1 #define pr_fmt(fmt) "prime numbers: " fmt "\n"
3 #include <linux/module.h>
4 #include <linux/mutex.h>
5 #include <linux/prime_numbers.h>
6 #include <linux/slab.h>
8 #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
12 unsigned long last
, sz
;
13 unsigned long primes
[];
16 #if BITS_PER_LONG == 64
17 static const struct primes small_primes
= {
41 #elif BITS_PER_LONG == 32
42 static const struct primes small_primes
= {
60 #error "unhandled BITS_PER_LONG"
63 static DEFINE_MUTEX(lock
);
64 static const struct primes __rcu
*primes
= RCU_INITIALIZER(&small_primes
);
66 static unsigned long selftest_max
;
68 static bool slow_is_prime_number(unsigned long x
)
70 unsigned long y
= int_sqrt(x
);
81 static unsigned long slow_next_prime_number(unsigned long x
)
83 while (x
< ULONG_MAX
&& !slow_is_prime_number(++x
))
89 static unsigned long clear_multiples(unsigned long x
,
98 m
= roundup(start
, x
);
108 static bool expand_to_next_prime(unsigned long x
)
110 const struct primes
*p
;
114 /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
115 * there is always at least one prime p between n and 2n - 2.
116 * Equivalently, if n > 1, then there is always at least one prime p
117 * such that n < p < 2n.
119 * http://mathworld.wolfram.com/BertrandsPostulate.html
120 * https://en.wikipedia.org/wiki/Bertrand's_postulate
126 sz
= round_up(sz
, BITS_PER_LONG
);
127 new = kmalloc(sizeof(*new) + bitmap_size(sz
),
128 GFP_KERNEL
| __GFP_NOWARN
);
133 p
= rcu_dereference_protected(primes
, lockdep_is_held(&lock
));
139 /* Where memory permits, track the primes using the
140 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
141 * primes from the set, what remains in the set is therefore prime.
143 bitmap_fill(new->primes
, sz
);
144 bitmap_copy(new->primes
, p
->primes
, p
->sz
);
145 for (y
= 2UL; y
< sz
; y
= find_next_bit(new->primes
, sz
, y
+ 1))
146 new->last
= clear_multiples(y
, new->primes
, p
->sz
, sz
);
149 BUG_ON(new->last
<= x
);
151 rcu_assign_pointer(primes
, new);
152 if (p
!= &small_primes
)
153 kfree_rcu((struct primes
*)p
, rcu
);
160 static void free_primes(void)
162 const struct primes
*p
;
165 p
= rcu_dereference_protected(primes
, lockdep_is_held(&lock
));
166 if (p
!= &small_primes
) {
167 rcu_assign_pointer(primes
, &small_primes
);
168 kfree_rcu((struct primes
*)p
, rcu
);
174 * next_prime_number - return the next prime number
175 * @x: the starting point for searching to test
177 * A prime number is an integer greater than 1 that is only divisible by
178 * itself and 1. The set of prime numbers is computed using the Sieve of
179 * Eratoshenes (on finding a prime, all multiples of that prime are removed
180 * from the set) enabling a fast lookup of the next prime number larger than
181 * @x. If the sieve fails (memory limitation), the search falls back to using
182 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
183 * final prime as a sentinel).
185 * Returns: the next prime number larger than @x
187 unsigned long next_prime_number(unsigned long x
)
189 const struct primes
*p
;
192 p
= rcu_dereference(primes
);
193 while (x
>= p
->last
) {
196 if (!expand_to_next_prime(x
))
197 return slow_next_prime_number(x
);
200 p
= rcu_dereference(primes
);
202 x
= find_next_bit(p
->primes
, p
->last
, x
+ 1);
207 EXPORT_SYMBOL(next_prime_number
);
210 * is_prime_number - test whether the given number is prime
211 * @x: the number to test
213 * A prime number is an integer greater than 1 that is only divisible by
214 * itself and 1. Internally a cache of prime numbers is kept (to speed up
215 * searching for sequential primes, see next_prime_number()), but if the number
216 * falls outside of that cache, its primality is tested using trial-divison.
218 * Returns: true if @x is prime, false for composite numbers.
220 bool is_prime_number(unsigned long x
)
222 const struct primes
*p
;
226 p
= rcu_dereference(primes
);
230 if (!expand_to_next_prime(x
))
231 return slow_is_prime_number(x
);
234 p
= rcu_dereference(primes
);
236 result
= test_bit(x
, p
->primes
);
241 EXPORT_SYMBOL(is_prime_number
);
243 static void dump_primes(void)
245 const struct primes
*p
;
248 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
251 p
= rcu_dereference(primes
);
254 bitmap_print_to_pagebuf(true, buf
, p
->primes
, p
->sz
);
255 pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
256 p
->last
, p
->sz
, p
->primes
[BITS_TO_LONGS(p
->sz
) - 1], buf
);
263 static int selftest(unsigned long max
)
265 unsigned long x
, last
;
270 for (last
= 0, x
= 2; x
< max
; x
++) {
271 bool slow
= slow_is_prime_number(x
);
272 bool fast
= is_prime_number(x
);
275 pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
276 x
, slow
? "yes" : "no", fast
? "yes" : "no");
283 if (next_prime_number(last
) != x
) {
284 pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
285 last
, x
, next_prime_number(last
));
291 pr_info("selftest(%lu) passed, last prime was %lu", x
, last
);
299 static int __init
primes_init(void)
301 return selftest(selftest_max
);
304 static void __exit
primes_exit(void)
309 module_init(primes_init
);
310 module_exit(primes_exit
);
312 module_param_named(selftest
, selftest_max
, ulong
, 0400);
314 MODULE_AUTHOR("Intel Corporation");
315 MODULE_LICENSE("GPL");