perf_counter: Add counter enable/disable ioctls
[linux-2.6/btrfs-unstable.git] / kernel / perf_counter.c
blob1ac18daa424fd928a5a3e59f0dcdd3ee4bea0dd9
1 /*
2 * Performance counter core code
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
7 * For licencing details see kernel-base/COPYING
8 */
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
25 * Each CPU has a list of per CPU counters:
27 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
29 int perf_max_counters __read_mostly = 1;
30 static int perf_reserved_percpu __read_mostly;
31 static int perf_overcommit __read_mostly = 1;
34 * Mutex for (sysadmin-configurable) counter reservations:
36 static DEFINE_MUTEX(perf_resource_mutex);
39 * Architecture provided APIs - weak aliases:
41 extern __weak const struct hw_perf_counter_ops *
42 hw_perf_counter_init(struct perf_counter *counter)
44 return NULL;
47 u64 __weak hw_perf_save_disable(void) { return 0; }
48 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
49 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
50 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
51 struct perf_cpu_context *cpuctx,
52 struct perf_counter_context *ctx, int cpu)
54 return 0;
57 void __weak perf_counter_print_debug(void) { }
59 static void
60 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
62 struct perf_counter *group_leader = counter->group_leader;
65 * Depending on whether it is a standalone or sibling counter,
66 * add it straight to the context's counter list, or to the group
67 * leader's sibling list:
69 if (counter->group_leader == counter)
70 list_add_tail(&counter->list_entry, &ctx->counter_list);
71 else
72 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
75 static void
76 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
78 struct perf_counter *sibling, *tmp;
80 list_del_init(&counter->list_entry);
83 * If this was a group counter with sibling counters then
84 * upgrade the siblings to singleton counters by adding them
85 * to the context list directly:
87 list_for_each_entry_safe(sibling, tmp,
88 &counter->sibling_list, list_entry) {
90 list_del_init(&sibling->list_entry);
91 list_add_tail(&sibling->list_entry, &ctx->counter_list);
92 sibling->group_leader = sibling;
96 static void
97 counter_sched_out(struct perf_counter *counter,
98 struct perf_cpu_context *cpuctx,
99 struct perf_counter_context *ctx)
101 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
102 return;
104 counter->state = PERF_COUNTER_STATE_INACTIVE;
105 counter->hw_ops->disable(counter);
106 counter->oncpu = -1;
108 if (!is_software_counter(counter))
109 cpuctx->active_oncpu--;
110 ctx->nr_active--;
111 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
112 cpuctx->exclusive = 0;
115 static void
116 group_sched_out(struct perf_counter *group_counter,
117 struct perf_cpu_context *cpuctx,
118 struct perf_counter_context *ctx)
120 struct perf_counter *counter;
122 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
123 return;
125 counter_sched_out(group_counter, cpuctx, ctx);
128 * Schedule out siblings (if any):
130 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
131 counter_sched_out(counter, cpuctx, ctx);
133 if (group_counter->hw_event.exclusive)
134 cpuctx->exclusive = 0;
138 * Cross CPU call to remove a performance counter
140 * We disable the counter on the hardware level first. After that we
141 * remove it from the context list.
143 static void __perf_counter_remove_from_context(void *info)
145 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
146 struct perf_counter *counter = info;
147 struct perf_counter_context *ctx = counter->ctx;
148 unsigned long flags;
149 u64 perf_flags;
152 * If this is a task context, we need to check whether it is
153 * the current task context of this cpu. If not it has been
154 * scheduled out before the smp call arrived.
156 if (ctx->task && cpuctx->task_ctx != ctx)
157 return;
159 curr_rq_lock_irq_save(&flags);
160 spin_lock(&ctx->lock);
162 counter_sched_out(counter, cpuctx, ctx);
164 counter->task = NULL;
165 ctx->nr_counters--;
168 * Protect the list operation against NMI by disabling the
169 * counters on a global level. NOP for non NMI based counters.
171 perf_flags = hw_perf_save_disable();
172 list_del_counter(counter, ctx);
173 hw_perf_restore(perf_flags);
175 if (!ctx->task) {
177 * Allow more per task counters with respect to the
178 * reservation:
180 cpuctx->max_pertask =
181 min(perf_max_counters - ctx->nr_counters,
182 perf_max_counters - perf_reserved_percpu);
185 spin_unlock(&ctx->lock);
186 curr_rq_unlock_irq_restore(&flags);
191 * Remove the counter from a task's (or a CPU's) list of counters.
193 * Must be called with counter->mutex and ctx->mutex held.
195 * CPU counters are removed with a smp call. For task counters we only
196 * call when the task is on a CPU.
198 static void perf_counter_remove_from_context(struct perf_counter *counter)
200 struct perf_counter_context *ctx = counter->ctx;
201 struct task_struct *task = ctx->task;
203 if (!task) {
205 * Per cpu counters are removed via an smp call and
206 * the removal is always sucessful.
208 smp_call_function_single(counter->cpu,
209 __perf_counter_remove_from_context,
210 counter, 1);
211 return;
214 retry:
215 task_oncpu_function_call(task, __perf_counter_remove_from_context,
216 counter);
218 spin_lock_irq(&ctx->lock);
220 * If the context is active we need to retry the smp call.
222 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
223 spin_unlock_irq(&ctx->lock);
224 goto retry;
228 * The lock prevents that this context is scheduled in so we
229 * can remove the counter safely, if the call above did not
230 * succeed.
232 if (!list_empty(&counter->list_entry)) {
233 ctx->nr_counters--;
234 list_del_counter(counter, ctx);
235 counter->task = NULL;
237 spin_unlock_irq(&ctx->lock);
241 * Cross CPU call to disable a performance counter
243 static void __perf_counter_disable(void *info)
245 struct perf_counter *counter = info;
246 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
247 struct perf_counter_context *ctx = counter->ctx;
248 unsigned long flags;
251 * If this is a per-task counter, need to check whether this
252 * counter's task is the current task on this cpu.
254 if (ctx->task && cpuctx->task_ctx != ctx)
255 return;
257 curr_rq_lock_irq_save(&flags);
258 spin_lock(&ctx->lock);
261 * If the counter is on, turn it off.
262 * If it is in error state, leave it in error state.
264 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
265 if (counter == counter->group_leader)
266 group_sched_out(counter, cpuctx, ctx);
267 else
268 counter_sched_out(counter, cpuctx, ctx);
269 counter->state = PERF_COUNTER_STATE_OFF;
272 spin_unlock(&ctx->lock);
273 curr_rq_unlock_irq_restore(&flags);
277 * Disable a counter.
279 static void perf_counter_disable(struct perf_counter *counter)
281 struct perf_counter_context *ctx = counter->ctx;
282 struct task_struct *task = ctx->task;
284 if (!task) {
286 * Disable the counter on the cpu that it's on
288 smp_call_function_single(counter->cpu, __perf_counter_disable,
289 counter, 1);
290 return;
293 retry:
294 task_oncpu_function_call(task, __perf_counter_disable, counter);
296 spin_lock_irq(&ctx->lock);
298 * If the counter is still active, we need to retry the cross-call.
300 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
301 spin_unlock_irq(&ctx->lock);
302 goto retry;
306 * Since we have the lock this context can't be scheduled
307 * in, so we can change the state safely.
309 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
310 counter->state = PERF_COUNTER_STATE_OFF;
312 spin_unlock_irq(&ctx->lock);
316 * Disable a counter and all its children.
318 static void perf_counter_disable_family(struct perf_counter *counter)
320 struct perf_counter *child;
322 perf_counter_disable(counter);
325 * Lock the mutex to protect the list of children
327 mutex_lock(&counter->mutex);
328 list_for_each_entry(child, &counter->child_list, child_list)
329 perf_counter_disable(child);
330 mutex_unlock(&counter->mutex);
333 static int
334 counter_sched_in(struct perf_counter *counter,
335 struct perf_cpu_context *cpuctx,
336 struct perf_counter_context *ctx,
337 int cpu)
339 if (counter->state <= PERF_COUNTER_STATE_OFF)
340 return 0;
342 counter->state = PERF_COUNTER_STATE_ACTIVE;
343 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
345 * The new state must be visible before we turn it on in the hardware:
347 smp_wmb();
349 if (counter->hw_ops->enable(counter)) {
350 counter->state = PERF_COUNTER_STATE_INACTIVE;
351 counter->oncpu = -1;
352 return -EAGAIN;
355 if (!is_software_counter(counter))
356 cpuctx->active_oncpu++;
357 ctx->nr_active++;
359 if (counter->hw_event.exclusive)
360 cpuctx->exclusive = 1;
362 return 0;
366 * Return 1 for a group consisting entirely of software counters,
367 * 0 if the group contains any hardware counters.
369 static int is_software_only_group(struct perf_counter *leader)
371 struct perf_counter *counter;
373 if (!is_software_counter(leader))
374 return 0;
375 list_for_each_entry(counter, &leader->sibling_list, list_entry)
376 if (!is_software_counter(counter))
377 return 0;
378 return 1;
382 * Work out whether we can put this counter group on the CPU now.
384 static int group_can_go_on(struct perf_counter *counter,
385 struct perf_cpu_context *cpuctx,
386 int can_add_hw)
389 * Groups consisting entirely of software counters can always go on.
391 if (is_software_only_group(counter))
392 return 1;
394 * If an exclusive group is already on, no other hardware
395 * counters can go on.
397 if (cpuctx->exclusive)
398 return 0;
400 * If this group is exclusive and there are already
401 * counters on the CPU, it can't go on.
403 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
404 return 0;
406 * Otherwise, try to add it if all previous groups were able
407 * to go on.
409 return can_add_hw;
413 * Cross CPU call to install and enable a performance counter
415 static void __perf_install_in_context(void *info)
417 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
418 struct perf_counter *counter = info;
419 struct perf_counter_context *ctx = counter->ctx;
420 struct perf_counter *leader = counter->group_leader;
421 int cpu = smp_processor_id();
422 unsigned long flags;
423 u64 perf_flags;
424 int err;
427 * If this is a task context, we need to check whether it is
428 * the current task context of this cpu. If not it has been
429 * scheduled out before the smp call arrived.
431 if (ctx->task && cpuctx->task_ctx != ctx)
432 return;
434 curr_rq_lock_irq_save(&flags);
435 spin_lock(&ctx->lock);
438 * Protect the list operation against NMI by disabling the
439 * counters on a global level. NOP for non NMI based counters.
441 perf_flags = hw_perf_save_disable();
443 list_add_counter(counter, ctx);
444 ctx->nr_counters++;
447 * Don't put the counter on if it is disabled or if
448 * it is in a group and the group isn't on.
450 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
451 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
452 goto unlock;
455 * An exclusive counter can't go on if there are already active
456 * hardware counters, and no hardware counter can go on if there
457 * is already an exclusive counter on.
459 if (!group_can_go_on(counter, cpuctx, 1))
460 err = -EEXIST;
461 else
462 err = counter_sched_in(counter, cpuctx, ctx, cpu);
464 if (err) {
466 * This counter couldn't go on. If it is in a group
467 * then we have to pull the whole group off.
468 * If the counter group is pinned then put it in error state.
470 if (leader != counter)
471 group_sched_out(leader, cpuctx, ctx);
472 if (leader->hw_event.pinned)
473 leader->state = PERF_COUNTER_STATE_ERROR;
476 if (!err && !ctx->task && cpuctx->max_pertask)
477 cpuctx->max_pertask--;
479 unlock:
480 hw_perf_restore(perf_flags);
482 spin_unlock(&ctx->lock);
483 curr_rq_unlock_irq_restore(&flags);
487 * Attach a performance counter to a context
489 * First we add the counter to the list with the hardware enable bit
490 * in counter->hw_config cleared.
492 * If the counter is attached to a task which is on a CPU we use a smp
493 * call to enable it in the task context. The task might have been
494 * scheduled away, but we check this in the smp call again.
496 * Must be called with ctx->mutex held.
498 static void
499 perf_install_in_context(struct perf_counter_context *ctx,
500 struct perf_counter *counter,
501 int cpu)
503 struct task_struct *task = ctx->task;
505 counter->ctx = ctx;
506 if (!task) {
508 * Per cpu counters are installed via an smp call and
509 * the install is always sucessful.
511 smp_call_function_single(cpu, __perf_install_in_context,
512 counter, 1);
513 return;
516 counter->task = task;
517 retry:
518 task_oncpu_function_call(task, __perf_install_in_context,
519 counter);
521 spin_lock_irq(&ctx->lock);
523 * we need to retry the smp call.
525 if (ctx->is_active && list_empty(&counter->list_entry)) {
526 spin_unlock_irq(&ctx->lock);
527 goto retry;
531 * The lock prevents that this context is scheduled in so we
532 * can add the counter safely, if it the call above did not
533 * succeed.
535 if (list_empty(&counter->list_entry)) {
536 list_add_counter(counter, ctx);
537 ctx->nr_counters++;
539 spin_unlock_irq(&ctx->lock);
543 * Cross CPU call to enable a performance counter
545 static void __perf_counter_enable(void *info)
547 struct perf_counter *counter = info;
548 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
549 struct perf_counter_context *ctx = counter->ctx;
550 struct perf_counter *leader = counter->group_leader;
551 unsigned long flags;
552 int err;
555 * If this is a per-task counter, need to check whether this
556 * counter's task is the current task on this cpu.
558 if (ctx->task && cpuctx->task_ctx != ctx)
559 return;
561 curr_rq_lock_irq_save(&flags);
562 spin_lock(&ctx->lock);
564 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
565 goto unlock;
566 counter->state = PERF_COUNTER_STATE_INACTIVE;
569 * If the counter is in a group and isn't the group leader,
570 * then don't put it on unless the group is on.
572 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
573 goto unlock;
575 if (!group_can_go_on(counter, cpuctx, 1))
576 err = -EEXIST;
577 else
578 err = counter_sched_in(counter, cpuctx, ctx,
579 smp_processor_id());
581 if (err) {
583 * If this counter can't go on and it's part of a
584 * group, then the whole group has to come off.
586 if (leader != counter)
587 group_sched_out(leader, cpuctx, ctx);
588 if (leader->hw_event.pinned)
589 leader->state = PERF_COUNTER_STATE_ERROR;
592 unlock:
593 spin_unlock(&ctx->lock);
594 curr_rq_unlock_irq_restore(&flags);
598 * Enable a counter.
600 static void perf_counter_enable(struct perf_counter *counter)
602 struct perf_counter_context *ctx = counter->ctx;
603 struct task_struct *task = ctx->task;
605 if (!task) {
607 * Enable the counter on the cpu that it's on
609 smp_call_function_single(counter->cpu, __perf_counter_enable,
610 counter, 1);
611 return;
614 spin_lock_irq(&ctx->lock);
615 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
616 goto out;
619 * If the counter is in error state, clear that first.
620 * That way, if we see the counter in error state below, we
621 * know that it has gone back into error state, as distinct
622 * from the task having been scheduled away before the
623 * cross-call arrived.
625 if (counter->state == PERF_COUNTER_STATE_ERROR)
626 counter->state = PERF_COUNTER_STATE_OFF;
628 retry:
629 spin_unlock_irq(&ctx->lock);
630 task_oncpu_function_call(task, __perf_counter_enable, counter);
632 spin_lock_irq(&ctx->lock);
635 * If the context is active and the counter is still off,
636 * we need to retry the cross-call.
638 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
639 goto retry;
642 * Since we have the lock this context can't be scheduled
643 * in, so we can change the state safely.
645 if (counter->state == PERF_COUNTER_STATE_OFF)
646 counter->state = PERF_COUNTER_STATE_INACTIVE;
647 out:
648 spin_unlock_irq(&ctx->lock);
652 * Enable a counter and all its children.
654 static void perf_counter_enable_family(struct perf_counter *counter)
656 struct perf_counter *child;
658 perf_counter_enable(counter);
661 * Lock the mutex to protect the list of children
663 mutex_lock(&counter->mutex);
664 list_for_each_entry(child, &counter->child_list, child_list)
665 perf_counter_enable(child);
666 mutex_unlock(&counter->mutex);
669 void __perf_counter_sched_out(struct perf_counter_context *ctx,
670 struct perf_cpu_context *cpuctx)
672 struct perf_counter *counter;
673 u64 flags;
675 spin_lock(&ctx->lock);
676 ctx->is_active = 0;
677 if (likely(!ctx->nr_counters))
678 goto out;
680 flags = hw_perf_save_disable();
681 if (ctx->nr_active) {
682 list_for_each_entry(counter, &ctx->counter_list, list_entry)
683 group_sched_out(counter, cpuctx, ctx);
685 hw_perf_restore(flags);
686 out:
687 spin_unlock(&ctx->lock);
691 * Called from scheduler to remove the counters of the current task,
692 * with interrupts disabled.
694 * We stop each counter and update the counter value in counter->count.
696 * This does not protect us against NMI, but disable()
697 * sets the disabled bit in the control field of counter _before_
698 * accessing the counter control register. If a NMI hits, then it will
699 * not restart the counter.
701 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
703 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
704 struct perf_counter_context *ctx = &task->perf_counter_ctx;
706 if (likely(!cpuctx->task_ctx))
707 return;
709 __perf_counter_sched_out(ctx, cpuctx);
711 cpuctx->task_ctx = NULL;
714 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
716 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
719 static int
720 group_sched_in(struct perf_counter *group_counter,
721 struct perf_cpu_context *cpuctx,
722 struct perf_counter_context *ctx,
723 int cpu)
725 struct perf_counter *counter, *partial_group;
726 int ret;
728 if (group_counter->state == PERF_COUNTER_STATE_OFF)
729 return 0;
731 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
732 if (ret)
733 return ret < 0 ? ret : 0;
735 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
736 return -EAGAIN;
739 * Schedule in siblings as one group (if any):
741 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
742 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
743 partial_group = counter;
744 goto group_error;
748 return 0;
750 group_error:
752 * Groups can be scheduled in as one unit only, so undo any
753 * partial group before returning:
755 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
756 if (counter == partial_group)
757 break;
758 counter_sched_out(counter, cpuctx, ctx);
760 counter_sched_out(group_counter, cpuctx, ctx);
762 return -EAGAIN;
765 static void
766 __perf_counter_sched_in(struct perf_counter_context *ctx,
767 struct perf_cpu_context *cpuctx, int cpu)
769 struct perf_counter *counter;
770 u64 flags;
771 int can_add_hw = 1;
773 spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 if (likely(!ctx->nr_counters))
776 goto out;
778 flags = hw_perf_save_disable();
781 * First go through the list and put on any pinned groups
782 * in order to give them the best chance of going on.
784 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
785 if (counter->state <= PERF_COUNTER_STATE_OFF ||
786 !counter->hw_event.pinned)
787 continue;
788 if (counter->cpu != -1 && counter->cpu != cpu)
789 continue;
791 if (group_can_go_on(counter, cpuctx, 1))
792 group_sched_in(counter, cpuctx, ctx, cpu);
795 * If this pinned group hasn't been scheduled,
796 * put it in error state.
798 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
799 counter->state = PERF_COUNTER_STATE_ERROR;
802 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
804 * Ignore counters in OFF or ERROR state, and
805 * ignore pinned counters since we did them already.
807 if (counter->state <= PERF_COUNTER_STATE_OFF ||
808 counter->hw_event.pinned)
809 continue;
812 * Listen to the 'cpu' scheduling filter constraint
813 * of counters:
815 if (counter->cpu != -1 && counter->cpu != cpu)
816 continue;
818 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
819 if (group_sched_in(counter, cpuctx, ctx, cpu))
820 can_add_hw = 0;
823 hw_perf_restore(flags);
824 out:
825 spin_unlock(&ctx->lock);
829 * Called from scheduler to add the counters of the current task
830 * with interrupts disabled.
832 * We restore the counter value and then enable it.
834 * This does not protect us against NMI, but enable()
835 * sets the enabled bit in the control field of counter _before_
836 * accessing the counter control register. If a NMI hits, then it will
837 * keep the counter running.
839 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
841 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
842 struct perf_counter_context *ctx = &task->perf_counter_ctx;
844 __perf_counter_sched_in(ctx, cpuctx, cpu);
845 cpuctx->task_ctx = ctx;
848 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
850 struct perf_counter_context *ctx = &cpuctx->ctx;
852 __perf_counter_sched_in(ctx, cpuctx, cpu);
855 int perf_counter_task_disable(void)
857 struct task_struct *curr = current;
858 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
859 struct perf_counter *counter;
860 unsigned long flags;
861 u64 perf_flags;
862 int cpu;
864 if (likely(!ctx->nr_counters))
865 return 0;
867 curr_rq_lock_irq_save(&flags);
868 cpu = smp_processor_id();
870 /* force the update of the task clock: */
871 __task_delta_exec(curr, 1);
873 perf_counter_task_sched_out(curr, cpu);
875 spin_lock(&ctx->lock);
878 * Disable all the counters:
880 perf_flags = hw_perf_save_disable();
882 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
883 if (counter->state != PERF_COUNTER_STATE_ERROR)
884 counter->state = PERF_COUNTER_STATE_OFF;
887 hw_perf_restore(perf_flags);
889 spin_unlock(&ctx->lock);
891 curr_rq_unlock_irq_restore(&flags);
893 return 0;
896 int perf_counter_task_enable(void)
898 struct task_struct *curr = current;
899 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
900 struct perf_counter *counter;
901 unsigned long flags;
902 u64 perf_flags;
903 int cpu;
905 if (likely(!ctx->nr_counters))
906 return 0;
908 curr_rq_lock_irq_save(&flags);
909 cpu = smp_processor_id();
911 /* force the update of the task clock: */
912 __task_delta_exec(curr, 1);
914 perf_counter_task_sched_out(curr, cpu);
916 spin_lock(&ctx->lock);
919 * Disable all the counters:
921 perf_flags = hw_perf_save_disable();
923 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
924 if (counter->state > PERF_COUNTER_STATE_OFF)
925 continue;
926 counter->state = PERF_COUNTER_STATE_INACTIVE;
927 counter->hw_event.disabled = 0;
929 hw_perf_restore(perf_flags);
931 spin_unlock(&ctx->lock);
933 perf_counter_task_sched_in(curr, cpu);
935 curr_rq_unlock_irq_restore(&flags);
937 return 0;
941 * Round-robin a context's counters:
943 static void rotate_ctx(struct perf_counter_context *ctx)
945 struct perf_counter *counter;
946 u64 perf_flags;
948 if (!ctx->nr_counters)
949 return;
951 spin_lock(&ctx->lock);
953 * Rotate the first entry last (works just fine for group counters too):
955 perf_flags = hw_perf_save_disable();
956 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
957 list_del(&counter->list_entry);
958 list_add_tail(&counter->list_entry, &ctx->counter_list);
959 break;
961 hw_perf_restore(perf_flags);
963 spin_unlock(&ctx->lock);
966 void perf_counter_task_tick(struct task_struct *curr, int cpu)
968 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
969 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
970 const int rotate_percpu = 0;
972 if (rotate_percpu)
973 perf_counter_cpu_sched_out(cpuctx);
974 perf_counter_task_sched_out(curr, cpu);
976 if (rotate_percpu)
977 rotate_ctx(&cpuctx->ctx);
978 rotate_ctx(ctx);
980 if (rotate_percpu)
981 perf_counter_cpu_sched_in(cpuctx, cpu);
982 perf_counter_task_sched_in(curr, cpu);
986 * Cross CPU call to read the hardware counter
988 static void __read(void *info)
990 struct perf_counter *counter = info;
991 unsigned long flags;
993 curr_rq_lock_irq_save(&flags);
994 counter->hw_ops->read(counter);
995 curr_rq_unlock_irq_restore(&flags);
998 static u64 perf_counter_read(struct perf_counter *counter)
1001 * If counter is enabled and currently active on a CPU, update the
1002 * value in the counter structure:
1004 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1005 smp_call_function_single(counter->oncpu,
1006 __read, counter, 1);
1009 return atomic64_read(&counter->count);
1013 * Cross CPU call to switch performance data pointers
1015 static void __perf_switch_irq_data(void *info)
1017 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1018 struct perf_counter *counter = info;
1019 struct perf_counter_context *ctx = counter->ctx;
1020 struct perf_data *oldirqdata = counter->irqdata;
1023 * If this is a task context, we need to check whether it is
1024 * the current task context of this cpu. If not it has been
1025 * scheduled out before the smp call arrived.
1027 if (ctx->task) {
1028 if (cpuctx->task_ctx != ctx)
1029 return;
1030 spin_lock(&ctx->lock);
1033 /* Change the pointer NMI safe */
1034 atomic_long_set((atomic_long_t *)&counter->irqdata,
1035 (unsigned long) counter->usrdata);
1036 counter->usrdata = oldirqdata;
1038 if (ctx->task)
1039 spin_unlock(&ctx->lock);
1042 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1044 struct perf_counter_context *ctx = counter->ctx;
1045 struct perf_data *oldirqdata = counter->irqdata;
1046 struct task_struct *task = ctx->task;
1048 if (!task) {
1049 smp_call_function_single(counter->cpu,
1050 __perf_switch_irq_data,
1051 counter, 1);
1052 return counter->usrdata;
1055 retry:
1056 spin_lock_irq(&ctx->lock);
1057 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1058 counter->irqdata = counter->usrdata;
1059 counter->usrdata = oldirqdata;
1060 spin_unlock_irq(&ctx->lock);
1061 return oldirqdata;
1063 spin_unlock_irq(&ctx->lock);
1064 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1065 /* Might have failed, because task was scheduled out */
1066 if (counter->irqdata == oldirqdata)
1067 goto retry;
1069 return counter->usrdata;
1072 static void put_context(struct perf_counter_context *ctx)
1074 if (ctx->task)
1075 put_task_struct(ctx->task);
1078 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1080 struct perf_cpu_context *cpuctx;
1081 struct perf_counter_context *ctx;
1082 struct task_struct *task;
1085 * If cpu is not a wildcard then this is a percpu counter:
1087 if (cpu != -1) {
1088 /* Must be root to operate on a CPU counter: */
1089 if (!capable(CAP_SYS_ADMIN))
1090 return ERR_PTR(-EACCES);
1092 if (cpu < 0 || cpu > num_possible_cpus())
1093 return ERR_PTR(-EINVAL);
1096 * We could be clever and allow to attach a counter to an
1097 * offline CPU and activate it when the CPU comes up, but
1098 * that's for later.
1100 if (!cpu_isset(cpu, cpu_online_map))
1101 return ERR_PTR(-ENODEV);
1103 cpuctx = &per_cpu(perf_cpu_context, cpu);
1104 ctx = &cpuctx->ctx;
1106 return ctx;
1109 rcu_read_lock();
1110 if (!pid)
1111 task = current;
1112 else
1113 task = find_task_by_vpid(pid);
1114 if (task)
1115 get_task_struct(task);
1116 rcu_read_unlock();
1118 if (!task)
1119 return ERR_PTR(-ESRCH);
1121 ctx = &task->perf_counter_ctx;
1122 ctx->task = task;
1124 /* Reuse ptrace permission checks for now. */
1125 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1126 put_context(ctx);
1127 return ERR_PTR(-EACCES);
1130 return ctx;
1134 * Called when the last reference to the file is gone.
1136 static int perf_release(struct inode *inode, struct file *file)
1138 struct perf_counter *counter = file->private_data;
1139 struct perf_counter_context *ctx = counter->ctx;
1141 file->private_data = NULL;
1143 mutex_lock(&ctx->mutex);
1144 mutex_lock(&counter->mutex);
1146 perf_counter_remove_from_context(counter);
1147 put_context(ctx);
1149 mutex_unlock(&counter->mutex);
1150 mutex_unlock(&ctx->mutex);
1152 kfree(counter);
1154 return 0;
1158 * Read the performance counter - simple non blocking version for now
1160 static ssize_t
1161 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1163 u64 cntval;
1165 if (count != sizeof(cntval))
1166 return -EINVAL;
1169 * Return end-of-file for a read on a counter that is in
1170 * error state (i.e. because it was pinned but it couldn't be
1171 * scheduled on to the CPU at some point).
1173 if (counter->state == PERF_COUNTER_STATE_ERROR)
1174 return 0;
1176 mutex_lock(&counter->mutex);
1177 cntval = perf_counter_read(counter);
1178 mutex_unlock(&counter->mutex);
1180 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1183 static ssize_t
1184 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1186 if (!usrdata->len)
1187 return 0;
1189 count = min(count, (size_t)usrdata->len);
1190 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1191 return -EFAULT;
1193 /* Adjust the counters */
1194 usrdata->len -= count;
1195 if (!usrdata->len)
1196 usrdata->rd_idx = 0;
1197 else
1198 usrdata->rd_idx += count;
1200 return count;
1203 static ssize_t
1204 perf_read_irq_data(struct perf_counter *counter,
1205 char __user *buf,
1206 size_t count,
1207 int nonblocking)
1209 struct perf_data *irqdata, *usrdata;
1210 DECLARE_WAITQUEUE(wait, current);
1211 ssize_t res, res2;
1213 irqdata = counter->irqdata;
1214 usrdata = counter->usrdata;
1216 if (usrdata->len + irqdata->len >= count)
1217 goto read_pending;
1219 if (nonblocking)
1220 return -EAGAIN;
1222 spin_lock_irq(&counter->waitq.lock);
1223 __add_wait_queue(&counter->waitq, &wait);
1224 for (;;) {
1225 set_current_state(TASK_INTERRUPTIBLE);
1226 if (usrdata->len + irqdata->len >= count)
1227 break;
1229 if (signal_pending(current))
1230 break;
1232 if (counter->state == PERF_COUNTER_STATE_ERROR)
1233 break;
1235 spin_unlock_irq(&counter->waitq.lock);
1236 schedule();
1237 spin_lock_irq(&counter->waitq.lock);
1239 __remove_wait_queue(&counter->waitq, &wait);
1240 __set_current_state(TASK_RUNNING);
1241 spin_unlock_irq(&counter->waitq.lock);
1243 if (usrdata->len + irqdata->len < count &&
1244 counter->state != PERF_COUNTER_STATE_ERROR)
1245 return -ERESTARTSYS;
1246 read_pending:
1247 mutex_lock(&counter->mutex);
1249 /* Drain pending data first: */
1250 res = perf_copy_usrdata(usrdata, buf, count);
1251 if (res < 0 || res == count)
1252 goto out;
1254 /* Switch irq buffer: */
1255 usrdata = perf_switch_irq_data(counter);
1256 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1257 if (res2 < 0) {
1258 if (!res)
1259 res = -EFAULT;
1260 } else {
1261 res += res2;
1263 out:
1264 mutex_unlock(&counter->mutex);
1266 return res;
1269 static ssize_t
1270 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272 struct perf_counter *counter = file->private_data;
1274 switch (counter->hw_event.record_type) {
1275 case PERF_RECORD_SIMPLE:
1276 return perf_read_hw(counter, buf, count);
1278 case PERF_RECORD_IRQ:
1279 case PERF_RECORD_GROUP:
1280 return perf_read_irq_data(counter, buf, count,
1281 file->f_flags & O_NONBLOCK);
1283 return -EINVAL;
1286 static unsigned int perf_poll(struct file *file, poll_table *wait)
1288 struct perf_counter *counter = file->private_data;
1289 unsigned int events = 0;
1290 unsigned long flags;
1292 poll_wait(file, &counter->waitq, wait);
1294 spin_lock_irqsave(&counter->waitq.lock, flags);
1295 if (counter->usrdata->len || counter->irqdata->len)
1296 events |= POLLIN;
1297 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1299 return events;
1302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1304 struct perf_counter *counter = file->private_data;
1305 int err = 0;
1307 switch (cmd) {
1308 case PERF_COUNTER_IOC_ENABLE:
1309 perf_counter_enable_family(counter);
1310 break;
1311 case PERF_COUNTER_IOC_DISABLE:
1312 perf_counter_disable_family(counter);
1313 break;
1314 default:
1315 err = -ENOTTY;
1317 return err;
1320 static const struct file_operations perf_fops = {
1321 .release = perf_release,
1322 .read = perf_read,
1323 .poll = perf_poll,
1324 .unlocked_ioctl = perf_ioctl,
1325 .compat_ioctl = perf_ioctl,
1328 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1330 int cpu = raw_smp_processor_id();
1332 atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1333 return 0;
1336 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1338 int cpu = raw_smp_processor_id();
1339 s64 prev;
1340 u64 now;
1342 now = cpu_clock(cpu);
1343 prev = atomic64_read(&counter->hw.prev_count);
1344 atomic64_set(&counter->hw.prev_count, now);
1345 atomic64_add(now - prev, &counter->count);
1348 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1350 cpu_clock_perf_counter_update(counter);
1353 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1355 cpu_clock_perf_counter_update(counter);
1358 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1359 .enable = cpu_clock_perf_counter_enable,
1360 .disable = cpu_clock_perf_counter_disable,
1361 .read = cpu_clock_perf_counter_read,
1365 * Called from within the scheduler:
1367 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1369 struct task_struct *curr = counter->task;
1370 u64 delta;
1372 delta = __task_delta_exec(curr, update);
1374 return curr->se.sum_exec_runtime + delta;
1377 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1379 u64 prev;
1380 s64 delta;
1382 prev = atomic64_read(&counter->hw.prev_count);
1384 atomic64_set(&counter->hw.prev_count, now);
1386 delta = now - prev;
1388 atomic64_add(delta, &counter->count);
1391 static void task_clock_perf_counter_read(struct perf_counter *counter)
1393 u64 now = task_clock_perf_counter_val(counter, 1);
1395 task_clock_perf_counter_update(counter, now);
1398 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1400 u64 now = task_clock_perf_counter_val(counter, 0);
1402 atomic64_set(&counter->hw.prev_count, now);
1404 return 0;
1407 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1409 u64 now = task_clock_perf_counter_val(counter, 0);
1411 task_clock_perf_counter_update(counter, now);
1414 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1415 .enable = task_clock_perf_counter_enable,
1416 .disable = task_clock_perf_counter_disable,
1417 .read = task_clock_perf_counter_read,
1420 static u64 get_page_faults(void)
1422 struct task_struct *curr = current;
1424 return curr->maj_flt + curr->min_flt;
1427 static void page_faults_perf_counter_update(struct perf_counter *counter)
1429 u64 prev, now;
1430 s64 delta;
1432 prev = atomic64_read(&counter->hw.prev_count);
1433 now = get_page_faults();
1435 atomic64_set(&counter->hw.prev_count, now);
1437 delta = now - prev;
1439 atomic64_add(delta, &counter->count);
1442 static void page_faults_perf_counter_read(struct perf_counter *counter)
1444 page_faults_perf_counter_update(counter);
1447 static int page_faults_perf_counter_enable(struct perf_counter *counter)
1450 * page-faults is a per-task value already,
1451 * so we dont have to clear it on switch-in.
1454 return 0;
1457 static void page_faults_perf_counter_disable(struct perf_counter *counter)
1459 page_faults_perf_counter_update(counter);
1462 static const struct hw_perf_counter_ops perf_ops_page_faults = {
1463 .enable = page_faults_perf_counter_enable,
1464 .disable = page_faults_perf_counter_disable,
1465 .read = page_faults_perf_counter_read,
1468 static u64 get_context_switches(void)
1470 struct task_struct *curr = current;
1472 return curr->nvcsw + curr->nivcsw;
1475 static void context_switches_perf_counter_update(struct perf_counter *counter)
1477 u64 prev, now;
1478 s64 delta;
1480 prev = atomic64_read(&counter->hw.prev_count);
1481 now = get_context_switches();
1483 atomic64_set(&counter->hw.prev_count, now);
1485 delta = now - prev;
1487 atomic64_add(delta, &counter->count);
1490 static void context_switches_perf_counter_read(struct perf_counter *counter)
1492 context_switches_perf_counter_update(counter);
1495 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1498 * ->nvcsw + curr->nivcsw is a per-task value already,
1499 * so we dont have to clear it on switch-in.
1502 return 0;
1505 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1507 context_switches_perf_counter_update(counter);
1510 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1511 .enable = context_switches_perf_counter_enable,
1512 .disable = context_switches_perf_counter_disable,
1513 .read = context_switches_perf_counter_read,
1516 static inline u64 get_cpu_migrations(void)
1518 return current->se.nr_migrations;
1521 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1523 u64 prev, now;
1524 s64 delta;
1526 prev = atomic64_read(&counter->hw.prev_count);
1527 now = get_cpu_migrations();
1529 atomic64_set(&counter->hw.prev_count, now);
1531 delta = now - prev;
1533 atomic64_add(delta, &counter->count);
1536 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1538 cpu_migrations_perf_counter_update(counter);
1541 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1544 * se.nr_migrations is a per-task value already,
1545 * so we dont have to clear it on switch-in.
1548 return 0;
1551 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1553 cpu_migrations_perf_counter_update(counter);
1556 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1557 .enable = cpu_migrations_perf_counter_enable,
1558 .disable = cpu_migrations_perf_counter_disable,
1559 .read = cpu_migrations_perf_counter_read,
1562 static const struct hw_perf_counter_ops *
1563 sw_perf_counter_init(struct perf_counter *counter)
1565 const struct hw_perf_counter_ops *hw_ops = NULL;
1567 switch (counter->hw_event.type) {
1568 case PERF_COUNT_CPU_CLOCK:
1569 hw_ops = &perf_ops_cpu_clock;
1570 break;
1571 case PERF_COUNT_TASK_CLOCK:
1572 hw_ops = &perf_ops_task_clock;
1573 break;
1574 case PERF_COUNT_PAGE_FAULTS:
1575 hw_ops = &perf_ops_page_faults;
1576 break;
1577 case PERF_COUNT_CONTEXT_SWITCHES:
1578 hw_ops = &perf_ops_context_switches;
1579 break;
1580 case PERF_COUNT_CPU_MIGRATIONS:
1581 hw_ops = &perf_ops_cpu_migrations;
1582 break;
1583 default:
1584 break;
1586 return hw_ops;
1590 * Allocate and initialize a counter structure
1592 static struct perf_counter *
1593 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1594 int cpu,
1595 struct perf_counter *group_leader,
1596 gfp_t gfpflags)
1598 const struct hw_perf_counter_ops *hw_ops;
1599 struct perf_counter *counter;
1601 counter = kzalloc(sizeof(*counter), gfpflags);
1602 if (!counter)
1603 return NULL;
1606 * Single counters are their own group leaders, with an
1607 * empty sibling list:
1609 if (!group_leader)
1610 group_leader = counter;
1612 mutex_init(&counter->mutex);
1613 INIT_LIST_HEAD(&counter->list_entry);
1614 INIT_LIST_HEAD(&counter->sibling_list);
1615 init_waitqueue_head(&counter->waitq);
1617 INIT_LIST_HEAD(&counter->child_list);
1619 counter->irqdata = &counter->data[0];
1620 counter->usrdata = &counter->data[1];
1621 counter->cpu = cpu;
1622 counter->hw_event = *hw_event;
1623 counter->wakeup_pending = 0;
1624 counter->group_leader = group_leader;
1625 counter->hw_ops = NULL;
1627 counter->state = PERF_COUNTER_STATE_INACTIVE;
1628 if (hw_event->disabled)
1629 counter->state = PERF_COUNTER_STATE_OFF;
1631 hw_ops = NULL;
1632 if (!hw_event->raw && hw_event->type < 0)
1633 hw_ops = sw_perf_counter_init(counter);
1634 if (!hw_ops)
1635 hw_ops = hw_perf_counter_init(counter);
1637 if (!hw_ops) {
1638 kfree(counter);
1639 return NULL;
1641 counter->hw_ops = hw_ops;
1643 return counter;
1647 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
1649 * @hw_event_uptr: event type attributes for monitoring/sampling
1650 * @pid: target pid
1651 * @cpu: target cpu
1652 * @group_fd: group leader counter fd
1654 asmlinkage int
1655 sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
1656 pid_t pid, int cpu, int group_fd)
1658 struct perf_counter *counter, *group_leader;
1659 struct perf_counter_hw_event hw_event;
1660 struct perf_counter_context *ctx;
1661 struct file *counter_file = NULL;
1662 struct file *group_file = NULL;
1663 int fput_needed = 0;
1664 int fput_needed2 = 0;
1665 int ret;
1667 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1668 return -EFAULT;
1671 * Get the target context (task or percpu):
1673 ctx = find_get_context(pid, cpu);
1674 if (IS_ERR(ctx))
1675 return PTR_ERR(ctx);
1678 * Look up the group leader (we will attach this counter to it):
1680 group_leader = NULL;
1681 if (group_fd != -1) {
1682 ret = -EINVAL;
1683 group_file = fget_light(group_fd, &fput_needed);
1684 if (!group_file)
1685 goto err_put_context;
1686 if (group_file->f_op != &perf_fops)
1687 goto err_put_context;
1689 group_leader = group_file->private_data;
1691 * Do not allow a recursive hierarchy (this new sibling
1692 * becoming part of another group-sibling):
1694 if (group_leader->group_leader != group_leader)
1695 goto err_put_context;
1697 * Do not allow to attach to a group in a different
1698 * task or CPU context:
1700 if (group_leader->ctx != ctx)
1701 goto err_put_context;
1703 * Only a group leader can be exclusive or pinned
1705 if (hw_event.exclusive || hw_event.pinned)
1706 goto err_put_context;
1709 ret = -EINVAL;
1710 counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
1711 if (!counter)
1712 goto err_put_context;
1714 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1715 if (ret < 0)
1716 goto err_free_put_context;
1718 counter_file = fget_light(ret, &fput_needed2);
1719 if (!counter_file)
1720 goto err_free_put_context;
1722 counter->filp = counter_file;
1723 mutex_lock(&ctx->mutex);
1724 perf_install_in_context(ctx, counter, cpu);
1725 mutex_unlock(&ctx->mutex);
1727 fput_light(counter_file, fput_needed2);
1729 out_fput:
1730 fput_light(group_file, fput_needed);
1732 return ret;
1734 err_free_put_context:
1735 kfree(counter);
1737 err_put_context:
1738 put_context(ctx);
1740 goto out_fput;
1744 * Initialize the perf_counter context in a task_struct:
1746 static void
1747 __perf_counter_init_context(struct perf_counter_context *ctx,
1748 struct task_struct *task)
1750 memset(ctx, 0, sizeof(*ctx));
1751 spin_lock_init(&ctx->lock);
1752 mutex_init(&ctx->mutex);
1753 INIT_LIST_HEAD(&ctx->counter_list);
1754 ctx->task = task;
1758 * inherit a counter from parent task to child task:
1760 static struct perf_counter *
1761 inherit_counter(struct perf_counter *parent_counter,
1762 struct task_struct *parent,
1763 struct perf_counter_context *parent_ctx,
1764 struct task_struct *child,
1765 struct perf_counter *group_leader,
1766 struct perf_counter_context *child_ctx)
1768 struct perf_counter *child_counter;
1771 * Instead of creating recursive hierarchies of counters,
1772 * we link inherited counters back to the original parent,
1773 * which has a filp for sure, which we use as the reference
1774 * count:
1776 if (parent_counter->parent)
1777 parent_counter = parent_counter->parent;
1779 child_counter = perf_counter_alloc(&parent_counter->hw_event,
1780 parent_counter->cpu, group_leader,
1781 GFP_KERNEL);
1782 if (!child_counter)
1783 return NULL;
1786 * Link it up in the child's context:
1788 child_counter->ctx = child_ctx;
1789 child_counter->task = child;
1790 list_add_counter(child_counter, child_ctx);
1791 child_ctx->nr_counters++;
1793 child_counter->parent = parent_counter;
1795 * inherit into child's child as well:
1797 child_counter->hw_event.inherit = 1;
1800 * Get a reference to the parent filp - we will fput it
1801 * when the child counter exits. This is safe to do because
1802 * we are in the parent and we know that the filp still
1803 * exists and has a nonzero count:
1805 atomic_long_inc(&parent_counter->filp->f_count);
1808 * Link this into the parent counter's child list
1810 mutex_lock(&parent_counter->mutex);
1811 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
1814 * Make the child state follow the state of the parent counter,
1815 * not its hw_event.disabled bit. We hold the parent's mutex,
1816 * so we won't race with perf_counter_{en,dis}able_family.
1818 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
1819 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
1820 else
1821 child_counter->state = PERF_COUNTER_STATE_OFF;
1823 mutex_unlock(&parent_counter->mutex);
1825 return child_counter;
1828 static int inherit_group(struct perf_counter *parent_counter,
1829 struct task_struct *parent,
1830 struct perf_counter_context *parent_ctx,
1831 struct task_struct *child,
1832 struct perf_counter_context *child_ctx)
1834 struct perf_counter *leader;
1835 struct perf_counter *sub;
1837 leader = inherit_counter(parent_counter, parent, parent_ctx,
1838 child, NULL, child_ctx);
1839 if (!leader)
1840 return -ENOMEM;
1841 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
1842 if (!inherit_counter(sub, parent, parent_ctx,
1843 child, leader, child_ctx))
1844 return -ENOMEM;
1846 return 0;
1849 static void sync_child_counter(struct perf_counter *child_counter,
1850 struct perf_counter *parent_counter)
1852 u64 parent_val, child_val;
1854 parent_val = atomic64_read(&parent_counter->count);
1855 child_val = atomic64_read(&child_counter->count);
1858 * Add back the child's count to the parent's count:
1860 atomic64_add(child_val, &parent_counter->count);
1863 * Remove this counter from the parent's list
1865 mutex_lock(&parent_counter->mutex);
1866 list_del_init(&child_counter->child_list);
1867 mutex_unlock(&parent_counter->mutex);
1870 * Release the parent counter, if this was the last
1871 * reference to it.
1873 fput(parent_counter->filp);
1876 static void
1877 __perf_counter_exit_task(struct task_struct *child,
1878 struct perf_counter *child_counter,
1879 struct perf_counter_context *child_ctx)
1881 struct perf_counter *parent_counter;
1882 struct perf_counter *sub, *tmp;
1885 * If we do not self-reap then we have to wait for the
1886 * child task to unschedule (it will happen for sure),
1887 * so that its counter is at its final count. (This
1888 * condition triggers rarely - child tasks usually get
1889 * off their CPU before the parent has a chance to
1890 * get this far into the reaping action)
1892 if (child != current) {
1893 wait_task_inactive(child, 0);
1894 list_del_init(&child_counter->list_entry);
1895 } else {
1896 struct perf_cpu_context *cpuctx;
1897 unsigned long flags;
1898 u64 perf_flags;
1901 * Disable and unlink this counter.
1903 * Be careful about zapping the list - IRQ/NMI context
1904 * could still be processing it:
1906 curr_rq_lock_irq_save(&flags);
1907 perf_flags = hw_perf_save_disable();
1909 cpuctx = &__get_cpu_var(perf_cpu_context);
1911 group_sched_out(child_counter, cpuctx, child_ctx);
1913 list_del_init(&child_counter->list_entry);
1915 child_ctx->nr_counters--;
1917 hw_perf_restore(perf_flags);
1918 curr_rq_unlock_irq_restore(&flags);
1921 parent_counter = child_counter->parent;
1923 * It can happen that parent exits first, and has counters
1924 * that are still around due to the child reference. These
1925 * counters need to be zapped - but otherwise linger.
1927 if (parent_counter) {
1928 sync_child_counter(child_counter, parent_counter);
1929 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
1930 list_entry) {
1931 if (sub->parent)
1932 sync_child_counter(sub, sub->parent);
1933 kfree(sub);
1937 kfree(child_counter);
1941 * When a child task exits, feed back counter values to parent counters.
1943 * Note: we may be running in child context, but the PID is not hashed
1944 * anymore so new counters will not be added.
1946 void perf_counter_exit_task(struct task_struct *child)
1948 struct perf_counter *child_counter, *tmp;
1949 struct perf_counter_context *child_ctx;
1951 child_ctx = &child->perf_counter_ctx;
1953 if (likely(!child_ctx->nr_counters))
1954 return;
1956 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
1957 list_entry)
1958 __perf_counter_exit_task(child, child_counter, child_ctx);
1962 * Initialize the perf_counter context in task_struct
1964 void perf_counter_init_task(struct task_struct *child)
1966 struct perf_counter_context *child_ctx, *parent_ctx;
1967 struct perf_counter *counter;
1968 struct task_struct *parent = current;
1970 child_ctx = &child->perf_counter_ctx;
1971 parent_ctx = &parent->perf_counter_ctx;
1973 __perf_counter_init_context(child_ctx, child);
1976 * This is executed from the parent task context, so inherit
1977 * counters that have been marked for cloning:
1980 if (likely(!parent_ctx->nr_counters))
1981 return;
1984 * Lock the parent list. No need to lock the child - not PID
1985 * hashed yet and not running, so nobody can access it.
1987 mutex_lock(&parent_ctx->mutex);
1990 * We dont have to disable NMIs - we are only looking at
1991 * the list, not manipulating it:
1993 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
1994 if (!counter->hw_event.inherit)
1995 continue;
1997 if (inherit_group(counter, parent,
1998 parent_ctx, child, child_ctx))
1999 break;
2002 mutex_unlock(&parent_ctx->mutex);
2005 static void __cpuinit perf_counter_init_cpu(int cpu)
2007 struct perf_cpu_context *cpuctx;
2009 cpuctx = &per_cpu(perf_cpu_context, cpu);
2010 __perf_counter_init_context(&cpuctx->ctx, NULL);
2012 mutex_lock(&perf_resource_mutex);
2013 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2014 mutex_unlock(&perf_resource_mutex);
2016 hw_perf_counter_setup(cpu);
2019 #ifdef CONFIG_HOTPLUG_CPU
2020 static void __perf_counter_exit_cpu(void *info)
2022 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2023 struct perf_counter_context *ctx = &cpuctx->ctx;
2024 struct perf_counter *counter, *tmp;
2026 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2027 __perf_counter_remove_from_context(counter);
2029 static void perf_counter_exit_cpu(int cpu)
2031 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2032 struct perf_counter_context *ctx = &cpuctx->ctx;
2034 mutex_lock(&ctx->mutex);
2035 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2036 mutex_unlock(&ctx->mutex);
2038 #else
2039 static inline void perf_counter_exit_cpu(int cpu) { }
2040 #endif
2042 static int __cpuinit
2043 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2045 unsigned int cpu = (long)hcpu;
2047 switch (action) {
2049 case CPU_UP_PREPARE:
2050 case CPU_UP_PREPARE_FROZEN:
2051 perf_counter_init_cpu(cpu);
2052 break;
2054 case CPU_DOWN_PREPARE:
2055 case CPU_DOWN_PREPARE_FROZEN:
2056 perf_counter_exit_cpu(cpu);
2057 break;
2059 default:
2060 break;
2063 return NOTIFY_OK;
2066 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2067 .notifier_call = perf_cpu_notify,
2070 static int __init perf_counter_init(void)
2072 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2073 (void *)(long)smp_processor_id());
2074 register_cpu_notifier(&perf_cpu_nb);
2076 return 0;
2078 early_initcall(perf_counter_init);
2080 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2082 return sprintf(buf, "%d\n", perf_reserved_percpu);
2085 static ssize_t
2086 perf_set_reserve_percpu(struct sysdev_class *class,
2087 const char *buf,
2088 size_t count)
2090 struct perf_cpu_context *cpuctx;
2091 unsigned long val;
2092 int err, cpu, mpt;
2094 err = strict_strtoul(buf, 10, &val);
2095 if (err)
2096 return err;
2097 if (val > perf_max_counters)
2098 return -EINVAL;
2100 mutex_lock(&perf_resource_mutex);
2101 perf_reserved_percpu = val;
2102 for_each_online_cpu(cpu) {
2103 cpuctx = &per_cpu(perf_cpu_context, cpu);
2104 spin_lock_irq(&cpuctx->ctx.lock);
2105 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2106 perf_max_counters - perf_reserved_percpu);
2107 cpuctx->max_pertask = mpt;
2108 spin_unlock_irq(&cpuctx->ctx.lock);
2110 mutex_unlock(&perf_resource_mutex);
2112 return count;
2115 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2117 return sprintf(buf, "%d\n", perf_overcommit);
2120 static ssize_t
2121 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2123 unsigned long val;
2124 int err;
2126 err = strict_strtoul(buf, 10, &val);
2127 if (err)
2128 return err;
2129 if (val > 1)
2130 return -EINVAL;
2132 mutex_lock(&perf_resource_mutex);
2133 perf_overcommit = val;
2134 mutex_unlock(&perf_resource_mutex);
2136 return count;
2139 static SYSDEV_CLASS_ATTR(
2140 reserve_percpu,
2141 0644,
2142 perf_show_reserve_percpu,
2143 perf_set_reserve_percpu
2146 static SYSDEV_CLASS_ATTR(
2147 overcommit,
2148 0644,
2149 perf_show_overcommit,
2150 perf_set_overcommit
2153 static struct attribute *perfclass_attrs[] = {
2154 &attr_reserve_percpu.attr,
2155 &attr_overcommit.attr,
2156 NULL
2159 static struct attribute_group perfclass_attr_group = {
2160 .attrs = perfclass_attrs,
2161 .name = "perf_counters",
2164 static int __init perf_counter_sysfs_init(void)
2166 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2167 &perfclass_attr_group);
2169 device_initcall(perf_counter_sysfs_init);