ipmi: Remove uses of return value of seq_printf
[linux-2.6/btrfs-unstable.git] / drivers / char / ipmi / ipmi_si_intf.c
blob321ecb26df6afbdbd3d4c7e8657869e185312dd8
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
78 #define PFX "ipmi_si: "
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
111 #define DEVICE_NAME "ipmi_si"
113 static struct platform_driver ipmi_driver;
116 * Indexes into stats[] in smi_info below.
118 enum si_stat_indexes {
120 * Number of times the driver requested a timer while an operation
121 * was in progress.
123 SI_STAT_short_timeouts = 0,
126 * Number of times the driver requested a timer while nothing was in
127 * progress.
129 SI_STAT_long_timeouts,
131 /* Number of times the interface was idle while being polled. */
132 SI_STAT_idles,
134 /* Number of interrupts the driver handled. */
135 SI_STAT_interrupts,
137 /* Number of time the driver got an ATTN from the hardware. */
138 SI_STAT_attentions,
140 /* Number of times the driver requested flags from the hardware. */
141 SI_STAT_flag_fetches,
143 /* Number of times the hardware didn't follow the state machine. */
144 SI_STAT_hosed_count,
146 /* Number of completed messages. */
147 SI_STAT_complete_transactions,
149 /* Number of IPMI events received from the hardware. */
150 SI_STAT_events,
152 /* Number of watchdog pretimeouts. */
153 SI_STAT_watchdog_pretimeouts,
155 /* Number of asynchronous messages received. */
156 SI_STAT_incoming_messages,
159 /* This *must* remain last, add new values above this. */
160 SI_NUM_STATS
163 struct smi_info {
164 int intf_num;
165 ipmi_smi_t intf;
166 struct si_sm_data *si_sm;
167 struct si_sm_handlers *handlers;
168 enum si_type si_type;
169 spinlock_t si_lock;
170 struct ipmi_smi_msg *waiting_msg;
171 struct ipmi_smi_msg *curr_msg;
172 enum si_intf_state si_state;
175 * Used to handle the various types of I/O that can occur with
176 * IPMI
178 struct si_sm_io io;
179 int (*io_setup)(struct smi_info *info);
180 void (*io_cleanup)(struct smi_info *info);
181 int (*irq_setup)(struct smi_info *info);
182 void (*irq_cleanup)(struct smi_info *info);
183 unsigned int io_size;
184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 void (*addr_source_cleanup)(struct smi_info *info);
186 void *addr_source_data;
189 * Per-OEM handler, called from handle_flags(). Returns 1
190 * when handle_flags() needs to be re-run or 0 indicating it
191 * set si_state itself.
193 int (*oem_data_avail_handler)(struct smi_info *smi_info);
196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 * is set to hold the flags until we are done handling everything
198 * from the flags.
200 #define RECEIVE_MSG_AVAIL 0x01
201 #define EVENT_MSG_BUFFER_FULL 0x02
202 #define WDT_PRE_TIMEOUT_INT 0x08
203 #define OEM0_DATA_AVAIL 0x20
204 #define OEM1_DATA_AVAIL 0x40
205 #define OEM2_DATA_AVAIL 0x80
206 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
207 OEM1_DATA_AVAIL | \
208 OEM2_DATA_AVAIL)
209 unsigned char msg_flags;
211 /* Does the BMC have an event buffer? */
212 bool has_event_buffer;
215 * If set to true, this will request events the next time the
216 * state machine is idle.
218 atomic_t req_events;
221 * If true, run the state machine to completion on every send
222 * call. Generally used after a panic to make sure stuff goes
223 * out.
225 bool run_to_completion;
227 /* The I/O port of an SI interface. */
228 int port;
231 * The space between start addresses of the two ports. For
232 * instance, if the first port is 0xca2 and the spacing is 4, then
233 * the second port is 0xca6.
235 unsigned int spacing;
237 /* zero if no irq; */
238 int irq;
240 /* The timer for this si. */
241 struct timer_list si_timer;
243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 bool timer_running;
246 /* The time (in jiffies) the last timeout occurred at. */
247 unsigned long last_timeout_jiffies;
249 /* Are we waiting for the events, pretimeouts, received msgs? */
250 atomic_t need_watch;
253 * The driver will disable interrupts when it gets into a
254 * situation where it cannot handle messages due to lack of
255 * memory. Once that situation clears up, it will re-enable
256 * interrupts.
258 bool interrupt_disabled;
261 * Does the BMC support events?
263 bool supports_event_msg_buff;
266 * Did we get an attention that we did not handle?
268 bool got_attn;
270 /* From the get device id response... */
271 struct ipmi_device_id device_id;
273 /* Driver model stuff. */
274 struct device *dev;
275 struct platform_device *pdev;
278 * True if we allocated the device, false if it came from
279 * someplace else (like PCI).
281 bool dev_registered;
283 /* Slave address, could be reported from DMI. */
284 unsigned char slave_addr;
286 /* Counters and things for the proc filesystem. */
287 atomic_t stats[SI_NUM_STATS];
289 struct task_struct *thread;
291 struct list_head link;
292 union ipmi_smi_info_union addr_info;
295 #define smi_inc_stat(smi, stat) \
296 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300 #define SI_MAX_PARMS 4
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
317 static bool unload_when_empty = true;
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
324 #ifdef DEBUG_TIMING
325 void debug_timestamp(char *msg)
327 struct timespec64 t;
329 getnstimeofday64(&t);
330 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
332 #else
333 #define debug_timestamp(x)
334 #endif
336 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
337 static int register_xaction_notifier(struct notifier_block *nb)
339 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
342 static void deliver_recv_msg(struct smi_info *smi_info,
343 struct ipmi_smi_msg *msg)
345 /* Deliver the message to the upper layer. */
346 if (smi_info->intf)
347 ipmi_smi_msg_received(smi_info->intf, msg);
348 else
349 ipmi_free_smi_msg(msg);
352 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
354 struct ipmi_smi_msg *msg = smi_info->curr_msg;
356 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
357 cCode = IPMI_ERR_UNSPECIFIED;
358 /* else use it as is */
360 /* Make it a response */
361 msg->rsp[0] = msg->data[0] | 4;
362 msg->rsp[1] = msg->data[1];
363 msg->rsp[2] = cCode;
364 msg->rsp_size = 3;
366 smi_info->curr_msg = NULL;
367 deliver_recv_msg(smi_info, msg);
370 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
372 int rv;
374 if (!smi_info->waiting_msg) {
375 smi_info->curr_msg = NULL;
376 rv = SI_SM_IDLE;
377 } else {
378 int err;
380 smi_info->curr_msg = smi_info->waiting_msg;
381 smi_info->waiting_msg = NULL;
382 debug_timestamp("Start2");
383 err = atomic_notifier_call_chain(&xaction_notifier_list,
384 0, smi_info);
385 if (err & NOTIFY_STOP_MASK) {
386 rv = SI_SM_CALL_WITHOUT_DELAY;
387 goto out;
389 err = smi_info->handlers->start_transaction(
390 smi_info->si_sm,
391 smi_info->curr_msg->data,
392 smi_info->curr_msg->data_size);
393 if (err)
394 return_hosed_msg(smi_info, err);
396 rv = SI_SM_CALL_WITHOUT_DELAY;
398 out:
399 return rv;
402 static void start_check_enables(struct smi_info *smi_info)
404 unsigned char msg[2];
406 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
409 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410 smi_info->si_state = SI_CHECKING_ENABLES;
413 static void start_clear_flags(struct smi_info *smi_info)
415 unsigned char msg[3];
417 /* Make sure the watchdog pre-timeout flag is not set at startup. */
418 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
420 msg[2] = WDT_PRE_TIMEOUT_INT;
422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
423 smi_info->si_state = SI_CLEARING_FLAGS;
426 static void start_getting_msg_queue(struct smi_info *smi_info)
428 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
429 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
430 smi_info->curr_msg->data_size = 2;
432 smi_info->handlers->start_transaction(
433 smi_info->si_sm,
434 smi_info->curr_msg->data,
435 smi_info->curr_msg->data_size);
436 smi_info->si_state = SI_GETTING_MESSAGES;
439 static void start_getting_events(struct smi_info *smi_info)
441 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
443 smi_info->curr_msg->data_size = 2;
445 smi_info->handlers->start_transaction(
446 smi_info->si_sm,
447 smi_info->curr_msg->data,
448 smi_info->curr_msg->data_size);
449 smi_info->si_state = SI_GETTING_EVENTS;
452 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
454 smi_info->last_timeout_jiffies = jiffies;
455 mod_timer(&smi_info->si_timer, new_val);
456 smi_info->timer_running = true;
460 * When we have a situtaion where we run out of memory and cannot
461 * allocate messages, we just leave them in the BMC and run the system
462 * polled until we can allocate some memory. Once we have some
463 * memory, we will re-enable the interrupt.
465 static inline bool disable_si_irq(struct smi_info *smi_info)
467 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
468 smi_info->interrupt_disabled = true;
469 start_check_enables(smi_info);
470 return true;
472 return false;
475 static inline bool enable_si_irq(struct smi_info *smi_info)
477 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
478 smi_info->interrupt_disabled = false;
479 start_check_enables(smi_info);
480 return true;
482 return false;
486 * Allocate a message. If unable to allocate, start the interrupt
487 * disable process and return NULL. If able to allocate but
488 * interrupts are disabled, free the message and return NULL after
489 * starting the interrupt enable process.
491 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
493 struct ipmi_smi_msg *msg;
495 msg = ipmi_alloc_smi_msg();
496 if (!msg) {
497 if (!disable_si_irq(smi_info))
498 smi_info->si_state = SI_NORMAL;
499 } else if (enable_si_irq(smi_info)) {
500 ipmi_free_smi_msg(msg);
501 msg = NULL;
503 return msg;
506 static void handle_flags(struct smi_info *smi_info)
508 retry:
509 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
510 /* Watchdog pre-timeout */
511 smi_inc_stat(smi_info, watchdog_pretimeouts);
513 start_clear_flags(smi_info);
514 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
515 if (smi_info->intf)
516 ipmi_smi_watchdog_pretimeout(smi_info->intf);
517 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
518 /* Messages available. */
519 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
520 if (!smi_info->curr_msg)
521 return;
523 start_getting_msg_queue(smi_info);
524 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
525 /* Events available. */
526 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
527 if (!smi_info->curr_msg)
528 return;
530 start_getting_events(smi_info);
531 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
532 smi_info->oem_data_avail_handler) {
533 if (smi_info->oem_data_avail_handler(smi_info))
534 goto retry;
535 } else
536 smi_info->si_state = SI_NORMAL;
540 * Global enables we care about.
542 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
543 IPMI_BMC_EVT_MSG_INTR)
545 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
546 bool *irq_on)
548 u8 enables = 0;
550 if (smi_info->supports_event_msg_buff)
551 enables |= IPMI_BMC_EVT_MSG_BUFF;
552 else
553 enables &= ~IPMI_BMC_EVT_MSG_BUFF;
555 if (smi_info->irq && !smi_info->interrupt_disabled)
556 enables |= IPMI_BMC_RCV_MSG_INTR;
557 else
558 enables &= ~IPMI_BMC_RCV_MSG_INTR;
560 if (smi_info->supports_event_msg_buff &&
561 smi_info->irq && !smi_info->interrupt_disabled)
563 enables |= IPMI_BMC_EVT_MSG_INTR;
564 else
565 enables &= ~IPMI_BMC_EVT_MSG_INTR;
567 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
569 return enables;
572 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
574 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
576 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
578 if ((bool)irqstate == irq_on)
579 return;
581 if (irq_on)
582 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
583 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
584 else
585 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
588 static void handle_transaction_done(struct smi_info *smi_info)
590 struct ipmi_smi_msg *msg;
592 debug_timestamp("Done");
593 switch (smi_info->si_state) {
594 case SI_NORMAL:
595 if (!smi_info->curr_msg)
596 break;
598 smi_info->curr_msg->rsp_size
599 = smi_info->handlers->get_result(
600 smi_info->si_sm,
601 smi_info->curr_msg->rsp,
602 IPMI_MAX_MSG_LENGTH);
605 * Do this here becase deliver_recv_msg() releases the
606 * lock, and a new message can be put in during the
607 * time the lock is released.
609 msg = smi_info->curr_msg;
610 smi_info->curr_msg = NULL;
611 deliver_recv_msg(smi_info, msg);
612 break;
614 case SI_GETTING_FLAGS:
616 unsigned char msg[4];
617 unsigned int len;
619 /* We got the flags from the SMI, now handle them. */
620 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
621 if (msg[2] != 0) {
622 /* Error fetching flags, just give up for now. */
623 smi_info->si_state = SI_NORMAL;
624 } else if (len < 4) {
626 * Hmm, no flags. That's technically illegal, but
627 * don't use uninitialized data.
629 smi_info->si_state = SI_NORMAL;
630 } else {
631 smi_info->msg_flags = msg[3];
632 handle_flags(smi_info);
634 break;
637 case SI_CLEARING_FLAGS:
639 unsigned char msg[3];
641 /* We cleared the flags. */
642 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
643 if (msg[2] != 0) {
644 /* Error clearing flags */
645 dev_warn(smi_info->dev,
646 "Error clearing flags: %2.2x\n", msg[2]);
648 smi_info->si_state = SI_NORMAL;
649 break;
652 case SI_GETTING_EVENTS:
654 smi_info->curr_msg->rsp_size
655 = smi_info->handlers->get_result(
656 smi_info->si_sm,
657 smi_info->curr_msg->rsp,
658 IPMI_MAX_MSG_LENGTH);
661 * Do this here becase deliver_recv_msg() releases the
662 * lock, and a new message can be put in during the
663 * time the lock is released.
665 msg = smi_info->curr_msg;
666 smi_info->curr_msg = NULL;
667 if (msg->rsp[2] != 0) {
668 /* Error getting event, probably done. */
669 msg->done(msg);
671 /* Take off the event flag. */
672 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
673 handle_flags(smi_info);
674 } else {
675 smi_inc_stat(smi_info, events);
678 * Do this before we deliver the message
679 * because delivering the message releases the
680 * lock and something else can mess with the
681 * state.
683 handle_flags(smi_info);
685 deliver_recv_msg(smi_info, msg);
687 break;
690 case SI_GETTING_MESSAGES:
692 smi_info->curr_msg->rsp_size
693 = smi_info->handlers->get_result(
694 smi_info->si_sm,
695 smi_info->curr_msg->rsp,
696 IPMI_MAX_MSG_LENGTH);
699 * Do this here becase deliver_recv_msg() releases the
700 * lock, and a new message can be put in during the
701 * time the lock is released.
703 msg = smi_info->curr_msg;
704 smi_info->curr_msg = NULL;
705 if (msg->rsp[2] != 0) {
706 /* Error getting event, probably done. */
707 msg->done(msg);
709 /* Take off the msg flag. */
710 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
711 handle_flags(smi_info);
712 } else {
713 smi_inc_stat(smi_info, incoming_messages);
716 * Do this before we deliver the message
717 * because delivering the message releases the
718 * lock and something else can mess with the
719 * state.
721 handle_flags(smi_info);
723 deliver_recv_msg(smi_info, msg);
725 break;
728 case SI_CHECKING_ENABLES:
730 unsigned char msg[4];
731 u8 enables;
732 bool irq_on;
734 /* We got the flags from the SMI, now handle them. */
735 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 if (msg[2] != 0) {
737 dev_warn(smi_info->dev,
738 "Couldn't get irq info: %x.\n", msg[2]);
739 dev_warn(smi_info->dev,
740 "Maybe ok, but ipmi might run very slowly.\n");
741 smi_info->si_state = SI_NORMAL;
742 break;
744 enables = current_global_enables(smi_info, 0, &irq_on);
745 if (smi_info->si_type == SI_BT)
746 /* BT has its own interrupt enable bit. */
747 check_bt_irq(smi_info, irq_on);
748 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
749 /* Enables are not correct, fix them. */
750 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
751 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
752 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
753 smi_info->handlers->start_transaction(
754 smi_info->si_sm, msg, 3);
755 smi_info->si_state = SI_SETTING_ENABLES;
756 } else if (smi_info->supports_event_msg_buff) {
757 smi_info->curr_msg = ipmi_alloc_smi_msg();
758 if (!smi_info->curr_msg) {
759 smi_info->si_state = SI_NORMAL;
760 break;
762 start_getting_msg_queue(smi_info);
763 } else {
764 smi_info->si_state = SI_NORMAL;
766 break;
769 case SI_SETTING_ENABLES:
771 unsigned char msg[4];
773 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
774 if (msg[2] != 0)
775 dev_warn(smi_info->dev,
776 "Could not set the global enables: 0x%x.\n",
777 msg[2]);
779 if (smi_info->supports_event_msg_buff) {
780 smi_info->curr_msg = ipmi_alloc_smi_msg();
781 if (!smi_info->curr_msg) {
782 smi_info->si_state = SI_NORMAL;
783 break;
785 start_getting_msg_queue(smi_info);
786 } else {
787 smi_info->si_state = SI_NORMAL;
789 break;
795 * Called on timeouts and events. Timeouts should pass the elapsed
796 * time, interrupts should pass in zero. Must be called with
797 * si_lock held and interrupts disabled.
799 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
800 int time)
802 enum si_sm_result si_sm_result;
804 restart:
806 * There used to be a loop here that waited a little while
807 * (around 25us) before giving up. That turned out to be
808 * pointless, the minimum delays I was seeing were in the 300us
809 * range, which is far too long to wait in an interrupt. So
810 * we just run until the state machine tells us something
811 * happened or it needs a delay.
813 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
814 time = 0;
815 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
816 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
818 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
819 smi_inc_stat(smi_info, complete_transactions);
821 handle_transaction_done(smi_info);
822 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
823 } else if (si_sm_result == SI_SM_HOSED) {
824 smi_inc_stat(smi_info, hosed_count);
827 * Do the before return_hosed_msg, because that
828 * releases the lock.
830 smi_info->si_state = SI_NORMAL;
831 if (smi_info->curr_msg != NULL) {
833 * If we were handling a user message, format
834 * a response to send to the upper layer to
835 * tell it about the error.
837 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
839 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
843 * We prefer handling attn over new messages. But don't do
844 * this if there is not yet an upper layer to handle anything.
846 if (likely(smi_info->intf) &&
847 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
848 unsigned char msg[2];
850 if (smi_info->si_state != SI_NORMAL) {
852 * We got an ATTN, but we are doing something else.
853 * Handle the ATTN later.
855 smi_info->got_attn = true;
856 } else {
857 smi_info->got_attn = false;
858 smi_inc_stat(smi_info, attentions);
861 * Got a attn, send down a get message flags to see
862 * what's causing it. It would be better to handle
863 * this in the upper layer, but due to the way
864 * interrupts work with the SMI, that's not really
865 * possible.
867 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
868 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
870 smi_info->handlers->start_transaction(
871 smi_info->si_sm, msg, 2);
872 smi_info->si_state = SI_GETTING_FLAGS;
873 goto restart;
877 /* If we are currently idle, try to start the next message. */
878 if (si_sm_result == SI_SM_IDLE) {
879 smi_inc_stat(smi_info, idles);
881 si_sm_result = start_next_msg(smi_info);
882 if (si_sm_result != SI_SM_IDLE)
883 goto restart;
886 if ((si_sm_result == SI_SM_IDLE)
887 && (atomic_read(&smi_info->req_events))) {
889 * We are idle and the upper layer requested that I fetch
890 * events, so do so.
892 atomic_set(&smi_info->req_events, 0);
895 * Take this opportunity to check the interrupt and
896 * message enable state for the BMC. The BMC can be
897 * asynchronously reset, and may thus get interrupts
898 * disable and messages disabled.
900 if (smi_info->supports_event_msg_buff || smi_info->irq) {
901 start_check_enables(smi_info);
902 } else {
903 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
904 if (!smi_info->curr_msg)
905 goto out;
907 start_getting_events(smi_info);
909 goto restart;
911 out:
912 return si_sm_result;
915 static void check_start_timer_thread(struct smi_info *smi_info)
917 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
918 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
920 if (smi_info->thread)
921 wake_up_process(smi_info->thread);
923 start_next_msg(smi_info);
924 smi_event_handler(smi_info, 0);
928 static void sender(void *send_info,
929 struct ipmi_smi_msg *msg)
931 struct smi_info *smi_info = send_info;
932 enum si_sm_result result;
933 unsigned long flags;
935 BUG_ON(smi_info->waiting_msg);
936 smi_info->waiting_msg = msg;
938 debug_timestamp("Enqueue");
940 if (smi_info->run_to_completion) {
942 * If we are running to completion, start it and run
943 * transactions until everything is clear.
945 smi_info->curr_msg = smi_info->waiting_msg;
946 smi_info->waiting_msg = NULL;
949 * Run to completion means we are single-threaded, no
950 * need for locks.
953 result = smi_event_handler(smi_info, 0);
954 while (result != SI_SM_IDLE) {
955 udelay(SI_SHORT_TIMEOUT_USEC);
956 result = smi_event_handler(smi_info,
957 SI_SHORT_TIMEOUT_USEC);
959 return;
962 spin_lock_irqsave(&smi_info->si_lock, flags);
963 check_start_timer_thread(smi_info);
964 spin_unlock_irqrestore(&smi_info->si_lock, flags);
967 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
969 struct smi_info *smi_info = send_info;
970 enum si_sm_result result;
972 smi_info->run_to_completion = i_run_to_completion;
973 if (i_run_to_completion) {
974 result = smi_event_handler(smi_info, 0);
975 while (result != SI_SM_IDLE) {
976 udelay(SI_SHORT_TIMEOUT_USEC);
977 result = smi_event_handler(smi_info,
978 SI_SHORT_TIMEOUT_USEC);
984 * Use -1 in the nsec value of the busy waiting timespec to tell that
985 * we are spinning in kipmid looking for something and not delaying
986 * between checks
988 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
990 ts->tv_nsec = -1;
992 static inline int ipmi_si_is_busy(struct timespec64 *ts)
994 return ts->tv_nsec != -1;
997 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
998 const struct smi_info *smi_info,
999 struct timespec64 *busy_until)
1001 unsigned int max_busy_us = 0;
1003 if (smi_info->intf_num < num_max_busy_us)
1004 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1005 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1006 ipmi_si_set_not_busy(busy_until);
1007 else if (!ipmi_si_is_busy(busy_until)) {
1008 getnstimeofday64(busy_until);
1009 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1010 } else {
1011 struct timespec64 now;
1013 getnstimeofday64(&now);
1014 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1015 ipmi_si_set_not_busy(busy_until);
1016 return 0;
1019 return 1;
1024 * A busy-waiting loop for speeding up IPMI operation.
1026 * Lousy hardware makes this hard. This is only enabled for systems
1027 * that are not BT and do not have interrupts. It starts spinning
1028 * when an operation is complete or until max_busy tells it to stop
1029 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1030 * Documentation/IPMI.txt for details.
1032 static int ipmi_thread(void *data)
1034 struct smi_info *smi_info = data;
1035 unsigned long flags;
1036 enum si_sm_result smi_result;
1037 struct timespec64 busy_until;
1039 ipmi_si_set_not_busy(&busy_until);
1040 set_user_nice(current, MAX_NICE);
1041 while (!kthread_should_stop()) {
1042 int busy_wait;
1044 spin_lock_irqsave(&(smi_info->si_lock), flags);
1045 smi_result = smi_event_handler(smi_info, 0);
1048 * If the driver is doing something, there is a possible
1049 * race with the timer. If the timer handler see idle,
1050 * and the thread here sees something else, the timer
1051 * handler won't restart the timer even though it is
1052 * required. So start it here if necessary.
1054 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1055 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1057 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1058 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1059 &busy_until);
1060 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1061 ; /* do nothing */
1062 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1063 schedule();
1064 else if (smi_result == SI_SM_IDLE) {
1065 if (atomic_read(&smi_info->need_watch)) {
1066 schedule_timeout_interruptible(100);
1067 } else {
1068 /* Wait to be woken up when we are needed. */
1069 __set_current_state(TASK_INTERRUPTIBLE);
1070 schedule();
1072 } else
1073 schedule_timeout_interruptible(1);
1075 return 0;
1079 static void poll(void *send_info)
1081 struct smi_info *smi_info = send_info;
1082 unsigned long flags = 0;
1083 bool run_to_completion = smi_info->run_to_completion;
1086 * Make sure there is some delay in the poll loop so we can
1087 * drive time forward and timeout things.
1089 udelay(10);
1090 if (!run_to_completion)
1091 spin_lock_irqsave(&smi_info->si_lock, flags);
1092 smi_event_handler(smi_info, 10);
1093 if (!run_to_completion)
1094 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1097 static void request_events(void *send_info)
1099 struct smi_info *smi_info = send_info;
1101 if (!smi_info->has_event_buffer)
1102 return;
1104 atomic_set(&smi_info->req_events, 1);
1107 static void set_need_watch(void *send_info, bool enable)
1109 struct smi_info *smi_info = send_info;
1110 unsigned long flags;
1112 atomic_set(&smi_info->need_watch, enable);
1113 spin_lock_irqsave(&smi_info->si_lock, flags);
1114 check_start_timer_thread(smi_info);
1115 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1118 static int initialized;
1120 static void smi_timeout(unsigned long data)
1122 struct smi_info *smi_info = (struct smi_info *) data;
1123 enum si_sm_result smi_result;
1124 unsigned long flags;
1125 unsigned long jiffies_now;
1126 long time_diff;
1127 long timeout;
1129 spin_lock_irqsave(&(smi_info->si_lock), flags);
1130 debug_timestamp("Timer");
1132 jiffies_now = jiffies;
1133 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1134 * SI_USEC_PER_JIFFY);
1135 smi_result = smi_event_handler(smi_info, time_diff);
1137 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1138 /* Running with interrupts, only do long timeouts. */
1139 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1140 smi_inc_stat(smi_info, long_timeouts);
1141 goto do_mod_timer;
1145 * If the state machine asks for a short delay, then shorten
1146 * the timer timeout.
1148 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1149 smi_inc_stat(smi_info, short_timeouts);
1150 timeout = jiffies + 1;
1151 } else {
1152 smi_inc_stat(smi_info, long_timeouts);
1153 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1156 do_mod_timer:
1157 if (smi_result != SI_SM_IDLE)
1158 smi_mod_timer(smi_info, timeout);
1159 else
1160 smi_info->timer_running = false;
1161 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1164 static irqreturn_t si_irq_handler(int irq, void *data)
1166 struct smi_info *smi_info = data;
1167 unsigned long flags;
1169 spin_lock_irqsave(&(smi_info->si_lock), flags);
1171 smi_inc_stat(smi_info, interrupts);
1173 debug_timestamp("Interrupt");
1175 smi_event_handler(smi_info, 0);
1176 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1177 return IRQ_HANDLED;
1180 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1182 struct smi_info *smi_info = data;
1183 /* We need to clear the IRQ flag for the BT interface. */
1184 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1185 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1186 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1187 return si_irq_handler(irq, data);
1190 static int smi_start_processing(void *send_info,
1191 ipmi_smi_t intf)
1193 struct smi_info *new_smi = send_info;
1194 int enable = 0;
1196 new_smi->intf = intf;
1198 /* Try to claim any interrupts. */
1199 if (new_smi->irq_setup)
1200 new_smi->irq_setup(new_smi);
1202 /* Set up the timer that drives the interface. */
1203 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1204 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1207 * Check if the user forcefully enabled the daemon.
1209 if (new_smi->intf_num < num_force_kipmid)
1210 enable = force_kipmid[new_smi->intf_num];
1212 * The BT interface is efficient enough to not need a thread,
1213 * and there is no need for a thread if we have interrupts.
1215 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1216 enable = 1;
1218 if (enable) {
1219 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1220 "kipmi%d", new_smi->intf_num);
1221 if (IS_ERR(new_smi->thread)) {
1222 dev_notice(new_smi->dev, "Could not start"
1223 " kernel thread due to error %ld, only using"
1224 " timers to drive the interface\n",
1225 PTR_ERR(new_smi->thread));
1226 new_smi->thread = NULL;
1230 return 0;
1233 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1235 struct smi_info *smi = send_info;
1237 data->addr_src = smi->addr_source;
1238 data->dev = smi->dev;
1239 data->addr_info = smi->addr_info;
1240 get_device(smi->dev);
1242 return 0;
1245 static void set_maintenance_mode(void *send_info, bool enable)
1247 struct smi_info *smi_info = send_info;
1249 if (!enable)
1250 atomic_set(&smi_info->req_events, 0);
1253 static struct ipmi_smi_handlers handlers = {
1254 .owner = THIS_MODULE,
1255 .start_processing = smi_start_processing,
1256 .get_smi_info = get_smi_info,
1257 .sender = sender,
1258 .request_events = request_events,
1259 .set_need_watch = set_need_watch,
1260 .set_maintenance_mode = set_maintenance_mode,
1261 .set_run_to_completion = set_run_to_completion,
1262 .poll = poll,
1266 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1267 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1270 static LIST_HEAD(smi_infos);
1271 static DEFINE_MUTEX(smi_infos_lock);
1272 static int smi_num; /* Used to sequence the SMIs */
1274 #define DEFAULT_REGSPACING 1
1275 #define DEFAULT_REGSIZE 1
1277 #ifdef CONFIG_ACPI
1278 static bool si_tryacpi = 1;
1279 #endif
1280 #ifdef CONFIG_DMI
1281 static bool si_trydmi = 1;
1282 #endif
1283 static bool si_tryplatform = 1;
1284 #ifdef CONFIG_PCI
1285 static bool si_trypci = 1;
1286 #endif
1287 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1288 static char *si_type[SI_MAX_PARMS];
1289 #define MAX_SI_TYPE_STR 30
1290 static char si_type_str[MAX_SI_TYPE_STR];
1291 static unsigned long addrs[SI_MAX_PARMS];
1292 static unsigned int num_addrs;
1293 static unsigned int ports[SI_MAX_PARMS];
1294 static unsigned int num_ports;
1295 static int irqs[SI_MAX_PARMS];
1296 static unsigned int num_irqs;
1297 static int regspacings[SI_MAX_PARMS];
1298 static unsigned int num_regspacings;
1299 static int regsizes[SI_MAX_PARMS];
1300 static unsigned int num_regsizes;
1301 static int regshifts[SI_MAX_PARMS];
1302 static unsigned int num_regshifts;
1303 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1304 static unsigned int num_slave_addrs;
1306 #define IPMI_IO_ADDR_SPACE 0
1307 #define IPMI_MEM_ADDR_SPACE 1
1308 static char *addr_space_to_str[] = { "i/o", "mem" };
1310 static int hotmod_handler(const char *val, struct kernel_param *kp);
1312 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1313 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1314 " Documentation/IPMI.txt in the kernel sources for the"
1315 " gory details.");
1317 #ifdef CONFIG_ACPI
1318 module_param_named(tryacpi, si_tryacpi, bool, 0);
1319 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1320 " default scan of the interfaces identified via ACPI");
1321 #endif
1322 #ifdef CONFIG_DMI
1323 module_param_named(trydmi, si_trydmi, bool, 0);
1324 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1325 " default scan of the interfaces identified via DMI");
1326 #endif
1327 module_param_named(tryplatform, si_tryplatform, bool, 0);
1328 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1329 " default scan of the interfaces identified via platform"
1330 " interfaces like openfirmware");
1331 #ifdef CONFIG_PCI
1332 module_param_named(trypci, si_trypci, bool, 0);
1333 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1334 " default scan of the interfaces identified via pci");
1335 #endif
1336 module_param_named(trydefaults, si_trydefaults, bool, 0);
1337 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1338 " default scan of the KCS and SMIC interface at the standard"
1339 " address");
1340 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1341 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1342 " interface separated by commas. The types are 'kcs',"
1343 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1344 " the first interface to kcs and the second to bt");
1345 module_param_array(addrs, ulong, &num_addrs, 0);
1346 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1347 " addresses separated by commas. Only use if an interface"
1348 " is in memory. Otherwise, set it to zero or leave"
1349 " it blank.");
1350 module_param_array(ports, uint, &num_ports, 0);
1351 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1352 " addresses separated by commas. Only use if an interface"
1353 " is a port. Otherwise, set it to zero or leave"
1354 " it blank.");
1355 module_param_array(irqs, int, &num_irqs, 0);
1356 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1357 " addresses separated by commas. Only use if an interface"
1358 " has an interrupt. Otherwise, set it to zero or leave"
1359 " it blank.");
1360 module_param_array(regspacings, int, &num_regspacings, 0);
1361 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1362 " and each successive register used by the interface. For"
1363 " instance, if the start address is 0xca2 and the spacing"
1364 " is 2, then the second address is at 0xca4. Defaults"
1365 " to 1.");
1366 module_param_array(regsizes, int, &num_regsizes, 0);
1367 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1368 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1369 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1370 " the 8-bit IPMI register has to be read from a larger"
1371 " register.");
1372 module_param_array(regshifts, int, &num_regshifts, 0);
1373 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1374 " IPMI register, in bits. For instance, if the data"
1375 " is read from a 32-bit word and the IPMI data is in"
1376 " bit 8-15, then the shift would be 8");
1377 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1378 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1379 " the controller. Normally this is 0x20, but can be"
1380 " overridden by this parm. This is an array indexed"
1381 " by interface number.");
1382 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1383 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1384 " disabled(0). Normally the IPMI driver auto-detects"
1385 " this, but the value may be overridden by this parm.");
1386 module_param(unload_when_empty, bool, 0);
1387 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1388 " specified or found, default is 1. Setting to 0"
1389 " is useful for hot add of devices using hotmod.");
1390 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1391 MODULE_PARM_DESC(kipmid_max_busy_us,
1392 "Max time (in microseconds) to busy-wait for IPMI data before"
1393 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1394 " if kipmid is using up a lot of CPU time.");
1397 static void std_irq_cleanup(struct smi_info *info)
1399 if (info->si_type == SI_BT)
1400 /* Disable the interrupt in the BT interface. */
1401 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1402 free_irq(info->irq, info);
1405 static int std_irq_setup(struct smi_info *info)
1407 int rv;
1409 if (!info->irq)
1410 return 0;
1412 if (info->si_type == SI_BT) {
1413 rv = request_irq(info->irq,
1414 si_bt_irq_handler,
1415 IRQF_SHARED,
1416 DEVICE_NAME,
1417 info);
1418 if (!rv)
1419 /* Enable the interrupt in the BT interface. */
1420 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1421 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1422 } else
1423 rv = request_irq(info->irq,
1424 si_irq_handler,
1425 IRQF_SHARED,
1426 DEVICE_NAME,
1427 info);
1428 if (rv) {
1429 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1430 " running polled\n",
1431 DEVICE_NAME, info->irq);
1432 info->irq = 0;
1433 } else {
1434 info->irq_cleanup = std_irq_cleanup;
1435 dev_info(info->dev, "Using irq %d\n", info->irq);
1438 return rv;
1441 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1443 unsigned int addr = io->addr_data;
1445 return inb(addr + (offset * io->regspacing));
1448 static void port_outb(struct si_sm_io *io, unsigned int offset,
1449 unsigned char b)
1451 unsigned int addr = io->addr_data;
1453 outb(b, addr + (offset * io->regspacing));
1456 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1458 unsigned int addr = io->addr_data;
1460 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1463 static void port_outw(struct si_sm_io *io, unsigned int offset,
1464 unsigned char b)
1466 unsigned int addr = io->addr_data;
1468 outw(b << io->regshift, addr + (offset * io->regspacing));
1471 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1473 unsigned int addr = io->addr_data;
1475 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1478 static void port_outl(struct si_sm_io *io, unsigned int offset,
1479 unsigned char b)
1481 unsigned int addr = io->addr_data;
1483 outl(b << io->regshift, addr+(offset * io->regspacing));
1486 static void port_cleanup(struct smi_info *info)
1488 unsigned int addr = info->io.addr_data;
1489 int idx;
1491 if (addr) {
1492 for (idx = 0; idx < info->io_size; idx++)
1493 release_region(addr + idx * info->io.regspacing,
1494 info->io.regsize);
1498 static int port_setup(struct smi_info *info)
1500 unsigned int addr = info->io.addr_data;
1501 int idx;
1503 if (!addr)
1504 return -ENODEV;
1506 info->io_cleanup = port_cleanup;
1509 * Figure out the actual inb/inw/inl/etc routine to use based
1510 * upon the register size.
1512 switch (info->io.regsize) {
1513 case 1:
1514 info->io.inputb = port_inb;
1515 info->io.outputb = port_outb;
1516 break;
1517 case 2:
1518 info->io.inputb = port_inw;
1519 info->io.outputb = port_outw;
1520 break;
1521 case 4:
1522 info->io.inputb = port_inl;
1523 info->io.outputb = port_outl;
1524 break;
1525 default:
1526 dev_warn(info->dev, "Invalid register size: %d\n",
1527 info->io.regsize);
1528 return -EINVAL;
1532 * Some BIOSes reserve disjoint I/O regions in their ACPI
1533 * tables. This causes problems when trying to register the
1534 * entire I/O region. Therefore we must register each I/O
1535 * port separately.
1537 for (idx = 0; idx < info->io_size; idx++) {
1538 if (request_region(addr + idx * info->io.regspacing,
1539 info->io.regsize, DEVICE_NAME) == NULL) {
1540 /* Undo allocations */
1541 while (idx--) {
1542 release_region(addr + idx * info->io.regspacing,
1543 info->io.regsize);
1545 return -EIO;
1548 return 0;
1551 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1553 return readb((io->addr)+(offset * io->regspacing));
1556 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1557 unsigned char b)
1559 writeb(b, (io->addr)+(offset * io->regspacing));
1562 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1564 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1565 & 0xff;
1568 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1569 unsigned char b)
1571 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1574 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1576 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1577 & 0xff;
1580 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1581 unsigned char b)
1583 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1586 #ifdef readq
1587 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1589 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1590 & 0xff;
1593 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1594 unsigned char b)
1596 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1598 #endif
1600 static void mem_cleanup(struct smi_info *info)
1602 unsigned long addr = info->io.addr_data;
1603 int mapsize;
1605 if (info->io.addr) {
1606 iounmap(info->io.addr);
1608 mapsize = ((info->io_size * info->io.regspacing)
1609 - (info->io.regspacing - info->io.regsize));
1611 release_mem_region(addr, mapsize);
1615 static int mem_setup(struct smi_info *info)
1617 unsigned long addr = info->io.addr_data;
1618 int mapsize;
1620 if (!addr)
1621 return -ENODEV;
1623 info->io_cleanup = mem_cleanup;
1626 * Figure out the actual readb/readw/readl/etc routine to use based
1627 * upon the register size.
1629 switch (info->io.regsize) {
1630 case 1:
1631 info->io.inputb = intf_mem_inb;
1632 info->io.outputb = intf_mem_outb;
1633 break;
1634 case 2:
1635 info->io.inputb = intf_mem_inw;
1636 info->io.outputb = intf_mem_outw;
1637 break;
1638 case 4:
1639 info->io.inputb = intf_mem_inl;
1640 info->io.outputb = intf_mem_outl;
1641 break;
1642 #ifdef readq
1643 case 8:
1644 info->io.inputb = mem_inq;
1645 info->io.outputb = mem_outq;
1646 break;
1647 #endif
1648 default:
1649 dev_warn(info->dev, "Invalid register size: %d\n",
1650 info->io.regsize);
1651 return -EINVAL;
1655 * Calculate the total amount of memory to claim. This is an
1656 * unusual looking calculation, but it avoids claiming any
1657 * more memory than it has to. It will claim everything
1658 * between the first address to the end of the last full
1659 * register.
1661 mapsize = ((info->io_size * info->io.regspacing)
1662 - (info->io.regspacing - info->io.regsize));
1664 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1665 return -EIO;
1667 info->io.addr = ioremap(addr, mapsize);
1668 if (info->io.addr == NULL) {
1669 release_mem_region(addr, mapsize);
1670 return -EIO;
1672 return 0;
1676 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1677 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1678 * Options are:
1679 * rsp=<regspacing>
1680 * rsi=<regsize>
1681 * rsh=<regshift>
1682 * irq=<irq>
1683 * ipmb=<ipmb addr>
1685 enum hotmod_op { HM_ADD, HM_REMOVE };
1686 struct hotmod_vals {
1687 char *name;
1688 int val;
1690 static struct hotmod_vals hotmod_ops[] = {
1691 { "add", HM_ADD },
1692 { "remove", HM_REMOVE },
1693 { NULL }
1695 static struct hotmod_vals hotmod_si[] = {
1696 { "kcs", SI_KCS },
1697 { "smic", SI_SMIC },
1698 { "bt", SI_BT },
1699 { NULL }
1701 static struct hotmod_vals hotmod_as[] = {
1702 { "mem", IPMI_MEM_ADDR_SPACE },
1703 { "i/o", IPMI_IO_ADDR_SPACE },
1704 { NULL }
1707 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1709 char *s;
1710 int i;
1712 s = strchr(*curr, ',');
1713 if (!s) {
1714 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1715 return -EINVAL;
1717 *s = '\0';
1718 s++;
1719 for (i = 0; v[i].name; i++) {
1720 if (strcmp(*curr, v[i].name) == 0) {
1721 *val = v[i].val;
1722 *curr = s;
1723 return 0;
1727 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1728 return -EINVAL;
1731 static int check_hotmod_int_op(const char *curr, const char *option,
1732 const char *name, int *val)
1734 char *n;
1736 if (strcmp(curr, name) == 0) {
1737 if (!option) {
1738 printk(KERN_WARNING PFX
1739 "No option given for '%s'\n",
1740 curr);
1741 return -EINVAL;
1743 *val = simple_strtoul(option, &n, 0);
1744 if ((*n != '\0') || (*option == '\0')) {
1745 printk(KERN_WARNING PFX
1746 "Bad option given for '%s'\n",
1747 curr);
1748 return -EINVAL;
1750 return 1;
1752 return 0;
1755 static struct smi_info *smi_info_alloc(void)
1757 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1759 if (info)
1760 spin_lock_init(&info->si_lock);
1761 return info;
1764 static int hotmod_handler(const char *val, struct kernel_param *kp)
1766 char *str = kstrdup(val, GFP_KERNEL);
1767 int rv;
1768 char *next, *curr, *s, *n, *o;
1769 enum hotmod_op op;
1770 enum si_type si_type;
1771 int addr_space;
1772 unsigned long addr;
1773 int regspacing;
1774 int regsize;
1775 int regshift;
1776 int irq;
1777 int ipmb;
1778 int ival;
1779 int len;
1780 struct smi_info *info;
1782 if (!str)
1783 return -ENOMEM;
1785 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1786 len = strlen(str);
1787 ival = len - 1;
1788 while ((ival >= 0) && isspace(str[ival])) {
1789 str[ival] = '\0';
1790 ival--;
1793 for (curr = str; curr; curr = next) {
1794 regspacing = 1;
1795 regsize = 1;
1796 regshift = 0;
1797 irq = 0;
1798 ipmb = 0; /* Choose the default if not specified */
1800 next = strchr(curr, ':');
1801 if (next) {
1802 *next = '\0';
1803 next++;
1806 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1807 if (rv)
1808 break;
1809 op = ival;
1811 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1812 if (rv)
1813 break;
1814 si_type = ival;
1816 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1817 if (rv)
1818 break;
1820 s = strchr(curr, ',');
1821 if (s) {
1822 *s = '\0';
1823 s++;
1825 addr = simple_strtoul(curr, &n, 0);
1826 if ((*n != '\0') || (*curr == '\0')) {
1827 printk(KERN_WARNING PFX "Invalid hotmod address"
1828 " '%s'\n", curr);
1829 break;
1832 while (s) {
1833 curr = s;
1834 s = strchr(curr, ',');
1835 if (s) {
1836 *s = '\0';
1837 s++;
1839 o = strchr(curr, '=');
1840 if (o) {
1841 *o = '\0';
1842 o++;
1844 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1845 if (rv < 0)
1846 goto out;
1847 else if (rv)
1848 continue;
1849 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1850 if (rv < 0)
1851 goto out;
1852 else if (rv)
1853 continue;
1854 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1855 if (rv < 0)
1856 goto out;
1857 else if (rv)
1858 continue;
1859 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1860 if (rv < 0)
1861 goto out;
1862 else if (rv)
1863 continue;
1864 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1865 if (rv < 0)
1866 goto out;
1867 else if (rv)
1868 continue;
1870 rv = -EINVAL;
1871 printk(KERN_WARNING PFX
1872 "Invalid hotmod option '%s'\n",
1873 curr);
1874 goto out;
1877 if (op == HM_ADD) {
1878 info = smi_info_alloc();
1879 if (!info) {
1880 rv = -ENOMEM;
1881 goto out;
1884 info->addr_source = SI_HOTMOD;
1885 info->si_type = si_type;
1886 info->io.addr_data = addr;
1887 info->io.addr_type = addr_space;
1888 if (addr_space == IPMI_MEM_ADDR_SPACE)
1889 info->io_setup = mem_setup;
1890 else
1891 info->io_setup = port_setup;
1893 info->io.addr = NULL;
1894 info->io.regspacing = regspacing;
1895 if (!info->io.regspacing)
1896 info->io.regspacing = DEFAULT_REGSPACING;
1897 info->io.regsize = regsize;
1898 if (!info->io.regsize)
1899 info->io.regsize = DEFAULT_REGSPACING;
1900 info->io.regshift = regshift;
1901 info->irq = irq;
1902 if (info->irq)
1903 info->irq_setup = std_irq_setup;
1904 info->slave_addr = ipmb;
1906 rv = add_smi(info);
1907 if (rv) {
1908 kfree(info);
1909 goto out;
1911 rv = try_smi_init(info);
1912 if (rv) {
1913 cleanup_one_si(info);
1914 goto out;
1916 } else {
1917 /* remove */
1918 struct smi_info *e, *tmp_e;
1920 mutex_lock(&smi_infos_lock);
1921 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1922 if (e->io.addr_type != addr_space)
1923 continue;
1924 if (e->si_type != si_type)
1925 continue;
1926 if (e->io.addr_data == addr)
1927 cleanup_one_si(e);
1929 mutex_unlock(&smi_infos_lock);
1932 rv = len;
1933 out:
1934 kfree(str);
1935 return rv;
1938 static int hardcode_find_bmc(void)
1940 int ret = -ENODEV;
1941 int i;
1942 struct smi_info *info;
1944 for (i = 0; i < SI_MAX_PARMS; i++) {
1945 if (!ports[i] && !addrs[i])
1946 continue;
1948 info = smi_info_alloc();
1949 if (!info)
1950 return -ENOMEM;
1952 info->addr_source = SI_HARDCODED;
1953 printk(KERN_INFO PFX "probing via hardcoded address\n");
1955 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1956 info->si_type = SI_KCS;
1957 } else if (strcmp(si_type[i], "smic") == 0) {
1958 info->si_type = SI_SMIC;
1959 } else if (strcmp(si_type[i], "bt") == 0) {
1960 info->si_type = SI_BT;
1961 } else {
1962 printk(KERN_WARNING PFX "Interface type specified "
1963 "for interface %d, was invalid: %s\n",
1964 i, si_type[i]);
1965 kfree(info);
1966 continue;
1969 if (ports[i]) {
1970 /* An I/O port */
1971 info->io_setup = port_setup;
1972 info->io.addr_data = ports[i];
1973 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1974 } else if (addrs[i]) {
1975 /* A memory port */
1976 info->io_setup = mem_setup;
1977 info->io.addr_data = addrs[i];
1978 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1979 } else {
1980 printk(KERN_WARNING PFX "Interface type specified "
1981 "for interface %d, but port and address were "
1982 "not set or set to zero.\n", i);
1983 kfree(info);
1984 continue;
1987 info->io.addr = NULL;
1988 info->io.regspacing = regspacings[i];
1989 if (!info->io.regspacing)
1990 info->io.regspacing = DEFAULT_REGSPACING;
1991 info->io.regsize = regsizes[i];
1992 if (!info->io.regsize)
1993 info->io.regsize = DEFAULT_REGSPACING;
1994 info->io.regshift = regshifts[i];
1995 info->irq = irqs[i];
1996 if (info->irq)
1997 info->irq_setup = std_irq_setup;
1998 info->slave_addr = slave_addrs[i];
2000 if (!add_smi(info)) {
2001 if (try_smi_init(info))
2002 cleanup_one_si(info);
2003 ret = 0;
2004 } else {
2005 kfree(info);
2008 return ret;
2011 #ifdef CONFIG_ACPI
2013 #include <linux/acpi.h>
2016 * Once we get an ACPI failure, we don't try any more, because we go
2017 * through the tables sequentially. Once we don't find a table, there
2018 * are no more.
2020 static int acpi_failure;
2022 /* For GPE-type interrupts. */
2023 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2024 u32 gpe_number, void *context)
2026 struct smi_info *smi_info = context;
2027 unsigned long flags;
2029 spin_lock_irqsave(&(smi_info->si_lock), flags);
2031 smi_inc_stat(smi_info, interrupts);
2033 debug_timestamp("ACPI_GPE");
2035 smi_event_handler(smi_info, 0);
2036 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2038 return ACPI_INTERRUPT_HANDLED;
2041 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2043 if (!info->irq)
2044 return;
2046 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2049 static int acpi_gpe_irq_setup(struct smi_info *info)
2051 acpi_status status;
2053 if (!info->irq)
2054 return 0;
2056 status = acpi_install_gpe_handler(NULL,
2057 info->irq,
2058 ACPI_GPE_LEVEL_TRIGGERED,
2059 &ipmi_acpi_gpe,
2060 info);
2061 if (status != AE_OK) {
2062 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2063 " running polled\n", DEVICE_NAME, info->irq);
2064 info->irq = 0;
2065 return -EINVAL;
2066 } else {
2067 info->irq_cleanup = acpi_gpe_irq_cleanup;
2068 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2069 return 0;
2074 * Defined at
2075 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2077 struct SPMITable {
2078 s8 Signature[4];
2079 u32 Length;
2080 u8 Revision;
2081 u8 Checksum;
2082 s8 OEMID[6];
2083 s8 OEMTableID[8];
2084 s8 OEMRevision[4];
2085 s8 CreatorID[4];
2086 s8 CreatorRevision[4];
2087 u8 InterfaceType;
2088 u8 IPMIlegacy;
2089 s16 SpecificationRevision;
2092 * Bit 0 - SCI interrupt supported
2093 * Bit 1 - I/O APIC/SAPIC
2095 u8 InterruptType;
2098 * If bit 0 of InterruptType is set, then this is the SCI
2099 * interrupt in the GPEx_STS register.
2101 u8 GPE;
2103 s16 Reserved;
2106 * If bit 1 of InterruptType is set, then this is the I/O
2107 * APIC/SAPIC interrupt.
2109 u32 GlobalSystemInterrupt;
2111 /* The actual register address. */
2112 struct acpi_generic_address addr;
2114 u8 UID[4];
2116 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2119 static int try_init_spmi(struct SPMITable *spmi)
2121 struct smi_info *info;
2122 int rv;
2124 if (spmi->IPMIlegacy != 1) {
2125 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2126 return -ENODEV;
2129 info = smi_info_alloc();
2130 if (!info) {
2131 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2132 return -ENOMEM;
2135 info->addr_source = SI_SPMI;
2136 printk(KERN_INFO PFX "probing via SPMI\n");
2138 /* Figure out the interface type. */
2139 switch (spmi->InterfaceType) {
2140 case 1: /* KCS */
2141 info->si_type = SI_KCS;
2142 break;
2143 case 2: /* SMIC */
2144 info->si_type = SI_SMIC;
2145 break;
2146 case 3: /* BT */
2147 info->si_type = SI_BT;
2148 break;
2149 case 4: /* SSIF, just ignore */
2150 kfree(info);
2151 return -EIO;
2152 default:
2153 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2154 spmi->InterfaceType);
2155 kfree(info);
2156 return -EIO;
2159 if (spmi->InterruptType & 1) {
2160 /* We've got a GPE interrupt. */
2161 info->irq = spmi->GPE;
2162 info->irq_setup = acpi_gpe_irq_setup;
2163 } else if (spmi->InterruptType & 2) {
2164 /* We've got an APIC/SAPIC interrupt. */
2165 info->irq = spmi->GlobalSystemInterrupt;
2166 info->irq_setup = std_irq_setup;
2167 } else {
2168 /* Use the default interrupt setting. */
2169 info->irq = 0;
2170 info->irq_setup = NULL;
2173 if (spmi->addr.bit_width) {
2174 /* A (hopefully) properly formed register bit width. */
2175 info->io.regspacing = spmi->addr.bit_width / 8;
2176 } else {
2177 info->io.regspacing = DEFAULT_REGSPACING;
2179 info->io.regsize = info->io.regspacing;
2180 info->io.regshift = spmi->addr.bit_offset;
2182 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2183 info->io_setup = mem_setup;
2184 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2185 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2186 info->io_setup = port_setup;
2187 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2188 } else {
2189 kfree(info);
2190 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2191 return -EIO;
2193 info->io.addr_data = spmi->addr.address;
2195 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2196 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2197 info->io.addr_data, info->io.regsize, info->io.regspacing,
2198 info->irq);
2200 rv = add_smi(info);
2201 if (rv)
2202 kfree(info);
2204 return rv;
2207 static void spmi_find_bmc(void)
2209 acpi_status status;
2210 struct SPMITable *spmi;
2211 int i;
2213 if (acpi_disabled)
2214 return;
2216 if (acpi_failure)
2217 return;
2219 for (i = 0; ; i++) {
2220 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2221 (struct acpi_table_header **)&spmi);
2222 if (status != AE_OK)
2223 return;
2225 try_init_spmi(spmi);
2229 static int ipmi_pnp_probe(struct pnp_dev *dev,
2230 const struct pnp_device_id *dev_id)
2232 struct acpi_device *acpi_dev;
2233 struct smi_info *info;
2234 struct resource *res, *res_second;
2235 acpi_handle handle;
2236 acpi_status status;
2237 unsigned long long tmp;
2238 int rv;
2240 acpi_dev = pnp_acpi_device(dev);
2241 if (!acpi_dev)
2242 return -ENODEV;
2244 info = smi_info_alloc();
2245 if (!info)
2246 return -ENOMEM;
2248 info->addr_source = SI_ACPI;
2249 printk(KERN_INFO PFX "probing via ACPI\n");
2251 handle = acpi_dev->handle;
2252 info->addr_info.acpi_info.acpi_handle = handle;
2254 /* _IFT tells us the interface type: KCS, BT, etc */
2255 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2256 if (ACPI_FAILURE(status))
2257 goto err_free;
2259 switch (tmp) {
2260 case 1:
2261 info->si_type = SI_KCS;
2262 break;
2263 case 2:
2264 info->si_type = SI_SMIC;
2265 break;
2266 case 3:
2267 info->si_type = SI_BT;
2268 break;
2269 case 4: /* SSIF, just ignore */
2270 goto err_free;
2271 default:
2272 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2273 goto err_free;
2276 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2277 if (res) {
2278 info->io_setup = port_setup;
2279 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2280 } else {
2281 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2282 if (res) {
2283 info->io_setup = mem_setup;
2284 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2287 if (!res) {
2288 dev_err(&dev->dev, "no I/O or memory address\n");
2289 goto err_free;
2291 info->io.addr_data = res->start;
2293 info->io.regspacing = DEFAULT_REGSPACING;
2294 res_second = pnp_get_resource(dev,
2295 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2296 IORESOURCE_IO : IORESOURCE_MEM,
2298 if (res_second) {
2299 if (res_second->start > info->io.addr_data)
2300 info->io.regspacing = res_second->start - info->io.addr_data;
2302 info->io.regsize = DEFAULT_REGSPACING;
2303 info->io.regshift = 0;
2305 /* If _GPE exists, use it; otherwise use standard interrupts */
2306 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2307 if (ACPI_SUCCESS(status)) {
2308 info->irq = tmp;
2309 info->irq_setup = acpi_gpe_irq_setup;
2310 } else if (pnp_irq_valid(dev, 0)) {
2311 info->irq = pnp_irq(dev, 0);
2312 info->irq_setup = std_irq_setup;
2315 info->dev = &dev->dev;
2316 pnp_set_drvdata(dev, info);
2318 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2319 res, info->io.regsize, info->io.regspacing,
2320 info->irq);
2322 rv = add_smi(info);
2323 if (rv)
2324 kfree(info);
2326 return rv;
2328 err_free:
2329 kfree(info);
2330 return -EINVAL;
2333 static void ipmi_pnp_remove(struct pnp_dev *dev)
2335 struct smi_info *info = pnp_get_drvdata(dev);
2337 cleanup_one_si(info);
2340 static const struct pnp_device_id pnp_dev_table[] = {
2341 {"IPI0001", 0},
2342 {"", 0},
2345 static struct pnp_driver ipmi_pnp_driver = {
2346 .name = DEVICE_NAME,
2347 .probe = ipmi_pnp_probe,
2348 .remove = ipmi_pnp_remove,
2349 .id_table = pnp_dev_table,
2352 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2353 #endif
2355 #ifdef CONFIG_DMI
2356 struct dmi_ipmi_data {
2357 u8 type;
2358 u8 addr_space;
2359 unsigned long base_addr;
2360 u8 irq;
2361 u8 offset;
2362 u8 slave_addr;
2365 static int decode_dmi(const struct dmi_header *dm,
2366 struct dmi_ipmi_data *dmi)
2368 const u8 *data = (const u8 *)dm;
2369 unsigned long base_addr;
2370 u8 reg_spacing;
2371 u8 len = dm->length;
2373 dmi->type = data[4];
2375 memcpy(&base_addr, data+8, sizeof(unsigned long));
2376 if (len >= 0x11) {
2377 if (base_addr & 1) {
2378 /* I/O */
2379 base_addr &= 0xFFFE;
2380 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2381 } else
2382 /* Memory */
2383 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2385 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2386 is odd. */
2387 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2389 dmi->irq = data[0x11];
2391 /* The top two bits of byte 0x10 hold the register spacing. */
2392 reg_spacing = (data[0x10] & 0xC0) >> 6;
2393 switch (reg_spacing) {
2394 case 0x00: /* Byte boundaries */
2395 dmi->offset = 1;
2396 break;
2397 case 0x01: /* 32-bit boundaries */
2398 dmi->offset = 4;
2399 break;
2400 case 0x02: /* 16-byte boundaries */
2401 dmi->offset = 16;
2402 break;
2403 default:
2404 /* Some other interface, just ignore it. */
2405 return -EIO;
2407 } else {
2408 /* Old DMI spec. */
2410 * Note that technically, the lower bit of the base
2411 * address should be 1 if the address is I/O and 0 if
2412 * the address is in memory. So many systems get that
2413 * wrong (and all that I have seen are I/O) so we just
2414 * ignore that bit and assume I/O. Systems that use
2415 * memory should use the newer spec, anyway.
2417 dmi->base_addr = base_addr & 0xfffe;
2418 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2419 dmi->offset = 1;
2422 dmi->slave_addr = data[6];
2424 return 0;
2427 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2429 struct smi_info *info;
2431 info = smi_info_alloc();
2432 if (!info) {
2433 printk(KERN_ERR PFX "Could not allocate SI data\n");
2434 return;
2437 info->addr_source = SI_SMBIOS;
2438 printk(KERN_INFO PFX "probing via SMBIOS\n");
2440 switch (ipmi_data->type) {
2441 case 0x01: /* KCS */
2442 info->si_type = SI_KCS;
2443 break;
2444 case 0x02: /* SMIC */
2445 info->si_type = SI_SMIC;
2446 break;
2447 case 0x03: /* BT */
2448 info->si_type = SI_BT;
2449 break;
2450 default:
2451 kfree(info);
2452 return;
2455 switch (ipmi_data->addr_space) {
2456 case IPMI_MEM_ADDR_SPACE:
2457 info->io_setup = mem_setup;
2458 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2459 break;
2461 case IPMI_IO_ADDR_SPACE:
2462 info->io_setup = port_setup;
2463 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2464 break;
2466 default:
2467 kfree(info);
2468 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2469 ipmi_data->addr_space);
2470 return;
2472 info->io.addr_data = ipmi_data->base_addr;
2474 info->io.regspacing = ipmi_data->offset;
2475 if (!info->io.regspacing)
2476 info->io.regspacing = DEFAULT_REGSPACING;
2477 info->io.regsize = DEFAULT_REGSPACING;
2478 info->io.regshift = 0;
2480 info->slave_addr = ipmi_data->slave_addr;
2482 info->irq = ipmi_data->irq;
2483 if (info->irq)
2484 info->irq_setup = std_irq_setup;
2486 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2487 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2488 info->io.addr_data, info->io.regsize, info->io.regspacing,
2489 info->irq);
2491 if (add_smi(info))
2492 kfree(info);
2495 static void dmi_find_bmc(void)
2497 const struct dmi_device *dev = NULL;
2498 struct dmi_ipmi_data data;
2499 int rv;
2501 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2502 memset(&data, 0, sizeof(data));
2503 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2504 &data);
2505 if (!rv)
2506 try_init_dmi(&data);
2509 #endif /* CONFIG_DMI */
2511 #ifdef CONFIG_PCI
2513 #define PCI_ERMC_CLASSCODE 0x0C0700
2514 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2515 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2516 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2517 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2518 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2520 #define PCI_HP_VENDOR_ID 0x103C
2521 #define PCI_MMC_DEVICE_ID 0x121A
2522 #define PCI_MMC_ADDR_CW 0x10
2524 static void ipmi_pci_cleanup(struct smi_info *info)
2526 struct pci_dev *pdev = info->addr_source_data;
2528 pci_disable_device(pdev);
2531 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2533 if (info->si_type == SI_KCS) {
2534 unsigned char status;
2535 int regspacing;
2537 info->io.regsize = DEFAULT_REGSIZE;
2538 info->io.regshift = 0;
2539 info->io_size = 2;
2540 info->handlers = &kcs_smi_handlers;
2542 /* detect 1, 4, 16byte spacing */
2543 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2544 info->io.regspacing = regspacing;
2545 if (info->io_setup(info)) {
2546 dev_err(info->dev,
2547 "Could not setup I/O space\n");
2548 return DEFAULT_REGSPACING;
2550 /* write invalid cmd */
2551 info->io.outputb(&info->io, 1, 0x10);
2552 /* read status back */
2553 status = info->io.inputb(&info->io, 1);
2554 info->io_cleanup(info);
2555 if (status)
2556 return regspacing;
2557 regspacing *= 4;
2560 return DEFAULT_REGSPACING;
2563 static int ipmi_pci_probe(struct pci_dev *pdev,
2564 const struct pci_device_id *ent)
2566 int rv;
2567 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2568 struct smi_info *info;
2570 info = smi_info_alloc();
2571 if (!info)
2572 return -ENOMEM;
2574 info->addr_source = SI_PCI;
2575 dev_info(&pdev->dev, "probing via PCI");
2577 switch (class_type) {
2578 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2579 info->si_type = SI_SMIC;
2580 break;
2582 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2583 info->si_type = SI_KCS;
2584 break;
2586 case PCI_ERMC_CLASSCODE_TYPE_BT:
2587 info->si_type = SI_BT;
2588 break;
2590 default:
2591 kfree(info);
2592 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2593 return -ENOMEM;
2596 rv = pci_enable_device(pdev);
2597 if (rv) {
2598 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2599 kfree(info);
2600 return rv;
2603 info->addr_source_cleanup = ipmi_pci_cleanup;
2604 info->addr_source_data = pdev;
2606 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2607 info->io_setup = port_setup;
2608 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2609 } else {
2610 info->io_setup = mem_setup;
2611 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2613 info->io.addr_data = pci_resource_start(pdev, 0);
2615 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2616 info->io.regsize = DEFAULT_REGSIZE;
2617 info->io.regshift = 0;
2619 info->irq = pdev->irq;
2620 if (info->irq)
2621 info->irq_setup = std_irq_setup;
2623 info->dev = &pdev->dev;
2624 pci_set_drvdata(pdev, info);
2626 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2627 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2628 info->irq);
2630 rv = add_smi(info);
2631 if (rv) {
2632 kfree(info);
2633 pci_disable_device(pdev);
2636 return rv;
2639 static void ipmi_pci_remove(struct pci_dev *pdev)
2641 struct smi_info *info = pci_get_drvdata(pdev);
2642 cleanup_one_si(info);
2643 pci_disable_device(pdev);
2646 static struct pci_device_id ipmi_pci_devices[] = {
2647 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2648 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2649 { 0, }
2651 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2653 static struct pci_driver ipmi_pci_driver = {
2654 .name = DEVICE_NAME,
2655 .id_table = ipmi_pci_devices,
2656 .probe = ipmi_pci_probe,
2657 .remove = ipmi_pci_remove,
2659 #endif /* CONFIG_PCI */
2661 static struct of_device_id ipmi_match[];
2662 static int ipmi_probe(struct platform_device *dev)
2664 #ifdef CONFIG_OF
2665 const struct of_device_id *match;
2666 struct smi_info *info;
2667 struct resource resource;
2668 const __be32 *regsize, *regspacing, *regshift;
2669 struct device_node *np = dev->dev.of_node;
2670 int ret;
2671 int proplen;
2673 dev_info(&dev->dev, "probing via device tree\n");
2675 match = of_match_device(ipmi_match, &dev->dev);
2676 if (!match)
2677 return -EINVAL;
2679 if (!of_device_is_available(np))
2680 return -EINVAL;
2682 ret = of_address_to_resource(np, 0, &resource);
2683 if (ret) {
2684 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2685 return ret;
2688 regsize = of_get_property(np, "reg-size", &proplen);
2689 if (regsize && proplen != 4) {
2690 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2691 return -EINVAL;
2694 regspacing = of_get_property(np, "reg-spacing", &proplen);
2695 if (regspacing && proplen != 4) {
2696 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2697 return -EINVAL;
2700 regshift = of_get_property(np, "reg-shift", &proplen);
2701 if (regshift && proplen != 4) {
2702 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2703 return -EINVAL;
2706 info = smi_info_alloc();
2708 if (!info) {
2709 dev_err(&dev->dev,
2710 "could not allocate memory for OF probe\n");
2711 return -ENOMEM;
2714 info->si_type = (enum si_type) match->data;
2715 info->addr_source = SI_DEVICETREE;
2716 info->irq_setup = std_irq_setup;
2718 if (resource.flags & IORESOURCE_IO) {
2719 info->io_setup = port_setup;
2720 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2721 } else {
2722 info->io_setup = mem_setup;
2723 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2726 info->io.addr_data = resource.start;
2728 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2729 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2730 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2732 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2733 info->dev = &dev->dev;
2735 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2736 info->io.addr_data, info->io.regsize, info->io.regspacing,
2737 info->irq);
2739 dev_set_drvdata(&dev->dev, info);
2741 ret = add_smi(info);
2742 if (ret) {
2743 kfree(info);
2744 return ret;
2746 #endif
2747 return 0;
2750 static int ipmi_remove(struct platform_device *dev)
2752 #ifdef CONFIG_OF
2753 cleanup_one_si(dev_get_drvdata(&dev->dev));
2754 #endif
2755 return 0;
2758 static struct of_device_id ipmi_match[] =
2760 { .type = "ipmi", .compatible = "ipmi-kcs",
2761 .data = (void *)(unsigned long) SI_KCS },
2762 { .type = "ipmi", .compatible = "ipmi-smic",
2763 .data = (void *)(unsigned long) SI_SMIC },
2764 { .type = "ipmi", .compatible = "ipmi-bt",
2765 .data = (void *)(unsigned long) SI_BT },
2769 static struct platform_driver ipmi_driver = {
2770 .driver = {
2771 .name = DEVICE_NAME,
2772 .of_match_table = ipmi_match,
2774 .probe = ipmi_probe,
2775 .remove = ipmi_remove,
2778 #ifdef CONFIG_PARISC
2779 static int ipmi_parisc_probe(struct parisc_device *dev)
2781 struct smi_info *info;
2782 int rv;
2784 info = smi_info_alloc();
2786 if (!info) {
2787 dev_err(&dev->dev,
2788 "could not allocate memory for PARISC probe\n");
2789 return -ENOMEM;
2792 info->si_type = SI_KCS;
2793 info->addr_source = SI_DEVICETREE;
2794 info->io_setup = mem_setup;
2795 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2796 info->io.addr_data = dev->hpa.start;
2797 info->io.regsize = 1;
2798 info->io.regspacing = 1;
2799 info->io.regshift = 0;
2800 info->irq = 0; /* no interrupt */
2801 info->irq_setup = NULL;
2802 info->dev = &dev->dev;
2804 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2806 dev_set_drvdata(&dev->dev, info);
2808 rv = add_smi(info);
2809 if (rv) {
2810 kfree(info);
2811 return rv;
2814 return 0;
2817 static int ipmi_parisc_remove(struct parisc_device *dev)
2819 cleanup_one_si(dev_get_drvdata(&dev->dev));
2820 return 0;
2823 static struct parisc_device_id ipmi_parisc_tbl[] = {
2824 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2825 { 0, }
2828 static struct parisc_driver ipmi_parisc_driver = {
2829 .name = "ipmi",
2830 .id_table = ipmi_parisc_tbl,
2831 .probe = ipmi_parisc_probe,
2832 .remove = ipmi_parisc_remove,
2834 #endif /* CONFIG_PARISC */
2836 static int wait_for_msg_done(struct smi_info *smi_info)
2838 enum si_sm_result smi_result;
2840 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2841 for (;;) {
2842 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2843 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2844 schedule_timeout_uninterruptible(1);
2845 smi_result = smi_info->handlers->event(
2846 smi_info->si_sm, jiffies_to_usecs(1));
2847 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2848 smi_result = smi_info->handlers->event(
2849 smi_info->si_sm, 0);
2850 } else
2851 break;
2853 if (smi_result == SI_SM_HOSED)
2855 * We couldn't get the state machine to run, so whatever's at
2856 * the port is probably not an IPMI SMI interface.
2858 return -ENODEV;
2860 return 0;
2863 static int try_get_dev_id(struct smi_info *smi_info)
2865 unsigned char msg[2];
2866 unsigned char *resp;
2867 unsigned long resp_len;
2868 int rv = 0;
2870 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2871 if (!resp)
2872 return -ENOMEM;
2875 * Do a Get Device ID command, since it comes back with some
2876 * useful info.
2878 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2879 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2880 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2882 rv = wait_for_msg_done(smi_info);
2883 if (rv)
2884 goto out;
2886 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2887 resp, IPMI_MAX_MSG_LENGTH);
2889 /* Check and record info from the get device id, in case we need it. */
2890 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2892 out:
2893 kfree(resp);
2894 return rv;
2897 static int try_enable_event_buffer(struct smi_info *smi_info)
2899 unsigned char msg[3];
2900 unsigned char *resp;
2901 unsigned long resp_len;
2902 int rv = 0;
2904 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2905 if (!resp)
2906 return -ENOMEM;
2908 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2909 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2910 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2912 rv = wait_for_msg_done(smi_info);
2913 if (rv) {
2914 printk(KERN_WARNING PFX "Error getting response from get"
2915 " global enables command, the event buffer is not"
2916 " enabled.\n");
2917 goto out;
2920 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2921 resp, IPMI_MAX_MSG_LENGTH);
2923 if (resp_len < 4 ||
2924 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2925 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2926 resp[2] != 0) {
2927 printk(KERN_WARNING PFX "Invalid return from get global"
2928 " enables command, cannot enable the event buffer.\n");
2929 rv = -EINVAL;
2930 goto out;
2933 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2934 /* buffer is already enabled, nothing to do. */
2935 smi_info->supports_event_msg_buff = true;
2936 goto out;
2939 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2940 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2941 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2942 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2944 rv = wait_for_msg_done(smi_info);
2945 if (rv) {
2946 printk(KERN_WARNING PFX "Error getting response from set"
2947 " global, enables command, the event buffer is not"
2948 " enabled.\n");
2949 goto out;
2952 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2953 resp, IPMI_MAX_MSG_LENGTH);
2955 if (resp_len < 3 ||
2956 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2957 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2958 printk(KERN_WARNING PFX "Invalid return from get global,"
2959 "enables command, not enable the event buffer.\n");
2960 rv = -EINVAL;
2961 goto out;
2964 if (resp[2] != 0)
2966 * An error when setting the event buffer bit means
2967 * that the event buffer is not supported.
2969 rv = -ENOENT;
2970 else
2971 smi_info->supports_event_msg_buff = true;
2973 out:
2974 kfree(resp);
2975 return rv;
2978 static int smi_type_proc_show(struct seq_file *m, void *v)
2980 struct smi_info *smi = m->private;
2982 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2984 return seq_has_overflowed(m);
2987 static int smi_type_proc_open(struct inode *inode, struct file *file)
2989 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2992 static const struct file_operations smi_type_proc_ops = {
2993 .open = smi_type_proc_open,
2994 .read = seq_read,
2995 .llseek = seq_lseek,
2996 .release = single_release,
2999 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3001 struct smi_info *smi = m->private;
3003 seq_printf(m, "interrupts_enabled: %d\n",
3004 smi->irq && !smi->interrupt_disabled);
3005 seq_printf(m, "short_timeouts: %u\n",
3006 smi_get_stat(smi, short_timeouts));
3007 seq_printf(m, "long_timeouts: %u\n",
3008 smi_get_stat(smi, long_timeouts));
3009 seq_printf(m, "idles: %u\n",
3010 smi_get_stat(smi, idles));
3011 seq_printf(m, "interrupts: %u\n",
3012 smi_get_stat(smi, interrupts));
3013 seq_printf(m, "attentions: %u\n",
3014 smi_get_stat(smi, attentions));
3015 seq_printf(m, "flag_fetches: %u\n",
3016 smi_get_stat(smi, flag_fetches));
3017 seq_printf(m, "hosed_count: %u\n",
3018 smi_get_stat(smi, hosed_count));
3019 seq_printf(m, "complete_transactions: %u\n",
3020 smi_get_stat(smi, complete_transactions));
3021 seq_printf(m, "events: %u\n",
3022 smi_get_stat(smi, events));
3023 seq_printf(m, "watchdog_pretimeouts: %u\n",
3024 smi_get_stat(smi, watchdog_pretimeouts));
3025 seq_printf(m, "incoming_messages: %u\n",
3026 smi_get_stat(smi, incoming_messages));
3027 return 0;
3030 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3032 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3035 static const struct file_operations smi_si_stats_proc_ops = {
3036 .open = smi_si_stats_proc_open,
3037 .read = seq_read,
3038 .llseek = seq_lseek,
3039 .release = single_release,
3042 static int smi_params_proc_show(struct seq_file *m, void *v)
3044 struct smi_info *smi = m->private;
3046 seq_printf(m,
3047 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3048 si_to_str[smi->si_type],
3049 addr_space_to_str[smi->io.addr_type],
3050 smi->io.addr_data,
3051 smi->io.regspacing,
3052 smi->io.regsize,
3053 smi->io.regshift,
3054 smi->irq,
3055 smi->slave_addr);
3057 return seq_has_overflowed(m);
3060 static int smi_params_proc_open(struct inode *inode, struct file *file)
3062 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3065 static const struct file_operations smi_params_proc_ops = {
3066 .open = smi_params_proc_open,
3067 .read = seq_read,
3068 .llseek = seq_lseek,
3069 .release = single_release,
3073 * oem_data_avail_to_receive_msg_avail
3074 * @info - smi_info structure with msg_flags set
3076 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3077 * Returns 1 indicating need to re-run handle_flags().
3079 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3081 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3082 RECEIVE_MSG_AVAIL);
3083 return 1;
3087 * setup_dell_poweredge_oem_data_handler
3088 * @info - smi_info.device_id must be populated
3090 * Systems that match, but have firmware version < 1.40 may assert
3091 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3092 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3093 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3094 * as RECEIVE_MSG_AVAIL instead.
3096 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3097 * assert the OEM[012] bits, and if it did, the driver would have to
3098 * change to handle that properly, we don't actually check for the
3099 * firmware version.
3100 * Device ID = 0x20 BMC on PowerEdge 8G servers
3101 * Device Revision = 0x80
3102 * Firmware Revision1 = 0x01 BMC version 1.40
3103 * Firmware Revision2 = 0x40 BCD encoded
3104 * IPMI Version = 0x51 IPMI 1.5
3105 * Manufacturer ID = A2 02 00 Dell IANA
3107 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3108 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3111 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3112 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3113 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3114 #define DELL_IANA_MFR_ID 0x0002a2
3115 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3117 struct ipmi_device_id *id = &smi_info->device_id;
3118 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3119 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3120 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3121 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3122 smi_info->oem_data_avail_handler =
3123 oem_data_avail_to_receive_msg_avail;
3124 } else if (ipmi_version_major(id) < 1 ||
3125 (ipmi_version_major(id) == 1 &&
3126 ipmi_version_minor(id) < 5)) {
3127 smi_info->oem_data_avail_handler =
3128 oem_data_avail_to_receive_msg_avail;
3133 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3134 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3136 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3138 /* Make it a response */
3139 msg->rsp[0] = msg->data[0] | 4;
3140 msg->rsp[1] = msg->data[1];
3141 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3142 msg->rsp_size = 3;
3143 smi_info->curr_msg = NULL;
3144 deliver_recv_msg(smi_info, msg);
3148 * dell_poweredge_bt_xaction_handler
3149 * @info - smi_info.device_id must be populated
3151 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3152 * not respond to a Get SDR command if the length of the data
3153 * requested is exactly 0x3A, which leads to command timeouts and no
3154 * data returned. This intercepts such commands, and causes userspace
3155 * callers to try again with a different-sized buffer, which succeeds.
3158 #define STORAGE_NETFN 0x0A
3159 #define STORAGE_CMD_GET_SDR 0x23
3160 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3161 unsigned long unused,
3162 void *in)
3164 struct smi_info *smi_info = in;
3165 unsigned char *data = smi_info->curr_msg->data;
3166 unsigned int size = smi_info->curr_msg->data_size;
3167 if (size >= 8 &&
3168 (data[0]>>2) == STORAGE_NETFN &&
3169 data[1] == STORAGE_CMD_GET_SDR &&
3170 data[7] == 0x3A) {
3171 return_hosed_msg_badsize(smi_info);
3172 return NOTIFY_STOP;
3174 return NOTIFY_DONE;
3177 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3178 .notifier_call = dell_poweredge_bt_xaction_handler,
3182 * setup_dell_poweredge_bt_xaction_handler
3183 * @info - smi_info.device_id must be filled in already
3185 * Fills in smi_info.device_id.start_transaction_pre_hook
3186 * when we know what function to use there.
3188 static void
3189 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3191 struct ipmi_device_id *id = &smi_info->device_id;
3192 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3193 smi_info->si_type == SI_BT)
3194 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3198 * setup_oem_data_handler
3199 * @info - smi_info.device_id must be filled in already
3201 * Fills in smi_info.device_id.oem_data_available_handler
3202 * when we know what function to use there.
3205 static void setup_oem_data_handler(struct smi_info *smi_info)
3207 setup_dell_poweredge_oem_data_handler(smi_info);
3210 static void setup_xaction_handlers(struct smi_info *smi_info)
3212 setup_dell_poweredge_bt_xaction_handler(smi_info);
3215 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3217 if (smi_info->thread != NULL)
3218 kthread_stop(smi_info->thread);
3219 if (smi_info->timer_running)
3220 del_timer_sync(&smi_info->si_timer);
3223 static struct ipmi_default_vals
3225 int type;
3226 int port;
3227 } ipmi_defaults[] =
3229 { .type = SI_KCS, .port = 0xca2 },
3230 { .type = SI_SMIC, .port = 0xca9 },
3231 { .type = SI_BT, .port = 0xe4 },
3232 { .port = 0 }
3235 static void default_find_bmc(void)
3237 struct smi_info *info;
3238 int i;
3240 for (i = 0; ; i++) {
3241 if (!ipmi_defaults[i].port)
3242 break;
3243 #ifdef CONFIG_PPC
3244 if (check_legacy_ioport(ipmi_defaults[i].port))
3245 continue;
3246 #endif
3247 info = smi_info_alloc();
3248 if (!info)
3249 return;
3251 info->addr_source = SI_DEFAULT;
3253 info->si_type = ipmi_defaults[i].type;
3254 info->io_setup = port_setup;
3255 info->io.addr_data = ipmi_defaults[i].port;
3256 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3258 info->io.addr = NULL;
3259 info->io.regspacing = DEFAULT_REGSPACING;
3260 info->io.regsize = DEFAULT_REGSPACING;
3261 info->io.regshift = 0;
3263 if (add_smi(info) == 0) {
3264 if ((try_smi_init(info)) == 0) {
3265 /* Found one... */
3266 printk(KERN_INFO PFX "Found default %s"
3267 " state machine at %s address 0x%lx\n",
3268 si_to_str[info->si_type],
3269 addr_space_to_str[info->io.addr_type],
3270 info->io.addr_data);
3271 } else
3272 cleanup_one_si(info);
3273 } else {
3274 kfree(info);
3279 static int is_new_interface(struct smi_info *info)
3281 struct smi_info *e;
3283 list_for_each_entry(e, &smi_infos, link) {
3284 if (e->io.addr_type != info->io.addr_type)
3285 continue;
3286 if (e->io.addr_data == info->io.addr_data)
3287 return 0;
3290 return 1;
3293 static int add_smi(struct smi_info *new_smi)
3295 int rv = 0;
3297 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3298 ipmi_addr_src_to_str(new_smi->addr_source),
3299 si_to_str[new_smi->si_type]);
3300 mutex_lock(&smi_infos_lock);
3301 if (!is_new_interface(new_smi)) {
3302 printk(KERN_CONT " duplicate interface\n");
3303 rv = -EBUSY;
3304 goto out_err;
3307 printk(KERN_CONT "\n");
3309 /* So we know not to free it unless we have allocated one. */
3310 new_smi->intf = NULL;
3311 new_smi->si_sm = NULL;
3312 new_smi->handlers = NULL;
3314 list_add_tail(&new_smi->link, &smi_infos);
3316 out_err:
3317 mutex_unlock(&smi_infos_lock);
3318 return rv;
3321 static int try_smi_init(struct smi_info *new_smi)
3323 int rv = 0;
3324 int i;
3326 printk(KERN_INFO PFX "Trying %s-specified %s state"
3327 " machine at %s address 0x%lx, slave address 0x%x,"
3328 " irq %d\n",
3329 ipmi_addr_src_to_str(new_smi->addr_source),
3330 si_to_str[new_smi->si_type],
3331 addr_space_to_str[new_smi->io.addr_type],
3332 new_smi->io.addr_data,
3333 new_smi->slave_addr, new_smi->irq);
3335 switch (new_smi->si_type) {
3336 case SI_KCS:
3337 new_smi->handlers = &kcs_smi_handlers;
3338 break;
3340 case SI_SMIC:
3341 new_smi->handlers = &smic_smi_handlers;
3342 break;
3344 case SI_BT:
3345 new_smi->handlers = &bt_smi_handlers;
3346 break;
3348 default:
3349 /* No support for anything else yet. */
3350 rv = -EIO;
3351 goto out_err;
3354 /* Allocate the state machine's data and initialize it. */
3355 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3356 if (!new_smi->si_sm) {
3357 printk(KERN_ERR PFX
3358 "Could not allocate state machine memory\n");
3359 rv = -ENOMEM;
3360 goto out_err;
3362 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3363 &new_smi->io);
3365 /* Now that we know the I/O size, we can set up the I/O. */
3366 rv = new_smi->io_setup(new_smi);
3367 if (rv) {
3368 printk(KERN_ERR PFX "Could not set up I/O space\n");
3369 goto out_err;
3372 /* Do low-level detection first. */
3373 if (new_smi->handlers->detect(new_smi->si_sm)) {
3374 if (new_smi->addr_source)
3375 printk(KERN_INFO PFX "Interface detection failed\n");
3376 rv = -ENODEV;
3377 goto out_err;
3381 * Attempt a get device id command. If it fails, we probably
3382 * don't have a BMC here.
3384 rv = try_get_dev_id(new_smi);
3385 if (rv) {
3386 if (new_smi->addr_source)
3387 printk(KERN_INFO PFX "There appears to be no BMC"
3388 " at this location\n");
3389 goto out_err;
3392 setup_oem_data_handler(new_smi);
3393 setup_xaction_handlers(new_smi);
3395 new_smi->waiting_msg = NULL;
3396 new_smi->curr_msg = NULL;
3397 atomic_set(&new_smi->req_events, 0);
3398 new_smi->run_to_completion = false;
3399 for (i = 0; i < SI_NUM_STATS; i++)
3400 atomic_set(&new_smi->stats[i], 0);
3402 new_smi->interrupt_disabled = true;
3403 atomic_set(&new_smi->need_watch, 0);
3404 new_smi->intf_num = smi_num;
3405 smi_num++;
3407 rv = try_enable_event_buffer(new_smi);
3408 if (rv == 0)
3409 new_smi->has_event_buffer = true;
3412 * Start clearing the flags before we enable interrupts or the
3413 * timer to avoid racing with the timer.
3415 start_clear_flags(new_smi);
3418 * IRQ is defined to be set when non-zero. req_events will
3419 * cause a global flags check that will enable interrupts.
3421 if (new_smi->irq) {
3422 new_smi->interrupt_disabled = false;
3423 atomic_set(&new_smi->req_events, 1);
3426 if (!new_smi->dev) {
3428 * If we don't already have a device from something
3429 * else (like PCI), then register a new one.
3431 new_smi->pdev = platform_device_alloc("ipmi_si",
3432 new_smi->intf_num);
3433 if (!new_smi->pdev) {
3434 printk(KERN_ERR PFX
3435 "Unable to allocate platform device\n");
3436 goto out_err;
3438 new_smi->dev = &new_smi->pdev->dev;
3439 new_smi->dev->driver = &ipmi_driver.driver;
3441 rv = platform_device_add(new_smi->pdev);
3442 if (rv) {
3443 printk(KERN_ERR PFX
3444 "Unable to register system interface device:"
3445 " %d\n",
3446 rv);
3447 goto out_err;
3449 new_smi->dev_registered = true;
3452 rv = ipmi_register_smi(&handlers,
3453 new_smi,
3454 &new_smi->device_id,
3455 new_smi->dev,
3456 new_smi->slave_addr);
3457 if (rv) {
3458 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3459 rv);
3460 goto out_err_stop_timer;
3463 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3464 &smi_type_proc_ops,
3465 new_smi);
3466 if (rv) {
3467 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3468 goto out_err_stop_timer;
3471 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3472 &smi_si_stats_proc_ops,
3473 new_smi);
3474 if (rv) {
3475 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3476 goto out_err_stop_timer;
3479 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3480 &smi_params_proc_ops,
3481 new_smi);
3482 if (rv) {
3483 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3484 goto out_err_stop_timer;
3487 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3488 si_to_str[new_smi->si_type]);
3490 return 0;
3492 out_err_stop_timer:
3493 wait_for_timer_and_thread(new_smi);
3495 out_err:
3496 new_smi->interrupt_disabled = true;
3498 if (new_smi->intf) {
3499 ipmi_smi_t intf = new_smi->intf;
3500 new_smi->intf = NULL;
3501 ipmi_unregister_smi(intf);
3504 if (new_smi->irq_cleanup) {
3505 new_smi->irq_cleanup(new_smi);
3506 new_smi->irq_cleanup = NULL;
3510 * Wait until we know that we are out of any interrupt
3511 * handlers might have been running before we freed the
3512 * interrupt.
3514 synchronize_sched();
3516 if (new_smi->si_sm) {
3517 if (new_smi->handlers)
3518 new_smi->handlers->cleanup(new_smi->si_sm);
3519 kfree(new_smi->si_sm);
3520 new_smi->si_sm = NULL;
3522 if (new_smi->addr_source_cleanup) {
3523 new_smi->addr_source_cleanup(new_smi);
3524 new_smi->addr_source_cleanup = NULL;
3526 if (new_smi->io_cleanup) {
3527 new_smi->io_cleanup(new_smi);
3528 new_smi->io_cleanup = NULL;
3531 if (new_smi->dev_registered) {
3532 platform_device_unregister(new_smi->pdev);
3533 new_smi->dev_registered = false;
3536 return rv;
3539 static int init_ipmi_si(void)
3541 int i;
3542 char *str;
3543 int rv;
3544 struct smi_info *e;
3545 enum ipmi_addr_src type = SI_INVALID;
3547 if (initialized)
3548 return 0;
3549 initialized = 1;
3551 if (si_tryplatform) {
3552 rv = platform_driver_register(&ipmi_driver);
3553 if (rv) {
3554 printk(KERN_ERR PFX "Unable to register "
3555 "driver: %d\n", rv);
3556 return rv;
3560 /* Parse out the si_type string into its components. */
3561 str = si_type_str;
3562 if (*str != '\0') {
3563 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3564 si_type[i] = str;
3565 str = strchr(str, ',');
3566 if (str) {
3567 *str = '\0';
3568 str++;
3569 } else {
3570 break;
3575 printk(KERN_INFO "IPMI System Interface driver.\n");
3577 /* If the user gave us a device, they presumably want us to use it */
3578 if (!hardcode_find_bmc())
3579 return 0;
3581 #ifdef CONFIG_PCI
3582 if (si_trypci) {
3583 rv = pci_register_driver(&ipmi_pci_driver);
3584 if (rv)
3585 printk(KERN_ERR PFX "Unable to register "
3586 "PCI driver: %d\n", rv);
3587 else
3588 pci_registered = true;
3590 #endif
3592 #ifdef CONFIG_ACPI
3593 if (si_tryacpi) {
3594 pnp_register_driver(&ipmi_pnp_driver);
3595 pnp_registered = true;
3597 #endif
3599 #ifdef CONFIG_DMI
3600 if (si_trydmi)
3601 dmi_find_bmc();
3602 #endif
3604 #ifdef CONFIG_ACPI
3605 if (si_tryacpi)
3606 spmi_find_bmc();
3607 #endif
3609 #ifdef CONFIG_PARISC
3610 register_parisc_driver(&ipmi_parisc_driver);
3611 parisc_registered = true;
3612 /* poking PC IO addresses will crash machine, don't do it */
3613 si_trydefaults = 0;
3614 #endif
3616 /* We prefer devices with interrupts, but in the case of a machine
3617 with multiple BMCs we assume that there will be several instances
3618 of a given type so if we succeed in registering a type then also
3619 try to register everything else of the same type */
3621 mutex_lock(&smi_infos_lock);
3622 list_for_each_entry(e, &smi_infos, link) {
3623 /* Try to register a device if it has an IRQ and we either
3624 haven't successfully registered a device yet or this
3625 device has the same type as one we successfully registered */
3626 if (e->irq && (!type || e->addr_source == type)) {
3627 if (!try_smi_init(e)) {
3628 type = e->addr_source;
3633 /* type will only have been set if we successfully registered an si */
3634 if (type) {
3635 mutex_unlock(&smi_infos_lock);
3636 return 0;
3639 /* Fall back to the preferred device */
3641 list_for_each_entry(e, &smi_infos, link) {
3642 if (!e->irq && (!type || e->addr_source == type)) {
3643 if (!try_smi_init(e)) {
3644 type = e->addr_source;
3648 mutex_unlock(&smi_infos_lock);
3650 if (type)
3651 return 0;
3653 if (si_trydefaults) {
3654 mutex_lock(&smi_infos_lock);
3655 if (list_empty(&smi_infos)) {
3656 /* No BMC was found, try defaults. */
3657 mutex_unlock(&smi_infos_lock);
3658 default_find_bmc();
3659 } else
3660 mutex_unlock(&smi_infos_lock);
3663 mutex_lock(&smi_infos_lock);
3664 if (unload_when_empty && list_empty(&smi_infos)) {
3665 mutex_unlock(&smi_infos_lock);
3666 cleanup_ipmi_si();
3667 printk(KERN_WARNING PFX
3668 "Unable to find any System Interface(s)\n");
3669 return -ENODEV;
3670 } else {
3671 mutex_unlock(&smi_infos_lock);
3672 return 0;
3675 module_init(init_ipmi_si);
3677 static void cleanup_one_si(struct smi_info *to_clean)
3679 int rv = 0;
3681 if (!to_clean)
3682 return;
3684 if (to_clean->intf) {
3685 ipmi_smi_t intf = to_clean->intf;
3687 to_clean->intf = NULL;
3688 rv = ipmi_unregister_smi(intf);
3689 if (rv) {
3690 pr_err(PFX "Unable to unregister device: errno=%d\n",
3691 rv);
3695 if (to_clean->dev)
3696 dev_set_drvdata(to_clean->dev, NULL);
3698 list_del(&to_clean->link);
3701 * Make sure that interrupts, the timer and the thread are
3702 * stopped and will not run again.
3704 if (to_clean->irq_cleanup)
3705 to_clean->irq_cleanup(to_clean);
3706 wait_for_timer_and_thread(to_clean);
3709 * Timeouts are stopped, now make sure the interrupts are off
3710 * in the BMC. Note that timers and CPU interrupts are off,
3711 * so no need for locks.
3713 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3714 poll(to_clean);
3715 schedule_timeout_uninterruptible(1);
3717 disable_si_irq(to_clean);
3718 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3719 poll(to_clean);
3720 schedule_timeout_uninterruptible(1);
3723 if (to_clean->handlers)
3724 to_clean->handlers->cleanup(to_clean->si_sm);
3726 kfree(to_clean->si_sm);
3728 if (to_clean->addr_source_cleanup)
3729 to_clean->addr_source_cleanup(to_clean);
3730 if (to_clean->io_cleanup)
3731 to_clean->io_cleanup(to_clean);
3733 if (to_clean->dev_registered)
3734 platform_device_unregister(to_clean->pdev);
3736 kfree(to_clean);
3739 static void cleanup_ipmi_si(void)
3741 struct smi_info *e, *tmp_e;
3743 if (!initialized)
3744 return;
3746 #ifdef CONFIG_PCI
3747 if (pci_registered)
3748 pci_unregister_driver(&ipmi_pci_driver);
3749 #endif
3750 #ifdef CONFIG_ACPI
3751 if (pnp_registered)
3752 pnp_unregister_driver(&ipmi_pnp_driver);
3753 #endif
3754 #ifdef CONFIG_PARISC
3755 if (parisc_registered)
3756 unregister_parisc_driver(&ipmi_parisc_driver);
3757 #endif
3759 platform_driver_unregister(&ipmi_driver);
3761 mutex_lock(&smi_infos_lock);
3762 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3763 cleanup_one_si(e);
3764 mutex_unlock(&smi_infos_lock);
3766 module_exit(cleanup_ipmi_si);
3768 MODULE_LICENSE("GPL");
3769 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3770 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3771 " system interfaces.");