timer: Store cpu-number in struct tvec_base
[linux-2.6/btrfs-unstable.git] / kernel / time / timer.c
blob9e5f4f25dcc03957da8b19960ce038a2a030a3e9
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/timer.h>
55 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
57 EXPORT_SYMBOL(jiffies_64);
60 * per-CPU timer vector definitions:
62 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64 #define TVN_SIZE (1 << TVN_BITS)
65 #define TVR_SIZE (1 << TVR_BITS)
66 #define TVN_MASK (TVN_SIZE - 1)
67 #define TVR_MASK (TVR_SIZE - 1)
68 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
70 struct tvec {
71 struct list_head vec[TVN_SIZE];
74 struct tvec_root {
75 struct list_head vec[TVR_SIZE];
78 struct tvec_base {
79 spinlock_t lock;
80 struct timer_list *running_timer;
81 unsigned long timer_jiffies;
82 unsigned long next_timer;
83 unsigned long active_timers;
84 unsigned long all_timers;
85 int cpu;
86 struct tvec_root tv1;
87 struct tvec tv2;
88 struct tvec tv3;
89 struct tvec tv4;
90 struct tvec tv5;
91 } ____cacheline_aligned;
93 struct tvec_base boot_tvec_bases;
94 EXPORT_SYMBOL(boot_tvec_bases);
95 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
97 /* Functions below help us manage 'deferrable' flag */
98 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
100 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
103 static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
105 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
108 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
110 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
113 static inline void
114 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
116 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
118 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
121 static unsigned long round_jiffies_common(unsigned long j, int cpu,
122 bool force_up)
124 int rem;
125 unsigned long original = j;
128 * We don't want all cpus firing their timers at once hitting the
129 * same lock or cachelines, so we skew each extra cpu with an extra
130 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
131 * already did this.
132 * The skew is done by adding 3*cpunr, then round, then subtract this
133 * extra offset again.
135 j += cpu * 3;
137 rem = j % HZ;
140 * If the target jiffie is just after a whole second (which can happen
141 * due to delays of the timer irq, long irq off times etc etc) then
142 * we should round down to the whole second, not up. Use 1/4th second
143 * as cutoff for this rounding as an extreme upper bound for this.
144 * But never round down if @force_up is set.
146 if (rem < HZ/4 && !force_up) /* round down */
147 j = j - rem;
148 else /* round up */
149 j = j - rem + HZ;
151 /* now that we have rounded, subtract the extra skew again */
152 j -= cpu * 3;
155 * Make sure j is still in the future. Otherwise return the
156 * unmodified value.
158 return time_is_after_jiffies(j) ? j : original;
162 * __round_jiffies - function to round jiffies to a full second
163 * @j: the time in (absolute) jiffies that should be rounded
164 * @cpu: the processor number on which the timeout will happen
166 * __round_jiffies() rounds an absolute time in the future (in jiffies)
167 * up or down to (approximately) full seconds. This is useful for timers
168 * for which the exact time they fire does not matter too much, as long as
169 * they fire approximately every X seconds.
171 * By rounding these timers to whole seconds, all such timers will fire
172 * at the same time, rather than at various times spread out. The goal
173 * of this is to have the CPU wake up less, which saves power.
175 * The exact rounding is skewed for each processor to avoid all
176 * processors firing at the exact same time, which could lead
177 * to lock contention or spurious cache line bouncing.
179 * The return value is the rounded version of the @j parameter.
181 unsigned long __round_jiffies(unsigned long j, int cpu)
183 return round_jiffies_common(j, cpu, false);
185 EXPORT_SYMBOL_GPL(__round_jiffies);
188 * __round_jiffies_relative - function to round jiffies to a full second
189 * @j: the time in (relative) jiffies that should be rounded
190 * @cpu: the processor number on which the timeout will happen
192 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
193 * up or down to (approximately) full seconds. This is useful for timers
194 * for which the exact time they fire does not matter too much, as long as
195 * they fire approximately every X seconds.
197 * By rounding these timers to whole seconds, all such timers will fire
198 * at the same time, rather than at various times spread out. The goal
199 * of this is to have the CPU wake up less, which saves power.
201 * The exact rounding is skewed for each processor to avoid all
202 * processors firing at the exact same time, which could lead
203 * to lock contention or spurious cache line bouncing.
205 * The return value is the rounded version of the @j parameter.
207 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
209 unsigned long j0 = jiffies;
211 /* Use j0 because jiffies might change while we run */
212 return round_jiffies_common(j + j0, cpu, false) - j0;
214 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
217 * round_jiffies - function to round jiffies to a full second
218 * @j: the time in (absolute) jiffies that should be rounded
220 * round_jiffies() rounds an absolute time in the future (in jiffies)
221 * up or down to (approximately) full seconds. This is useful for timers
222 * for which the exact time they fire does not matter too much, as long as
223 * they fire approximately every X seconds.
225 * By rounding these timers to whole seconds, all such timers will fire
226 * at the same time, rather than at various times spread out. The goal
227 * of this is to have the CPU wake up less, which saves power.
229 * The return value is the rounded version of the @j parameter.
231 unsigned long round_jiffies(unsigned long j)
233 return round_jiffies_common(j, raw_smp_processor_id(), false);
235 EXPORT_SYMBOL_GPL(round_jiffies);
238 * round_jiffies_relative - function to round jiffies to a full second
239 * @j: the time in (relative) jiffies that should be rounded
241 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
242 * up or down to (approximately) full seconds. This is useful for timers
243 * for which the exact time they fire does not matter too much, as long as
244 * they fire approximately every X seconds.
246 * By rounding these timers to whole seconds, all such timers will fire
247 * at the same time, rather than at various times spread out. The goal
248 * of this is to have the CPU wake up less, which saves power.
250 * The return value is the rounded version of the @j parameter.
252 unsigned long round_jiffies_relative(unsigned long j)
254 return __round_jiffies_relative(j, raw_smp_processor_id());
256 EXPORT_SYMBOL_GPL(round_jiffies_relative);
259 * __round_jiffies_up - function to round jiffies up to a full second
260 * @j: the time in (absolute) jiffies that should be rounded
261 * @cpu: the processor number on which the timeout will happen
263 * This is the same as __round_jiffies() except that it will never
264 * round down. This is useful for timeouts for which the exact time
265 * of firing does not matter too much, as long as they don't fire too
266 * early.
268 unsigned long __round_jiffies_up(unsigned long j, int cpu)
270 return round_jiffies_common(j, cpu, true);
272 EXPORT_SYMBOL_GPL(__round_jiffies_up);
275 * __round_jiffies_up_relative - function to round jiffies up to a full second
276 * @j: the time in (relative) jiffies that should be rounded
277 * @cpu: the processor number on which the timeout will happen
279 * This is the same as __round_jiffies_relative() except that it will never
280 * round down. This is useful for timeouts for which the exact time
281 * of firing does not matter too much, as long as they don't fire too
282 * early.
284 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
286 unsigned long j0 = jiffies;
288 /* Use j0 because jiffies might change while we run */
289 return round_jiffies_common(j + j0, cpu, true) - j0;
291 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
294 * round_jiffies_up - function to round jiffies up to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
297 * This is the same as round_jiffies() except that it will never
298 * round down. This is useful for timeouts for which the exact time
299 * of firing does not matter too much, as long as they don't fire too
300 * early.
302 unsigned long round_jiffies_up(unsigned long j)
304 return round_jiffies_common(j, raw_smp_processor_id(), true);
306 EXPORT_SYMBOL_GPL(round_jiffies_up);
309 * round_jiffies_up_relative - function to round jiffies up to a full second
310 * @j: the time in (relative) jiffies that should be rounded
312 * This is the same as round_jiffies_relative() except that it will never
313 * round down. This is useful for timeouts for which the exact time
314 * of firing does not matter too much, as long as they don't fire too
315 * early.
317 unsigned long round_jiffies_up_relative(unsigned long j)
319 return __round_jiffies_up_relative(j, raw_smp_processor_id());
321 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
324 * set_timer_slack - set the allowed slack for a timer
325 * @timer: the timer to be modified
326 * @slack_hz: the amount of time (in jiffies) allowed for rounding
328 * Set the amount of time, in jiffies, that a certain timer has
329 * in terms of slack. By setting this value, the timer subsystem
330 * will schedule the actual timer somewhere between
331 * the time mod_timer() asks for, and that time plus the slack.
333 * By setting the slack to -1, a percentage of the delay is used
334 * instead.
336 void set_timer_slack(struct timer_list *timer, int slack_hz)
338 timer->slack = slack_hz;
340 EXPORT_SYMBOL_GPL(set_timer_slack);
343 * If the list is empty, catch up ->timer_jiffies to the current time.
344 * The caller must hold the tvec_base lock. Returns true if the list
345 * was empty and therefore ->timer_jiffies was updated.
347 static bool catchup_timer_jiffies(struct tvec_base *base)
349 if (!base->all_timers) {
350 base->timer_jiffies = jiffies;
351 return true;
353 return false;
356 static void
357 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
359 unsigned long expires = timer->expires;
360 unsigned long idx = expires - base->timer_jiffies;
361 struct list_head *vec;
363 if (idx < TVR_SIZE) {
364 int i = expires & TVR_MASK;
365 vec = base->tv1.vec + i;
366 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
367 int i = (expires >> TVR_BITS) & TVN_MASK;
368 vec = base->tv2.vec + i;
369 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
370 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
371 vec = base->tv3.vec + i;
372 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
373 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
374 vec = base->tv4.vec + i;
375 } else if ((signed long) idx < 0) {
377 * Can happen if you add a timer with expires == jiffies,
378 * or you set a timer to go off in the past
380 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
381 } else {
382 int i;
383 /* If the timeout is larger than MAX_TVAL (on 64-bit
384 * architectures or with CONFIG_BASE_SMALL=1) then we
385 * use the maximum timeout.
387 if (idx > MAX_TVAL) {
388 idx = MAX_TVAL;
389 expires = idx + base->timer_jiffies;
391 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
392 vec = base->tv5.vec + i;
395 * Timers are FIFO:
397 list_add_tail(&timer->entry, vec);
400 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
402 (void)catchup_timer_jiffies(base);
403 __internal_add_timer(base, timer);
405 * Update base->active_timers and base->next_timer
407 if (!tbase_get_deferrable(timer->base)) {
408 if (!base->active_timers++ ||
409 time_before(timer->expires, base->next_timer))
410 base->next_timer = timer->expires;
412 base->all_timers++;
415 #ifdef CONFIG_TIMER_STATS
416 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
418 if (timer->start_site)
419 return;
421 timer->start_site = addr;
422 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
423 timer->start_pid = current->pid;
426 static void timer_stats_account_timer(struct timer_list *timer)
428 unsigned int flag = 0;
430 if (likely(!timer->start_site))
431 return;
432 if (unlikely(tbase_get_deferrable(timer->base)))
433 flag |= TIMER_STATS_FLAG_DEFERRABLE;
435 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
436 timer->function, timer->start_comm, flag);
439 #else
440 static void timer_stats_account_timer(struct timer_list *timer) {}
441 #endif
443 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
445 static struct debug_obj_descr timer_debug_descr;
447 static void *timer_debug_hint(void *addr)
449 return ((struct timer_list *) addr)->function;
453 * fixup_init is called when:
454 * - an active object is initialized
456 static int timer_fixup_init(void *addr, enum debug_obj_state state)
458 struct timer_list *timer = addr;
460 switch (state) {
461 case ODEBUG_STATE_ACTIVE:
462 del_timer_sync(timer);
463 debug_object_init(timer, &timer_debug_descr);
464 return 1;
465 default:
466 return 0;
470 /* Stub timer callback for improperly used timers. */
471 static void stub_timer(unsigned long data)
473 WARN_ON(1);
477 * fixup_activate is called when:
478 * - an active object is activated
479 * - an unknown object is activated (might be a statically initialized object)
481 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
483 struct timer_list *timer = addr;
485 switch (state) {
487 case ODEBUG_STATE_NOTAVAILABLE:
489 * This is not really a fixup. The timer was
490 * statically initialized. We just make sure that it
491 * is tracked in the object tracker.
493 if (timer->entry.next == NULL &&
494 timer->entry.prev == TIMER_ENTRY_STATIC) {
495 debug_object_init(timer, &timer_debug_descr);
496 debug_object_activate(timer, &timer_debug_descr);
497 return 0;
498 } else {
499 setup_timer(timer, stub_timer, 0);
500 return 1;
502 return 0;
504 case ODEBUG_STATE_ACTIVE:
505 WARN_ON(1);
507 default:
508 return 0;
513 * fixup_free is called when:
514 * - an active object is freed
516 static int timer_fixup_free(void *addr, enum debug_obj_state state)
518 struct timer_list *timer = addr;
520 switch (state) {
521 case ODEBUG_STATE_ACTIVE:
522 del_timer_sync(timer);
523 debug_object_free(timer, &timer_debug_descr);
524 return 1;
525 default:
526 return 0;
531 * fixup_assert_init is called when:
532 * - an untracked/uninit-ed object is found
534 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
536 struct timer_list *timer = addr;
538 switch (state) {
539 case ODEBUG_STATE_NOTAVAILABLE:
540 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
542 * This is not really a fixup. The timer was
543 * statically initialized. We just make sure that it
544 * is tracked in the object tracker.
546 debug_object_init(timer, &timer_debug_descr);
547 return 0;
548 } else {
549 setup_timer(timer, stub_timer, 0);
550 return 1;
552 default:
553 return 0;
557 static struct debug_obj_descr timer_debug_descr = {
558 .name = "timer_list",
559 .debug_hint = timer_debug_hint,
560 .fixup_init = timer_fixup_init,
561 .fixup_activate = timer_fixup_activate,
562 .fixup_free = timer_fixup_free,
563 .fixup_assert_init = timer_fixup_assert_init,
566 static inline void debug_timer_init(struct timer_list *timer)
568 debug_object_init(timer, &timer_debug_descr);
571 static inline void debug_timer_activate(struct timer_list *timer)
573 debug_object_activate(timer, &timer_debug_descr);
576 static inline void debug_timer_deactivate(struct timer_list *timer)
578 debug_object_deactivate(timer, &timer_debug_descr);
581 static inline void debug_timer_free(struct timer_list *timer)
583 debug_object_free(timer, &timer_debug_descr);
586 static inline void debug_timer_assert_init(struct timer_list *timer)
588 debug_object_assert_init(timer, &timer_debug_descr);
591 static void do_init_timer(struct timer_list *timer, unsigned int flags,
592 const char *name, struct lock_class_key *key);
594 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
595 const char *name, struct lock_class_key *key)
597 debug_object_init_on_stack(timer, &timer_debug_descr);
598 do_init_timer(timer, flags, name, key);
600 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
602 void destroy_timer_on_stack(struct timer_list *timer)
604 debug_object_free(timer, &timer_debug_descr);
606 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
608 #else
609 static inline void debug_timer_init(struct timer_list *timer) { }
610 static inline void debug_timer_activate(struct timer_list *timer) { }
611 static inline void debug_timer_deactivate(struct timer_list *timer) { }
612 static inline void debug_timer_assert_init(struct timer_list *timer) { }
613 #endif
615 static inline void debug_init(struct timer_list *timer)
617 debug_timer_init(timer);
618 trace_timer_init(timer);
621 static inline void
622 debug_activate(struct timer_list *timer, unsigned long expires)
624 debug_timer_activate(timer);
625 trace_timer_start(timer, expires);
628 static inline void debug_deactivate(struct timer_list *timer)
630 debug_timer_deactivate(timer);
631 trace_timer_cancel(timer);
634 static inline void debug_assert_init(struct timer_list *timer)
636 debug_timer_assert_init(timer);
639 static void do_init_timer(struct timer_list *timer, unsigned int flags,
640 const char *name, struct lock_class_key *key)
642 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
644 timer->entry.next = NULL;
645 timer->base = (void *)((unsigned long)base | flags);
646 timer->slack = -1;
647 #ifdef CONFIG_TIMER_STATS
648 timer->start_site = NULL;
649 timer->start_pid = -1;
650 memset(timer->start_comm, 0, TASK_COMM_LEN);
651 #endif
652 lockdep_init_map(&timer->lockdep_map, name, key, 0);
656 * init_timer_key - initialize a timer
657 * @timer: the timer to be initialized
658 * @flags: timer flags
659 * @name: name of the timer
660 * @key: lockdep class key of the fake lock used for tracking timer
661 * sync lock dependencies
663 * init_timer_key() must be done to a timer prior calling *any* of the
664 * other timer functions.
666 void init_timer_key(struct timer_list *timer, unsigned int flags,
667 const char *name, struct lock_class_key *key)
669 debug_init(timer);
670 do_init_timer(timer, flags, name, key);
672 EXPORT_SYMBOL(init_timer_key);
674 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
676 struct list_head *entry = &timer->entry;
678 debug_deactivate(timer);
680 __list_del(entry->prev, entry->next);
681 if (clear_pending)
682 entry->next = NULL;
683 entry->prev = LIST_POISON2;
686 static inline void
687 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
689 detach_timer(timer, true);
690 if (!tbase_get_deferrable(timer->base))
691 base->active_timers--;
692 base->all_timers--;
693 (void)catchup_timer_jiffies(base);
696 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
697 bool clear_pending)
699 if (!timer_pending(timer))
700 return 0;
702 detach_timer(timer, clear_pending);
703 if (!tbase_get_deferrable(timer->base)) {
704 base->active_timers--;
705 if (timer->expires == base->next_timer)
706 base->next_timer = base->timer_jiffies;
708 base->all_timers--;
709 (void)catchup_timer_jiffies(base);
710 return 1;
714 * We are using hashed locking: holding per_cpu(tvec_bases).lock
715 * means that all timers which are tied to this base via timer->base are
716 * locked, and the base itself is locked too.
718 * So __run_timers/migrate_timers can safely modify all timers which could
719 * be found on ->tvX lists.
721 * When the timer's base is locked, and the timer removed from list, it is
722 * possible to set timer->base = NULL and drop the lock: the timer remains
723 * locked.
725 static struct tvec_base *lock_timer_base(struct timer_list *timer,
726 unsigned long *flags)
727 __acquires(timer->base->lock)
729 struct tvec_base *base;
731 for (;;) {
732 struct tvec_base *prelock_base = timer->base;
733 base = tbase_get_base(prelock_base);
734 if (likely(base != NULL)) {
735 spin_lock_irqsave(&base->lock, *flags);
736 if (likely(prelock_base == timer->base))
737 return base;
738 /* The timer has migrated to another CPU */
739 spin_unlock_irqrestore(&base->lock, *flags);
741 cpu_relax();
745 static inline int
746 __mod_timer(struct timer_list *timer, unsigned long expires,
747 bool pending_only, int pinned)
749 struct tvec_base *base, *new_base;
750 unsigned long flags;
751 int ret = 0 , cpu;
753 timer_stats_timer_set_start_info(timer);
754 BUG_ON(!timer->function);
756 base = lock_timer_base(timer, &flags);
758 ret = detach_if_pending(timer, base, false);
759 if (!ret && pending_only)
760 goto out_unlock;
762 debug_activate(timer, expires);
764 cpu = get_nohz_timer_target(pinned);
765 new_base = per_cpu(tvec_bases, cpu);
767 if (base != new_base) {
769 * We are trying to schedule the timer on the local CPU.
770 * However we can't change timer's base while it is running,
771 * otherwise del_timer_sync() can't detect that the timer's
772 * handler yet has not finished. This also guarantees that
773 * the timer is serialized wrt itself.
775 if (likely(base->running_timer != timer)) {
776 /* See the comment in lock_timer_base() */
777 timer_set_base(timer, NULL);
778 spin_unlock(&base->lock);
779 base = new_base;
780 spin_lock(&base->lock);
781 timer_set_base(timer, base);
785 timer->expires = expires;
786 internal_add_timer(base, timer);
788 out_unlock:
789 spin_unlock_irqrestore(&base->lock, flags);
791 return ret;
795 * mod_timer_pending - modify a pending timer's timeout
796 * @timer: the pending timer to be modified
797 * @expires: new timeout in jiffies
799 * mod_timer_pending() is the same for pending timers as mod_timer(),
800 * but will not re-activate and modify already deleted timers.
802 * It is useful for unserialized use of timers.
804 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
806 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
808 EXPORT_SYMBOL(mod_timer_pending);
811 * Decide where to put the timer while taking the slack into account
813 * Algorithm:
814 * 1) calculate the maximum (absolute) time
815 * 2) calculate the highest bit where the expires and new max are different
816 * 3) use this bit to make a mask
817 * 4) use the bitmask to round down the maximum time, so that all last
818 * bits are zeros
820 static inline
821 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
823 unsigned long expires_limit, mask;
824 int bit;
826 if (timer->slack >= 0) {
827 expires_limit = expires + timer->slack;
828 } else {
829 long delta = expires - jiffies;
831 if (delta < 256)
832 return expires;
834 expires_limit = expires + delta / 256;
836 mask = expires ^ expires_limit;
837 if (mask == 0)
838 return expires;
840 bit = find_last_bit(&mask, BITS_PER_LONG);
842 mask = (1UL << bit) - 1;
844 expires_limit = expires_limit & ~(mask);
846 return expires_limit;
850 * mod_timer - modify a timer's timeout
851 * @timer: the timer to be modified
852 * @expires: new timeout in jiffies
854 * mod_timer() is a more efficient way to update the expire field of an
855 * active timer (if the timer is inactive it will be activated)
857 * mod_timer(timer, expires) is equivalent to:
859 * del_timer(timer); timer->expires = expires; add_timer(timer);
861 * Note that if there are multiple unserialized concurrent users of the
862 * same timer, then mod_timer() is the only safe way to modify the timeout,
863 * since add_timer() cannot modify an already running timer.
865 * The function returns whether it has modified a pending timer or not.
866 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
867 * active timer returns 1.)
869 int mod_timer(struct timer_list *timer, unsigned long expires)
871 expires = apply_slack(timer, expires);
874 * This is a common optimization triggered by the
875 * networking code - if the timer is re-modified
876 * to be the same thing then just return:
878 if (timer_pending(timer) && timer->expires == expires)
879 return 1;
881 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
883 EXPORT_SYMBOL(mod_timer);
886 * mod_timer_pinned - modify a timer's timeout
887 * @timer: the timer to be modified
888 * @expires: new timeout in jiffies
890 * mod_timer_pinned() is a way to update the expire field of an
891 * active timer (if the timer is inactive it will be activated)
892 * and to ensure that the timer is scheduled on the current CPU.
894 * Note that this does not prevent the timer from being migrated
895 * when the current CPU goes offline. If this is a problem for
896 * you, use CPU-hotplug notifiers to handle it correctly, for
897 * example, cancelling the timer when the corresponding CPU goes
898 * offline.
900 * mod_timer_pinned(timer, expires) is equivalent to:
902 * del_timer(timer); timer->expires = expires; add_timer(timer);
904 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
906 if (timer->expires == expires && timer_pending(timer))
907 return 1;
909 return __mod_timer(timer, expires, false, TIMER_PINNED);
911 EXPORT_SYMBOL(mod_timer_pinned);
914 * add_timer - start a timer
915 * @timer: the timer to be added
917 * The kernel will do a ->function(->data) callback from the
918 * timer interrupt at the ->expires point in the future. The
919 * current time is 'jiffies'.
921 * The timer's ->expires, ->function (and if the handler uses it, ->data)
922 * fields must be set prior calling this function.
924 * Timers with an ->expires field in the past will be executed in the next
925 * timer tick.
927 void add_timer(struct timer_list *timer)
929 BUG_ON(timer_pending(timer));
930 mod_timer(timer, timer->expires);
932 EXPORT_SYMBOL(add_timer);
935 * add_timer_on - start a timer on a particular CPU
936 * @timer: the timer to be added
937 * @cpu: the CPU to start it on
939 * This is not very scalable on SMP. Double adds are not possible.
941 void add_timer_on(struct timer_list *timer, int cpu)
943 struct tvec_base *base = per_cpu(tvec_bases, cpu);
944 unsigned long flags;
946 timer_stats_timer_set_start_info(timer);
947 BUG_ON(timer_pending(timer) || !timer->function);
948 spin_lock_irqsave(&base->lock, flags);
949 timer_set_base(timer, base);
950 debug_activate(timer, timer->expires);
951 internal_add_timer(base, timer);
953 * Check whether the other CPU is in dynticks mode and needs
954 * to be triggered to reevaluate the timer wheel.
955 * We are protected against the other CPU fiddling
956 * with the timer by holding the timer base lock. This also
957 * makes sure that a CPU on the way to stop its tick can not
958 * evaluate the timer wheel.
960 * Spare the IPI for deferrable timers on idle targets though.
961 * The next busy ticks will take care of it. Except full dynticks
962 * require special care against races with idle_cpu(), lets deal
963 * with that later.
965 if (!tbase_get_deferrable(timer->base) || tick_nohz_full_cpu(cpu))
966 wake_up_nohz_cpu(cpu);
968 spin_unlock_irqrestore(&base->lock, flags);
970 EXPORT_SYMBOL_GPL(add_timer_on);
973 * del_timer - deactive a timer.
974 * @timer: the timer to be deactivated
976 * del_timer() deactivates a timer - this works on both active and inactive
977 * timers.
979 * The function returns whether it has deactivated a pending timer or not.
980 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
981 * active timer returns 1.)
983 int del_timer(struct timer_list *timer)
985 struct tvec_base *base;
986 unsigned long flags;
987 int ret = 0;
989 debug_assert_init(timer);
991 timer_stats_timer_clear_start_info(timer);
992 if (timer_pending(timer)) {
993 base = lock_timer_base(timer, &flags);
994 ret = detach_if_pending(timer, base, true);
995 spin_unlock_irqrestore(&base->lock, flags);
998 return ret;
1000 EXPORT_SYMBOL(del_timer);
1003 * try_to_del_timer_sync - Try to deactivate a timer
1004 * @timer: timer do del
1006 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1007 * exit the timer is not queued and the handler is not running on any CPU.
1009 int try_to_del_timer_sync(struct timer_list *timer)
1011 struct tvec_base *base;
1012 unsigned long flags;
1013 int ret = -1;
1015 debug_assert_init(timer);
1017 base = lock_timer_base(timer, &flags);
1019 if (base->running_timer != timer) {
1020 timer_stats_timer_clear_start_info(timer);
1021 ret = detach_if_pending(timer, base, true);
1023 spin_unlock_irqrestore(&base->lock, flags);
1025 return ret;
1027 EXPORT_SYMBOL(try_to_del_timer_sync);
1029 #ifdef CONFIG_SMP
1031 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1032 * @timer: the timer to be deactivated
1034 * This function only differs from del_timer() on SMP: besides deactivating
1035 * the timer it also makes sure the handler has finished executing on other
1036 * CPUs.
1038 * Synchronization rules: Callers must prevent restarting of the timer,
1039 * otherwise this function is meaningless. It must not be called from
1040 * interrupt contexts unless the timer is an irqsafe one. The caller must
1041 * not hold locks which would prevent completion of the timer's
1042 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1043 * timer is not queued and the handler is not running on any CPU.
1045 * Note: For !irqsafe timers, you must not hold locks that are held in
1046 * interrupt context while calling this function. Even if the lock has
1047 * nothing to do with the timer in question. Here's why:
1049 * CPU0 CPU1
1050 * ---- ----
1051 * <SOFTIRQ>
1052 * call_timer_fn();
1053 * base->running_timer = mytimer;
1054 * spin_lock_irq(somelock);
1055 * <IRQ>
1056 * spin_lock(somelock);
1057 * del_timer_sync(mytimer);
1058 * while (base->running_timer == mytimer);
1060 * Now del_timer_sync() will never return and never release somelock.
1061 * The interrupt on the other CPU is waiting to grab somelock but
1062 * it has interrupted the softirq that CPU0 is waiting to finish.
1064 * The function returns whether it has deactivated a pending timer or not.
1066 int del_timer_sync(struct timer_list *timer)
1068 #ifdef CONFIG_LOCKDEP
1069 unsigned long flags;
1072 * If lockdep gives a backtrace here, please reference
1073 * the synchronization rules above.
1075 local_irq_save(flags);
1076 lock_map_acquire(&timer->lockdep_map);
1077 lock_map_release(&timer->lockdep_map);
1078 local_irq_restore(flags);
1079 #endif
1081 * don't use it in hardirq context, because it
1082 * could lead to deadlock.
1084 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1085 for (;;) {
1086 int ret = try_to_del_timer_sync(timer);
1087 if (ret >= 0)
1088 return ret;
1089 cpu_relax();
1092 EXPORT_SYMBOL(del_timer_sync);
1093 #endif
1095 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1097 /* cascade all the timers from tv up one level */
1098 struct timer_list *timer, *tmp;
1099 struct list_head tv_list;
1101 list_replace_init(tv->vec + index, &tv_list);
1104 * We are removing _all_ timers from the list, so we
1105 * don't have to detach them individually.
1107 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1108 BUG_ON(tbase_get_base(timer->base) != base);
1109 /* No accounting, while moving them */
1110 __internal_add_timer(base, timer);
1113 return index;
1116 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1117 unsigned long data)
1119 int count = preempt_count();
1121 #ifdef CONFIG_LOCKDEP
1123 * It is permissible to free the timer from inside the
1124 * function that is called from it, this we need to take into
1125 * account for lockdep too. To avoid bogus "held lock freed"
1126 * warnings as well as problems when looking into
1127 * timer->lockdep_map, make a copy and use that here.
1129 struct lockdep_map lockdep_map;
1131 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1132 #endif
1134 * Couple the lock chain with the lock chain at
1135 * del_timer_sync() by acquiring the lock_map around the fn()
1136 * call here and in del_timer_sync().
1138 lock_map_acquire(&lockdep_map);
1140 trace_timer_expire_entry(timer);
1141 fn(data);
1142 trace_timer_expire_exit(timer);
1144 lock_map_release(&lockdep_map);
1146 if (count != preempt_count()) {
1147 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1148 fn, count, preempt_count());
1150 * Restore the preempt count. That gives us a decent
1151 * chance to survive and extract information. If the
1152 * callback kept a lock held, bad luck, but not worse
1153 * than the BUG() we had.
1155 preempt_count_set(count);
1159 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1162 * __run_timers - run all expired timers (if any) on this CPU.
1163 * @base: the timer vector to be processed.
1165 * This function cascades all vectors and executes all expired timer
1166 * vectors.
1168 static inline void __run_timers(struct tvec_base *base)
1170 struct timer_list *timer;
1172 spin_lock_irq(&base->lock);
1173 if (catchup_timer_jiffies(base)) {
1174 spin_unlock_irq(&base->lock);
1175 return;
1177 while (time_after_eq(jiffies, base->timer_jiffies)) {
1178 struct list_head work_list;
1179 struct list_head *head = &work_list;
1180 int index = base->timer_jiffies & TVR_MASK;
1183 * Cascade timers:
1185 if (!index &&
1186 (!cascade(base, &base->tv2, INDEX(0))) &&
1187 (!cascade(base, &base->tv3, INDEX(1))) &&
1188 !cascade(base, &base->tv4, INDEX(2)))
1189 cascade(base, &base->tv5, INDEX(3));
1190 ++base->timer_jiffies;
1191 list_replace_init(base->tv1.vec + index, head);
1192 while (!list_empty(head)) {
1193 void (*fn)(unsigned long);
1194 unsigned long data;
1195 bool irqsafe;
1197 timer = list_first_entry(head, struct timer_list,entry);
1198 fn = timer->function;
1199 data = timer->data;
1200 irqsafe = tbase_get_irqsafe(timer->base);
1202 timer_stats_account_timer(timer);
1204 base->running_timer = timer;
1205 detach_expired_timer(timer, base);
1207 if (irqsafe) {
1208 spin_unlock(&base->lock);
1209 call_timer_fn(timer, fn, data);
1210 spin_lock(&base->lock);
1211 } else {
1212 spin_unlock_irq(&base->lock);
1213 call_timer_fn(timer, fn, data);
1214 spin_lock_irq(&base->lock);
1218 base->running_timer = NULL;
1219 spin_unlock_irq(&base->lock);
1222 #ifdef CONFIG_NO_HZ_COMMON
1224 * Find out when the next timer event is due to happen. This
1225 * is used on S/390 to stop all activity when a CPU is idle.
1226 * This function needs to be called with interrupts disabled.
1228 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1230 unsigned long timer_jiffies = base->timer_jiffies;
1231 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1232 int index, slot, array, found = 0;
1233 struct timer_list *nte;
1234 struct tvec *varray[4];
1236 /* Look for timer events in tv1. */
1237 index = slot = timer_jiffies & TVR_MASK;
1238 do {
1239 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1240 if (tbase_get_deferrable(nte->base))
1241 continue;
1243 found = 1;
1244 expires = nte->expires;
1245 /* Look at the cascade bucket(s)? */
1246 if (!index || slot < index)
1247 goto cascade;
1248 return expires;
1250 slot = (slot + 1) & TVR_MASK;
1251 } while (slot != index);
1253 cascade:
1254 /* Calculate the next cascade event */
1255 if (index)
1256 timer_jiffies += TVR_SIZE - index;
1257 timer_jiffies >>= TVR_BITS;
1259 /* Check tv2-tv5. */
1260 varray[0] = &base->tv2;
1261 varray[1] = &base->tv3;
1262 varray[2] = &base->tv4;
1263 varray[3] = &base->tv5;
1265 for (array = 0; array < 4; array++) {
1266 struct tvec *varp = varray[array];
1268 index = slot = timer_jiffies & TVN_MASK;
1269 do {
1270 list_for_each_entry(nte, varp->vec + slot, entry) {
1271 if (tbase_get_deferrable(nte->base))
1272 continue;
1274 found = 1;
1275 if (time_before(nte->expires, expires))
1276 expires = nte->expires;
1279 * Do we still search for the first timer or are
1280 * we looking up the cascade buckets ?
1282 if (found) {
1283 /* Look at the cascade bucket(s)? */
1284 if (!index || slot < index)
1285 break;
1286 return expires;
1288 slot = (slot + 1) & TVN_MASK;
1289 } while (slot != index);
1291 if (index)
1292 timer_jiffies += TVN_SIZE - index;
1293 timer_jiffies >>= TVN_BITS;
1295 return expires;
1299 * Check, if the next hrtimer event is before the next timer wheel
1300 * event:
1302 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1303 unsigned long expires)
1305 ktime_t hr_delta = hrtimer_get_next_event();
1306 struct timespec tsdelta;
1307 unsigned long delta;
1309 if (hr_delta.tv64 == KTIME_MAX)
1310 return expires;
1313 * Expired timer available, let it expire in the next tick
1315 if (hr_delta.tv64 <= 0)
1316 return now + 1;
1318 tsdelta = ktime_to_timespec(hr_delta);
1319 delta = timespec_to_jiffies(&tsdelta);
1322 * Limit the delta to the max value, which is checked in
1323 * tick_nohz_stop_sched_tick():
1325 if (delta > NEXT_TIMER_MAX_DELTA)
1326 delta = NEXT_TIMER_MAX_DELTA;
1329 * Take rounding errors in to account and make sure, that it
1330 * expires in the next tick. Otherwise we go into an endless
1331 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1332 * the timer softirq
1334 if (delta < 1)
1335 delta = 1;
1336 now += delta;
1337 if (time_before(now, expires))
1338 return now;
1339 return expires;
1343 * get_next_timer_interrupt - return the jiffy of the next pending timer
1344 * @now: current time (in jiffies)
1346 unsigned long get_next_timer_interrupt(unsigned long now)
1348 struct tvec_base *base = __this_cpu_read(tvec_bases);
1349 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1352 * Pretend that there is no timer pending if the cpu is offline.
1353 * Possible pending timers will be migrated later to an active cpu.
1355 if (cpu_is_offline(smp_processor_id()))
1356 return expires;
1358 spin_lock(&base->lock);
1359 if (base->active_timers) {
1360 if (time_before_eq(base->next_timer, base->timer_jiffies))
1361 base->next_timer = __next_timer_interrupt(base);
1362 expires = base->next_timer;
1364 spin_unlock(&base->lock);
1366 if (time_before_eq(expires, now))
1367 return now;
1369 return cmp_next_hrtimer_event(now, expires);
1371 #endif
1374 * Called from the timer interrupt handler to charge one tick to the current
1375 * process. user_tick is 1 if the tick is user time, 0 for system.
1377 void update_process_times(int user_tick)
1379 struct task_struct *p = current;
1380 int cpu = smp_processor_id();
1382 /* Note: this timer irq context must be accounted for as well. */
1383 account_process_tick(p, user_tick);
1384 run_local_timers();
1385 rcu_check_callbacks(cpu, user_tick);
1386 #ifdef CONFIG_IRQ_WORK
1387 if (in_irq())
1388 irq_work_run();
1389 #endif
1390 scheduler_tick();
1391 run_posix_cpu_timers(p);
1395 * This function runs timers and the timer-tq in bottom half context.
1397 static void run_timer_softirq(struct softirq_action *h)
1399 struct tvec_base *base = __this_cpu_read(tvec_bases);
1401 hrtimer_run_pending();
1403 if (time_after_eq(jiffies, base->timer_jiffies))
1404 __run_timers(base);
1408 * Called by the local, per-CPU timer interrupt on SMP.
1410 void run_local_timers(void)
1412 hrtimer_run_queues();
1413 raise_softirq(TIMER_SOFTIRQ);
1416 #ifdef __ARCH_WANT_SYS_ALARM
1419 * For backwards compatibility? This can be done in libc so Alpha
1420 * and all newer ports shouldn't need it.
1422 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1424 return alarm_setitimer(seconds);
1427 #endif
1429 static void process_timeout(unsigned long __data)
1431 wake_up_process((struct task_struct *)__data);
1435 * schedule_timeout - sleep until timeout
1436 * @timeout: timeout value in jiffies
1438 * Make the current task sleep until @timeout jiffies have
1439 * elapsed. The routine will return immediately unless
1440 * the current task state has been set (see set_current_state()).
1442 * You can set the task state as follows -
1444 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1445 * pass before the routine returns. The routine will return 0
1447 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1448 * delivered to the current task. In this case the remaining time
1449 * in jiffies will be returned, or 0 if the timer expired in time
1451 * The current task state is guaranteed to be TASK_RUNNING when this
1452 * routine returns.
1454 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1455 * the CPU away without a bound on the timeout. In this case the return
1456 * value will be %MAX_SCHEDULE_TIMEOUT.
1458 * In all cases the return value is guaranteed to be non-negative.
1460 signed long __sched schedule_timeout(signed long timeout)
1462 struct timer_list timer;
1463 unsigned long expire;
1465 switch (timeout)
1467 case MAX_SCHEDULE_TIMEOUT:
1469 * These two special cases are useful to be comfortable
1470 * in the caller. Nothing more. We could take
1471 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1472 * but I' d like to return a valid offset (>=0) to allow
1473 * the caller to do everything it want with the retval.
1475 schedule();
1476 goto out;
1477 default:
1479 * Another bit of PARANOID. Note that the retval will be
1480 * 0 since no piece of kernel is supposed to do a check
1481 * for a negative retval of schedule_timeout() (since it
1482 * should never happens anyway). You just have the printk()
1483 * that will tell you if something is gone wrong and where.
1485 if (timeout < 0) {
1486 printk(KERN_ERR "schedule_timeout: wrong timeout "
1487 "value %lx\n", timeout);
1488 dump_stack();
1489 current->state = TASK_RUNNING;
1490 goto out;
1494 expire = timeout + jiffies;
1496 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1497 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1498 schedule();
1499 del_singleshot_timer_sync(&timer);
1501 /* Remove the timer from the object tracker */
1502 destroy_timer_on_stack(&timer);
1504 timeout = expire - jiffies;
1506 out:
1507 return timeout < 0 ? 0 : timeout;
1509 EXPORT_SYMBOL(schedule_timeout);
1512 * We can use __set_current_state() here because schedule_timeout() calls
1513 * schedule() unconditionally.
1515 signed long __sched schedule_timeout_interruptible(signed long timeout)
1517 __set_current_state(TASK_INTERRUPTIBLE);
1518 return schedule_timeout(timeout);
1520 EXPORT_SYMBOL(schedule_timeout_interruptible);
1522 signed long __sched schedule_timeout_killable(signed long timeout)
1524 __set_current_state(TASK_KILLABLE);
1525 return schedule_timeout(timeout);
1527 EXPORT_SYMBOL(schedule_timeout_killable);
1529 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1531 __set_current_state(TASK_UNINTERRUPTIBLE);
1532 return schedule_timeout(timeout);
1534 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1536 static int init_timers_cpu(int cpu)
1538 int j;
1539 struct tvec_base *base;
1540 static char tvec_base_done[NR_CPUS];
1542 if (!tvec_base_done[cpu]) {
1543 static char boot_done;
1545 if (boot_done) {
1547 * The APs use this path later in boot
1549 base = kzalloc_node(sizeof(*base), GFP_KERNEL,
1550 cpu_to_node(cpu));
1551 if (!base)
1552 return -ENOMEM;
1554 /* Make sure tvec_base has TIMER_FLAG_MASK bits free */
1555 if (WARN_ON(base != tbase_get_base(base))) {
1556 kfree(base);
1557 return -ENOMEM;
1559 per_cpu(tvec_bases, cpu) = base;
1560 } else {
1562 * This is for the boot CPU - we use compile-time
1563 * static initialisation because per-cpu memory isn't
1564 * ready yet and because the memory allocators are not
1565 * initialised either.
1567 boot_done = 1;
1568 base = &boot_tvec_bases;
1570 spin_lock_init(&base->lock);
1571 tvec_base_done[cpu] = 1;
1572 base->cpu = cpu;
1573 } else {
1574 base = per_cpu(tvec_bases, cpu);
1578 for (j = 0; j < TVN_SIZE; j++) {
1579 INIT_LIST_HEAD(base->tv5.vec + j);
1580 INIT_LIST_HEAD(base->tv4.vec + j);
1581 INIT_LIST_HEAD(base->tv3.vec + j);
1582 INIT_LIST_HEAD(base->tv2.vec + j);
1584 for (j = 0; j < TVR_SIZE; j++)
1585 INIT_LIST_HEAD(base->tv1.vec + j);
1587 base->timer_jiffies = jiffies;
1588 base->next_timer = base->timer_jiffies;
1589 base->active_timers = 0;
1590 base->all_timers = 0;
1591 return 0;
1594 #ifdef CONFIG_HOTPLUG_CPU
1595 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1597 struct timer_list *timer;
1599 while (!list_empty(head)) {
1600 timer = list_first_entry(head, struct timer_list, entry);
1601 /* We ignore the accounting on the dying cpu */
1602 detach_timer(timer, false);
1603 timer_set_base(timer, new_base);
1604 internal_add_timer(new_base, timer);
1608 static void migrate_timers(int cpu)
1610 struct tvec_base *old_base;
1611 struct tvec_base *new_base;
1612 int i;
1614 BUG_ON(cpu_online(cpu));
1615 old_base = per_cpu(tvec_bases, cpu);
1616 new_base = get_cpu_var(tvec_bases);
1618 * The caller is globally serialized and nobody else
1619 * takes two locks at once, deadlock is not possible.
1621 spin_lock_irq(&new_base->lock);
1622 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1624 BUG_ON(old_base->running_timer);
1626 for (i = 0; i < TVR_SIZE; i++)
1627 migrate_timer_list(new_base, old_base->tv1.vec + i);
1628 for (i = 0; i < TVN_SIZE; i++) {
1629 migrate_timer_list(new_base, old_base->tv2.vec + i);
1630 migrate_timer_list(new_base, old_base->tv3.vec + i);
1631 migrate_timer_list(new_base, old_base->tv4.vec + i);
1632 migrate_timer_list(new_base, old_base->tv5.vec + i);
1635 spin_unlock(&old_base->lock);
1636 spin_unlock_irq(&new_base->lock);
1637 put_cpu_var(tvec_bases);
1639 #endif /* CONFIG_HOTPLUG_CPU */
1641 static int timer_cpu_notify(struct notifier_block *self,
1642 unsigned long action, void *hcpu)
1644 long cpu = (long)hcpu;
1645 int err;
1647 switch(action) {
1648 case CPU_UP_PREPARE:
1649 case CPU_UP_PREPARE_FROZEN:
1650 err = init_timers_cpu(cpu);
1651 if (err < 0)
1652 return notifier_from_errno(err);
1653 break;
1654 #ifdef CONFIG_HOTPLUG_CPU
1655 case CPU_DEAD:
1656 case CPU_DEAD_FROZEN:
1657 migrate_timers(cpu);
1658 break;
1659 #endif
1660 default:
1661 break;
1663 return NOTIFY_OK;
1666 static struct notifier_block timers_nb = {
1667 .notifier_call = timer_cpu_notify,
1671 void __init init_timers(void)
1673 int err;
1675 /* ensure there are enough low bits for flags in timer->base pointer */
1676 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1678 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1679 (void *)(long)smp_processor_id());
1680 BUG_ON(err != NOTIFY_OK);
1682 init_timer_stats();
1683 register_cpu_notifier(&timers_nb);
1684 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1688 * msleep - sleep safely even with waitqueue interruptions
1689 * @msecs: Time in milliseconds to sleep for
1691 void msleep(unsigned int msecs)
1693 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1695 while (timeout)
1696 timeout = schedule_timeout_uninterruptible(timeout);
1699 EXPORT_SYMBOL(msleep);
1702 * msleep_interruptible - sleep waiting for signals
1703 * @msecs: Time in milliseconds to sleep for
1705 unsigned long msleep_interruptible(unsigned int msecs)
1707 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1709 while (timeout && !signal_pending(current))
1710 timeout = schedule_timeout_interruptible(timeout);
1711 return jiffies_to_msecs(timeout);
1714 EXPORT_SYMBOL(msleep_interruptible);
1716 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1718 ktime_t kmin;
1719 unsigned long delta;
1721 kmin = ktime_set(0, min * NSEC_PER_USEC);
1722 delta = (max - min) * NSEC_PER_USEC;
1723 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1727 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1728 * @min: Minimum time in usecs to sleep
1729 * @max: Maximum time in usecs to sleep
1731 void usleep_range(unsigned long min, unsigned long max)
1733 __set_current_state(TASK_UNINTERRUPTIBLE);
1734 do_usleep_range(min, max);
1736 EXPORT_SYMBOL(usleep_range);