a unique identifier specified by the PCI SIG.
1796 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1797 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1798 * is expected to automatically put this entry at the
1799 * beginning of the VPD.
1801 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1803 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1804 if (ret < 0)
1805 goto out;
1807 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1808 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1809 ret = -EINVAL;
1810 goto out;
1813 id_len = pci_vpd_lrdt_size(vpd);
1814 if (id_len > ID_LEN)
1815 id_len = ID_LEN;
1817 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1818 if (i < 0) {
1819 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1820 ret = -EINVAL;
1821 goto out;
1824 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1825 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1826 if (vpdr_len + kw_offset > VPD_LEN) {
1827 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1828 ret = -EINVAL;
1829 goto out;
1832 #define FIND_VPD_KW(var, name) do { \
1833 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1834 if (var < 0) { \
1835 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1836 ret = -EINVAL; \
1837 goto out; \
1839 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1840 } while (0)
1842 FIND_VPD_KW(i, "RV");
1843 for (csum = 0; i >= 0; i--)
1844 csum += vpd[i];
1846 if (csum) {
1847 dev_err(adapter->pdev_dev,
1848 "corrupted VPD EEPROM, actual csum %u\n", csum);
1849 ret = -EINVAL;
1850 goto out;
1853 FIND_VPD_KW(ec, "EC");
1854 FIND_VPD_KW(sn, "SN");
1855 FIND_VPD_KW(pn, "PN");
1856 FIND_VPD_KW(na, "NA");
1857 #undef FIND_VPD_KW
1859 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1860 strim(p->id);
1861 memcpy(p->ec, vpd + ec, EC_LEN);
1862 strim(p->ec);
1863 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1864 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1865 strim(p->sn);
1866 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1867 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1868 strim(p->pn);
1869 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
1870 strim((char *)p->na);
1872 out:
1873 vfree(vpd);
1874 return ret;
1878 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
1879 * @adapter: adapter to read
1880 * @p: where to store the parameters
1882 * Reads card parameters stored in VPD EEPROM and retrieves the Core
1883 * Clock. This can only be called after a connection to the firmware
1884 * is established.
1886 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1888 u32 cclk_param, cclk_val;
1889 int ret;
1891 /* Grab the raw VPD parameters.
1893 ret = t4_get_raw_vpd_params(adapter, p);
1894 if (ret)
1895 return ret;
1897 /* Ask firmware for the Core Clock since it knows how to translate the
1898 * Reference Clock ('V2') VPD field into a Core Clock value ...
1900 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1901 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1902 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1903 1, &cclk_param, &cclk_val);
1905 if (ret)
1906 return ret;
1907 p->cclk = cclk_val;
1909 return 0;
1912 /* serial flash and firmware constants */
1913 enum {
1914 SF_ATTEMPTS = 10, /* max retries for SF operations */
1916 /* flash command opcodes */
1917 SF_PROG_PAGE = 2, /* program page */
1918 SF_WR_DISABLE = 4, /* disable writes */
1919 SF_RD_STATUS = 5, /* read status register */
1920 SF_WR_ENABLE = 6, /* enable writes */
1921 SF_RD_DATA_FAST = 0xb, /* read flash */
1922 SF_RD_ID = 0x9f, /* read ID */
1923 SF_ERASE_SECTOR = 0xd8, /* erase sector */
1925 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1929 * sf1_read - read data from the serial flash
1930 * @adapter: the adapter
1931 * @byte_cnt: number of bytes to read
1932 * @cont: whether another operation will be chained
1933 * @lock: whether to lock SF for PL access only
1934 * @valp: where to store the read data
1936 * Reads up to 4 bytes of data from the serial flash. The location of
1937 * the read needs to be specified prior to calling this by issuing the
1938 * appropriate commands to the serial flash.
1940 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1941 int lock, u32 *valp)
1943 int ret;
1945 if (!byte_cnt || byte_cnt > 4)
1946 return -EINVAL;
1947 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1948 return -EBUSY;
1949 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1950 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1951 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1952 if (!ret)
1953 *valp = t4_read_reg(adapter, SF_DATA_A);
1954 return ret;
1958 * sf1_write - write data to the serial flash
1959 * @adapter: the adapter
1960 * @byte_cnt: number of bytes to write
1961 * @cont: whether another operation will be chained
1962 * @lock: whether to lock SF for PL access only
1963 * @val: value to write
1965 * Writes up to 4 bytes of data to the serial flash. The location of
1966 * the write needs to be specified prior to calling this by issuing the
1967 * appropriate commands to the serial flash.
1969 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1970 int lock, u32 val)
1972 if (!byte_cnt || byte_cnt > 4)
1973 return -EINVAL;
1974 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1975 return -EBUSY;
1976 t4_write_reg(adapter, SF_DATA_A, val);
1977 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1978 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1979 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1983 * flash_wait_op - wait for a flash operation to complete
1984 * @adapter: the adapter
1985 * @attempts: max number of polls of the status register
1986 * @delay: delay between polls in ms
1988 * Wait for a flash operation to complete by polling the status register.
1990 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1992 int ret;
1993 u32 status;
1995 while (1) {
1996 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1997 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1998 return ret;
1999 if (!(status & 1))
2000 return 0;
2001 if (--attempts == 0)
2002 return -EAGAIN;
2003 if (delay)
2004 msleep(delay);
2009 * t4_read_flash - read words from serial flash
2010 * @adapter: the adapter
2011 * @addr: the start address for the read
2012 * @nwords: how many 32-bit words to read
2013 * @data: where to store the read data
2014 * @byte_oriented: whether to store data as bytes or as words
2016 * Read the specified number of 32-bit words from the serial flash.
2017 * If @byte_oriented is set the read data is stored as a byte array
2018 * (i.e., big-endian), otherwise as 32-bit words in the platform's
2019 * natural endianness.
2021 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2022 unsigned int nwords, u32 *data, int byte_oriented)
2024 int ret;
2026 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2027 return -EINVAL;
2029 addr = swab32(addr) | SF_RD_DATA_FAST;
2031 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2032 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2033 return ret;
2035 for ( ; nwords; nwords--, data++) {
2036 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2037 if (nwords == 1)
2038 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2039 if (ret)
2040 return ret;
2041 if (byte_oriented)
2042 *data = (__force __u32)(cpu_to_be32(*data));
2044 return 0;
2048 * t4_write_flash - write up to a page of data to the serial flash
2049 * @adapter: the adapter
2050 * @addr: the start address to write
2051 * @n: length of data to write in bytes
2052 * @data: the data to write
2054 * Writes up to a page of data (256 bytes) to the serial flash starting
2055 * at the given address. All the data must be written to the same page.
2057 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2058 unsigned int n, const u8 *data)
2060 int ret;
2061 u32 buf[64];
2062 unsigned int i, c, left, val, offset = addr & 0xff;
2064 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2065 return -EINVAL;
2067 val = swab32(addr) | SF_PROG_PAGE;
2069 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2070 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2071 goto unlock;
2073 for (left = n; left; left -= c) {
2074 c = min(left, 4U);
2075 for (val = 0, i = 0; i < c; ++i)
2076 val = (val << 8) + *data++;
2078 ret = sf1_write(adapter, c, c != left, 1, val);
2079 if (ret)
2080 goto unlock;
2082 ret = flash_wait_op(adapter, 8, 1);
2083 if (ret)
2084 goto unlock;
2086 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2088 /* Read the page to verify the write succeeded */
2089 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2090 if (ret)
2091 return ret;
2093 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2094 dev_err(adapter->pdev_dev,
2095 "failed to correctly write the flash page at %#x\n",
2096 addr);
2097 return -EIO;
2099 return 0;
2101 unlock:
2102 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2103 return ret;
2107 * t4_get_fw_version - read the firmware version
2108 * @adapter: the adapter
2109 * @vers: where to place the version
2111 * Reads the FW version from flash.
2113 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2115 return t4_read_flash(adapter, FLASH_FW_START +
2116 offsetof(struct fw_hdr, fw_ver), 1,
2117 vers, 0);
2121 * t4_get_tp_version - read the TP microcode version
2122 * @adapter: the adapter
2123 * @vers: where to place the version
2125 * Reads the TP microcode version from flash.
2127 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2129 return t4_read_flash(adapter, FLASH_FW_START +
2130 offsetof(struct fw_hdr, tp_microcode_ver),
2131 1, vers, 0);
2135 * t4_get_exprom_version - return the Expansion ROM version (if any)
2136 * @adapter: the adapter
2137 * @vers: where to place the version
2139 * Reads the Expansion ROM header from FLASH and returns the version
2140 * number (if present) through the @vers return value pointer. We return
2141 * this in the Firmware Version Format since it's convenient. Return
2142 * 0 on success, -ENOENT if no Expansion ROM is present.
2144 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2146 struct exprom_header {
2147 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2148 unsigned char hdr_ver[4]; /* Expansion ROM version */
2149 } *hdr;
2150 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2151 sizeof(u32))];
2152 int ret;
2154 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2155 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2157 if (ret)
2158 return ret;
2160 hdr = (struct exprom_header *)exprom_header_buf;
2161 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2162 return -ENOENT;
2164 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2165 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2166 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2167 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2168 return 0;
2171 /* Is the given firmware API compatible with the one the driver was compiled
2172 * with?
2174 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2177 /* short circuit if it's the exact same firmware version */
2178 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2179 return 1;
2181 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2182 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2183 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2184 return 1;
2185 #undef SAME_INTF
2187 return 0;
2190 /* The firmware in the filesystem is usable, but should it be installed?
2191 * This routine explains itself in detail if it indicates the filesystem
2192 * firmware should be installed.
2194 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2195 int k, int c)
2197 const char *reason;
2199 if (!card_fw_usable) {
2200 reason = "incompatible or unusable";
2201 goto install;
2204 if (k > c) {
2205 reason = "older than the version supported with this driver";
2206 goto install;
2209 return 0;
2211 install:
2212 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2213 "installing firmware %u.%u.%u.%u on card.\n",
2214 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2215 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2216 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2217 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2219 return 1;
2222 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2223 const u8 *fw_data, unsigned int fw_size,
2224 struct fw_hdr *card_fw, enum dev_state state,
2225 int *reset)
2227 int ret, card_fw_usable, fs_fw_usable;
2228 const struct fw_hdr *fs_fw;
2229 const struct fw_hdr *drv_fw;
2231 drv_fw = &fw_info->fw_hdr;
2233 /* Read the header of the firmware on the card */
2234 ret = -t4_read_flash(adap, FLASH_FW_START,
2235 sizeof(*card_fw) / sizeof(uint32_t),
2236 (uint32_t *)card_fw, 1);
2237 if (ret == 0) {
2238 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2239 } else {
2240 dev_err(adap->pdev_dev,
2241 "Unable to read card's firmware header: %d\n", ret);
2242 card_fw_usable = 0;
2245 if (fw_data != NULL) {
2246 fs_fw = (const void *)fw_data;
2247 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2248 } else {
2249 fs_fw = NULL;
2250 fs_fw_usable = 0;
2253 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2254 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2255 /* Common case: the firmware on the card is an exact match and
2256 * the filesystem one is an exact match too, or the filesystem
2257 * one is absent/incompatible.
2259 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2260 should_install_fs_fw(adap, card_fw_usable,
2261 be32_to_cpu(fs_fw->fw_ver),
2262 be32_to_cpu(card_fw->fw_ver))) {
2263 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2264 fw_size, 0);
2265 if (ret != 0) {
2266 dev_err(adap->pdev_dev,
2267 "failed to install firmware: %d\n", ret);
2268 goto bye;
2271 /* Installed successfully, update the cached header too. */
2272 *card_fw = *fs_fw;
2273 card_fw_usable = 1;
2274 *reset = 0; /* already reset as part of load_fw */
2277 if (!card_fw_usable) {
2278 uint32_t d, c, k;
2280 d = be32_to_cpu(drv_fw->fw_ver);
2281 c = be32_to_cpu(card_fw->fw_ver);
2282 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2284 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2285 "chip state %d, "
2286 "driver compiled with %d.%d.%d.%d, "
2287 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2288 state,
2289 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2290 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2291 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2292 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2293 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2294 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2295 ret = EINVAL;
2296 goto bye;
2299 /* We're using whatever's on the card and it's known to be good. */
2300 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2301 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2303 bye:
2304 return ret;
2308 * t4_flash_erase_sectors - erase a range of flash sectors
2309 * @adapter: the adapter
2310 * @start: the first sector to erase
2311 * @end: the last sector to erase
2313 * Erases the sectors in the given inclusive range.
2315 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2317 int ret = 0;
2319 if (end >= adapter->params.sf_nsec)
2320 return -EINVAL;
2322 while (start <= end) {
2323 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2324 (ret = sf1_write(adapter, 4, 0, 1,
2325 SF_ERASE_SECTOR | (start << 8))) != 0 ||
2326 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2327 dev_err(adapter->pdev_dev,
2328 "erase of flash sector %d failed, error %d\n",
2329 start, ret);
2330 break;
2332 start++;
2334 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2335 return ret;
2339 * t4_flash_cfg_addr - return the address of the flash configuration file
2340 * @adapter: the adapter
2342 * Return the address within the flash where the Firmware Configuration
2343 * File is stored.
2345 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2347 if (adapter->params.sf_size == 0x100000)
2348 return FLASH_FPGA_CFG_START;
2349 else
2350 return FLASH_CFG_START;
2353 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
2354 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
2355 * and emit an error message for mismatched firmware to save our caller the
2356 * effort ...
2358 static bool t4_fw_matches_chip(const struct adapter *adap,
2359 const struct fw_hdr *hdr)
2361 /* The expression below will return FALSE for any unsupported adapter
2362 * which will keep us "honest" in the future ...
2364 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2365 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2366 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2367 return true;
2369 dev_err(adap->pdev_dev,
2370 "FW image (%d) is not suitable for this adapter (%d)\n",
2371 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2372 return false;
2376 * t4_load_fw - download firmware
2377 * @adap: the adapter
2378 * @fw_data: the firmware image to write
2379 * @size: image size
2381 * Write the supplied firmware image to the card's serial flash.
2383 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2385 u32 csum;
2386 int ret, addr;
2387 unsigned int i;
2388 u8 first_page[SF_PAGE_SIZE];
2389 const __be32 *p = (const __be32 *)fw_data;
2390 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2391 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2392 unsigned int fw_img_start = adap->params.sf_fw_start;
2393 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2395 if (!size) {
2396 dev_err(adap->pdev_dev, "FW image has no data\n");
2397 return -EINVAL;
2399 if (size & 511) {
2400 dev_err(adap->pdev_dev,
2401 "FW image size not multiple of 512 bytes\n");
2402 return -EINVAL;
2404 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2405 dev_err(adap->pdev_dev,
2406 "FW image size differs from size in FW header\n");
2407 return -EINVAL;
2409 if (size > FW_MAX_SIZE) {
2410 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2411 FW_MAX_SIZE);
2412 return -EFBIG;
2414 if (!t4_fw_matches_chip(adap, hdr))
2415 return -EINVAL;
2417 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2418 csum += be32_to_cpu(p[i]);
2420 if (csum != 0xffffffff) {
2421 dev_err(adap->pdev_dev,
2422 "corrupted firmware image, checksum %#x\n", csum);
2423 return -EINVAL;
2426 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
2427 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2428 if (ret)
2429 goto out;
2432 * We write the correct version at the end so the driver can see a bad
2433 * version if the FW write fails. Start by writing a copy of the
2434 * first page with a bad version.
2436 memcpy(first_page, fw_data, SF_PAGE_SIZE);
2437 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2438 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2439 if (ret)
2440 goto out;
2442 addr = fw_img_start;
2443 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2444 addr += SF_PAGE_SIZE;
2445 fw_data += SF_PAGE_SIZE;
2446 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2447 if (ret)
2448 goto out;
2451 ret = t4_write_flash(adap,
2452 fw_img_start + offsetof(struct fw_hdr, fw_ver),
2453 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2454 out:
2455 if (ret)
2456 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2457 ret);
2458 else
2459 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2460 return ret;
2464 * t4_phy_fw_ver - return current PHY firmware version
2465 * @adap: the adapter
2466 * @phy_fw_ver: return value buffer for PHY firmware version
2468 * Returns the current version of external PHY firmware on the
2469 * adapter.
2471 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2473 u32 param, val;
2474 int ret;
2476 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2477 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2478 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2479 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2480 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2481 &param, &val);
2482 if (ret < 0)
2483 return ret;
2484 *phy_fw_ver = val;
2485 return 0;
2489 * t4_load_phy_fw - download port PHY firmware
2490 * @adap: the adapter
2491 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
2492 * @win_lock: the lock to use to guard the memory copy
2493 * @phy_fw_version: function to check PHY firmware versions
2494 * @phy_fw_data: the PHY firmware image to write
2495 * @phy_fw_size: image size
2497 * Transfer the specified PHY firmware to the adapter. If a non-NULL
2498 * @phy_fw_version is supplied, then it will be used to determine if
2499 * it's necessary to perform the transfer by comparing the version
2500 * of any existing adapter PHY firmware with that of the passed in
2501 * PHY firmware image. If @win_lock is non-NULL then it will be used
2502 * around the call to t4_memory_rw() which transfers the PHY firmware
2503 * to the adapter.
2505 * A negative error number will be returned if an error occurs. If
2506 * version number support is available and there's no need to upgrade
2507 * the firmware, 0 will be returned. If firmware is successfully
2508 * transferred to the adapter, 1 will be retured.
2510 * NOTE: some adapters only have local RAM to store the PHY firmware. As
2511 * a result, a RESET of the adapter would cause that RAM to lose its
2512 * contents. Thus, loading PHY firmware on such adapters must happen
2513 * after any FW_RESET_CMDs ...
2515 int t4_load_phy_fw(struct adapter *adap,
2516 int win, spinlock_t *win_lock,
2517 int (*phy_fw_version)(const u8 *, size_t),
2518 const u8 *phy_fw_data, size_t phy_fw_size)
2520 unsigned long mtype = 0, maddr = 0;
2521 u32 param, val;
2522 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2523 int ret;
2525 /* If we have version number support, then check to see if the adapter
2526 * already has up-to-date PHY firmware loaded.
2528 if (phy_fw_version) {
2529 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2530 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2531 if (ret < 0)
2532 return ret;
2534 if (cur_phy_fw_ver >= new_phy_fw_vers) {
2535 CH_WARN(adap, "PHY Firmware already up-to-date, "
2536 "version %#x\n", cur_phy_fw_ver);
2537 return 0;
2541 /* Ask the firmware where it wants us to copy the PHY firmware image.
2542 * The size of the file requires a special version of the READ coommand
2543 * which will pass the file size via the values field in PARAMS_CMD and
2544 * retrieve the return value from firmware and place it in the same
2545 * buffer values
2547 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2548 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2549 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2550 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2551 val = phy_fw_size;
2552 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2553 &param, &val, 1);
2554 if (ret < 0)
2555 return ret;
2556 mtype = val >> 8;
2557 maddr = (val & 0xff) << 16;
2559 /* Copy the supplied PHY Firmware image to the adapter memory location
2560 * allocated by the adapter firmware.
2562 if (win_lock)
2563 spin_lock_bh(win_lock);
2564 ret = t4_memory_rw(adap, win, mtype, maddr,
2565 phy_fw_size, (__be32 *)phy_fw_data,
2566 T4_MEMORY_WRITE);
2567 if (win_lock)
2568 spin_unlock_bh(win_lock);
2569 if (ret)
2570 return ret;
2572 /* Tell the firmware that the PHY firmware image has been written to
2573 * RAM and it can now start copying it over to the PHYs. The chip
2574 * firmware will RESET the affected PHYs as part of this operation
2575 * leaving them running the new PHY firmware image.
2577 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2578 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2579 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2580 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2581 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2582 &param, &val, 30000);
2584 /* If we have version number support, then check to see that the new
2585 * firmware got loaded properly.
2587 if (phy_fw_version) {
2588 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2589 if (ret < 0)
2590 return ret;
2592 if (cur_phy_fw_ver != new_phy_fw_vers) {
2593 CH_WARN(adap, "PHY Firmware did not update: "
2594 "version on adapter %#x, "
2595 "version flashed %#x\n",
2596 cur_phy_fw_ver, new_phy_fw_vers);
2597 return -ENXIO;
2601 return 1;
2605 * t4_fwcache - firmware cache operation
2606 * @adap: the adapter
2607 * @op : the operation (flush or flush and invalidate)
2609 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2611 struct fw_params_cmd c;
2613 memset(&c, 0, sizeof(c));
2614 c.op_to_vfn =
2615 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2616 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2617 FW_PARAMS_CMD_PFN_V(adap->pf) |
2618 FW_PARAMS_CMD_VFN_V(0));
2619 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2620 c.param[0].mnem =
2621 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2622 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2623 c.param[0].val = (__force __be32)op;
2625 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2628 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
2629 unsigned int *pif_req_wrptr,
2630 unsigned int *pif_rsp_wrptr)
2632 int i, j;
2633 u32 cfg, val, req, rsp;
2635 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2636 if (cfg & LADBGEN_F)
2637 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2639 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
2640 req = POLADBGWRPTR_G(val);
2641 rsp = PILADBGWRPTR_G(val);
2642 if (pif_req_wrptr)
2643 *pif_req_wrptr = req;
2644 if (pif_rsp_wrptr)
2645 *pif_rsp_wrptr = rsp;
2647 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
2648 for (j = 0; j < 6; j++) {
2649 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
2650 PILADBGRDPTR_V(rsp));
2651 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
2652 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
2653 req++;
2654 rsp++;
2656 req = (req + 2) & POLADBGRDPTR_M;
2657 rsp = (rsp + 2) & PILADBGRDPTR_M;
2659 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2662 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
2664 u32 cfg;
2665 int i, j, idx;
2667 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2668 if (cfg & LADBGEN_F)
2669 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2671 for (i = 0; i < CIM_MALA_SIZE; i++) {
2672 for (j = 0; j < 5; j++) {
2673 idx = 8 * i + j;
2674 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
2675 PILADBGRDPTR_V(idx));
2676 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
2677 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
2680 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2683 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2685 unsigned int i, j;
2687 for (i = 0; i < 8; i++) {
2688 u32 *p = la_buf + i;
2690 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2691 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2692 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2693 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2694 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2698 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2699 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2700 FW_PORT_CAP_ANEG)
2703 * t4_link_l1cfg - apply link configuration to MAC/PHY
2704 * @phy: the PHY to setup
2705 * @mac: the MAC to setup
2706 * @lc: the requested link configuration
2708 * Set up a port's MAC and PHY according to a desired link configuration.
2709 * - If the PHY can auto-negotiate first decide what to advertise, then
2710 * enable/disable auto-negotiation as desired, and reset.
2711 * - If the PHY does not auto-negotiate just reset it.
2712 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2713 * otherwise do it later based on the outcome of auto-negotiation.
2715 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2716 struct link_config *lc)
2718 struct fw_port_cmd c;
2719 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2721 lc->link_ok = 0;
2722 if (lc->requested_fc & PAUSE_RX)
2723 fc |= FW_PORT_CAP_FC_RX;
2724 if (lc->requested_fc & PAUSE_TX)
2725 fc |= FW_PORT_CAP_FC_TX;
2727 memset(&c, 0, sizeof(c));
2728 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2729 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2730 FW_PORT_CMD_PORTID_V(port));
2731 c.action_to_len16 =
2732 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2733 FW_LEN16(c));
2735 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2736 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2737 fc);
2738 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2739 } else if (lc->autoneg == AUTONEG_DISABLE) {
2740 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2741 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2742 } else
2743 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2745 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2749 * t4_restart_aneg - restart autonegotiation
2750 * @adap: the adapter
2751 * @mbox: mbox to use for the FW command
2752 * @port: the port id
2754 * Restarts autonegotiation for the selected port.
2756 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2758 struct fw_port_cmd c;
2760 memset(&c, 0, sizeof(c));
2761 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2762 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2763 FW_PORT_CMD_PORTID_V(port));
2764 c.action_to_len16 =
2765 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2766 FW_LEN16(c));
2767 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2768 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2771 typedef void (*int_handler_t)(struct adapter *adap);
2773 struct intr_info {
2774 unsigned int mask; /* bits to check in interrupt status */
2775 const char *msg; /* message to print or NULL */
2776 short stat_idx; /* stat counter to increment or -1 */
2777 unsigned short fatal; /* whether the condition reported is fatal */
2778 int_handler_t int_handler; /* platform-specific int handler */
2782 * t4_handle_intr_status - table driven interrupt handler
2783 * @adapter: the adapter that generated the interrupt
2784 * @reg: the interrupt status register to process
2785 * @acts: table of interrupt actions
2787 * A table driven interrupt handler that applies a set of masks to an
2788 * interrupt status word and performs the corresponding actions if the
2789 * interrupts described by the mask have occurred. The actions include
2790 * optionally emitting a warning or alert message. The table is terminated
2791 * by an entry specifying mask 0. Returns the number of fatal interrupt
2792 * conditions.
2794 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2795 const struct intr_info *acts)
2797 int fatal = 0;
2798 unsigned int mask = 0;
2799 unsigned int status = t4_read_reg(adapter, reg);
2801 for ( ; acts->mask; ++acts) {
2802 if (!(status & acts->mask))
2803 continue;
2804 if (acts->fatal) {
2805 fatal++;
2806 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2807 status & acts->mask);
2808 } else if (acts->msg && printk_ratelimit())
2809 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2810 status & acts->mask);
2811 if (acts->int_handler)
2812 acts->int_handler(adapter);
2813 mask |= acts->mask;
2815 status &= mask;
2816 if (status) /* clear processed interrupts */
2817 t4_write_reg(adapter, reg, status);
2818 return fatal;
2822 * Interrupt handler for the PCIE module.
2824 static void pcie_intr_handler(struct adapter *adapter)
2826 static const struct intr_info sysbus_intr_info[] = {
2827 { RNPP_F, "RXNP array parity error", -1, 1 },
2828 { RPCP_F, "RXPC array parity error", -1, 1 },
2829 { RCIP_F, "RXCIF array parity error", -1, 1 },
2830 { RCCP_F, "Rx completions control array parity error", -1, 1 },
2831 { RFTP_F, "RXFT array parity error", -1, 1 },
2832 { 0 }
2834 static const struct intr_info pcie_port_intr_info[] = {
2835 { TPCP_F, "TXPC array parity error", -1, 1 },
2836 { TNPP_F, "TXNP array parity error", -1, 1 },
2837 { TFTP_F, "TXFT array parity error", -1, 1 },
2838 { TCAP_F, "TXCA array parity error", -1, 1 },
2839 { TCIP_F, "TXCIF array parity error", -1, 1 },
2840 { RCAP_F, "RXCA array parity error", -1, 1 },
2841 { OTDD_F, "outbound request TLP discarded", -1, 1 },
2842 { RDPE_F, "Rx data parity error", -1, 1 },
2843 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
2844 { 0 }
2846 static const struct intr_info pcie_intr_info[] = {
2847 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2848 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2849 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2850 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2851 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2852 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2853 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2854 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2855 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2856 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2857 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2858 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2859 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2860 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2861 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2862 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2863 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2864 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2865 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2866 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2867 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2868 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2869 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2870 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2871 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2872 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2873 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2874 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
2875 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
2876 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
2877 -1, 0 },
2878 { 0 }
2881 static struct intr_info t5_pcie_intr_info[] = {
2882 { MSTGRPPERR_F, "Master Response Read Queue parity error",
2883 -1, 1 },
2884 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2885 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2886 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2887 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2888 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2889 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2890 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
2891 -1, 1 },
2892 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
2893 -1, 1 },
2894 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2895 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2896 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2897 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2898 { DREQWRPERR_F, "PCI DMA channel write request parity error",
2899 -1, 1 },
2900 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2901 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2902 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2903 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2904 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2905 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2906 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2907 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2908 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2909 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2910 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
2911 -1, 1 },
2912 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2913 -1, 1 },
2914 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2915 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2916 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2917 { READRSPERR_F, "Outbound read error", -1, 0 },
2918 { 0 }
2921 int fat;
2923 if (is_t4(adapter->params.chip))
2924 fat = t4_handle_intr_status(adapter,
2925 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2926 sysbus_intr_info) +
2927 t4_handle_intr_status(adapter,
2928 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2929 pcie_port_intr_info) +
2930 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2931 pcie_intr_info);
2932 else
2933 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2934 t5_pcie_intr_info);
2936 if (fat)
2937 t4_fatal_err(adapter);
2941 * TP interrupt handler.
2943 static void tp_intr_handler(struct adapter *adapter)
2945 static const struct intr_info tp_intr_info[] = {
2946 { 0x3fffffff, "TP parity error", -1, 1 },
2947 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2948 { 0 }
2951 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2952 t4_fatal_err(adapter);
2956 * SGE interrupt handler.
2958 static void sge_intr_handler(struct adapter *adapter)
2960 u64 v;
2961 u32 err;
2963 static const struct intr_info sge_intr_info[] = {
2964 { ERR_CPL_EXCEED_IQE_SIZE_F,
2965 "SGE received CPL exceeding IQE size", -1, 1 },
2966 { ERR_INVALID_CIDX_INC_F,
2967 "SGE GTS CIDX increment too large", -1, 0 },
2968 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2969 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
2970 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2971 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2972 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2973 0 },
2974 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2975 0 },
2976 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2977 0 },
2978 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2979 0 },
2980 { ERR_ING_CTXT_PRIO_F,
2981 "SGE too many priority ingress contexts", -1, 0 },
2982 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2983 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2984 { 0 }
2987 static struct intr_info t4t5_sge_intr_info[] = {
2988 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2989 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2990 { ERR_EGR_CTXT_PRIO_F,
2991 "SGE too many priority egress contexts", -1, 0 },
2992 { 0 }
2995 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2996 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2997 if (v) {
2998 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2999 (unsigned long long)v);
3000 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3001 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3004 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3005 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3006 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3007 t4t5_sge_intr_info);
3009 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3010 if (err & ERROR_QID_VALID_F) {
3011 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3012 ERROR_QID_G(err));
3013 if (err & UNCAPTURED_ERROR_F)
3014 dev_err(adapter->pdev_dev,
3015 "SGE UNCAPTURED_ERROR set (clearing)\n");
3016 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3017 UNCAPTURED_ERROR_F);
3020 if (v != 0)
3021 t4_fatal_err(adapter);
3024 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3025 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3026 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3027 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3030 * CIM interrupt handler.
3032 static void cim_intr_handler(struct adapter *adapter)
3034 static const struct intr_info cim_intr_info[] = {
3035 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3036 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3037 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3038 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3039 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3040 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3041 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3042 { 0 }
3044 static const struct intr_info cim_upintr_info[] = {
3045 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3046 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3047 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3048 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3049 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3050 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3051 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3052 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3053 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3054 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3055 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3056 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3057 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3058 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3059 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3060 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3061 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3062 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3063 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3064 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3065 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3066 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3067 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3068 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3069 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3070 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3071 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3072 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3073 { 0 }
3076 int fat;
3078 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3079 t4_report_fw_error(adapter);
3081 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3082 cim_intr_info) +
3083 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3084 cim_upintr_info);
3085 if (fat)
3086 t4_fatal_err(adapter);
3090 * ULP RX interrupt handler.
3092 static void ulprx_intr_handler(struct adapter *adapter)
3094 static const struct intr_info ulprx_intr_info[] = {
3095 { 0x1800000, "ULPRX context error", -1, 1 },
3096 { 0x7fffff, "ULPRX parity error", -1, 1 },
3097 { 0 }
3100 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3101 t4_fatal_err(adapter);
3105 * ULP TX interrupt handler.
3107 static void ulptx_intr_handler(struct adapter *adapter)
3109 static const struct intr_info ulptx_intr_info[] = {
3110 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3111 0 },
3112 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3113 0 },
3114 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3115 0 },
3116 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3117 0 },
3118 { 0xfffffff, "ULPTX parity error", -1, 1 },
3119 { 0 }
3122 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3123 t4_fatal_err(adapter);
3127 * PM TX interrupt handler.
3129 static void pmtx_intr_handler(struct adapter *adapter)
3131 static const struct intr_info pmtx_intr_info[] = {
3132 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3133 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3134 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3135 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3136 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3137 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3138 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3139 -1, 1 },
3140 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3141 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3142 { 0 }
3145 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3146 t4_fatal_err(adapter);
3150 * PM RX interrupt handler.
3152 static void pmrx_intr_handler(struct adapter *adapter)
3154 static const struct intr_info pmrx_intr_info[] = {
3155 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3156 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3157 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3158 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3159 -1, 1 },
3160 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3161 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3162 { 0 }
3165 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3166 t4_fatal_err(adapter);
3170 * CPL switch interrupt handler.
3172 static void cplsw_intr_handler(struct adapter *adapter)
3174 static const struct intr_info cplsw_intr_info[] = {
3175 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3176 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3177 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3178 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3179 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3180 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3181 { 0 }
3184 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3185 t4_fatal_err(adapter);
3189 * LE interrupt handler.
3191 static void le_intr_handler(struct adapter *adap)
3193 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3194 static const struct intr_info le_intr_info[] = {
3195 { LIPMISS_F, "LE LIP miss", -1, 0 },
3196 { LIP0_F, "LE 0 LIP error", -1, 0 },
3197 { PARITYERR_F, "LE parity error", -1, 1 },
3198 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3199 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
3200 { 0 }
3203 static struct intr_info t6_le_intr_info[] = {
3204 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3205 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3206 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3207 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3208 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3209 { 0 }
3212 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3213 (chip <= CHELSIO_T5) ?
3214 le_intr_info : t6_le_intr_info))
3215 t4_fatal_err(adap);
3219 * MPS interrupt handler.
3221 static void mps_intr_handler(struct adapter *adapter)
3223 static const struct intr_info mps_rx_intr_info[] = {
3224 { 0xffffff, "MPS Rx parity error", -1, 1 },
3225 { 0 }
3227 static const struct intr_info mps_tx_intr_info[] = {
3228 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3229 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3230 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3231 -1, 1 },
3232 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3233 -1, 1 },
3234 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3235 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3236 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3237 { 0 }
3239 static const struct intr_info mps_trc_intr_info[] = {
3240 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3241 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3242 -1, 1 },
3243 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3244 { 0 }
3246 static const struct intr_info mps_stat_sram_intr_info[] = {
3247 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3248 { 0 }
3250 static const struct intr_info mps_stat_tx_intr_info[] = {
3251 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3252 { 0 }
3254 static const struct intr_info mps_stat_rx_intr_info[] = {
3255 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3256 { 0 }
3258 static const struct intr_info mps_cls_intr_info[] = {
3259 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3260 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3261 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3262 { 0 }
3265 int fat;
3267 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3268 mps_rx_intr_info) +
3269 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3270 mps_tx_intr_info) +
3271 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3272 mps_trc_intr_info) +
3273 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3274 mps_stat_sram_intr_info) +
3275 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3276 mps_stat_tx_intr_info) +
3277 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3278 mps_stat_rx_intr_info) +
3279 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3280 mps_cls_intr_info);
3282 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3283 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
3284 if (fat)
3285 t4_fatal_err(adapter);
3288 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3289 ECC_UE_INT_CAUSE_F)
3292 * EDC/MC interrupt handler.
3294 static void mem_intr_handler(struct adapter *adapter, int idx)
3296 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3298 unsigned int addr, cnt_addr, v;
3300 if (idx <= MEM_EDC1) {
3301 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3302 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3303 } else if (idx == MEM_MC) {
3304 if (is_t4(adapter->params.chip)) {
3305 addr = MC_INT_CAUSE_A;
3306 cnt_addr = MC_ECC_STATUS_A;
3307 } else {
3308 addr = MC_P_INT_CAUSE_A;
3309 cnt_addr = MC_P_ECC_STATUS_A;
3311 } else {
3312 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3313 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3316 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3317 if (v & PERR_INT_CAUSE_F)
3318 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3319 name[idx]);
3320 if (v & ECC_CE_INT_CAUSE_F) {
3321 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3323 t4_edc_err_read(adapter, idx);
3325 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3326 if (printk_ratelimit())
3327 dev_warn(adapter->pdev_dev,
3328 "%u %s correctable ECC data error%s\n",
3329 cnt, name[idx], cnt > 1 ? "s" : "");
3331 if (v & ECC_UE_INT_CAUSE_F)
3332 dev_alert(adapter->pdev_dev,
3333 "%s uncorrectable ECC data error\n", name[idx]);
3335 t4_write_reg(adapter, addr, v);
3336 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3337 t4_fatal_err(adapter);
3341 * MA interrupt handler.
3343 static void ma_intr_handler(struct adapter *adap)
3345 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3347 if (status & MEM_PERR_INT_CAUSE_F) {
3348 dev_alert(adap->pdev_dev,
3349 "MA parity error, parity status %#x\n",
3350 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3351 if (is_t5(adap->params.chip))
3352 dev_alert(adap->pdev_dev,
3353 "MA parity error, parity status %#x\n",
3354 t4_read_reg(adap,
3355 MA_PARITY_ERROR_STATUS2_A));
3357 if (status & MEM_WRAP_INT_CAUSE_F) {
3358 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3359 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3360 "client %u to address %#x\n",
3361 MEM_WRAP_CLIENT_NUM_G(v),
3362 MEM_WRAP_ADDRESS_G(v) << 4);
3364 t4_write_reg(adap, MA_INT_CAUSE_A, status);
3365 t4_fatal_err(adap);
3369 * SMB interrupt handler.
3371 static void smb_intr_handler(struct adapter *adap)
3373 static const struct intr_info smb_intr_info[] = {
3374 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3375 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3376 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3377 { 0 }
3380 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3381 t4_fatal_err(adap);
3385 * NC-SI interrupt handler.
3387 static void ncsi_intr_handler(struct adapter *adap)
3389 static const struct intr_info ncsi_intr_info[] = {
3390 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3391 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3392 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3393 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3394 { 0 }
3397 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3398 t4_fatal_err(adap);
3402 * XGMAC interrupt handler.
3404 static void xgmac_intr_handler(struct adapter *adap, int port)
3406 u32 v, int_cause_reg;
3408 if (is_t4(adap->params.chip))
3409 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
3410 else
3411 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
3413 v = t4_read_reg(adap, int_cause_reg);
3415 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3416 if (!v)
3417 return;
3419 if (v & TXFIFO_PRTY_ERR_F)
3420 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3421 port);
3422 if (v & RXFIFO_PRTY_ERR_F)
3423 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3424 port);
3425 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3426 t4_fatal_err(adap);
3430 * PL interrupt handler.
3432 static void pl_intr_handler(struct adapter *adap)
3434 static const struct intr_info pl_intr_info[] = {
3435 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3436 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3437 { 0 }
3440 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3441 t4_fatal_err(adap);
3444 #define PF_INTR_MASK (PFSW_F)
3445 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3446 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3447 CPL_SWITCH_F | SGE_F | ULP_TX_F)
3450 * t4_slow_intr_handler - control path interrupt handler
3451 * @adapter: the adapter
3453 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
3454 * The designation 'slow' is because it involves register reads, while
3455 * data interrupts typically don't involve any MMIOs.
3457 int t4_slow_intr_handler(struct adapter *adapter)
3459 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3461 if (!(cause & GLBL_INTR_MASK))
3462 return 0;
3463 if (cause & CIM_F)
3464 cim_intr_handler(adapter);
3465 if (cause & MPS_F)
3466 mps_intr_handler(adapter);
3467 if (cause & NCSI_F)
3468 ncsi_intr_handler(adapter);
3469 if (cause & PL_F)
3470 pl_intr_handler(adapter);
3471 if (cause & SMB_F)
3472 smb_intr_handler(adapter);
3473 if (cause & XGMAC0_F)
3474 xgmac_intr_handler(adapter, 0);
3475 if (cause & XGMAC1_F)
3476 xgmac_intr_handler(adapter, 1);
3477 if (cause & XGMAC_KR0_F)
3478 xgmac_intr_handler(adapter, 2);
3479 if (cause & XGMAC_KR1_F)
3480 xgmac_intr_handler(adapter, 3);
3481 if (cause & PCIE_F)
3482 pcie_intr_handler(adapter);
3483 if (cause & MC_F)
3484 mem_intr_handler(adapter, MEM_MC);
3485 if (is_t5(adapter->params.chip) && (cause & MC1_F))
3486 mem_intr_handler(adapter, MEM_MC1);
3487 if (cause & EDC0_F)
3488 mem_intr_handler(adapter, MEM_EDC0);
3489 if (cause & EDC1_F)
3490 mem_intr_handler(adapter, MEM_EDC1);
3491 if (cause & LE_F)
3492 le_intr_handler(adapter);
3493 if (cause & TP_F)
3494 tp_intr_handler(adapter);
3495 if (cause & MA_F)
3496 ma_intr_handler(adapter);
3497 if (cause & PM_TX_F)
3498 pmtx_intr_handler(adapter);
3499 if (cause & PM_RX_F)
3500 pmrx_intr_handler(adapter);
3501 if (cause & ULP_RX_F)
3502 ulprx_intr_handler(adapter);
3503 if (cause & CPL_SWITCH_F)
3504 cplsw_intr_handler(adapter);
3505 if (cause & SGE_F)
3506 sge_intr_handler(adapter);
3507 if (cause & ULP_TX_F)
3508 ulptx_intr_handler(adapter);
3510 /* Clear the interrupts just processed for which we are the master. */
3511 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3512 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3513 return 1;
3517 * t4_intr_enable - enable interrupts
3518 * @adapter: the adapter whose interrupts should be enabled
3520 * Enable PF-specific interrupts for the calling function and the top-level
3521 * interrupt concentrator for global interrupts. Interrupts are already
3522 * enabled at each module, here we just enable the roots of the interrupt
3523 * hierarchies.
3525 * Note: this function should be called only when the driver manages
3526 * non PF-specific interrupts from the various HW modules. Only one PCI
3527 * function at a time should be doing this.
3529 void t4_intr_enable(struct adapter *adapter)
3531 u32 val = 0;
3532 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3533 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3534 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3536 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3537 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3538 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3539 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3540 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3541 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3542 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3543 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3544 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3545 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3546 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3550 * t4_intr_disable - disable interrupts
3551 * @adapter: the adapter whose interrupts should be disabled
3553 * Disable interrupts. We only disable the top-level interrupt
3554 * concentrators. The caller must be a PCI function managing global
3555 * interrupts.
3557 void t4_intr_disable(struct adapter *adapter)
3559 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3560 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3561 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3563 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3564 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3568 * hash_mac_addr - return the hash value of a MAC address
3569 * @addr: the 48-bit Ethernet MAC address
3571 * Hashes a MAC address according to the hash function used by HW inexact
3572 * (hash) address matching.
3574 static int hash_mac_addr(const u8 *addr)
3576 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3577 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3578 a ^= b;
3579 a ^= (a >> 12);
3580 a ^= (a >> 6);
3581 return a & 0x3f;
3585 * t4_config_rss_range - configure a portion of the RSS mapping table
3586 * @adapter: the adapter
3587 * @mbox: mbox to use for the FW command
3588 * @viid: virtual interface whose RSS subtable is to be written
3589 * @start: start entry in the table to write
3590 * @n: how many table entries to write
3591 * @rspq: values for the response queue lookup table
3592 * @nrspq: number of values in @rspq
3594 * Programs the selected part of the VI's RSS mapping table with the
3595 * provided values. If @nrspq < @n the supplied values are used repeatedly
3596 * until the full table range is populated.
3598 * The caller must ensure the values in @rspq are in the range allowed for
3599 * @viid.
3601 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3602 int start, int n, const u16 *rspq, unsigned int nrspq)
3604 int ret;
3605 const u16 *rsp = rspq;
3606 const u16 *rsp_end = rspq + nrspq;
3607 struct fw_rss_ind_tbl_cmd cmd;
3609 memset(&cmd, 0, sizeof(cmd));
3610 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3611 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3612 FW_RSS_IND_TBL_CMD_VIID_V(viid));
3613 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3615 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3616 while (n > 0) {
3617 int nq = min(n, 32);
3618 __be32 *qp = &cmd.iq0_to_iq2;
3620 cmd.niqid = cpu_to_be16(nq);
3621 cmd.startidx = cpu_to_be16(start);
3623 start += nq;
3624 n -= nq;
3626 while (nq > 0) {
3627 unsigned int v;
3629 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3630 if (++rsp >= rsp_end)
3631 rsp = rspq;
3632 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3633 if (++rsp >= rsp_end)
3634 rsp = rspq;
3635 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3636 if (++rsp >= rsp_end)
3637 rsp = rspq;
3639 *qp++ = cpu_to_be32(v);
3640 nq -= 3;
3643 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3644 if (ret)
3645 return ret;
3647 return 0;
3651 * t4_config_glbl_rss - configure the global RSS mode
3652 * @adapter: the adapter
3653 * @mbox: mbox to use for the FW command
3654 * @mode: global RSS mode
3655 * @flags: mode-specific flags
3657 * Sets the global RSS mode.
3659 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3660 unsigned int flags)
3662 struct fw_rss_glb_config_cmd c;
3664 memset(&c, 0, sizeof(c));
3665 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3666 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3667 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3668 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3669 c.u.manual.mode_pkd =
3670 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3671 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3672 c.u.basicvirtual.mode_pkd =
3673 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3674 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3675 } else
3676 return -EINVAL;
3677 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3681 * t4_config_vi_rss - configure per VI RSS settings
3682 * @adapter: the adapter
3683 * @mbox: mbox to use for the FW command
3684 * @viid: the VI id
3685 * @flags: RSS flags
3686 * @defq: id of the default RSS queue for the VI.
3688 * Configures VI-specific RSS properties.
3690 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3691 unsigned int flags, unsigned int defq)
3693 struct fw_rss_vi_config_cmd c;
3695 memset(&c, 0, sizeof(c));
3696 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3697 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3698 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3699 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3700 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3701 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3702 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3705 /* Read an RSS table row */
3706 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3708 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3709 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3710 5, 0, val);
3714 * t4_read_rss - read the contents of the RSS mapping table
3715 * @adapter: the adapter
3716 * @map: holds the contents of the RSS mapping table
3718 * Reads the contents of the RSS hash->queue mapping table.
3720 int t4_read_rss(struct adapter *adapter, u16 *map)
3722 u32 val;
3723 int i, ret;
3725 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3726 ret = rd_rss_row(adapter, i, &val);
3727 if (ret)
3728 return ret;
3729 *map++ = LKPTBLQUEUE0_G(val);
3730 *map++ = LKPTBLQUEUE1_G(val);
3732 return 0;
3735 static unsigned int t4_use_ldst(struct adapter *adap)
3737 return (adap->flags & FW_OK) || !adap->use_bd;
3741 * t4_fw_tp_pio_rw - Access TP PIO through LDST
3742 * @adap: the adapter
3743 * @vals: where the indirect register values are stored/written
3744 * @nregs: how many indirect registers to read/write
3745 * @start_idx: index of first indirect register to read/write
3746 * @rw: Read (1) or Write (0)
3748 * Access TP PIO registers through LDST
3750 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
3751 unsigned int start_index, unsigned int rw)
3753 int ret, i;
3754 int cmd = FW_LDST_ADDRSPC_TP_PIO;
3755 struct fw_ldst_cmd c;
3757 for (i = 0 ; i < nregs; i++) {
3758 memset(&c, 0, sizeof(c));
3759 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
3760 FW_CMD_REQUEST_F |
3761 (rw ? FW_CMD_READ_F :
3762 FW_CMD_WRITE_F) |
3763 FW_LDST_CMD_ADDRSPACE_V(cmd));
3764 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
3766 c.u.addrval.addr = cpu_to_be32(start_index + i);
3767 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
3768 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3769 if (!ret && rw)
3770 vals[i] = be32_to_cpu(c.u.addrval.val);
3775 * t4_read_rss_key - read the global RSS key
3776 * @adap: the adapter
3777 * @key: 10-entry array holding the 320-bit RSS key
3779 * Reads the global 320-bit RSS key.
3781 void t4_read_rss_key(struct adapter *adap, u32 *key)
3783 if (t4_use_ldst(adap))
3784 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
3785 else
3786 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3787 TP_RSS_SECRET_KEY0_A);
3791 * t4_write_rss_key - program one of the RSS keys
3792 * @adap: the adapter
3793 * @key: 10-entry array holding the 320-bit RSS key
3794 * @idx: which RSS key to write
3796 * Writes one of the RSS keys with the given 320-bit value. If @idx is
3797 * 0..15 the corresponding entry in the RSS key table is written,
3798 * otherwise the global RSS key is written.
3800 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3802 u8 rss_key_addr_cnt = 16;
3803 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3805 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3806 * allows access to key addresses 16-63 by using KeyWrAddrX
3807 * as index[5:4](upper 2) into key table
3809 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3810 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3811 rss_key_addr_cnt = 32;
3813 if (t4_use_ldst(adap))
3814 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
3815 else
3816 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3817 TP_RSS_SECRET_KEY0_A);
3819 if (idx >= 0 && idx < rss_key_addr_cnt) {
3820 if (rss_key_addr_cnt > 16)
3821 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3822 KEYWRADDRX_V(idx >> 4) |
3823 T6_VFWRADDR_V(idx) | KEYWREN_F);
3824 else
3825 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3826 KEYWRADDR_V(idx) | KEYWREN_F);
3831 * t4_read_rss_pf_config - read PF RSS Configuration Table
3832 * @adapter: the adapter
3833 * @index: the entry in the PF RSS table to read
3834 * @valp: where to store the returned value
3836 * Reads the PF RSS Configuration Table at the specified index and returns
3837 * the value found there.
3839 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3840 u32 *valp)
3842 if (t4_use_ldst(adapter))
3843 t4_fw_tp_pio_rw(adapter, valp, 1,
3844 TP_RSS_PF0_CONFIG_A + index, 1);
3845 else
3846 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3847 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3851 * t4_read_rss_vf_config - read VF RSS Configuration Table
3852 * @adapter: the adapter
3853 * @index: the entry in the VF RSS table to read
3854 * @vfl: where to store the returned VFL
3855 * @vfh: where to store the returned VFH
3857 * Reads the VF RSS Configuration Table at the specified index and returns
3858 * the (VFL, VFH) values found there.
3860 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3861 u32 *vfl, u32 *vfh)
3863 u32 vrt, mask, data;
3865 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3866 mask = VFWRADDR_V(VFWRADDR_M);
3867 data = VFWRADDR_V(index);
3868 } else {
3869 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
3870 data = T6_VFWRADDR_V(index);
3873 /* Request that the index'th VF Table values be read into VFL/VFH.
3875 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3876 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3877 vrt |= data | VFRDEN_F;
3878 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3880 /* Grab the VFL/VFH values ...
3882 if (t4_use_ldst(adapter)) {
3883 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
3884 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
3885 } else {
3886 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3887 vfl, 1, TP_RSS_VFL_CONFIG_A);
3888 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3889 vfh, 1, TP_RSS_VFH_CONFIG_A);
3894 * t4_read_rss_pf_map - read PF RSS Map
3895 * @adapter: the adapter
3897 * Reads the PF RSS Map register and returns its value.
3899 u32 t4_read_rss_pf_map(struct adapter *adapter)
3901 u32 pfmap;
3903 if (t4_use_ldst(adapter))
3904 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
3905 else
3906 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3907 &pfmap, 1, TP_RSS_PF_MAP_A);
3908 return pfmap;
3912 * t4_read_rss_pf_mask - read PF RSS Mask
3913 * @adapter: the adapter
3915 * Reads the PF RSS Mask register and returns its value.
3917 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3919 u32 pfmask;
3921 if (t4_use_ldst(adapter))
3922 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
3923 else
3924 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3925 &pfmask, 1, TP_RSS_PF_MSK_A);
3926 return pfmask;
3930 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
3931 * @adap: the adapter
3932 * @v4: holds the TCP/IP counter values
3933 * @v6: holds the TCP/IPv6 counter values
3935 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3936 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3938 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3939 struct tp_tcp_stats *v6)
3941 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3943 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3944 #define STAT(x) val[STAT_IDX(x)]
3945 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3947 if (v4) {
3948 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3949 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3950 v4->tcp_out_rsts = STAT(OUT_RST);
3951 v4->tcp_in_segs = STAT64(IN_SEG);
3952 v4->tcp_out_segs = STAT64(OUT_SEG);
3953 v4->tcp_retrans_segs = STAT64(RXT_SEG);
3955 if (v6) {
3956 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3957 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3958 v6->tcp_out_rsts = STAT(OUT_RST);
3959 v6->tcp_in_segs = STAT64(IN_SEG);
3960 v6->tcp_out_segs = STAT64(OUT_SEG);
3961 v6->tcp_retrans_segs = STAT64(RXT_SEG);
3963 #undef STAT64
3964 #undef STAT
3965 #undef STAT_IDX
3969 * t4_tp_get_err_stats - read TP's error MIB counters
3970 * @adap: the adapter
3971 * @st: holds the counter values
3973 * Returns the values of TP's error counters.
3975 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3977 int nchan = adap->params.arch.nchan;
3979 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3980 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
3981 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3982 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
3983 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3984 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
3985 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3986 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
3987 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3988 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
3989 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3990 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
3991 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3992 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
3993 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3994 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
3996 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3997 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4001 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4002 * @adap: the adapter
4003 * @st: holds the counter values
4005 * Returns the values of TP's CPL counters.
4007 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4009 int nchan = adap->params.arch.nchan;
4011 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4012 nchan, TP_MIB_CPL_IN_REQ_0_A);
4013 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4014 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4019 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4020 * @adap: the adapter
4021 * @st: holds the counter values
4023 * Returns the values of TP's RDMA counters.
4025 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4027 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4028 2, TP_MIB_RQE_DFR_PKT_A);
4032 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4033 * @adap: the adapter
4034 * @idx: the port index
4035 * @st: holds the counter values
4037 * Returns the values of TP's FCoE counters for the selected port.
4039 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4040 struct tp_fcoe_stats *st)
4042 u32 val[2];
4044 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4045 1, TP_MIB_FCOE_DDP_0_A + idx);
4046 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4047 1, TP_MIB_FCOE_DROP_0_A + idx);
4048 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4049 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4050 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4054 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4055 * @adap: the adapter
4056 * @st: holds the counter values
4058 * Returns the values of TP's counters for non-TCP directly-placed packets.
4060 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4062 u32 val[4];
4064 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4065 TP_MIB_USM_PKTS_A);
4066 st->frames = val[0];
4067 st->drops = val[1];
4068 st->octets = ((u64)val[2] << 32) | val[3];
4072 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4073 * @adap: the adapter
4074 * @mtus: where to store the MTU values
4075 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4077 * Reads the HW path MTU table.
4079 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4081 u32 v;
4082 int i;
4084 for (i = 0; i < NMTUS; ++i) {
4085 t4_write_reg(adap, TP_MTU_TABLE_A,
4086 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4087 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4088 mtus[i] = MTUVALUE_G(v);
4089 if (mtu_log)
4090 mtu_log[i] = MTUWIDTH_G(v);
4095 * t4_read_cong_tbl - reads the congestion control table
4096 * @adap: the adapter
4097 * @incr: where to store the alpha values
4099 * Reads the additive increments programmed into the HW congestion
4100 * control table.
4102 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4104 unsigned int mtu, w;
4106 for (mtu = 0; mtu < NMTUS; ++mtu)
4107 for (w = 0; w < NCCTRL_WIN; ++w) {
4108 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4109 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4110 incr[mtu][w] = (u16)t4_read_reg(adap,
4111 TP_CCTRL_TABLE_A) & 0x1fff;
4116 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4117 * @adap: the adapter
4118 * @addr: the indirect TP register address
4119 * @mask: specifies the field within the register to modify
4120 * @val: new value for the field
4122 * Sets a field of an indirect TP register to the given value.
4124 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4125 unsigned int mask, unsigned int val)
4127 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4128 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4129 t4_write_reg(adap, TP_PIO_DATA_A, val);
4133 * init_cong_ctrl - initialize congestion control parameters
4134 * @a: the alpha values for congestion control
4135 * @b: the beta values for congestion control
4137 * Initialize the congestion control parameters.
4139 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4141 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4142 a[9] = 2;
4143 a[10] = 3;
4144 a[11] = 4;
4145 a[12] = 5;
4146 a[13] = 6;
4147 a[14] = 7;
4148 a[15] = 8;
4149 a[16] = 9;
4150 a[17] = 10;
4151 a[18] = 14;
4152 a[19] = 17;
4153 a[20] = 21;
4154 a[21] = 25;
4155 a[22] = 30;
4156 a[23] = 35;
4157 a[24] = 45;
4158 a[25] = 60;
4159 a[26] = 80;
4160 a[27] = 100;
4161 a[28] = 200;
4162 a[29] = 300;
4163 a[30] = 400;
4164 a[31] = 500;
4166 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4167 b[9] = b[10] = 1;
4168 b[11] = b[12] = 2;
4169 b[13] = b[14] = b[15] = b[16] = 3;
4170 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4171 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4172 b[28] = b[29] = 6;
4173 b[30] = b[31] = 7;
4176 /* The minimum additive increment value for the congestion control table */
4177 #define CC_MIN_INCR 2U
4180 * t4_load_mtus - write the MTU and congestion control HW tables
4181 * @adap: the adapter
4182 * @mtus: the values for the MTU table
4183 * @alpha: the values for the congestion control alpha parameter
4184 * @beta: the values for the congestion control beta parameter
4186 * Write the HW MTU table with the supplied MTUs and the high-speed
4187 * congestion control table with the supplied alpha, beta, and MTUs.
4188 * We write the two tables together because the additive increments
4189 * depend on the MTUs.
4191 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4192 const unsigned short *alpha, const unsigned short *beta)
4194 static const unsigned int avg_pkts[NCCTRL_WIN] = {
4195 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4196 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4197 28672, 40960, 57344, 81920, 114688, 163840, 229376
4200 unsigned int i, w;
4202 for (i = 0; i < NMTUS; ++i) {
4203 unsigned int mtu = mtus[i];
4204 unsigned int log2 = fls(mtu);
4206 if (!(mtu & ((1 << log2) >> 2))) /* round */
4207 log2--;
4208 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4209 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4211 for (w = 0; w < NCCTRL_WIN; ++w) {
4212 unsigned int inc;
4214 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4215 CC_MIN_INCR);
4217 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4218 (w << 16) | (beta[w] << 13) | inc);
4223 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
4224 * clocks. The formula is
4226 * bytes/s = bytes256 * 256 * ClkFreq / 4096
4228 * which is equivalent to
4230 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
4232 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
4234 u64 v = bytes256 * adap->params.vpd.cclk;
4236 return v * 62 + v / 2;
4240 * t4_get_chan_txrate - get the current per channel Tx rates
4241 * @adap: the adapter
4242 * @nic_rate: rates for NIC traffic
4243 * @ofld_rate: rates for offloaded traffic
4245 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
4246 * for each channel.
4248 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
4250 u32 v;
4252 v = t4_read_reg(adap, TP_TX_TRATE_A);
4253 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
4254 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
4255 if (adap->params.arch.nchan == NCHAN) {
4256 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
4257 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
4260 v = t4_read_reg(adap, TP_TX_ORATE_A);
4261 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
4262 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
4263 if (adap->params.arch.nchan == NCHAN) {
4264 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
4265 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
4270 * t4_pmtx_get_stats - returns the HW stats from PMTX
4271 * @adap: the adapter
4272 * @cnt: where to store the count statistics
4273 * @cycles: where to store the cycle statistics
4275 * Returns performance statistics from PMTX.
4277 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4279 int i;
4280 u32 data[2];
4282 for (i = 0; i < PM_NSTATS; i++) {
4283 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4284 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4285 if (is_t4(adap->params.chip)) {
4286 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4287 } else {
4288 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4289 PM_TX_DBG_DATA_A, data, 2,
4290 PM_TX_DBG_STAT_MSB_A);
4291 cycles[i] = (((u64)data[0] << 32) | data[1]);
4297 * t4_pmrx_get_stats - returns the HW stats from PMRX
4298 * @adap: the adapter
4299 * @cnt: where to store the count statistics
4300 * @cycles: where to store the cycle statistics
4302 * Returns performance statistics from PMRX.
4304 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4306 int i;
4307 u32 data[2];
4309 for (i = 0; i < PM_NSTATS; i++) {
4310 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4311 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4312 if (is_t4(adap->params.chip)) {
4313 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4314 } else {
4315 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4316 PM_RX_DBG_DATA_A, data, 2,
4317 PM_RX_DBG_STAT_MSB_A);
4318 cycles[i] = (((u64)data[0] << 32) | data[1]);
4324 * t4_get_mps_bg_map - return the buffer groups associated with a port
4325 * @adap: the adapter
4326 * @idx: the port index
4328 * Returns a bitmap indicating which MPS buffer groups are associated
4329 * with the given port. Bit i is set if buffer group i is used by the
4330 * port.
4332 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4334 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4336 if (n == 0)
4337 return idx == 0 ? 0xf : 0;
4338 if (n == 1)
4339 return idx < 2 ? (3 << (2 * idx)) : 0;
4340 return 1 << idx;
4344 * t4_get_port_type_description - return Port Type string description
4345 * @port_type: firmware Port Type enumeration
4347 const char *t4_get_port_type_description(enum fw_port_type port_type)
4349 static const char *const port_type_description[] = {
4350 "R XFI",
4351 "R XAUI",
4352 "T SGMII",
4353 "T XFI",
4354 "T XAUI",
4355 "KX4",
4356 "CX4",
4357 "KX",
4358 "KR",
4359 "R SFP+",
4360 "KR/KX",
4361 "KR/KX/KX4",
4362 "R QSFP_10G",
4363 "R QSA",
4364 "R QSFP",
4365 "R BP40_BA",
4368 if (port_type < ARRAY_SIZE(port_type_description))
4369 return port_type_description[port_type];
4370 return "UNKNOWN";
4374 * t4_get_port_stats_offset - collect port stats relative to a previous
4375 * snapshot
4376 * @adap: The adapter
4377 * @idx: The port
4378 * @stats: Current stats to fill
4379 * @offset: Previous stats snapshot
4381 void t4_get_port_stats_offset(struct adapter *adap, int idx,
4382 struct port_stats *stats,
4383 struct port_stats *offset)
4385 u64 *s, *o;
4386 int i;
4388 t4_get_port_stats(adap, idx, stats);
4389 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4390 i < (sizeof(struct port_stats) / sizeof(u64));
4391 i++, s++, o++)
4392 *s -= *o;
4396 * t4_get_port_stats - collect port statistics
4397 * @adap: the adapter
4398 * @idx: the port index
4399 * @p: the stats structure to fill
4401 * Collect statistics related to the given port from HW.
4403 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4405 u32 bgmap = t4_get_mps_bg_map(adap, idx);
4407 #define GET_STAT(name) \
4408 t4_read_reg64(adap, \
4409 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
4410 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4411 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4413 p->tx_octets = GET_STAT(TX_PORT_BYTES);
4414 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
4415 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
4416 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
4417 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
4418 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
4419 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
4420 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
4421 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
4422 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
4423 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
4424 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4425 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
4426 p->tx_drop = GET_STAT(TX_PORT_DROP);
4427 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
4428 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
4429 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
4430 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
4431 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
4432 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
4433 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
4434 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
4435 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
4437 p->rx_octets = GET_STAT(RX_PORT_BYTES);
4438 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
4439 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
4440 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
4441 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
4442 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
4443 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4444 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
4445 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
4446 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
4447 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
4448 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
4449 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
4450 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
4451 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
4452 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
4453 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4454 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
4455 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
4456 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
4457 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
4458 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
4459 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
4460 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
4461 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
4462 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
4463 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
4465 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4466 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4467 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4468 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4469 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4470 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4471 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4472 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4474 #undef GET_STAT
4475 #undef GET_STAT_COM
4479 * t4_get_lb_stats - collect loopback port statistics
4480 * @adap: the adapter
4481 * @idx: the loopback port index
4482 * @p: the stats structure to fill
4484 * Return HW statistics for the given loopback port.
4486 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4488 u32 bgmap = t4_get_mps_bg_map(adap, idx);
4490 #define GET_STAT(name) \
4491 t4_read_reg64(adap, \
4492 (is_t4(adap->params.chip) ? \
4493 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4494 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4495 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4497 p->octets = GET_STAT(BYTES);
4498 p->frames = GET_STAT(FRAMES);
4499 p->bcast_frames = GET_STAT(BCAST);
4500 p->mcast_frames = GET_STAT(MCAST);
4501 p->ucast_frames = GET_STAT(UCAST);
4502 p->error_frames = GET_STAT(ERROR);
4504 p->frames_64 = GET_STAT(64B);
4505 p->frames_65_127 = GET_STAT(65B_127B);
4506 p->frames_128_255 = GET_STAT(128B_255B);
4507 p->frames_256_511 = GET_STAT(256B_511B);
4508 p->frames_512_1023 = GET_STAT(512B_1023B);
4509 p->frames_1024_1518 = GET_STAT(1024B_1518B);
4510 p->frames_1519_max = GET_STAT(1519B_MAX);
4511 p->drop = GET_STAT(DROP_FRAMES);
4513 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4514 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4515 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4516 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4517 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4518 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4519 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4520 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4522 #undef GET_STAT
4523 #undef GET_STAT_COM
4526 /* t4_mk_filtdelwr - create a delete filter WR
4527 * @ftid: the filter ID
4528 * @wr: the filter work request to populate
4529 * @qid: ingress queue to receive the delete notification
4531 * Creates a filter work request to delete the supplied filter. If @qid is
4532 * negative the delete notification is suppressed.
4534 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4536 memset(wr, 0, sizeof(*wr));
4537 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4538 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4539 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4540 FW_FILTER_WR_NOREPLY_V(qid < 0));
4541 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
4542 if (qid >= 0)
4543 wr->rx_chan_rx_rpl_iq =
4544 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
4547 #define INIT_CMD(var, cmd, rd_wr) do { \
4548 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4549 FW_CMD_REQUEST_F | \
4550 FW_CMD_##rd_wr##_F); \
4551 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4552 } while (0)
4554 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4555 u32 addr, u32 val)
4557 u32 ldst_addrspace;
4558 struct fw_ldst_cmd c;
4560 memset(&c, 0, sizeof(c));
4561 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4562 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4563 FW_CMD_REQUEST_F |
4564 FW_CMD_WRITE_F |
4565 ldst_addrspace);
4566 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4567 c.u.addrval.addr = cpu_to_be32(addr);
4568 c.u.addrval.val = cpu_to_be32(val);
4570 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4574 * t4_mdio_rd - read a PHY register through MDIO
4575 * @adap: the adapter
4576 * @mbox: mailbox to use for the FW command
4577 * @phy_addr: the PHY address
4578 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4579 * @reg: the register to read
4580 * @valp: where to store the value
4582 * Issues a FW command through the given mailbox to read a PHY register.
4584 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4585 unsigned int mmd, unsigned int reg, u16 *valp)
4587 int ret;
4588 u32 ldst_addrspace;
4589 struct fw_ldst_cmd c;
4591 memset(&c, 0, sizeof(c));
4592 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4593 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4594 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4595 ldst_addrspace);
4596 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4597 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4598 FW_LDST_CMD_MMD_V(mmd));
4599 c.u.mdio.raddr = cpu_to_be16(reg);
4601 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4602 if (ret == 0)
4603 *valp = be16_to_cpu(c.u.mdio.rval);
4604 return ret;
4608 * t4_mdio_wr - write a PHY register through MDIO
4609 * @adap: the adapter
4610 * @mbox: mailbox to use for the FW command
4611 * @phy_addr: the PHY address
4612 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4613 * @reg: the register to write
4614 * @valp: value to write
4616 * Issues a FW command through the given mailbox to write a PHY register.
4618 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4619 unsigned int mmd, unsigned int reg, u16 val)
4621 u32 ldst_addrspace;
4622 struct fw_ldst_cmd c;
4624 memset(&c, 0, sizeof(c));
4625 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4626 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4627 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4628 ldst_addrspace);
4629 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4630 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4631 FW_LDST_CMD_MMD_V(mmd));
4632 c.u.mdio.raddr = cpu_to_be16(reg);
4633 c.u.mdio.rval = cpu_to_be16(val);
4635 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4639 * t4_sge_decode_idma_state - decode the idma state
4640 * @adap: the adapter
4641 * @state: the state idma is stuck in
4643 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4645 static const char * const t4_decode[] = {
4646 "IDMA_IDLE",
4647 "IDMA_PUSH_MORE_CPL_FIFO",
4648 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4649 "Not used",
4650 "IDMA_PHYSADDR_SEND_PCIEHDR",
4651 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4652 "IDMA_PHYSADDR_SEND_PAYLOAD",
4653 "IDMA_SEND_FIFO_TO_IMSG",
4654 "IDMA_FL_REQ_DATA_FL_PREP",
4655 "IDMA_FL_REQ_DATA_FL",
4656 "IDMA_FL_DROP",
4657 "IDMA_FL_H_REQ_HEADER_FL",
4658 "IDMA_FL_H_SEND_PCIEHDR",
4659 "IDMA_FL_H_PUSH_CPL_FIFO",
4660 "IDMA_FL_H_SEND_CPL",
4661 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4662 "IDMA_FL_H_SEND_IP_HDR",
4663 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4664 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4665 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4666 "IDMA_FL_D_SEND_PCIEHDR",
4667 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4668 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4669 "IDMA_FL_SEND_PCIEHDR",
4670 "IDMA_FL_PUSH_CPL_FIFO",
4671 "IDMA_FL_SEND_CPL",
4672 "IDMA_FL_SEND_PAYLOAD_FIRST",
4673 "IDMA_FL_SEND_PAYLOAD",
4674 "IDMA_FL_REQ_NEXT_DATA_FL",
4675 "IDMA_FL_SEND_NEXT_PCIEHDR",
4676 "IDMA_FL_SEND_PADDING",
4677 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4678 "IDMA_FL_SEND_FIFO_TO_IMSG",
4679 "IDMA_FL_REQ_DATAFL_DONE",
4680 "IDMA_FL_REQ_HEADERFL_DONE",
4682 static const char * const t5_decode[] = {
4683 "IDMA_IDLE",
4684 "IDMA_ALMOST_IDLE",
4685 "IDMA_PUSH_MORE_CPL_FIFO",
4686 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4687 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4688 "IDMA_PHYSADDR_SEND_PCIEHDR",
4689 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4690 "IDMA_PHYSADDR_SEND_PAYLOAD",
4691 "IDMA_SEND_FIFO_TO_IMSG",
4692 "IDMA_FL_REQ_DATA_FL",
4693 "IDMA_FL_DROP",
4694 "IDMA_FL_DROP_SEND_INC",
4695 "IDMA_FL_H_REQ_HEADER_FL",
4696 "IDMA_FL_H_SEND_PCIEHDR",
4697 "IDMA_FL_H_PUSH_CPL_FIFO",
4698 "IDMA_FL_H_SEND_CPL",
4699 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4700 "IDMA_FL_H_SEND_IP_HDR",
4701 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4702 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4703 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4704 "IDMA_FL_D_SEND_PCIEHDR",
4705 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4706 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4707 "IDMA_FL_SEND_PCIEHDR",
4708 "IDMA_FL_PUSH_CPL_FIFO",
4709 "IDMA_FL_SEND_CPL",
4710 "IDMA_FL_SEND_PAYLOAD_FIRST",
4711 "IDMA_FL_SEND_PAYLOAD",
4712 "IDMA_FL_REQ_NEXT_DATA_FL",
4713 "IDMA_FL_SEND_NEXT_PCIEHDR",
4714 "IDMA_FL_SEND_PADDING",
4715 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4717 static const u32 sge_regs[] = {
4718 SGE_DEBUG_DATA_LOW_INDEX_2_A,
4719 SGE_DEBUG_DATA_LOW_INDEX_3_A,
4720 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4722 const char **sge_idma_decode;
4723 int sge_idma_decode_nstates;
4724 int i;
4726 if (is_t4(adapter->params.chip)) {
4727 sge_idma_decode = (const char **)t4_decode;
4728 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4729 } else {
4730 sge_idma_decode = (const char **)t5_decode;
4731 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4734 if (state < sge_idma_decode_nstates)
4735 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4736 else
4737 CH_WARN(adapter, "idma state %d unknown\n", state);
4739 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4740 CH_WARN(adapter, "SGE register %#x value %#x\n",
4741 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4745 * t4_sge_ctxt_flush - flush the SGE context cache
4746 * @adap: the adapter
4747 * @mbox: mailbox to use for the FW command
4749 * Issues a FW command through the given mailbox to flush the
4750 * SGE context cache.
4752 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4754 int ret;
4755 u32 ldst_addrspace;
4756 struct fw_ldst_cmd c;
4758 memset(&c, 0, sizeof(c));
4759 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4760 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4761 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4762 ldst_addrspace);
4763 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4764 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4766 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4767 return ret;
4771 * t4_fw_hello - establish communication with FW
4772 * @adap: the adapter
4773 * @mbox: mailbox to use for the FW command
4774 * @evt_mbox: mailbox to receive async FW events
4775 * @master: specifies the caller's willingness to be the device master
4776 * @state: returns the current device state (if non-NULL)
4778 * Issues a command to establish communication with FW. Returns either
4779 * an error (negative integer) or the mailbox of the Master PF.
4781 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4782 enum dev_master master, enum dev_state *state)
4784 int ret;
4785 struct fw_hello_cmd c;
4786 u32 v;
4787 unsigned int master_mbox;
4788 int retries = FW_CMD_HELLO_RETRIES;
4790 retry:
4791 memset(&c, 0, sizeof(c));
4792 INIT_CMD(c, HELLO, WRITE);
4793 c.err_to_clearinit = cpu_to_be32(
4794 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4795 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4796 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4797 mbox : FW_HELLO_CMD_MBMASTER_M) |
4798 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4799 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4800 FW_HELLO_CMD_CLEARINIT_F);
4803 * Issue the HELLO command to the firmware. If it's not successful
4804 * but indicates that we got a "busy" or "timeout" condition, retry
4805 * the HELLO until we exhaust our retry limit. If we do exceed our
4806 * retry limit, check to see if the firmware left us any error
4807 * information and report that if so.
4809 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4810 if (ret < 0) {
4811 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4812 goto retry;
4813 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4814 t4_report_fw_error(adap);
4815 return ret;
4818 v = be32_to_cpu(c.err_to_clearinit);
4819 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4820 if (state) {
4821 if (v & FW_HELLO_CMD_ERR_F)
4822 *state = DEV_STATE_ERR;
4823 else if (v & FW_HELLO_CMD_INIT_F)
4824 *state = DEV_STATE_INIT;
4825 else
4826 *state = DEV_STATE_UNINIT;
4830 * If we're not the Master PF then we need to wait around for the
4831 * Master PF Driver to finish setting up the adapter.
4833 * Note that we also do this wait if we're a non-Master-capable PF and
4834 * there is no current Master PF; a Master PF may show up momentarily
4835 * and we wouldn't want to fail pointlessly. (This can happen when an
4836 * OS loads lots of different drivers rapidly at the same time). In
4837 * this case, the Master PF returned by the firmware will be
4838 * PCIE_FW_MASTER_M so the test below will work ...
4840 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
4841 master_mbox != mbox) {
4842 int waiting = FW_CMD_HELLO_TIMEOUT;
4845 * Wait for the firmware to either indicate an error or
4846 * initialized state. If we see either of these we bail out
4847 * and report the issue to the caller. If we exhaust the
4848 * "hello timeout" and we haven't exhausted our retries, try
4849 * again. Otherwise bail with a timeout error.
4851 for (;;) {
4852 u32 pcie_fw;
4854 msleep(50);
4855 waiting -= 50;
4858 * If neither Error nor Initialialized are indicated
4859 * by the firmware keep waiting till we exaust our
4860 * timeout ... and then retry if we haven't exhausted
4861 * our retries ...
4863 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
4864 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
4865 if (waiting <= 0) {
4866 if (retries-- > 0)
4867 goto retry;
4869 return -ETIMEDOUT;
4871 continue;
4875 * We either have an Error or Initialized condition
4876 * report errors preferentially.
4878 if (state) {
4879 if (pcie_fw & PCIE_FW_ERR_F)
4880 *state = DEV_STATE_ERR;
4881 else if (pcie_fw & PCIE_FW_INIT_F)
4882 *state = DEV_STATE_INIT;
4886 * If we arrived before a Master PF was selected and
4887 * there's not a valid Master PF, grab its identity
4888 * for our caller.
4890 if (master_mbox == PCIE_FW_MASTER_M &&
4891 (pcie_fw & PCIE_FW_MASTER_VLD_F))
4892 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
4893 break;
4897 return master_mbox;
4901 * t4_fw_bye - end communication with FW
4902 * @adap: the adapter
4903 * @mbox: mailbox to use for the FW command
4905 * Issues a command to terminate communication with FW.
4907 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4909 struct fw_bye_cmd c;
4911 memset(&c, 0, sizeof(c));
4912 INIT_CMD(c, BYE, WRITE);
4913 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4917 * t4_init_cmd - ask FW to initialize the device
4918 * @adap: the adapter
4919 * @mbox: mailbox to use for the FW command
4921 * Issues a command to FW to partially initialize the device. This
4922 * performs initialization that generally doesn't depend on user input.
4924 int t4_early_init(struct adapter *adap, unsigned int mbox)
4926 struct fw_initialize_cmd c;
4928 memset(&c, 0, sizeof(c));
4929 INIT_CMD(c, INITIALIZE, WRITE);
4930 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4934 * t4_fw_reset - issue a reset to FW
4935 * @adap: the adapter
4936 * @mbox: mailbox to use for the FW command
4937 * @reset: specifies the type of reset to perform
4939 * Issues a reset command of the specified type to FW.
4941 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4943 struct fw_reset_cmd c;
4945 memset(&c, 0, sizeof(c));
4946 INIT_CMD(c, RESET, WRITE);
4947 c.val = cpu_to_be32(reset);
4948 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4952 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4953 * @adap: the adapter
4954 * @mbox: mailbox to use for the FW RESET command (if desired)
4955 * @force: force uP into RESET even if FW RESET command fails
4957 * Issues a RESET command to firmware (if desired) with a HALT indication
4958 * and then puts the microprocessor into RESET state. The RESET command
4959 * will only be issued if a legitimate mailbox is provided (mbox <=
4960 * PCIE_FW_MASTER_M).
4962 * This is generally used in order for the host to safely manipulate the
4963 * adapter without fear of conflicting with whatever the firmware might
4964 * be doing. The only way out of this state is to RESTART the firmware
4965 * ...
4967 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4969 int ret = 0;
4972 * If a legitimate mailbox is provided, issue a RESET command
4973 * with a HALT indication.
4975 if (mbox <= PCIE_FW_MASTER_M) {
4976 struct fw_reset_cmd c;
4978 memset(&c, 0, sizeof(c));
4979 INIT_CMD(c, RESET, WRITE);
4980 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
4981 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
4982 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4986 * Normally we won't complete the operation if the firmware RESET
4987 * command fails but if our caller insists we'll go ahead and put the
4988 * uP into RESET. This can be useful if the firmware is hung or even
4989 * missing ... We'll have to take the risk of putting the uP into
4990 * RESET without the cooperation of firmware in that case.
4992 * We also force the firmware's HALT flag to be on in case we bypassed
4993 * the firmware RESET command above or we're dealing with old firmware
4994 * which doesn't have the HALT capability. This will serve as a flag
4995 * for the incoming firmware to know that it's coming out of a HALT
4996 * rather than a RESET ... if it's new enough to understand that ...
4998 if (ret == 0 || force) {
4999 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5000 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5001 PCIE_FW_HALT_F);
5005 * And we always return the result of the firmware RESET command
5006 * even when we force the uP into RESET ...
5008 return ret;
5012 * t4_fw_restart - restart the firmware by taking the uP out of RESET
5013 * @adap: the adapter
5014 * @reset: if we want to do a RESET to restart things
5016 * Restart firmware previously halted by t4_fw_halt(). On successful
5017 * return the previous PF Master remains as the new PF Master and there
5018 * is no need to issue a new HELLO command, etc.
5020 * We do this in two ways:
5022 * 1. If we're dealing with newer firmware we'll simply want to take
5023 * the chip's microprocessor out of RESET. This will cause the
5024 * firmware to start up from its start vector. And then we'll loop
5025 * until the firmware indicates it's started again (PCIE_FW.HALT
5026 * reset to 0) or we timeout.
5028 * 2. If we're dealing with older firmware then we'll need to RESET
5029 * the chip since older firmware won't recognize the PCIE_FW.HALT
5030 * flag and automatically RESET itself on startup.
5032 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
5034 if (reset) {
5036 * Since we're directing the RESET instead of the firmware
5037 * doing it automatically, we need to clear the PCIE_FW.HALT
5038 * bit.
5040 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
5043 * If we've been given a valid mailbox, first try to get the
5044 * firmware to do the RESET. If that works, great and we can
5045 * return success. Otherwise, if we haven't been given a
5046 * valid mailbox or the RESET command failed, fall back to
5047 * hitting the chip with a hammer.
5049 if (mbox <= PCIE_FW_MASTER_M) {
5050 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5051 msleep(100);
5052 if (t4_fw_reset(adap, mbox,
5053 PIORST_F | PIORSTMODE_F) == 0)
5054 return 0;
5057 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
5058 msleep(2000);
5059 } else {
5060 int ms;
5062 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5063 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
5064 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
5065 return 0;
5066 msleep(100);
5067 ms += 100;
5069 return -ETIMEDOUT;
5071 return 0;
5075 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
5076 * @adap: the adapter
5077 * @mbox: mailbox to use for the FW RESET command (if desired)
5078 * @fw_data: the firmware image to write
5079 * @size: image size
5080 * @force: force upgrade even if firmware doesn't cooperate
5082 * Perform all of the steps necessary for upgrading an adapter's
5083 * firmware image. Normally this requires the cooperation of the
5084 * existing firmware in order to halt all existing activities
5085 * but if an invalid mailbox token is passed in we skip that step
5086 * (though we'll still put the adapter microprocessor into RESET in
5087 * that case).
5089 * On successful return the new firmware will have been loaded and
5090 * the adapter will have been fully RESET losing all previous setup
5091 * state. On unsuccessful return the adapter may be completely hosed ...
5092 * positive errno indicates that the adapter is ~probably~ intact, a
5093 * negative errno indicates that things are looking bad ...
5095 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
5096 const u8 *fw_data, unsigned int size, int force)
5098 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
5099 int reset, ret;
5101 if (!t4_fw_matches_chip(adap, fw_hdr))
5102 return -EINVAL;
5104 ret = t4_fw_halt(adap, mbox, force);
5105 if (ret < 0 && !force)
5106 return ret;
5108 ret = t4_load_fw(adap, fw_data, size);
5109 if (ret < 0)
5110 return ret;
5113 * Older versions of the firmware don't understand the new
5114 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
5115 * restart. So for newly loaded older firmware we'll have to do the
5116 * RESET for it so it starts up on a clean slate. We can tell if
5117 * the newly loaded firmware will handle this right by checking
5118 * its header flags to see if it advertises the capability.
5120 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
5121 return t4_fw_restart(adap, mbox, reset);
5125 * t4_fixup_host_params - fix up host-dependent parameters
5126 * @adap: the adapter
5127 * @page_size: the host's Base Page Size
5128 * @cache_line_size: the host's Cache Line Size
5130 * Various registers in T4 contain values which are dependent on the
5131 * host's Base Page and Cache Line Sizes. This function will fix all of
5132 * those registers with the appropriate values as passed in ...
5134 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
5135 unsigned int cache_line_size)
5137 unsigned int page_shift = fls(page_size) - 1;
5138 unsigned int sge_hps = page_shift - 10;
5139 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
5140 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
5141 unsigned int fl_align_log = fls(fl_align) - 1;
5143 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
5144 HOSTPAGESIZEPF0_V(sge_hps) |
5145 HOSTPAGESIZEPF1_V(sge_hps) |
5146 HOSTPAGESIZEPF2_V(sge_hps) |
5147 HOSTPAGESIZEPF3_V(sge_hps) |
5148 HOSTPAGESIZEPF4_V(sge_hps) |
5149 HOSTPAGESIZEPF5_V(sge_hps) |
5150 HOSTPAGESIZEPF6_V(sge_hps) |
5151 HOSTPAGESIZEPF7_V(sge_hps));
5153 if (is_t4(adap->params.chip)) {
5154 t4_set_reg_field(adap, SGE_CONTROL_A,
5155 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5156 EGRSTATUSPAGESIZE_F,
5157 INGPADBOUNDARY_V(fl_align_log -
5158 INGPADBOUNDARY_SHIFT_X) |
5159 EGRSTATUSPAGESIZE_V(stat_len != 64));
5160 } else {
5161 /* T5 introduced the separation of the Free List Padding and
5162 * Packing Boundaries. Thus, we can select a smaller Padding
5163 * Boundary to avoid uselessly chewing up PCIe Link and Memory
5164 * Bandwidth, and use a Packing Boundary which is large enough
5165 * to avoid false sharing between CPUs, etc.
5167 * For the PCI Link, the smaller the Padding Boundary the
5168 * better. For the Memory Controller, a smaller Padding
5169 * Boundary is better until we cross under the Memory Line
5170 * Size (the minimum unit of transfer to/from Memory). If we
5171 * have a Padding Boundary which is smaller than the Memory
5172 * Line Size, that'll involve a Read-Modify-Write cycle on the
5173 * Memory Controller which is never good. For T5 the smallest
5174 * Padding Boundary which we can select is 32 bytes which is
5175 * larger than any known Memory Controller Line Size so we'll
5176 * use that.
5178 * T5 has a different interpretation of the "0" value for the
5179 * Packing Boundary. This corresponds to 16 bytes instead of
5180 * the expected 32 bytes. We never have a Packing Boundary
5181 * less than 32 bytes so we can't use that special value but
5182 * on the other hand, if we wanted 32 bytes, the best we can
5183 * really do is 64 bytes.
5185 if (fl_align <= 32) {
5186 fl_align = 64;
5187 fl_align_log = 6;
5189 t4_set_reg_field(adap, SGE_CONTROL_A,
5190 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5191 EGRSTATUSPAGESIZE_F,
5192 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
5193 EGRSTATUSPAGESIZE_V(stat_len != 64));
5194 t4_set_reg_field(adap, SGE_CONTROL2_A,
5195 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
5196 INGPACKBOUNDARY_V(fl_align_log -
5197 INGPACKBOUNDARY_SHIFT_X));
5200 * Adjust various SGE Free List Host Buffer Sizes.
5202 * This is something of a crock since we're using fixed indices into
5203 * the array which are also known by the sge.c code and the T4
5204 * Firmware Configuration File. We need to come up with a much better
5205 * approach to managing this array. For now, the first four entries
5206 * are:
5208 * 0: Host Page Size
5209 * 1: 64KB
5210 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
5211 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5213 * For the single-MTU buffers in unpacked mode we need to include
5214 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5215 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5216 * Padding boundary. All of these are accommodated in the Factory
5217 * Default Firmware Configuration File but we need to adjust it for
5218 * this host's cache line size.
5220 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5221 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5222 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5223 & ~(fl_align-1));
5224 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5225 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5226 & ~(fl_align-1));
5228 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5230 return 0;
5234 * t4_fw_initialize - ask FW to initialize the device
5235 * @adap: the adapter
5236 * @mbox: mailbox to use for the FW command
5238 * Issues a command to FW to partially initialize the device. This
5239 * performs initialization that generally doesn't depend on user input.
5241 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5243 struct fw_initialize_cmd c;
5245 memset(&c, 0, sizeof(c));
5246 INIT_CMD(c, INITIALIZE, WRITE);
5247 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5251 * t4_query_params_rw - query FW or device parameters
5252 * @adap: the adapter
5253 * @mbox: mailbox to use for the FW command
5254 * @pf: the PF
5255 * @vf: the VF
5256 * @nparams: the number of parameters
5257 * @params: the parameter names
5258 * @val: the parameter values
5259 * @rw: Write and read flag
5261 * Reads the value of FW or device parameters. Up to 7 parameters can be
5262 * queried at once.
5264 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5265 unsigned int vf, unsigned int nparams, const u32 *params,
5266 u32 *val, int rw)
5268 int i, ret;
5269 struct fw_params_cmd c;
5270 __be32 *p = &c.param[0].mnem;
5272 if (nparams > 7)
5273 return -EINVAL;
5275 memset(&c, 0, sizeof(c));
5276 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5277 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5278 FW_PARAMS_CMD_PFN_V(pf) |
5279 FW_PARAMS_CMD_VFN_V(vf));
5280 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5282 for (i = 0; i < nparams; i++) {
5283 *p++ = cpu_to_be32(*params++);
5284 if (rw)
5285 *p = cpu_to_be32(*(val + i));
5286 p++;
5289 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5290 if (ret == 0)
5291 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5292 *val++ = be32_to_cpu(*p);
5293 return ret;
5296 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5297 unsigned int vf, unsigned int nparams, const u32 *params,
5298 u32 *val)
5300 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5304 * t4_set_params_timeout - sets FW or device parameters
5305 * @adap: the adapter
5306 * @mbox: mailbox to use for the FW command
5307 * @pf: the PF
5308 * @vf: the VF
5309 * @nparams: the number of parameters
5310 * @params: the parameter names
5311 * @val: the parameter values
5312 * @timeout: the timeout time
5314 * Sets the value of FW or device parameters. Up to 7 parameters can be
5315 * specified at once.
5317 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5318 unsigned int pf, unsigned int vf,
5319 unsigned int nparams, const u32 *params,
5320 const u32 *val, int timeout)
5322 struct fw_params_cmd c;
5323 __be32 *p = &c.param[0].mnem;
5325 if (nparams > 7)
5326 return -EINVAL;
5328 memset(&c, 0, sizeof(c));
5329 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5330 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5331 FW_PARAMS_CMD_PFN_V(pf) |
5332 FW_PARAMS_CMD_VFN_V(vf));
5333 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5335 while (nparams--) {
5336 *p++ = cpu_to_be32(*params++);
5337 *p++ = cpu_to_be32(*val++);
5340 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5344 * t4_set_params - sets FW or device parameters
5345 * @adap: the adapter
5346 * @mbox: mailbox to use for the FW command
5347 * @pf: the PF
5348 * @vf: the VF
5349 * @nparams: the number of parameters
5350 * @params: the parameter names
5351 * @val: the parameter values
5353 * Sets the value of FW or device parameters. Up to 7 parameters can be
5354 * specified at once.
5356 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5357 unsigned int vf, unsigned int nparams, const u32 *params,
5358 const u32 *val)
5360 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5361 FW_CMD_MAX_TIMEOUT);
5365 * t4_cfg_pfvf - configure PF/VF resource limits
5366 * @adap: the adapter
5367 * @mbox: mailbox to use for the FW command
5368 * @pf: the PF being configured
5369 * @vf: the VF being configured
5370 * @txq: the max number of egress queues
5371 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
5372 * @rxqi: the max number of interrupt-capable ingress queues
5373 * @rxq: the max number of interruptless ingress queues
5374 * @tc: the PCI traffic class
5375 * @vi: the max number of virtual interfaces
5376 * @cmask: the channel access rights mask for the PF/VF
5377 * @pmask: the port access rights mask for the PF/VF
5378 * @nexact: the maximum number of exact MPS filters
5379 * @rcaps: read capabilities
5380 * @wxcaps: write/execute capabilities
5382 * Configures resource limits and capabilities for a physical or virtual
5383 * function.
5385 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5386 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5387 unsigned int rxqi, unsigned int rxq, unsigned int tc,
5388 unsigned int vi, unsigned int cmask, unsigned int pmask,
5389 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5391 struct fw_pfvf_cmd c;
5393 memset(&c, 0, sizeof(c));
5394 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5395 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5396 FW_PFVF_CMD_VFN_V(vf));
5397 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5398 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5399 FW_PFVF_CMD_NIQ_V(rxq));
5400 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5401 FW_PFVF_CMD_PMASK_V(pmask) |
5402 FW_PFVF_CMD_NEQ_V(txq));
5403 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5404 FW_PFVF_CMD_NVI_V(vi) |
5405 FW_PFVF_CMD_NEXACTF_V(nexact));
5406 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5407 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5408 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5409 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5413 * t4_alloc_vi - allocate a virtual interface
5414 * @adap: the adapter
5415 * @mbox: mailbox to use for the FW command
5416 * @port: physical port associated with the VI
5417 * @pf: the PF owning the VI
5418 * @vf: the VF owning the VI
5419 * @nmac: number of MAC addresses needed (1 to 5)
5420 * @mac: the MAC addresses of the VI
5421 * @rss_size: size of RSS table slice associated with this VI
5423 * Allocates a virtual interface for the given physical port. If @mac is
5424 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
5425 * @mac should be large enough to hold @nmac Ethernet addresses, they are
5426 * stored consecutively so the space needed is @nmac * 6 bytes.
5427 * Returns a negative error number or the non-negative VI id.
5429 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5430 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5431 unsigned int *rss_size)
5433 int ret;
5434 struct fw_vi_cmd c;
5436 memset(&c, 0, sizeof(c));
5437 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5438 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5439 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5440 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5441 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5442 c.nmac = nmac - 1;
5444 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5445 if (ret)
5446 return ret;
5448 if (mac) {
5449 memcpy(mac, c.mac, sizeof(c.mac));
5450 switch (nmac) {
5451 case 5:
5452 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5453 case 4:
5454 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5455 case 3:
5456 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5457 case 2:
5458 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
5461 if (rss_size)
5462 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5463 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5467 * t4_free_vi - free a virtual interface
5468 * @adap: the adapter
5469 * @mbox: mailbox to use for the FW command
5470 * @pf: the PF owning the VI
5471 * @vf: the VF owning the VI
5472 * @viid: virtual interface identifiler
5474 * Free a previously allocated virtual interface.
5476 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5477 unsigned int vf, unsigned int viid)
5479 struct fw_vi_cmd c;
5481 memset(&c, 0, sizeof(c));
5482 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5483 FW_CMD_REQUEST_F |
5484 FW_CMD_EXEC_F |
5485 FW_VI_CMD_PFN_V(pf) |
5486 FW_VI_CMD_VFN_V(vf));
5487 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5488 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5490 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5494 * t4_set_rxmode - set Rx properties of a virtual interface
5495 * @adap: the adapter
5496 * @mbox: mailbox to use for the FW command
5497 * @viid: the VI id
5498 * @mtu: the new MTU or -1
5499 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5500 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5501 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5502 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5503 * @sleep_ok: if true we may sleep while awaiting command completion
5505 * Sets Rx properties of a virtual interface.
5507 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5508 int mtu, int promisc, int all_multi, int bcast, int vlanex,
5509 bool sleep_ok)
5511 struct fw_vi_rxmode_cmd c;
5513 /* convert to FW values */
5514 if (mtu < 0)
5515 mtu = FW_RXMODE_MTU_NO_CHG;
5516 if (promisc < 0)
5517 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5518 if (all_multi < 0)
5519 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5520 if (bcast < 0)
5521 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5522 if (vlanex < 0)
5523 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5525 memset(&c, 0, sizeof(c));
5526 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5527 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5528 FW_VI_RXMODE_CMD_VIID_V(viid));
5529 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5530 c.mtu_to_vlanexen =
5531 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5532 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5533 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5534 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5535 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5536 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5540 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5541 * @adap: the adapter
5542 * @mbox: mailbox to use for the FW command
5543 * @viid: the VI id
5544 * @free: if true any existing filters for this VI id are first removed
5545 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
5546 * @addr: the MAC address(es)
5547 * @idx: where to store the index of each allocated filter
5548 * @hash: pointer to hash address filter bitmap
5549 * @sleep_ok: call is allowed to sleep
5551 * Allocates an exact-match filter for each of the supplied addresses and
5552 * sets it to the corresponding address. If @idx is not %NULL it should
5553 * have at least @naddr entries, each of which will be set to the index of
5554 * the filter allocated for the corresponding MAC address. If a filter
5555 * could not be allocated for an address its index is set to 0xffff.
5556 * If @hash is not %NULL addresses that fail to allocate an exact filter
5557 * are hashed and update the hash filter bitmap pointed at by @hash.
5559 * Returns a negative error number or the number of filters allocated.
5561 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5562 unsigned int viid, bool free, unsigned int naddr,
5563 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5565 int offset, ret = 0;
5566 struct fw_vi_mac_cmd c;
5567 unsigned int nfilters = 0;
5568 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5569 unsigned int rem = naddr;
5571 if (naddr > max_naddr)
5572 return -EINVAL;
5574 for (offset = 0; offset < naddr ; /**/) {
5575 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5576 rem : ARRAY_SIZE(c.u.exact));
5577 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5578 u.exact[fw_naddr]), 16);
5579 struct fw_vi_mac_exact *p;
5580 int i;
5582 memset(&c, 0, sizeof(c));
5583 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5584 FW_CMD_REQUEST_F |
5585 FW_CMD_WRITE_F |
5586 FW_CMD_EXEC_V(free) |
5587 FW_VI_MAC_CMD_VIID_V(viid));
5588 c.freemacs_to_len16 =
5589 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5590 FW_CMD_LEN16_V(len16));
5592 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5593 p->valid_to_idx =
5594 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5595 FW_VI_MAC_CMD_IDX_V(
5596 FW_VI_MAC_ADD_MAC));
5597 memcpy(p->macaddr, addr[offset + i],
5598 sizeof(p->macaddr));
5601 /* It's okay if we run out of space in our MAC address arena.
5602 * Some of the addresses we submit may get stored so we need
5603 * to run through the reply to see what the results were ...
5605 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5606 if (ret && ret != -FW_ENOMEM)
5607 break;
5609 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5610 u16 index = FW_VI_MAC_CMD_IDX_G(
5611 be16_to_cpu(p->valid_to_idx));
5613 if (idx)
5614 idx[offset + i] = (index >= max_naddr ?
5615 0xffff : index);
5616 if (index < max_naddr)
5617 nfilters++;
5618 else if (hash)
5619 *hash |= (1ULL <<
5620 hash_mac_addr(addr[offset + i]));
5623 free = false;
5624 offset += fw_naddr;
5625 rem -= fw_naddr;
5628 if (ret == 0 || ret == -FW_ENOMEM)
5629 ret = nfilters;
5630 return ret;
5634 * t4_change_mac - modifies the exact-match filter for a MAC address
5635 * @adap: the adapter
5636 * @mbox: mailbox to use for the FW command
5637 * @viid: the VI id
5638 * @idx: index of existing filter for old value of MAC address, or -1
5639 * @addr: the new MAC address value
5640 * @persist: whether a new MAC allocation should be persistent
5641 * @add_smt: if true also add the address to the HW SMT
5643 * Modifies an exact-match filter and sets it to the new MAC address.
5644 * Note that in general it is not possible to modify the value of a given
5645 * filter so the generic way to modify an address filter is to free the one
5646 * being used by the old address value and allocate a new filter for the
5647 * new address value. @idx can be -1 if the address is a new addition.
5649 * Returns a negative error number or the index of the filter with the new
5650 * MAC value.
5652 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5653 int idx, const u8 *addr, bool persist, bool add_smt)
5655 int ret, mode;
5656 struct fw_vi_mac_cmd c;
5657 struct fw_vi_mac_exact *p = c.u.exact;
5658 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5660 if (idx < 0) /* new allocation */
5661 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5662 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5664 memset(&c, 0, sizeof(c));
5665 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5666 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5667 FW_VI_MAC_CMD_VIID_V(viid));
5668 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5669 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5670 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5671 FW_VI_MAC_CMD_IDX_V(idx));
5672 memcpy(p->macaddr, addr, sizeof(p->macaddr));
5674 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5675 if (ret == 0) {
5676 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
5677 if (ret >= max_mac_addr)
5678 ret = -ENOMEM;
5680 return ret;
5684 * t4_set_addr_hash - program the MAC inexact-match hash filter
5685 * @adap: the adapter
5686 * @mbox: mailbox to use for the FW command
5687 * @viid: the VI id
5688 * @ucast: whether the hash filter should also match unicast addresses
5689 * @vec: the value to be written to the hash filter
5690 * @sleep_ok: call is allowed to sleep
5692 * Sets the 64-bit inexact-match hash filter for a virtual interface.
5694 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5695 bool ucast, u64 vec, bool sleep_ok)
5697 struct fw_vi_mac_cmd c;
5699 memset(&c, 0, sizeof(c));
5700 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5701 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5702 FW_VI_ENABLE_CMD_VIID_V(viid));
5703 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5704 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5705 FW_CMD_LEN16_V(1));
5706 c.u.hash.hashvec = cpu_to_be64(vec);
5707 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5711 * t4_enable_vi_params - enable/disable a virtual interface
5712 * @adap: the adapter
5713 * @mbox: mailbox to use for the FW command
5714 * @viid: the VI id
5715 * @rx_en: 1=enable Rx, 0=disable Rx
5716 * @tx_en: 1=enable Tx, 0=disable Tx
5717 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
5719 * Enables/disables a virtual interface. Note that setting DCB Enable
5720 * only makes sense when enabling a Virtual Interface ...
5722 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5723 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5725 struct fw_vi_enable_cmd c;
5727 memset(&c, 0, sizeof(c));
5728 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5729 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5730 FW_VI_ENABLE_CMD_VIID_V(viid));
5731 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5732 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5733 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5734 FW_LEN16(c));
5735 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5739 * t4_enable_vi - enable/disable a virtual interface
5740 * @adap: the adapter
5741 * @mbox: mailbox to use for the FW command
5742 * @viid: the VI id
5743 * @rx_en: 1=enable Rx, 0=disable Rx
5744 * @tx_en: 1=enable Tx, 0=disable Tx
5746 * Enables/disables a virtual interface.
5748 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5749 bool rx_en, bool tx_en)
5751 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5755 * t4_identify_port - identify a VI's port by blinking its LED
5756 * @adap: the adapter
5757 * @mbox: mailbox to use for the FW command
5758 * @viid: the VI id
5759 * @nblinks: how many times to blink LED at 2.5 Hz
5761 * Identifies a VI's port by blinking its LED.
5763 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5764 unsigned int nblinks)
5766 struct fw_vi_enable_cmd c;
5768 memset(&c, 0, sizeof(c));
5769 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5770 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5771 FW_VI_ENABLE_CMD_VIID_V(viid));
5772 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5773 c.blinkdur = cpu_to_be16(nblinks);
5774 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5778 * t4_iq_free - free an ingress queue and its FLs
5779 * @adap: the adapter
5780 * @mbox: mailbox to use for the FW command
5781 * @pf: the PF owning the queues
5782 * @vf: the VF owning the queues
5783 * @iqtype: the ingress queue type
5784 * @iqid: ingress queue id
5785 * @fl0id: FL0 queue id or 0xffff if no attached FL0
5786 * @fl1id: FL1 queue id or 0xffff if no attached FL1
5788 * Frees an ingress queue and its associated FLs, if any.
5790 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5791 unsigned int vf, unsigned int iqtype, unsigned int iqid,
5792 unsigned int fl0id, unsigned int fl1id)
5794 struct fw_iq_cmd c;
5796 memset(&c, 0, sizeof(c));
5797 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5798 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5799 FW_IQ_CMD_VFN_V(vf));
5800 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5801 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5802 c.iqid = cpu_to_be16(iqid);
5803 c.fl0id = cpu_to_be16(fl0id);
5804 c.fl1id = cpu_to_be16(fl1id);
5805 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5809 * t4_eth_eq_free - free an Ethernet egress queue
5810 * @adap: the adapter
5811 * @mbox: mailbox to use for the FW command
5812 * @pf: the PF owning the queue
5813 * @vf: the VF owning the queue
5814 * @eqid: egress queue id
5816 * Frees an Ethernet egress queue.
5818 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5819 unsigned int vf, unsigned int eqid)
5821 struct fw_eq_eth_cmd c;
5823 memset(&c, 0, sizeof(c));
5824 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5825 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5826 FW_EQ_ETH_CMD_PFN_V(pf) |
5827 FW_EQ_ETH_CMD_VFN_V(vf));
5828 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5829 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5830 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5834 * t4_ctrl_eq_free - free a control egress queue
5835 * @adap: the adapter
5836 * @mbox: mailbox to use for the FW command
5837 * @pf: the PF owning the queue
5838 * @vf: the VF owning the queue
5839 * @eqid: egress queue id
5841 * Frees a control egress queue.
5843 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5844 unsigned int vf, unsigned int eqid)
5846 struct fw_eq_ctrl_cmd c;
5848 memset(&c, 0, sizeof(c));
5849 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
5850 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5851 FW_EQ_CTRL_CMD_PFN_V(pf) |
5852 FW_EQ_CTRL_CMD_VFN_V(vf));
5853 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
5854 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
5855 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5859 * t4_ofld_eq_free - free an offload egress queue
5860 * @adap: the adapter
5861 * @mbox: mailbox to use for the FW command
5862 * @pf: the PF owning the queue
5863 * @vf: the VF owning the queue
5864 * @eqid: egress queue id
5866 * Frees a control egress queue.
5868 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5869 unsigned int vf, unsigned int eqid)
5871 struct fw_eq_ofld_cmd c;
5873 memset(&c, 0, sizeof(c));
5874 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
5875 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5876 FW_EQ_OFLD_CMD_PFN_V(pf) |
5877 FW_EQ_OFLD_CMD_VFN_V(vf));
5878 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
5879 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
5880 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5884 * t4_handle_fw_rpl - process a FW reply message
5885 * @adap: the adapter
5886 * @rpl: start of the FW message
5888 * Processes a FW message, such as link state change messages.
5890 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5892 u8 opcode = *(const u8 *)rpl;
5894 if (opcode == FW_PORT_CMD) { /* link/module state change message */
5895 int speed = 0, fc = 0;
5896 const struct fw_port_cmd *p = (void *)rpl;
5897 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
5898 int port = adap->chan_map[chan];
5899 struct port_info *pi = adap2pinfo(adap, port);
5900 struct link_config *lc = &pi->link_cfg;
5901 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
5902 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
5903 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
5905 if (stat & FW_PORT_CMD_RXPAUSE_F)
5906 fc |= PAUSE_RX;
5907 if (stat & FW_PORT_CMD_TXPAUSE_F)
5908 fc |= PAUSE_TX;
5909 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
5910 speed = 100;
5911 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
5912 speed = 1000;
5913 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
5914 speed = 10000;
5915 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
5916 speed = 40000;
5918 if (link_ok != lc->link_ok || speed != lc->speed ||
5919 fc != lc->fc) { /* something changed */
5920 lc->link_ok = link_ok;
5921 lc->speed = speed;
5922 lc->fc = fc;
5923 lc->supported = be16_to_cpu(p->u.info.pcap);
5924 t4_os_link_changed(adap, port, link_ok);
5926 if (mod != pi->mod_type) {
5927 pi->mod_type = mod;
5928 t4_os_portmod_changed(adap, port);
5931 return 0;
5934 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
5936 u16 val;
5938 if (pci_is_pcie(adapter->pdev)) {
5939 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
5940 p->speed = val & PCI_EXP_LNKSTA_CLS;
5941 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5946 * init_link_config - initialize a link's SW state
5947 * @lc: structure holding the link state
5948 * @caps: link capabilities
5950 * Initializes the SW state maintained for each link, including the link's
5951 * capabilities and default speed/flow-control/autonegotiation settings.
5953 static void init_link_config(struct link_config *lc, unsigned int caps)
5955 lc->supported = caps;
5956 lc->requested_speed = 0;
5957 lc->speed = 0;
5958 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5959 if (lc->supported & FW_PORT_CAP_ANEG) {
5960 lc->advertising = lc->supported & ADVERT_MASK;
5961 lc->autoneg = AUTONEG_ENABLE;
5962 lc->requested_fc |= PAUSE_AUTONEG;
5963 } else {
5964 lc->advertising = 0;
5965 lc->autoneg = AUTONEG_DISABLE;
5969 #define CIM_PF_NOACCESS 0xeeeeeeee
5971 int t4_wait_dev_ready(void __iomem *regs)
5973 u32 whoami;
5975 whoami = readl(regs + PL_WHOAMI_A);
5976 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
5977 return 0;
5979 msleep(500);
5980 whoami = readl(regs + PL_WHOAMI_A);
5981 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
5984 struct flash_desc {
5985 u32 vendor_and_model_id;
5986 u32 size_mb;
5989 static int get_flash_params(struct adapter *adap)
5991 /* Table for non-Numonix supported flash parts. Numonix parts are left
5992 * to the preexisting code. All flash parts have 64KB sectors.
5994 static struct flash_desc supported_flash[] = {
5995 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
5998 int ret;
5999 u32 info;
6001 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6002 if (!ret)
6003 ret = sf1_read(adap, 3, 0, 1, &info);
6004 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
6005 if (ret)
6006 return ret;
6008 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6009 if (supported_flash[ret].vendor_and_model_id == info) {
6010 adap->params.sf_size = supported_flash[ret].size_mb;
6011 adap->params.sf_nsec =
6012 adap->params.sf_size / SF_SEC_SIZE;
6013 return 0;
6016 if ((info & 0xff) != 0x20) /* not a Numonix flash */
6017 return -EINVAL;
6018 info >>= 16; /* log2 of size */
6019 if (info >= 0x14 && info < 0x18)
6020 adap->params.sf_nsec = 1 << (info - 16);
6021 else if (info == 0x18)
6022 adap->params.sf_nsec = 64;
6023 else
6024 return -EINVAL;
6025 adap->params.sf_size = 1 << info;
6026 adap->params.sf_fw_start =
6027 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6029 if (adap->params.sf_size < FLASH_MIN_SIZE)
6030 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
6031 adap->params.sf_size, FLASH_MIN_SIZE);
6032 return 0;
6035 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
6037 u16 val;
6038 u32 pcie_cap;
6040 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6041 if (pcie_cap) {
6042 pci_read_config_word(adapter->pdev,
6043 pcie_cap + PCI_EXP_DEVCTL2, &val);
6044 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
6045 val |= range;
6046 pci_write_config_word(adapter->pdev,
6047 pcie_cap + PCI_EXP_DEVCTL2, val);
6052 * t4_prep_adapter - prepare SW and HW for operation
6053 * @adapter: the adapter
6054 * @reset: if true perform a HW reset
6056 * Initialize adapter SW state for the various HW modules, set initial
6057 * values for some adapter tunables, take PHYs out of reset, and
6058 * initialize the MDIO interface.
6060 int t4_prep_adapter(struct adapter *adapter)
6062 int ret, ver;
6063 uint16_t device_id;
6064 u32 pl_rev;
6066 get_pci_mode(adapter, &adapter->params.pci);
6067 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
6069 ret = get_flash_params(adapter);
6070 if (ret < 0) {
6071 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
6072 return ret;
6075 /* Retrieve adapter's device ID
6077 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
6078 ver = device_id >> 12;
6079 adapter->params.chip = 0;
6080 switch (ver) {
6081 case CHELSIO_T4:
6082 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6083 adapter->params.arch.sge_fl_db = DBPRIO_F;
6084 adapter->params.arch.mps_tcam_size =
6085 NUM_MPS_CLS_SRAM_L_INSTANCES;
6086 adapter->params.arch.mps_rplc_size = 128;
6087 adapter->params.arch.nchan = NCHAN;
6088 adapter->params.arch.vfcount = 128;
6089 break;
6090 case CHELSIO_T5:
6091 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6092 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
6093 adapter->params.arch.mps_tcam_size =
6094 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6095 adapter->params.arch.mps_rplc_size = 128;
6096 adapter->params.arch.nchan = NCHAN;
6097 adapter->params.arch.vfcount = 128;
6098 break;
6099 case CHELSIO_T6:
6100 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6101 adapter->params.arch.sge_fl_db = 0;
6102 adapter->params.arch.mps_tcam_size =
6103 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6104 adapter->params.arch.mps_rplc_size = 256;
6105 adapter->params.arch.nchan = 2;
6106 adapter->params.arch.vfcount = 256;
6107 break;
6108 default:
6109 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
6110 device_id);
6111 return -EINVAL;
6114 adapter->params.cim_la_size = CIMLA_SIZE;
6115 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
6118 * Default port for debugging in case we can't reach FW.
6120 adapter->params.nports = 1;
6121 adapter->params.portvec = 1;
6122 adapter->params.vpd.cclk = 50000;
6124 /* Set pci completion timeout value to 4 seconds. */
6125 set_pcie_completion_timeout(adapter, 0xd);
6126 return 0;
6130 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
6131 * @adapter: the adapter
6132 * @qid: the Queue ID
6133 * @qtype: the Ingress or Egress type for @qid
6134 * @user: true if this request is for a user mode queue
6135 * @pbar2_qoffset: BAR2 Queue Offset
6136 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
6138 * Returns the BAR2 SGE Queue Registers information associated with the
6139 * indicated Absolute Queue ID. These are passed back in return value
6140 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
6141 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
6143 * This may return an error which indicates that BAR2 SGE Queue
6144 * registers aren't available. If an error is not returned, then the
6145 * following values are returned:
6147 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
6148 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
6150 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
6151 * require the "Inferred Queue ID" ability may be used. E.g. the
6152 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
6153 * then these "Inferred Queue ID" register may not be used.
6155 int t4_bar2_sge_qregs(struct adapter *adapter,
6156 unsigned int qid,
6157 enum t4_bar2_qtype qtype,
6158 int user,
6159 u64 *pbar2_qoffset,
6160 unsigned int *pbar2_qid)
6162 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
6163 u64 bar2_page_offset, bar2_qoffset;
6164 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
6166 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
6167 if (!user && is_t4(adapter->params.chip))
6168 return -EINVAL;
6170 /* Get our SGE Page Size parameters.
6172 page_shift = adapter->params.sge.hps + 10;
6173 page_size = 1 << page_shift;
6175 /* Get the right Queues per Page parameters for our Queue.
6177 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
6178 ? adapter->params.sge.eq_qpp
6179 : adapter->params.sge.iq_qpp);
6180 qpp_mask = (1 << qpp_shift) - 1;
6182 /* Calculate the basics of the BAR2 SGE Queue register area:
6183 * o The BAR2 page the Queue registers will be in.
6184 * o The BAR2 Queue ID.
6185 * o The BAR2 Queue ID Offset into the BAR2 page.
6187 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
6188 bar2_qid = qid & qpp_mask;
6189 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
6191 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
6192 * hardware will infer the Absolute Queue ID simply from the writes to
6193 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
6194 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
6195 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
6196 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
6197 * from the BAR2 Page and BAR2 Queue ID.
6199 * One important censequence of this is that some BAR2 SGE registers
6200 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
6201 * there. But other registers synthesize the SGE Queue ID purely
6202 * from the writes to the registers -- the Write Combined Doorbell
6203 * Buffer is a good example. These BAR2 SGE Registers are only
6204 * available for those BAR2 SGE Register areas where the SGE Absolute
6205 * Queue ID can be inferred from simple writes.
6207 bar2_qoffset = bar2_page_offset;
6208 bar2_qinferred = (bar2_qid_offset < page_size);
6209 if (bar2_qinferred) {
6210 bar2_qoffset += bar2_qid_offset;
6211 bar2_qid = 0;
6214 *pbar2_qoffset = bar2_qoffset;
6215 *pbar2_qid = bar2_qid;
6216 return 0;
6220 * t4_init_devlog_params - initialize adapter->params.devlog
6221 * @adap: the adapter
6223 * Initialize various fields of the adapter's Firmware Device Log
6224 * Parameters structure.
6226 int t4_init_devlog_params(struct adapter *adap)
6228 struct devlog_params *dparams = &adap->params.devlog;
6229 u32 pf_dparams;
6230 unsigned int devlog_meminfo;
6231 struct fw_devlog_cmd devlog_cmd;
6232 int ret;
6234 /* If we're dealing with newer firmware, the Device Log Paramerters
6235 * are stored in a designated register which allows us to access the
6236 * Device Log even if we can't talk to the firmware.
6238 pf_dparams =
6239 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6240 if (pf_dparams) {
6241 unsigned int nentries, nentries128;
6243 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6244 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6246 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6247 nentries = (nentries128 + 1) * 128;
6248 dparams->size = nentries * sizeof(struct fw_devlog_e);
6250 return 0;
6253 /* Otherwise, ask the firmware for it's Device Log Parameters.
6255 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6256 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6257 FW_CMD_REQUEST_F | FW_CMD_READ_F);
6258 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6259 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6260 &devlog_cmd);
6261 if (ret)
6262 return ret;
6264 devlog_meminfo =
6265 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6266 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6267 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6268 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6270 return 0;
6274 * t4_init_sge_params - initialize adap->params.sge
6275 * @adapter: the adapter
6277 * Initialize various fields of the adapter's SGE Parameters structure.
6279 int t4_init_sge_params(struct adapter *adapter)
6281 struct sge_params *sge_params = &adapter->params.sge;
6282 u32 hps, qpp;
6283 unsigned int s_hps, s_qpp;
6285 /* Extract the SGE Page Size for our PF.
6287 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6288 s_hps = (HOSTPAGESIZEPF0_S +
6289 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6290 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6292 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6294 s_qpp = (QUEUESPERPAGEPF0_S +
6295 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6296 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6297 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6298 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6299 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6301 return 0;
6305 * t4_init_tp_params - initialize adap->params.tp
6306 * @adap: the adapter
6308 * Initialize various fields of the adapter's TP Parameters structure.
6310 int t4_init_tp_params(struct adapter *adap)
6312 int chan;
6313 u32 v;
6315 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6316 adap->params.tp.tre = TIMERRESOLUTION_G(v);
6317 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6319 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6320 for (chan = 0; chan < NCHAN; chan++)
6321 adap->params.tp.tx_modq[chan] = chan;
6323 /* Cache the adapter's Compressed Filter Mode and global Incress
6324 * Configuration.
6326 if (t4_use_ldst(adap)) {
6327 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
6328 TP_VLAN_PRI_MAP_A, 1);
6329 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
6330 TP_INGRESS_CONFIG_A, 1);
6331 } else {
6332 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6333 &adap->params.tp.vlan_pri_map, 1,
6334 TP_VLAN_PRI_MAP_A);
6335 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6336 &adap->params.tp.ingress_config, 1,
6337 TP_INGRESS_CONFIG_A);
6340 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6341 * shift positions of several elements of the Compressed Filter Tuple
6342 * for this adapter which we need frequently ...
6344 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6345 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6346 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6347 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6348 PROTOCOL_F);
6350 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6351 * represents the presence of an Outer VLAN instead of a VNIC ID.
6353 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6354 adap->params.tp.vnic_shift = -1;
6356 return 0;
6360 * t4_filter_field_shift - calculate filter field shift
6361 * @adap: the adapter
6362 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6364 * Return the shift position of a filter field within the Compressed
6365 * Filter Tuple. The filter field is specified via its selection bit
6366 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
6368 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6370 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6371 unsigned int sel;
6372 int field_shift;
6374 if ((filter_mode & filter_sel) == 0)
6375 return -1;
6377 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6378 switch (filter_mode & sel) {
6379 case FCOE_F:
6380 field_shift += FT_FCOE_W;
6381 break;
6382 case PORT_F:
6383 field_shift += FT_PORT_W;
6384 break;
6385 case VNIC_ID_F:
6386 field_shift += FT_VNIC_ID_W;
6387 break;
6388 case VLAN_F:
6389 field_shift += FT_VLAN_W;
6390 break;
6391 case TOS_F:
6392 field_shift += FT_TOS_W;
6393 break;
6394 case PROTOCOL_F:
6395 field_shift += FT_PROTOCOL_W;
6396 break;
6397 case ETHERTYPE_F:
6398 field_shift += FT_ETHERTYPE_W;
6399 break;
6400 case MACMATCH_F:
6401 field_shift += FT_MACMATCH_W;
6402 break;
6403 case MPSHITTYPE_F:
6404 field_shift += FT_MPSHITTYPE_W;
6405 break;
6406 case FRAGMENTATION_F:
6407 field_shift += FT_FRAGMENTATION_W;
6408 break;
6411 return field_shift;
6414 int t4_init_rss_mode(struct adapter *adap, int mbox)
6416 int i, ret;
6417 struct fw_rss_vi_config_cmd rvc;
6419 memset(&rvc, 0, sizeof(rvc));
6421 for_each_port(adap, i) {
6422 struct port_info *p = adap2pinfo(adap, i);
6424 rvc.op_to_viid =
6425 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6426 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6427 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6428 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6429 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6430 if (ret)
6431 return ret;
6432 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6434 return 0;
6437 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6439 u8 addr[6];
6440 int ret, i, j = 0;
6441 struct fw_port_cmd c;
6442 struct fw_rss_vi_config_cmd rvc;
6444 memset(&c, 0, sizeof(c));
6445 memset(&rvc, 0, sizeof(rvc));
6447 for_each_port(adap, i) {
6448 unsigned int rss_size;
6449 struct port_info *p = adap2pinfo(adap, i);
6451 while ((adap->params.portvec & (1 << j)) == 0)
6452 j++;
6454 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6455 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6456 FW_PORT_CMD_PORTID_V(j));
6457 c.action_to_len16 = cpu_to_be32(
6458 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6459 FW_LEN16(c));
6460 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6461 if (ret)
6462 return ret;
6464 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6465 if (ret < 0)
6466 return ret;
6468 p->viid = ret;
6469 p->tx_chan = j;
6470 p->lport = j;
6471 p->rss_size = rss_size;
6472 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6473 adap->port[i]->dev_port = j;
6475 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6476 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6477 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6478 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6479 p->mod_type = FW_PORT_MOD_TYPE_NA;
6481 rvc.op_to_viid =
6482 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6483 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6484 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6485 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6486 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6487 if (ret)
6488 return ret;
6489 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6491 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6492 j++;
6494 return 0;
6498 * t4_read_cimq_cfg - read CIM queue configuration
6499 * @adap: the adapter
6500 * @base: holds the queue base addresses in bytes
6501 * @size: holds the queue sizes in bytes
6502 * @thres: holds the queue full thresholds in bytes
6504 * Returns the current configuration of the CIM queues, starting with
6505 * the IBQs, then the OBQs.
6507 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6509 unsigned int i, v;
6510 int cim_num_obq = is_t4(adap->params.chip) ?
6511 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6513 for (i = 0; i < CIM_NUM_IBQ; i++) {
6514 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6515 QUENUMSELECT_V(i));
6516 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6517 /* value is in 256-byte units */
6518 *base++ = CIMQBASE_G(v) * 256;
6519 *size++ = CIMQSIZE_G(v) * 256;
6520 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6522 for (i = 0; i < cim_num_obq; i++) {
6523 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6524 QUENUMSELECT_V(i));
6525 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6526 /* value is in 256-byte units */
6527 *base++ = CIMQBASE_G(v) * 256;
6528 *size++ = CIMQSIZE_G(v) * 256;
6533 * t4_read_cim_ibq - read the contents of a CIM inbound queue
6534 * @adap: the adapter
6535 * @qid: the queue index
6536 * @data: where to store the queue contents
6537 * @n: capacity of @data in 32-bit words
6539 * Reads the contents of the selected CIM queue starting at address 0 up
6540 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6541 * error and the number of 32-bit words actually read on success.
6543 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6545 int i, err, attempts;
6546 unsigned int addr;
6547 const unsigned int nwords = CIM_IBQ_SIZE * 4;
6549 if (qid > 5 || (n & 3))
6550 return -EINVAL;
6552 addr = qid * nwords;
6553 if (n > nwords)
6554 n = nwords;
6556 /* It might take 3-10ms before the IBQ debug read access is allowed.
6557 * Wait for 1 Sec with a delay of 1 usec.
6559 attempts = 1000000;
6561 for (i = 0; i < n; i++, addr++) {
6562 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6563 IBQDBGEN_F);
6564 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6565 attempts, 1);
6566 if (err)
6567 return err;
6568 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6570 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6571 return i;
6575 * t4_read_cim_obq - read the contents of a CIM outbound queue
6576 * @adap: the adapter
6577 * @qid: the queue index
6578 * @data: where to store the queue contents
6579 * @n: capacity of @data in 32-bit words
6581 * Reads the contents of the selected CIM queue starting at address 0 up
6582 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6583 * error and the number of 32-bit words actually read on success.
6585 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6587 int i, err;
6588 unsigned int addr, v, nwords;
6589 int cim_num_obq = is_t4(adap->params.chip) ?
6590 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6592 if ((qid > (cim_num_obq - 1)) || (n & 3))
6593 return -EINVAL;
6595 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6596 QUENUMSELECT_V(qid));
6597 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6599 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
6600 nwords = CIMQSIZE_G(v) * 64; /* same */
6601 if (n > nwords)
6602 n = nwords;
6604 for (i = 0; i < n; i++, addr++) {
6605 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6606 OBQDBGEN_F);
6607 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6608 2, 1);
6609 if (err)
6610 return err;
6611 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6613 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6614 return i;
6618 * t4_cim_read - read a block from CIM internal address space
6619 * @adap: the adapter
6620 * @addr: the start address within the CIM address space
6621 * @n: number of words to read
6622 * @valp: where to store the result
6624 * Reads a block of 4-byte words from the CIM intenal address space.
6626 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6627 unsigned int *valp)
6629 int ret = 0;
6631 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6632 return -EBUSY;
6634 for ( ; !ret && n--; addr += 4) {
6635 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6636 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6637 0, 5, 2);
6638 if (!ret)
6639 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6641 return ret;
6645 * t4_cim_write - write a block into CIM internal address space
6646 * @adap: the adapter
6647 * @addr: the start address within the CIM address space
6648 * @n: number of words to write
6649 * @valp: set of values to write
6651 * Writes a block of 4-byte words into the CIM intenal address space.
6653 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6654 const unsigned int *valp)
6656 int ret = 0;
6658 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6659 return -EBUSY;
6661 for ( ; !ret && n--; addr += 4) {
6662 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6663 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6664 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6665 0, 5, 2);
6667 return ret;
6670 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6671 unsigned int val)
6673 return t4_cim_write(adap, addr, 1, &val);
6677 * t4_cim_read_la - read CIM LA capture buffer
6678 * @adap: the adapter
6679 * @la_buf: where to store the LA data
6680 * @wrptr: the HW write pointer within the capture buffer
6682 * Reads the contents of the CIM LA buffer with the most recent entry at
6683 * the end of the returned data and with the entry at @wrptr first.
6684 * We try to leave the LA in the running state we find it in.
6686 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6688 int i, ret;
6689 unsigned int cfg, val, idx;
6691 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6692 if (ret)
6693 return ret;
6695 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
6696 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6697 if (ret)
6698 return ret;
6701 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6702 if (ret)
6703 goto restart;
6705 idx = UPDBGLAWRPTR_G(val);
6706 if (wrptr)
6707 *wrptr = idx;
6709 for (i = 0; i < adap->params.cim_la_size; i++) {
6710 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6711 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6712 if (ret)
6713 break;
6714 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6715 if (ret)
6716 break;
6717 if (val & UPDBGLARDEN_F) {
6718 ret = -ETIMEDOUT;
6719 break;
6721 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6722 if (ret)
6723 break;
6724 idx = (idx + 1) & UPDBGLARDPTR_M;
6726 restart:
6727 if (cfg & UPDBGLAEN_F) {
6728 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6729 cfg & ~UPDBGLARDEN_F);
6730 if (!ret)
6731 ret = r;
6733 return ret;
6737 * t4_tp_read_la - read TP LA capture buffer
6738 * @adap: the adapter
6739 * @la_buf: where to store the LA data
6740 * @wrptr: the HW write pointer within the capture buffer
6742 * Reads the contents of the TP LA buffer with the most recent entry at
6743 * the end of the returned data and with the entry at @wrptr first.
6744 * We leave the LA in the running state we find it in.
6746 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6748 bool last_incomplete;
6749 unsigned int i, cfg, val, idx;
6751 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6752 if (cfg & DBGLAENABLE_F) /* freeze LA */
6753 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6754 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6756 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6757 idx = DBGLAWPTR_G(val);
6758 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6759 if (last_incomplete)
6760 idx = (idx + 1) & DBGLARPTR_M;
6761 if (wrptr)
6762 *wrptr = idx;
6764 val &= 0xffff;
6765 val &= ~DBGLARPTR_V(DBGLARPTR_M);
6766 val |= adap->params.tp.la_mask;
6768 for (i = 0; i < TPLA_SIZE; i++) {
6769 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6770 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6771 idx = (idx + 1) & DBGLARPTR_M;
6774 /* Wipe out last entry if it isn't valid */
6775 if (last_incomplete)
6776 la_buf[TPLA_SIZE - 1] = ~0ULL;
6778 if (cfg & DBGLAENABLE_F) /* restore running state */
6779 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6780 cfg | adap->params.tp.la_mask);
6783 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6784 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
6785 * state for more than the Warning Threshold then we'll issue a warning about
6786 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
6787 * appears to be hung every Warning Repeat second till the situation clears.
6788 * If the situation clears, we'll note that as well.
6790 #define SGE_IDMA_WARN_THRESH 1
6791 #define SGE_IDMA_WARN_REPEAT 300
6794 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6795 * @adapter: the adapter
6796 * @idma: the adapter IDMA Monitor state
6798 * Initialize the state of an SGE Ingress DMA Monitor.
6800 void t4_idma_monitor_init(struct adapter *adapter,
6801 struct sge_idma_monitor_state *idma)
6803 /* Initialize the state variables for detecting an SGE Ingress DMA
6804 * hang. The SGE has internal counters which count up on each clock
6805 * tick whenever the SGE finds its Ingress DMA State Engines in the
6806 * same state they were on the previous clock tick. The clock used is
6807 * the Core Clock so we have a limit on the maximum "time" they can
6808 * record; typically a very small number of seconds. For instance,
6809 * with a 600MHz Core Clock, we can only count up to a bit more than
6810 * 7s. So we'll synthesize a larger counter in order to not run the
6811 * risk of having the "timers" overflow and give us the flexibility to
6812 * maintain a Hung SGE State Machine of our own which operates across
6813 * a longer time frame.
6815 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6816 idma->idma_stalled[0] = 0;
6817 idma->idma_stalled[1] = 0;
6821 * t4_idma_monitor - monitor SGE Ingress DMA state
6822 * @adapter: the adapter
6823 * @idma: the adapter IDMA Monitor state
6824 * @hz: number of ticks/second
6825 * @ticks: number of ticks since the last IDMA Monitor call
6827 void t4_idma_monitor(struct adapter *adapter,
6828 struct sge_idma_monitor_state *idma,
6829 int hz, int ticks)
6831 int i, idma_same_state_cnt[2];
6833 /* Read the SGE Debug Ingress DMA Same State Count registers. These
6834 * are counters inside the SGE which count up on each clock when the
6835 * SGE finds its Ingress DMA State Engines in the same states they
6836 * were in the previous clock. The counters will peg out at
6837 * 0xffffffff without wrapping around so once they pass the 1s
6838 * threshold they'll stay above that till the IDMA state changes.
6840 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
6841 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
6842 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6844 for (i = 0; i < 2; i++) {
6845 u32 debug0, debug11;
6847 /* If the Ingress DMA Same State Counter ("timer") is less
6848 * than 1s, then we can reset our synthesized Stall Timer and
6849 * continue. If we have previously emitted warnings about a
6850 * potential stalled Ingress Queue, issue a note indicating
6851 * that the Ingress Queue has resumed forward progress.
6853 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
6854 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
6855 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
6856 "resumed after %d seconds\n",
6857 i, idma->idma_qid[i],
6858 idma->idma_stalled[i] / hz);
6859 idma->idma_stalled[i] = 0;
6860 continue;
6863 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
6864 * domain. The first time we get here it'll be because we
6865 * passed the 1s Threshold; each additional time it'll be
6866 * because the RX Timer Callback is being fired on its regular
6867 * schedule.
6869 * If the stall is below our Potential Hung Ingress Queue
6870 * Warning Threshold, continue.
6872 if (idma->idma_stalled[i] == 0) {
6873 idma->idma_stalled[i] = hz;
6874 idma->idma_warn[i] = 0;
6875 } else {
6876 idma->idma_stalled[i] += ticks;
6877 idma->idma_warn[i] -= ticks;
6880 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
6881 continue;
6883 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
6885 if (idma->idma_warn[i] > 0)
6886 continue;
6887 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
6889 /* Read and save the SGE IDMA State and Queue ID information.
6890 * We do this every time in case it changes across time ...
6891 * can't be too careful ...
6893 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
6894 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6895 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
6897 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
6898 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6899 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
6901 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
6902 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
6903 i, idma->idma_qid[i], idma->idma_state[i],
6904 idma->idma_stalled[i] / hz,
6905 debug0, debug11);
6906 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);