Merge tag 'f2fs-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blobcf0ee764b908b384f69be9efbb9d7a1352eb7a52
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 DEFINE_IDA(blk_queue_ida);
60 * For the allocated request tables
62 struct kmem_cache *request_cachep;
65 * For queue allocation
67 struct kmem_cache *blk_requestq_cachep;
70 * Controlling structure to kblockd
72 static struct workqueue_struct *kblockd_workqueue;
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 unsigned long flags;
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
87 EXPORT_SYMBOL(blk_queue_flag_set);
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 unsigned long flags;
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
102 EXPORT_SYMBOL(blk_queue_flag_clear);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 unsigned long flags;
115 bool res;
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
121 return res;
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 unsigned long flags;
136 bool res;
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
142 return res;
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 static void blk_clear_congested(struct request_list *rl, int sync)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
160 static void blk_set_congested(struct request_list *rl, int sync)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
171 void blk_queue_congestion_threshold(struct request_queue *q)
173 int nr;
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
186 void blk_rq_init(struct request_queue *q, struct request *rq)
188 memset(rq, 0, sizeof(*rq));
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
202 EXPORT_SYMBOL(blk_rq_init);
204 static const struct {
205 int errno;
206 const char *name;
207 } blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
228 blk_status_t errno_to_blk_status(int errno)
230 int i;
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
237 return BLK_STS_IOERR;
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 int blk_status_to_errno(blk_status_t status)
243 int idx = (__force int)status;
245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 return -EIO;
247 return blk_errors[idx].errno;
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 static void print_req_error(struct request *req, blk_status_t status)
253 int idx = (__force int)status;
255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 return;
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 unsigned int nbytes, blk_status_t error)
267 if (error)
268 bio->bi_status = error;
270 if (unlikely(rq->rq_flags & RQF_QUIET))
271 bio_set_flag(bio, BIO_QUIET);
273 bio_advance(bio, nbytes);
275 /* don't actually finish bio if it's part of flush sequence */
277 * XXX this code looks suspicious - it's not consistent with advancing
278 * req->bio in caller
280 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
281 bio_endio(bio);
284 void blk_dump_rq_flags(struct request *rq, char *msg)
286 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
287 rq->rq_disk ? rq->rq_disk->disk_name : "?",
288 (unsigned long long) rq->cmd_flags);
290 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
291 (unsigned long long)blk_rq_pos(rq),
292 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
293 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
294 rq->bio, rq->biotail, blk_rq_bytes(rq));
296 EXPORT_SYMBOL(blk_dump_rq_flags);
298 static void blk_delay_work(struct work_struct *work)
300 struct request_queue *q;
302 q = container_of(work, struct request_queue, delay_work.work);
303 spin_lock_irq(q->queue_lock);
304 __blk_run_queue(q);
305 spin_unlock_irq(q->queue_lock);
309 * blk_delay_queue - restart queueing after defined interval
310 * @q: The &struct request_queue in question
311 * @msecs: Delay in msecs
313 * Description:
314 * Sometimes queueing needs to be postponed for a little while, to allow
315 * resources to come back. This function will make sure that queueing is
316 * restarted around the specified time.
318 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
320 lockdep_assert_held(q->queue_lock);
321 WARN_ON_ONCE(q->mq_ops);
323 if (likely(!blk_queue_dead(q)))
324 queue_delayed_work(kblockd_workqueue, &q->delay_work,
325 msecs_to_jiffies(msecs));
327 EXPORT_SYMBOL(blk_delay_queue);
330 * blk_start_queue_async - asynchronously restart a previously stopped queue
331 * @q: The &struct request_queue in question
333 * Description:
334 * blk_start_queue_async() will clear the stop flag on the queue, and
335 * ensure that the request_fn for the queue is run from an async
336 * context.
338 void blk_start_queue_async(struct request_queue *q)
340 lockdep_assert_held(q->queue_lock);
341 WARN_ON_ONCE(q->mq_ops);
343 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
344 blk_run_queue_async(q);
346 EXPORT_SYMBOL(blk_start_queue_async);
349 * blk_start_queue - restart a previously stopped queue
350 * @q: The &struct request_queue in question
352 * Description:
353 * blk_start_queue() will clear the stop flag on the queue, and call
354 * the request_fn for the queue if it was in a stopped state when
355 * entered. Also see blk_stop_queue().
357 void blk_start_queue(struct request_queue *q)
359 lockdep_assert_held(q->queue_lock);
360 WARN_ON_ONCE(q->mq_ops);
362 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
363 __blk_run_queue(q);
365 EXPORT_SYMBOL(blk_start_queue);
368 * blk_stop_queue - stop a queue
369 * @q: The &struct request_queue in question
371 * Description:
372 * The Linux block layer assumes that a block driver will consume all
373 * entries on the request queue when the request_fn strategy is called.
374 * Often this will not happen, because of hardware limitations (queue
375 * depth settings). If a device driver gets a 'queue full' response,
376 * or if it simply chooses not to queue more I/O at one point, it can
377 * call this function to prevent the request_fn from being called until
378 * the driver has signalled it's ready to go again. This happens by calling
379 * blk_start_queue() to restart queue operations.
381 void blk_stop_queue(struct request_queue *q)
383 lockdep_assert_held(q->queue_lock);
384 WARN_ON_ONCE(q->mq_ops);
386 cancel_delayed_work(&q->delay_work);
387 queue_flag_set(QUEUE_FLAG_STOPPED, q);
389 EXPORT_SYMBOL(blk_stop_queue);
392 * blk_sync_queue - cancel any pending callbacks on a queue
393 * @q: the queue
395 * Description:
396 * The block layer may perform asynchronous callback activity
397 * on a queue, such as calling the unplug function after a timeout.
398 * A block device may call blk_sync_queue to ensure that any
399 * such activity is cancelled, thus allowing it to release resources
400 * that the callbacks might use. The caller must already have made sure
401 * that its ->make_request_fn will not re-add plugging prior to calling
402 * this function.
404 * This function does not cancel any asynchronous activity arising
405 * out of elevator or throttling code. That would require elevator_exit()
406 * and blkcg_exit_queue() to be called with queue lock initialized.
409 void blk_sync_queue(struct request_queue *q)
411 del_timer_sync(&q->timeout);
412 cancel_work_sync(&q->timeout_work);
414 if (q->mq_ops) {
415 struct blk_mq_hw_ctx *hctx;
416 int i;
418 cancel_delayed_work_sync(&q->requeue_work);
419 queue_for_each_hw_ctx(q, hctx, i)
420 cancel_delayed_work_sync(&hctx->run_work);
421 } else {
422 cancel_delayed_work_sync(&q->delay_work);
425 EXPORT_SYMBOL(blk_sync_queue);
428 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
429 * @q: request queue pointer
431 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
432 * set and 1 if the flag was already set.
434 int blk_set_preempt_only(struct request_queue *q)
436 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
438 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
440 void blk_clear_preempt_only(struct request_queue *q)
442 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
443 wake_up_all(&q->mq_freeze_wq);
445 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
448 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
449 * @q: The queue to run
451 * Description:
452 * Invoke request handling on a queue if there are any pending requests.
453 * May be used to restart request handling after a request has completed.
454 * This variant runs the queue whether or not the queue has been
455 * stopped. Must be called with the queue lock held and interrupts
456 * disabled. See also @blk_run_queue.
458 inline void __blk_run_queue_uncond(struct request_queue *q)
460 lockdep_assert_held(q->queue_lock);
461 WARN_ON_ONCE(q->mq_ops);
463 if (unlikely(blk_queue_dead(q)))
464 return;
467 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
468 * the queue lock internally. As a result multiple threads may be
469 * running such a request function concurrently. Keep track of the
470 * number of active request_fn invocations such that blk_drain_queue()
471 * can wait until all these request_fn calls have finished.
473 q->request_fn_active++;
474 q->request_fn(q);
475 q->request_fn_active--;
477 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
480 * __blk_run_queue - run a single device queue
481 * @q: The queue to run
483 * Description:
484 * See @blk_run_queue.
486 void __blk_run_queue(struct request_queue *q)
488 lockdep_assert_held(q->queue_lock);
489 WARN_ON_ONCE(q->mq_ops);
491 if (unlikely(blk_queue_stopped(q)))
492 return;
494 __blk_run_queue_uncond(q);
496 EXPORT_SYMBOL(__blk_run_queue);
499 * blk_run_queue_async - run a single device queue in workqueue context
500 * @q: The queue to run
502 * Description:
503 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
504 * of us.
506 * Note:
507 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
508 * has canceled q->delay_work, callers must hold the queue lock to avoid
509 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
511 void blk_run_queue_async(struct request_queue *q)
513 lockdep_assert_held(q->queue_lock);
514 WARN_ON_ONCE(q->mq_ops);
516 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
517 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
519 EXPORT_SYMBOL(blk_run_queue_async);
522 * blk_run_queue - run a single device queue
523 * @q: The queue to run
525 * Description:
526 * Invoke request handling on this queue, if it has pending work to do.
527 * May be used to restart queueing when a request has completed.
529 void blk_run_queue(struct request_queue *q)
531 unsigned long flags;
533 WARN_ON_ONCE(q->mq_ops);
535 spin_lock_irqsave(q->queue_lock, flags);
536 __blk_run_queue(q);
537 spin_unlock_irqrestore(q->queue_lock, flags);
539 EXPORT_SYMBOL(blk_run_queue);
541 void blk_put_queue(struct request_queue *q)
543 kobject_put(&q->kobj);
545 EXPORT_SYMBOL(blk_put_queue);
548 * __blk_drain_queue - drain requests from request_queue
549 * @q: queue to drain
550 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
552 * Drain requests from @q. If @drain_all is set, all requests are drained.
553 * If not, only ELVPRIV requests are drained. The caller is responsible
554 * for ensuring that no new requests which need to be drained are queued.
556 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
557 __releases(q->queue_lock)
558 __acquires(q->queue_lock)
560 int i;
562 lockdep_assert_held(q->queue_lock);
563 WARN_ON_ONCE(q->mq_ops);
565 while (true) {
566 bool drain = false;
569 * The caller might be trying to drain @q before its
570 * elevator is initialized.
572 if (q->elevator)
573 elv_drain_elevator(q);
575 blkcg_drain_queue(q);
578 * This function might be called on a queue which failed
579 * driver init after queue creation or is not yet fully
580 * active yet. Some drivers (e.g. fd and loop) get unhappy
581 * in such cases. Kick queue iff dispatch queue has
582 * something on it and @q has request_fn set.
584 if (!list_empty(&q->queue_head) && q->request_fn)
585 __blk_run_queue(q);
587 drain |= q->nr_rqs_elvpriv;
588 drain |= q->request_fn_active;
591 * Unfortunately, requests are queued at and tracked from
592 * multiple places and there's no single counter which can
593 * be drained. Check all the queues and counters.
595 if (drain_all) {
596 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
597 drain |= !list_empty(&q->queue_head);
598 for (i = 0; i < 2; i++) {
599 drain |= q->nr_rqs[i];
600 drain |= q->in_flight[i];
601 if (fq)
602 drain |= !list_empty(&fq->flush_queue[i]);
606 if (!drain)
607 break;
609 spin_unlock_irq(q->queue_lock);
611 msleep(10);
613 spin_lock_irq(q->queue_lock);
617 * With queue marked dead, any woken up waiter will fail the
618 * allocation path, so the wakeup chaining is lost and we're
619 * left with hung waiters. We need to wake up those waiters.
621 if (q->request_fn) {
622 struct request_list *rl;
624 blk_queue_for_each_rl(rl, q)
625 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
626 wake_up_all(&rl->wait[i]);
630 void blk_drain_queue(struct request_queue *q)
632 spin_lock_irq(q->queue_lock);
633 __blk_drain_queue(q, true);
634 spin_unlock_irq(q->queue_lock);
638 * blk_queue_bypass_start - enter queue bypass mode
639 * @q: queue of interest
641 * In bypass mode, only the dispatch FIFO queue of @q is used. This
642 * function makes @q enter bypass mode and drains all requests which were
643 * throttled or issued before. On return, it's guaranteed that no request
644 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
645 * inside queue or RCU read lock.
647 void blk_queue_bypass_start(struct request_queue *q)
649 WARN_ON_ONCE(q->mq_ops);
651 spin_lock_irq(q->queue_lock);
652 q->bypass_depth++;
653 queue_flag_set(QUEUE_FLAG_BYPASS, q);
654 spin_unlock_irq(q->queue_lock);
657 * Queues start drained. Skip actual draining till init is
658 * complete. This avoids lenghty delays during queue init which
659 * can happen many times during boot.
661 if (blk_queue_init_done(q)) {
662 spin_lock_irq(q->queue_lock);
663 __blk_drain_queue(q, false);
664 spin_unlock_irq(q->queue_lock);
666 /* ensure blk_queue_bypass() is %true inside RCU read lock */
667 synchronize_rcu();
670 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
673 * blk_queue_bypass_end - leave queue bypass mode
674 * @q: queue of interest
676 * Leave bypass mode and restore the normal queueing behavior.
678 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
679 * this function is called for both blk-sq and blk-mq queues.
681 void blk_queue_bypass_end(struct request_queue *q)
683 spin_lock_irq(q->queue_lock);
684 if (!--q->bypass_depth)
685 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
686 WARN_ON_ONCE(q->bypass_depth < 0);
687 spin_unlock_irq(q->queue_lock);
689 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
691 void blk_set_queue_dying(struct request_queue *q)
693 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
696 * When queue DYING flag is set, we need to block new req
697 * entering queue, so we call blk_freeze_queue_start() to
698 * prevent I/O from crossing blk_queue_enter().
700 blk_freeze_queue_start(q);
702 if (q->mq_ops)
703 blk_mq_wake_waiters(q);
704 else {
705 struct request_list *rl;
707 spin_lock_irq(q->queue_lock);
708 blk_queue_for_each_rl(rl, q) {
709 if (rl->rq_pool) {
710 wake_up_all(&rl->wait[BLK_RW_SYNC]);
711 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
714 spin_unlock_irq(q->queue_lock);
717 /* Make blk_queue_enter() reexamine the DYING flag. */
718 wake_up_all(&q->mq_freeze_wq);
720 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
723 * blk_cleanup_queue - shutdown a request queue
724 * @q: request queue to shutdown
726 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
727 * put it. All future requests will be failed immediately with -ENODEV.
729 void blk_cleanup_queue(struct request_queue *q)
731 spinlock_t *lock = q->queue_lock;
733 /* mark @q DYING, no new request or merges will be allowed afterwards */
734 mutex_lock(&q->sysfs_lock);
735 blk_set_queue_dying(q);
736 spin_lock_irq(lock);
739 * A dying queue is permanently in bypass mode till released. Note
740 * that, unlike blk_queue_bypass_start(), we aren't performing
741 * synchronize_rcu() after entering bypass mode to avoid the delay
742 * as some drivers create and destroy a lot of queues while
743 * probing. This is still safe because blk_release_queue() will be
744 * called only after the queue refcnt drops to zero and nothing,
745 * RCU or not, would be traversing the queue by then.
747 q->bypass_depth++;
748 queue_flag_set(QUEUE_FLAG_BYPASS, q);
750 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
751 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
752 queue_flag_set(QUEUE_FLAG_DYING, q);
753 spin_unlock_irq(lock);
754 mutex_unlock(&q->sysfs_lock);
757 * Drain all requests queued before DYING marking. Set DEAD flag to
758 * prevent that q->request_fn() gets invoked after draining finished.
760 blk_freeze_queue(q);
761 spin_lock_irq(lock);
762 queue_flag_set(QUEUE_FLAG_DEAD, q);
763 spin_unlock_irq(lock);
766 * make sure all in-progress dispatch are completed because
767 * blk_freeze_queue() can only complete all requests, and
768 * dispatch may still be in-progress since we dispatch requests
769 * from more than one contexts
771 if (q->mq_ops)
772 blk_mq_quiesce_queue(q);
774 /* for synchronous bio-based driver finish in-flight integrity i/o */
775 blk_flush_integrity();
777 /* @q won't process any more request, flush async actions */
778 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
779 blk_sync_queue(q);
782 * I/O scheduler exit is only safe after the sysfs scheduler attribute
783 * has been removed.
785 WARN_ON_ONCE(q->kobj.state_in_sysfs);
788 * Since the I/O scheduler exit code may access cgroup information,
789 * perform I/O scheduler exit before disassociating from the block
790 * cgroup controller.
792 if (q->elevator) {
793 ioc_clear_queue(q);
794 elevator_exit(q, q->elevator);
795 q->elevator = NULL;
799 * Remove all references to @q from the block cgroup controller before
800 * restoring @q->queue_lock to avoid that restoring this pointer causes
801 * e.g. blkcg_print_blkgs() to crash.
803 blkcg_exit_queue(q);
806 * Since the cgroup code may dereference the @q->backing_dev_info
807 * pointer, only decrease its reference count after having removed the
808 * association with the block cgroup controller.
810 bdi_put(q->backing_dev_info);
812 if (q->mq_ops)
813 blk_mq_free_queue(q);
814 percpu_ref_exit(&q->q_usage_counter);
816 spin_lock_irq(lock);
817 if (q->queue_lock != &q->__queue_lock)
818 q->queue_lock = &q->__queue_lock;
819 spin_unlock_irq(lock);
821 /* @q is and will stay empty, shutdown and put */
822 blk_put_queue(q);
824 EXPORT_SYMBOL(blk_cleanup_queue);
826 /* Allocate memory local to the request queue */
827 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
829 struct request_queue *q = data;
831 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
834 static void free_request_simple(void *element, void *data)
836 kmem_cache_free(request_cachep, element);
839 static void *alloc_request_size(gfp_t gfp_mask, void *data)
841 struct request_queue *q = data;
842 struct request *rq;
844 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
845 q->node);
846 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
847 kfree(rq);
848 rq = NULL;
850 return rq;
853 static void free_request_size(void *element, void *data)
855 struct request_queue *q = data;
857 if (q->exit_rq_fn)
858 q->exit_rq_fn(q, element);
859 kfree(element);
862 int blk_init_rl(struct request_list *rl, struct request_queue *q,
863 gfp_t gfp_mask)
865 if (unlikely(rl->rq_pool) || q->mq_ops)
866 return 0;
868 rl->q = q;
869 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
870 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
871 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
872 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
874 if (q->cmd_size) {
875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 alloc_request_size, free_request_size,
877 q, gfp_mask, q->node);
878 } else {
879 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
880 alloc_request_simple, free_request_simple,
881 q, gfp_mask, q->node);
883 if (!rl->rq_pool)
884 return -ENOMEM;
886 if (rl != &q->root_rl)
887 WARN_ON_ONCE(!blk_get_queue(q));
889 return 0;
892 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
894 if (rl->rq_pool) {
895 mempool_destroy(rl->rq_pool);
896 if (rl != &q->root_rl)
897 blk_put_queue(q);
901 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
903 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
905 EXPORT_SYMBOL(blk_alloc_queue);
908 * blk_queue_enter() - try to increase q->q_usage_counter
909 * @q: request queue pointer
910 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
912 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
914 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
916 while (true) {
917 bool success = false;
919 rcu_read_lock();
920 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
922 * The code that sets the PREEMPT_ONLY flag is
923 * responsible for ensuring that that flag is globally
924 * visible before the queue is unfrozen.
926 if (preempt || !blk_queue_preempt_only(q)) {
927 success = true;
928 } else {
929 percpu_ref_put(&q->q_usage_counter);
932 rcu_read_unlock();
934 if (success)
935 return 0;
937 if (flags & BLK_MQ_REQ_NOWAIT)
938 return -EBUSY;
941 * read pair of barrier in blk_freeze_queue_start(),
942 * we need to order reading __PERCPU_REF_DEAD flag of
943 * .q_usage_counter and reading .mq_freeze_depth or
944 * queue dying flag, otherwise the following wait may
945 * never return if the two reads are reordered.
947 smp_rmb();
949 wait_event(q->mq_freeze_wq,
950 (atomic_read(&q->mq_freeze_depth) == 0 &&
951 (preempt || !blk_queue_preempt_only(q))) ||
952 blk_queue_dying(q));
953 if (blk_queue_dying(q))
954 return -ENODEV;
958 void blk_queue_exit(struct request_queue *q)
960 percpu_ref_put(&q->q_usage_counter);
963 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
965 struct request_queue *q =
966 container_of(ref, struct request_queue, q_usage_counter);
968 wake_up_all(&q->mq_freeze_wq);
971 static void blk_rq_timed_out_timer(struct timer_list *t)
973 struct request_queue *q = from_timer(q, t, timeout);
975 kblockd_schedule_work(&q->timeout_work);
979 * blk_alloc_queue_node - allocate a request queue
980 * @gfp_mask: memory allocation flags
981 * @node_id: NUMA node to allocate memory from
982 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
983 * serialize calls to the legacy .request_fn() callback. Ignored for
984 * blk-mq request queues.
986 * Note: pass the queue lock as the third argument to this function instead of
987 * setting the queue lock pointer explicitly to avoid triggering a sporadic
988 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
989 * the queue lock pointer must be set before blkcg_init_queue() is called.
991 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
992 spinlock_t *lock)
994 struct request_queue *q;
995 int ret;
997 q = kmem_cache_alloc_node(blk_requestq_cachep,
998 gfp_mask | __GFP_ZERO, node_id);
999 if (!q)
1000 return NULL;
1002 INIT_LIST_HEAD(&q->queue_head);
1003 q->last_merge = NULL;
1004 q->end_sector = 0;
1005 q->boundary_rq = NULL;
1007 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1008 if (q->id < 0)
1009 goto fail_q;
1011 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1012 if (ret)
1013 goto fail_id;
1015 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1016 if (!q->backing_dev_info)
1017 goto fail_split;
1019 q->stats = blk_alloc_queue_stats();
1020 if (!q->stats)
1021 goto fail_stats;
1023 q->backing_dev_info->ra_pages =
1024 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1025 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1026 q->backing_dev_info->name = "block";
1027 q->node = node_id;
1029 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1030 laptop_mode_timer_fn, 0);
1031 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1032 INIT_WORK(&q->timeout_work, NULL);
1033 INIT_LIST_HEAD(&q->queue_head);
1034 INIT_LIST_HEAD(&q->timeout_list);
1035 INIT_LIST_HEAD(&q->icq_list);
1036 #ifdef CONFIG_BLK_CGROUP
1037 INIT_LIST_HEAD(&q->blkg_list);
1038 #endif
1039 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1041 kobject_init(&q->kobj, &blk_queue_ktype);
1043 #ifdef CONFIG_BLK_DEV_IO_TRACE
1044 mutex_init(&q->blk_trace_mutex);
1045 #endif
1046 mutex_init(&q->sysfs_lock);
1047 spin_lock_init(&q->__queue_lock);
1049 if (!q->mq_ops)
1050 q->queue_lock = lock ? : &q->__queue_lock;
1053 * A queue starts its life with bypass turned on to avoid
1054 * unnecessary bypass on/off overhead and nasty surprises during
1055 * init. The initial bypass will be finished when the queue is
1056 * registered by blk_register_queue().
1058 q->bypass_depth = 1;
1059 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1061 init_waitqueue_head(&q->mq_freeze_wq);
1064 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1065 * See blk_register_queue() for details.
1067 if (percpu_ref_init(&q->q_usage_counter,
1068 blk_queue_usage_counter_release,
1069 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1070 goto fail_bdi;
1072 if (blkcg_init_queue(q))
1073 goto fail_ref;
1075 return q;
1077 fail_ref:
1078 percpu_ref_exit(&q->q_usage_counter);
1079 fail_bdi:
1080 blk_free_queue_stats(q->stats);
1081 fail_stats:
1082 bdi_put(q->backing_dev_info);
1083 fail_split:
1084 bioset_exit(&q->bio_split);
1085 fail_id:
1086 ida_simple_remove(&blk_queue_ida, q->id);
1087 fail_q:
1088 kmem_cache_free(blk_requestq_cachep, q);
1089 return NULL;
1091 EXPORT_SYMBOL(blk_alloc_queue_node);
1094 * blk_init_queue - prepare a request queue for use with a block device
1095 * @rfn: The function to be called to process requests that have been
1096 * placed on the queue.
1097 * @lock: Request queue spin lock
1099 * Description:
1100 * If a block device wishes to use the standard request handling procedures,
1101 * which sorts requests and coalesces adjacent requests, then it must
1102 * call blk_init_queue(). The function @rfn will be called when there
1103 * are requests on the queue that need to be processed. If the device
1104 * supports plugging, then @rfn may not be called immediately when requests
1105 * are available on the queue, but may be called at some time later instead.
1106 * Plugged queues are generally unplugged when a buffer belonging to one
1107 * of the requests on the queue is needed, or due to memory pressure.
1109 * @rfn is not required, or even expected, to remove all requests off the
1110 * queue, but only as many as it can handle at a time. If it does leave
1111 * requests on the queue, it is responsible for arranging that the requests
1112 * get dealt with eventually.
1114 * The queue spin lock must be held while manipulating the requests on the
1115 * request queue; this lock will be taken also from interrupt context, so irq
1116 * disabling is needed for it.
1118 * Function returns a pointer to the initialized request queue, or %NULL if
1119 * it didn't succeed.
1121 * Note:
1122 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1123 * when the block device is deactivated (such as at module unload).
1126 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1128 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1130 EXPORT_SYMBOL(blk_init_queue);
1132 struct request_queue *
1133 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1135 struct request_queue *q;
1137 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1138 if (!q)
1139 return NULL;
1141 q->request_fn = rfn;
1142 if (blk_init_allocated_queue(q) < 0) {
1143 blk_cleanup_queue(q);
1144 return NULL;
1147 return q;
1149 EXPORT_SYMBOL(blk_init_queue_node);
1151 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1154 int blk_init_allocated_queue(struct request_queue *q)
1156 WARN_ON_ONCE(q->mq_ops);
1158 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1159 if (!q->fq)
1160 return -ENOMEM;
1162 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1163 goto out_free_flush_queue;
1165 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1166 goto out_exit_flush_rq;
1168 INIT_WORK(&q->timeout_work, blk_timeout_work);
1169 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1172 * This also sets hw/phys segments, boundary and size
1174 blk_queue_make_request(q, blk_queue_bio);
1176 q->sg_reserved_size = INT_MAX;
1178 if (elevator_init(q))
1179 goto out_exit_flush_rq;
1180 return 0;
1182 out_exit_flush_rq:
1183 if (q->exit_rq_fn)
1184 q->exit_rq_fn(q, q->fq->flush_rq);
1185 out_free_flush_queue:
1186 blk_free_flush_queue(q->fq);
1187 return -ENOMEM;
1189 EXPORT_SYMBOL(blk_init_allocated_queue);
1191 bool blk_get_queue(struct request_queue *q)
1193 if (likely(!blk_queue_dying(q))) {
1194 __blk_get_queue(q);
1195 return true;
1198 return false;
1200 EXPORT_SYMBOL(blk_get_queue);
1202 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1204 if (rq->rq_flags & RQF_ELVPRIV) {
1205 elv_put_request(rl->q, rq);
1206 if (rq->elv.icq)
1207 put_io_context(rq->elv.icq->ioc);
1210 mempool_free(rq, rl->rq_pool);
1214 * ioc_batching returns true if the ioc is a valid batching request and
1215 * should be given priority access to a request.
1217 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1219 if (!ioc)
1220 return 0;
1223 * Make sure the process is able to allocate at least 1 request
1224 * even if the batch times out, otherwise we could theoretically
1225 * lose wakeups.
1227 return ioc->nr_batch_requests == q->nr_batching ||
1228 (ioc->nr_batch_requests > 0
1229 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1233 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1234 * will cause the process to be a "batcher" on all queues in the system. This
1235 * is the behaviour we want though - once it gets a wakeup it should be given
1236 * a nice run.
1238 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1240 if (!ioc || ioc_batching(q, ioc))
1241 return;
1243 ioc->nr_batch_requests = q->nr_batching;
1244 ioc->last_waited = jiffies;
1247 static void __freed_request(struct request_list *rl, int sync)
1249 struct request_queue *q = rl->q;
1251 if (rl->count[sync] < queue_congestion_off_threshold(q))
1252 blk_clear_congested(rl, sync);
1254 if (rl->count[sync] + 1 <= q->nr_requests) {
1255 if (waitqueue_active(&rl->wait[sync]))
1256 wake_up(&rl->wait[sync]);
1258 blk_clear_rl_full(rl, sync);
1263 * A request has just been released. Account for it, update the full and
1264 * congestion status, wake up any waiters. Called under q->queue_lock.
1266 static void freed_request(struct request_list *rl, bool sync,
1267 req_flags_t rq_flags)
1269 struct request_queue *q = rl->q;
1271 q->nr_rqs[sync]--;
1272 rl->count[sync]--;
1273 if (rq_flags & RQF_ELVPRIV)
1274 q->nr_rqs_elvpriv--;
1276 __freed_request(rl, sync);
1278 if (unlikely(rl->starved[sync ^ 1]))
1279 __freed_request(rl, sync ^ 1);
1282 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1284 struct request_list *rl;
1285 int on_thresh, off_thresh;
1287 WARN_ON_ONCE(q->mq_ops);
1289 spin_lock_irq(q->queue_lock);
1290 q->nr_requests = nr;
1291 blk_queue_congestion_threshold(q);
1292 on_thresh = queue_congestion_on_threshold(q);
1293 off_thresh = queue_congestion_off_threshold(q);
1295 blk_queue_for_each_rl(rl, q) {
1296 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1297 blk_set_congested(rl, BLK_RW_SYNC);
1298 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1299 blk_clear_congested(rl, BLK_RW_SYNC);
1301 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1302 blk_set_congested(rl, BLK_RW_ASYNC);
1303 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1304 blk_clear_congested(rl, BLK_RW_ASYNC);
1306 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1307 blk_set_rl_full(rl, BLK_RW_SYNC);
1308 } else {
1309 blk_clear_rl_full(rl, BLK_RW_SYNC);
1310 wake_up(&rl->wait[BLK_RW_SYNC]);
1313 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1314 blk_set_rl_full(rl, BLK_RW_ASYNC);
1315 } else {
1316 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1317 wake_up(&rl->wait[BLK_RW_ASYNC]);
1321 spin_unlock_irq(q->queue_lock);
1322 return 0;
1326 * __get_request - get a free request
1327 * @rl: request list to allocate from
1328 * @op: operation and flags
1329 * @bio: bio to allocate request for (can be %NULL)
1330 * @flags: BLQ_MQ_REQ_* flags
1331 * @gfp_mask: allocator flags
1333 * Get a free request from @q. This function may fail under memory
1334 * pressure or if @q is dead.
1336 * Must be called with @q->queue_lock held and,
1337 * Returns ERR_PTR on failure, with @q->queue_lock held.
1338 * Returns request pointer on success, with @q->queue_lock *not held*.
1340 static struct request *__get_request(struct request_list *rl, unsigned int op,
1341 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1343 struct request_queue *q = rl->q;
1344 struct request *rq;
1345 struct elevator_type *et = q->elevator->type;
1346 struct io_context *ioc = rq_ioc(bio);
1347 struct io_cq *icq = NULL;
1348 const bool is_sync = op_is_sync(op);
1349 int may_queue;
1350 req_flags_t rq_flags = RQF_ALLOCED;
1352 lockdep_assert_held(q->queue_lock);
1354 if (unlikely(blk_queue_dying(q)))
1355 return ERR_PTR(-ENODEV);
1357 may_queue = elv_may_queue(q, op);
1358 if (may_queue == ELV_MQUEUE_NO)
1359 goto rq_starved;
1361 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1362 if (rl->count[is_sync]+1 >= q->nr_requests) {
1364 * The queue will fill after this allocation, so set
1365 * it as full, and mark this process as "batching".
1366 * This process will be allowed to complete a batch of
1367 * requests, others will be blocked.
1369 if (!blk_rl_full(rl, is_sync)) {
1370 ioc_set_batching(q, ioc);
1371 blk_set_rl_full(rl, is_sync);
1372 } else {
1373 if (may_queue != ELV_MQUEUE_MUST
1374 && !ioc_batching(q, ioc)) {
1376 * The queue is full and the allocating
1377 * process is not a "batcher", and not
1378 * exempted by the IO scheduler
1380 return ERR_PTR(-ENOMEM);
1384 blk_set_congested(rl, is_sync);
1388 * Only allow batching queuers to allocate up to 50% over the defined
1389 * limit of requests, otherwise we could have thousands of requests
1390 * allocated with any setting of ->nr_requests
1392 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1393 return ERR_PTR(-ENOMEM);
1395 q->nr_rqs[is_sync]++;
1396 rl->count[is_sync]++;
1397 rl->starved[is_sync] = 0;
1400 * Decide whether the new request will be managed by elevator. If
1401 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1402 * prevent the current elevator from being destroyed until the new
1403 * request is freed. This guarantees icq's won't be destroyed and
1404 * makes creating new ones safe.
1406 * Flush requests do not use the elevator so skip initialization.
1407 * This allows a request to share the flush and elevator data.
1409 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1410 * it will be created after releasing queue_lock.
1412 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1413 rq_flags |= RQF_ELVPRIV;
1414 q->nr_rqs_elvpriv++;
1415 if (et->icq_cache && ioc)
1416 icq = ioc_lookup_icq(ioc, q);
1419 if (blk_queue_io_stat(q))
1420 rq_flags |= RQF_IO_STAT;
1421 spin_unlock_irq(q->queue_lock);
1423 /* allocate and init request */
1424 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1425 if (!rq)
1426 goto fail_alloc;
1428 blk_rq_init(q, rq);
1429 blk_rq_set_rl(rq, rl);
1430 rq->cmd_flags = op;
1431 rq->rq_flags = rq_flags;
1432 if (flags & BLK_MQ_REQ_PREEMPT)
1433 rq->rq_flags |= RQF_PREEMPT;
1435 /* init elvpriv */
1436 if (rq_flags & RQF_ELVPRIV) {
1437 if (unlikely(et->icq_cache && !icq)) {
1438 if (ioc)
1439 icq = ioc_create_icq(ioc, q, gfp_mask);
1440 if (!icq)
1441 goto fail_elvpriv;
1444 rq->elv.icq = icq;
1445 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1446 goto fail_elvpriv;
1448 /* @rq->elv.icq holds io_context until @rq is freed */
1449 if (icq)
1450 get_io_context(icq->ioc);
1452 out:
1454 * ioc may be NULL here, and ioc_batching will be false. That's
1455 * OK, if the queue is under the request limit then requests need
1456 * not count toward the nr_batch_requests limit. There will always
1457 * be some limit enforced by BLK_BATCH_TIME.
1459 if (ioc_batching(q, ioc))
1460 ioc->nr_batch_requests--;
1462 trace_block_getrq(q, bio, op);
1463 return rq;
1465 fail_elvpriv:
1467 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1468 * and may fail indefinitely under memory pressure and thus
1469 * shouldn't stall IO. Treat this request as !elvpriv. This will
1470 * disturb iosched and blkcg but weird is bettern than dead.
1472 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1473 __func__, dev_name(q->backing_dev_info->dev));
1475 rq->rq_flags &= ~RQF_ELVPRIV;
1476 rq->elv.icq = NULL;
1478 spin_lock_irq(q->queue_lock);
1479 q->nr_rqs_elvpriv--;
1480 spin_unlock_irq(q->queue_lock);
1481 goto out;
1483 fail_alloc:
1485 * Allocation failed presumably due to memory. Undo anything we
1486 * might have messed up.
1488 * Allocating task should really be put onto the front of the wait
1489 * queue, but this is pretty rare.
1491 spin_lock_irq(q->queue_lock);
1492 freed_request(rl, is_sync, rq_flags);
1495 * in the very unlikely event that allocation failed and no
1496 * requests for this direction was pending, mark us starved so that
1497 * freeing of a request in the other direction will notice
1498 * us. another possible fix would be to split the rq mempool into
1499 * READ and WRITE
1501 rq_starved:
1502 if (unlikely(rl->count[is_sync] == 0))
1503 rl->starved[is_sync] = 1;
1504 return ERR_PTR(-ENOMEM);
1508 * get_request - get a free request
1509 * @q: request_queue to allocate request from
1510 * @op: operation and flags
1511 * @bio: bio to allocate request for (can be %NULL)
1512 * @flags: BLK_MQ_REQ_* flags.
1513 * @gfp: allocator flags
1515 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1516 * this function keeps retrying under memory pressure and fails iff @q is dead.
1518 * Must be called with @q->queue_lock held and,
1519 * Returns ERR_PTR on failure, with @q->queue_lock held.
1520 * Returns request pointer on success, with @q->queue_lock *not held*.
1522 static struct request *get_request(struct request_queue *q, unsigned int op,
1523 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1525 const bool is_sync = op_is_sync(op);
1526 DEFINE_WAIT(wait);
1527 struct request_list *rl;
1528 struct request *rq;
1530 lockdep_assert_held(q->queue_lock);
1531 WARN_ON_ONCE(q->mq_ops);
1533 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1534 retry:
1535 rq = __get_request(rl, op, bio, flags, gfp);
1536 if (!IS_ERR(rq))
1537 return rq;
1539 if (op & REQ_NOWAIT) {
1540 blk_put_rl(rl);
1541 return ERR_PTR(-EAGAIN);
1544 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1545 blk_put_rl(rl);
1546 return rq;
1549 /* wait on @rl and retry */
1550 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1551 TASK_UNINTERRUPTIBLE);
1553 trace_block_sleeprq(q, bio, op);
1555 spin_unlock_irq(q->queue_lock);
1556 io_schedule();
1559 * After sleeping, we become a "batching" process and will be able
1560 * to allocate at least one request, and up to a big batch of them
1561 * for a small period time. See ioc_batching, ioc_set_batching
1563 ioc_set_batching(q, current->io_context);
1565 spin_lock_irq(q->queue_lock);
1566 finish_wait(&rl->wait[is_sync], &wait);
1568 goto retry;
1571 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1572 static struct request *blk_old_get_request(struct request_queue *q,
1573 unsigned int op, blk_mq_req_flags_t flags)
1575 struct request *rq;
1576 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1577 int ret = 0;
1579 WARN_ON_ONCE(q->mq_ops);
1581 /* create ioc upfront */
1582 create_io_context(gfp_mask, q->node);
1584 ret = blk_queue_enter(q, flags);
1585 if (ret)
1586 return ERR_PTR(ret);
1587 spin_lock_irq(q->queue_lock);
1588 rq = get_request(q, op, NULL, flags, gfp_mask);
1589 if (IS_ERR(rq)) {
1590 spin_unlock_irq(q->queue_lock);
1591 blk_queue_exit(q);
1592 return rq;
1595 /* q->queue_lock is unlocked at this point */
1596 rq->__data_len = 0;
1597 rq->__sector = (sector_t) -1;
1598 rq->bio = rq->biotail = NULL;
1599 return rq;
1603 * blk_get_request - allocate a request
1604 * @q: request queue to allocate a request for
1605 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1606 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1608 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1609 blk_mq_req_flags_t flags)
1611 struct request *req;
1613 WARN_ON_ONCE(op & REQ_NOWAIT);
1614 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1616 if (q->mq_ops) {
1617 req = blk_mq_alloc_request(q, op, flags);
1618 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1619 q->mq_ops->initialize_rq_fn(req);
1620 } else {
1621 req = blk_old_get_request(q, op, flags);
1622 if (!IS_ERR(req) && q->initialize_rq_fn)
1623 q->initialize_rq_fn(req);
1626 return req;
1628 EXPORT_SYMBOL(blk_get_request);
1631 * blk_requeue_request - put a request back on queue
1632 * @q: request queue where request should be inserted
1633 * @rq: request to be inserted
1635 * Description:
1636 * Drivers often keep queueing requests until the hardware cannot accept
1637 * more, when that condition happens we need to put the request back
1638 * on the queue. Must be called with queue lock held.
1640 void blk_requeue_request(struct request_queue *q, struct request *rq)
1642 lockdep_assert_held(q->queue_lock);
1643 WARN_ON_ONCE(q->mq_ops);
1645 blk_delete_timer(rq);
1646 blk_clear_rq_complete(rq);
1647 trace_block_rq_requeue(q, rq);
1648 wbt_requeue(q->rq_wb, rq);
1650 if (rq->rq_flags & RQF_QUEUED)
1651 blk_queue_end_tag(q, rq);
1653 BUG_ON(blk_queued_rq(rq));
1655 elv_requeue_request(q, rq);
1657 EXPORT_SYMBOL(blk_requeue_request);
1659 static void add_acct_request(struct request_queue *q, struct request *rq,
1660 int where)
1662 blk_account_io_start(rq, true);
1663 __elv_add_request(q, rq, where);
1666 static void part_round_stats_single(struct request_queue *q, int cpu,
1667 struct hd_struct *part, unsigned long now,
1668 unsigned int inflight)
1670 if (inflight) {
1671 __part_stat_add(cpu, part, time_in_queue,
1672 inflight * (now - part->stamp));
1673 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1675 part->stamp = now;
1679 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1680 * @q: target block queue
1681 * @cpu: cpu number for stats access
1682 * @part: target partition
1684 * The average IO queue length and utilisation statistics are maintained
1685 * by observing the current state of the queue length and the amount of
1686 * time it has been in this state for.
1688 * Normally, that accounting is done on IO completion, but that can result
1689 * in more than a second's worth of IO being accounted for within any one
1690 * second, leading to >100% utilisation. To deal with that, we call this
1691 * function to do a round-off before returning the results when reading
1692 * /proc/diskstats. This accounts immediately for all queue usage up to
1693 * the current jiffies and restarts the counters again.
1695 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1697 struct hd_struct *part2 = NULL;
1698 unsigned long now = jiffies;
1699 unsigned int inflight[2];
1700 int stats = 0;
1702 if (part->stamp != now)
1703 stats |= 1;
1705 if (part->partno) {
1706 part2 = &part_to_disk(part)->part0;
1707 if (part2->stamp != now)
1708 stats |= 2;
1711 if (!stats)
1712 return;
1714 part_in_flight(q, part, inflight);
1716 if (stats & 2)
1717 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1718 if (stats & 1)
1719 part_round_stats_single(q, cpu, part, now, inflight[0]);
1721 EXPORT_SYMBOL_GPL(part_round_stats);
1723 #ifdef CONFIG_PM
1724 static void blk_pm_put_request(struct request *rq)
1726 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1727 pm_runtime_mark_last_busy(rq->q->dev);
1729 #else
1730 static inline void blk_pm_put_request(struct request *rq) {}
1731 #endif
1733 void __blk_put_request(struct request_queue *q, struct request *req)
1735 req_flags_t rq_flags = req->rq_flags;
1737 if (unlikely(!q))
1738 return;
1740 if (q->mq_ops) {
1741 blk_mq_free_request(req);
1742 return;
1745 lockdep_assert_held(q->queue_lock);
1747 blk_req_zone_write_unlock(req);
1748 blk_pm_put_request(req);
1750 elv_completed_request(q, req);
1752 /* this is a bio leak */
1753 WARN_ON(req->bio != NULL);
1755 wbt_done(q->rq_wb, req);
1758 * Request may not have originated from ll_rw_blk. if not,
1759 * it didn't come out of our reserved rq pools
1761 if (rq_flags & RQF_ALLOCED) {
1762 struct request_list *rl = blk_rq_rl(req);
1763 bool sync = op_is_sync(req->cmd_flags);
1765 BUG_ON(!list_empty(&req->queuelist));
1766 BUG_ON(ELV_ON_HASH(req));
1768 blk_free_request(rl, req);
1769 freed_request(rl, sync, rq_flags);
1770 blk_put_rl(rl);
1771 blk_queue_exit(q);
1774 EXPORT_SYMBOL_GPL(__blk_put_request);
1776 void blk_put_request(struct request *req)
1778 struct request_queue *q = req->q;
1780 if (q->mq_ops)
1781 blk_mq_free_request(req);
1782 else {
1783 unsigned long flags;
1785 spin_lock_irqsave(q->queue_lock, flags);
1786 __blk_put_request(q, req);
1787 spin_unlock_irqrestore(q->queue_lock, flags);
1790 EXPORT_SYMBOL(blk_put_request);
1792 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1793 struct bio *bio)
1795 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1797 if (!ll_back_merge_fn(q, req, bio))
1798 return false;
1800 trace_block_bio_backmerge(q, req, bio);
1802 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1803 blk_rq_set_mixed_merge(req);
1805 req->biotail->bi_next = bio;
1806 req->biotail = bio;
1807 req->__data_len += bio->bi_iter.bi_size;
1808 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1810 blk_account_io_start(req, false);
1811 return true;
1814 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1815 struct bio *bio)
1817 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1819 if (!ll_front_merge_fn(q, req, bio))
1820 return false;
1822 trace_block_bio_frontmerge(q, req, bio);
1824 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1825 blk_rq_set_mixed_merge(req);
1827 bio->bi_next = req->bio;
1828 req->bio = bio;
1830 req->__sector = bio->bi_iter.bi_sector;
1831 req->__data_len += bio->bi_iter.bi_size;
1832 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1834 blk_account_io_start(req, false);
1835 return true;
1838 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1839 struct bio *bio)
1841 unsigned short segments = blk_rq_nr_discard_segments(req);
1843 if (segments >= queue_max_discard_segments(q))
1844 goto no_merge;
1845 if (blk_rq_sectors(req) + bio_sectors(bio) >
1846 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1847 goto no_merge;
1849 req->biotail->bi_next = bio;
1850 req->biotail = bio;
1851 req->__data_len += bio->bi_iter.bi_size;
1852 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1853 req->nr_phys_segments = segments + 1;
1855 blk_account_io_start(req, false);
1856 return true;
1857 no_merge:
1858 req_set_nomerge(q, req);
1859 return false;
1863 * blk_attempt_plug_merge - try to merge with %current's plugged list
1864 * @q: request_queue new bio is being queued at
1865 * @bio: new bio being queued
1866 * @request_count: out parameter for number of traversed plugged requests
1867 * @same_queue_rq: pointer to &struct request that gets filled in when
1868 * another request associated with @q is found on the plug list
1869 * (optional, may be %NULL)
1871 * Determine whether @bio being queued on @q can be merged with a request
1872 * on %current's plugged list. Returns %true if merge was successful,
1873 * otherwise %false.
1875 * Plugging coalesces IOs from the same issuer for the same purpose without
1876 * going through @q->queue_lock. As such it's more of an issuing mechanism
1877 * than scheduling, and the request, while may have elvpriv data, is not
1878 * added on the elevator at this point. In addition, we don't have
1879 * reliable access to the elevator outside queue lock. Only check basic
1880 * merging parameters without querying the elevator.
1882 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1884 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1885 unsigned int *request_count,
1886 struct request **same_queue_rq)
1888 struct blk_plug *plug;
1889 struct request *rq;
1890 struct list_head *plug_list;
1892 plug = current->plug;
1893 if (!plug)
1894 return false;
1895 *request_count = 0;
1897 if (q->mq_ops)
1898 plug_list = &plug->mq_list;
1899 else
1900 plug_list = &plug->list;
1902 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1903 bool merged = false;
1905 if (rq->q == q) {
1906 (*request_count)++;
1908 * Only blk-mq multiple hardware queues case checks the
1909 * rq in the same queue, there should be only one such
1910 * rq in a queue
1912 if (same_queue_rq)
1913 *same_queue_rq = rq;
1916 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1917 continue;
1919 switch (blk_try_merge(rq, bio)) {
1920 case ELEVATOR_BACK_MERGE:
1921 merged = bio_attempt_back_merge(q, rq, bio);
1922 break;
1923 case ELEVATOR_FRONT_MERGE:
1924 merged = bio_attempt_front_merge(q, rq, bio);
1925 break;
1926 case ELEVATOR_DISCARD_MERGE:
1927 merged = bio_attempt_discard_merge(q, rq, bio);
1928 break;
1929 default:
1930 break;
1933 if (merged)
1934 return true;
1937 return false;
1940 unsigned int blk_plug_queued_count(struct request_queue *q)
1942 struct blk_plug *plug;
1943 struct request *rq;
1944 struct list_head *plug_list;
1945 unsigned int ret = 0;
1947 plug = current->plug;
1948 if (!plug)
1949 goto out;
1951 if (q->mq_ops)
1952 plug_list = &plug->mq_list;
1953 else
1954 plug_list = &plug->list;
1956 list_for_each_entry(rq, plug_list, queuelist) {
1957 if (rq->q == q)
1958 ret++;
1960 out:
1961 return ret;
1964 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1966 struct io_context *ioc = rq_ioc(bio);
1968 if (bio->bi_opf & REQ_RAHEAD)
1969 req->cmd_flags |= REQ_FAILFAST_MASK;
1971 req->__sector = bio->bi_iter.bi_sector;
1972 if (ioprio_valid(bio_prio(bio)))
1973 req->ioprio = bio_prio(bio);
1974 else if (ioc)
1975 req->ioprio = ioc->ioprio;
1976 else
1977 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1978 req->write_hint = bio->bi_write_hint;
1979 blk_rq_bio_prep(req->q, req, bio);
1981 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1983 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1985 struct blk_plug *plug;
1986 int where = ELEVATOR_INSERT_SORT;
1987 struct request *req, *free;
1988 unsigned int request_count = 0;
1989 unsigned int wb_acct;
1992 * low level driver can indicate that it wants pages above a
1993 * certain limit bounced to low memory (ie for highmem, or even
1994 * ISA dma in theory)
1996 blk_queue_bounce(q, &bio);
1998 blk_queue_split(q, &bio);
2000 if (!bio_integrity_prep(bio))
2001 return BLK_QC_T_NONE;
2003 if (op_is_flush(bio->bi_opf)) {
2004 spin_lock_irq(q->queue_lock);
2005 where = ELEVATOR_INSERT_FLUSH;
2006 goto get_rq;
2010 * Check if we can merge with the plugged list before grabbing
2011 * any locks.
2013 if (!blk_queue_nomerges(q)) {
2014 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2015 return BLK_QC_T_NONE;
2016 } else
2017 request_count = blk_plug_queued_count(q);
2019 spin_lock_irq(q->queue_lock);
2021 switch (elv_merge(q, &req, bio)) {
2022 case ELEVATOR_BACK_MERGE:
2023 if (!bio_attempt_back_merge(q, req, bio))
2024 break;
2025 elv_bio_merged(q, req, bio);
2026 free = attempt_back_merge(q, req);
2027 if (free)
2028 __blk_put_request(q, free);
2029 else
2030 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2031 goto out_unlock;
2032 case ELEVATOR_FRONT_MERGE:
2033 if (!bio_attempt_front_merge(q, req, bio))
2034 break;
2035 elv_bio_merged(q, req, bio);
2036 free = attempt_front_merge(q, req);
2037 if (free)
2038 __blk_put_request(q, free);
2039 else
2040 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2041 goto out_unlock;
2042 default:
2043 break;
2046 get_rq:
2047 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2050 * Grab a free request. This is might sleep but can not fail.
2051 * Returns with the queue unlocked.
2053 blk_queue_enter_live(q);
2054 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2055 if (IS_ERR(req)) {
2056 blk_queue_exit(q);
2057 __wbt_done(q->rq_wb, wb_acct);
2058 if (PTR_ERR(req) == -ENOMEM)
2059 bio->bi_status = BLK_STS_RESOURCE;
2060 else
2061 bio->bi_status = BLK_STS_IOERR;
2062 bio_endio(bio);
2063 goto out_unlock;
2066 wbt_track(req, wb_acct);
2069 * After dropping the lock and possibly sleeping here, our request
2070 * may now be mergeable after it had proven unmergeable (above).
2071 * We don't worry about that case for efficiency. It won't happen
2072 * often, and the elevators are able to handle it.
2074 blk_init_request_from_bio(req, bio);
2076 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2077 req->cpu = raw_smp_processor_id();
2079 plug = current->plug;
2080 if (plug) {
2082 * If this is the first request added after a plug, fire
2083 * of a plug trace.
2085 * @request_count may become stale because of schedule
2086 * out, so check plug list again.
2088 if (!request_count || list_empty(&plug->list))
2089 trace_block_plug(q);
2090 else {
2091 struct request *last = list_entry_rq(plug->list.prev);
2092 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2093 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2094 blk_flush_plug_list(plug, false);
2095 trace_block_plug(q);
2098 list_add_tail(&req->queuelist, &plug->list);
2099 blk_account_io_start(req, true);
2100 } else {
2101 spin_lock_irq(q->queue_lock);
2102 add_acct_request(q, req, where);
2103 __blk_run_queue(q);
2104 out_unlock:
2105 spin_unlock_irq(q->queue_lock);
2108 return BLK_QC_T_NONE;
2111 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2113 char b[BDEVNAME_SIZE];
2115 printk(KERN_INFO "attempt to access beyond end of device\n");
2116 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2117 bio_devname(bio, b), bio->bi_opf,
2118 (unsigned long long)bio_end_sector(bio),
2119 (long long)maxsector);
2122 #ifdef CONFIG_FAIL_MAKE_REQUEST
2124 static DECLARE_FAULT_ATTR(fail_make_request);
2126 static int __init setup_fail_make_request(char *str)
2128 return setup_fault_attr(&fail_make_request, str);
2130 __setup("fail_make_request=", setup_fail_make_request);
2132 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2134 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2137 static int __init fail_make_request_debugfs(void)
2139 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2140 NULL, &fail_make_request);
2142 return PTR_ERR_OR_ZERO(dir);
2145 late_initcall(fail_make_request_debugfs);
2147 #else /* CONFIG_FAIL_MAKE_REQUEST */
2149 static inline bool should_fail_request(struct hd_struct *part,
2150 unsigned int bytes)
2152 return false;
2155 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2157 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2159 if (part->policy && op_is_write(bio_op(bio))) {
2160 char b[BDEVNAME_SIZE];
2162 printk(KERN_ERR
2163 "generic_make_request: Trying to write "
2164 "to read-only block-device %s (partno %d)\n",
2165 bio_devname(bio, b), part->partno);
2166 return true;
2169 return false;
2172 static noinline int should_fail_bio(struct bio *bio)
2174 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2175 return -EIO;
2176 return 0;
2178 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2181 * Check whether this bio extends beyond the end of the device or partition.
2182 * This may well happen - the kernel calls bread() without checking the size of
2183 * the device, e.g., when mounting a file system.
2185 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2187 unsigned int nr_sectors = bio_sectors(bio);
2189 if (nr_sectors && maxsector &&
2190 (nr_sectors > maxsector ||
2191 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2192 handle_bad_sector(bio, maxsector);
2193 return -EIO;
2195 return 0;
2199 * Remap block n of partition p to block n+start(p) of the disk.
2201 static inline int blk_partition_remap(struct bio *bio)
2203 struct hd_struct *p;
2204 int ret = -EIO;
2206 rcu_read_lock();
2207 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2208 if (unlikely(!p))
2209 goto out;
2210 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2211 goto out;
2212 if (unlikely(bio_check_ro(bio, p)))
2213 goto out;
2216 * Zone reset does not include bi_size so bio_sectors() is always 0.
2217 * Include a test for the reset op code and perform the remap if needed.
2219 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2220 if (bio_check_eod(bio, part_nr_sects_read(p)))
2221 goto out;
2222 bio->bi_iter.bi_sector += p->start_sect;
2223 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2224 bio->bi_iter.bi_sector - p->start_sect);
2226 bio->bi_partno = 0;
2227 ret = 0;
2228 out:
2229 rcu_read_unlock();
2230 return ret;
2233 static noinline_for_stack bool
2234 generic_make_request_checks(struct bio *bio)
2236 struct request_queue *q;
2237 int nr_sectors = bio_sectors(bio);
2238 blk_status_t status = BLK_STS_IOERR;
2239 char b[BDEVNAME_SIZE];
2241 might_sleep();
2243 q = bio->bi_disk->queue;
2244 if (unlikely(!q)) {
2245 printk(KERN_ERR
2246 "generic_make_request: Trying to access "
2247 "nonexistent block-device %s (%Lu)\n",
2248 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2249 goto end_io;
2253 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2254 * if queue is not a request based queue.
2256 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2257 goto not_supported;
2259 if (should_fail_bio(bio))
2260 goto end_io;
2262 if (bio->bi_partno) {
2263 if (unlikely(blk_partition_remap(bio)))
2264 goto end_io;
2265 } else {
2266 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2267 goto end_io;
2268 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2269 goto end_io;
2273 * Filter flush bio's early so that make_request based
2274 * drivers without flush support don't have to worry
2275 * about them.
2277 if (op_is_flush(bio->bi_opf) &&
2278 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2279 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2280 if (!nr_sectors) {
2281 status = BLK_STS_OK;
2282 goto end_io;
2286 switch (bio_op(bio)) {
2287 case REQ_OP_DISCARD:
2288 if (!blk_queue_discard(q))
2289 goto not_supported;
2290 break;
2291 case REQ_OP_SECURE_ERASE:
2292 if (!blk_queue_secure_erase(q))
2293 goto not_supported;
2294 break;
2295 case REQ_OP_WRITE_SAME:
2296 if (!q->limits.max_write_same_sectors)
2297 goto not_supported;
2298 break;
2299 case REQ_OP_ZONE_REPORT:
2300 case REQ_OP_ZONE_RESET:
2301 if (!blk_queue_is_zoned(q))
2302 goto not_supported;
2303 break;
2304 case REQ_OP_WRITE_ZEROES:
2305 if (!q->limits.max_write_zeroes_sectors)
2306 goto not_supported;
2307 break;
2308 default:
2309 break;
2313 * Various block parts want %current->io_context and lazy ioc
2314 * allocation ends up trading a lot of pain for a small amount of
2315 * memory. Just allocate it upfront. This may fail and block
2316 * layer knows how to live with it.
2318 create_io_context(GFP_ATOMIC, q->node);
2320 if (!blkcg_bio_issue_check(q, bio))
2321 return false;
2323 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2324 trace_block_bio_queue(q, bio);
2325 /* Now that enqueuing has been traced, we need to trace
2326 * completion as well.
2328 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2330 return true;
2332 not_supported:
2333 status = BLK_STS_NOTSUPP;
2334 end_io:
2335 bio->bi_status = status;
2336 bio_endio(bio);
2337 return false;
2341 * generic_make_request - hand a buffer to its device driver for I/O
2342 * @bio: The bio describing the location in memory and on the device.
2344 * generic_make_request() is used to make I/O requests of block
2345 * devices. It is passed a &struct bio, which describes the I/O that needs
2346 * to be done.
2348 * generic_make_request() does not return any status. The
2349 * success/failure status of the request, along with notification of
2350 * completion, is delivered asynchronously through the bio->bi_end_io
2351 * function described (one day) else where.
2353 * The caller of generic_make_request must make sure that bi_io_vec
2354 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2355 * set to describe the device address, and the
2356 * bi_end_io and optionally bi_private are set to describe how
2357 * completion notification should be signaled.
2359 * generic_make_request and the drivers it calls may use bi_next if this
2360 * bio happens to be merged with someone else, and may resubmit the bio to
2361 * a lower device by calling into generic_make_request recursively, which
2362 * means the bio should NOT be touched after the call to ->make_request_fn.
2364 blk_qc_t generic_make_request(struct bio *bio)
2367 * bio_list_on_stack[0] contains bios submitted by the current
2368 * make_request_fn.
2369 * bio_list_on_stack[1] contains bios that were submitted before
2370 * the current make_request_fn, but that haven't been processed
2371 * yet.
2373 struct bio_list bio_list_on_stack[2];
2374 blk_mq_req_flags_t flags = 0;
2375 struct request_queue *q = bio->bi_disk->queue;
2376 blk_qc_t ret = BLK_QC_T_NONE;
2378 if (bio->bi_opf & REQ_NOWAIT)
2379 flags = BLK_MQ_REQ_NOWAIT;
2380 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2381 blk_queue_enter_live(q);
2382 else if (blk_queue_enter(q, flags) < 0) {
2383 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2384 bio_wouldblock_error(bio);
2385 else
2386 bio_io_error(bio);
2387 return ret;
2390 if (!generic_make_request_checks(bio))
2391 goto out;
2394 * We only want one ->make_request_fn to be active at a time, else
2395 * stack usage with stacked devices could be a problem. So use
2396 * current->bio_list to keep a list of requests submited by a
2397 * make_request_fn function. current->bio_list is also used as a
2398 * flag to say if generic_make_request is currently active in this
2399 * task or not. If it is NULL, then no make_request is active. If
2400 * it is non-NULL, then a make_request is active, and new requests
2401 * should be added at the tail
2403 if (current->bio_list) {
2404 bio_list_add(&current->bio_list[0], bio);
2405 goto out;
2408 /* following loop may be a bit non-obvious, and so deserves some
2409 * explanation.
2410 * Before entering the loop, bio->bi_next is NULL (as all callers
2411 * ensure that) so we have a list with a single bio.
2412 * We pretend that we have just taken it off a longer list, so
2413 * we assign bio_list to a pointer to the bio_list_on_stack,
2414 * thus initialising the bio_list of new bios to be
2415 * added. ->make_request() may indeed add some more bios
2416 * through a recursive call to generic_make_request. If it
2417 * did, we find a non-NULL value in bio_list and re-enter the loop
2418 * from the top. In this case we really did just take the bio
2419 * of the top of the list (no pretending) and so remove it from
2420 * bio_list, and call into ->make_request() again.
2422 BUG_ON(bio->bi_next);
2423 bio_list_init(&bio_list_on_stack[0]);
2424 current->bio_list = bio_list_on_stack;
2425 do {
2426 bool enter_succeeded = true;
2428 if (unlikely(q != bio->bi_disk->queue)) {
2429 if (q)
2430 blk_queue_exit(q);
2431 q = bio->bi_disk->queue;
2432 flags = 0;
2433 if (bio->bi_opf & REQ_NOWAIT)
2434 flags = BLK_MQ_REQ_NOWAIT;
2435 if (blk_queue_enter(q, flags) < 0) {
2436 enter_succeeded = false;
2437 q = NULL;
2441 if (enter_succeeded) {
2442 struct bio_list lower, same;
2444 /* Create a fresh bio_list for all subordinate requests */
2445 bio_list_on_stack[1] = bio_list_on_stack[0];
2446 bio_list_init(&bio_list_on_stack[0]);
2447 ret = q->make_request_fn(q, bio);
2449 /* sort new bios into those for a lower level
2450 * and those for the same level
2452 bio_list_init(&lower);
2453 bio_list_init(&same);
2454 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2455 if (q == bio->bi_disk->queue)
2456 bio_list_add(&same, bio);
2457 else
2458 bio_list_add(&lower, bio);
2459 /* now assemble so we handle the lowest level first */
2460 bio_list_merge(&bio_list_on_stack[0], &lower);
2461 bio_list_merge(&bio_list_on_stack[0], &same);
2462 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2463 } else {
2464 if (unlikely(!blk_queue_dying(q) &&
2465 (bio->bi_opf & REQ_NOWAIT)))
2466 bio_wouldblock_error(bio);
2467 else
2468 bio_io_error(bio);
2470 bio = bio_list_pop(&bio_list_on_stack[0]);
2471 } while (bio);
2472 current->bio_list = NULL; /* deactivate */
2474 out:
2475 if (q)
2476 blk_queue_exit(q);
2477 return ret;
2479 EXPORT_SYMBOL(generic_make_request);
2482 * direct_make_request - hand a buffer directly to its device driver for I/O
2483 * @bio: The bio describing the location in memory and on the device.
2485 * This function behaves like generic_make_request(), but does not protect
2486 * against recursion. Must only be used if the called driver is known
2487 * to not call generic_make_request (or direct_make_request) again from
2488 * its make_request function. (Calling direct_make_request again from
2489 * a workqueue is perfectly fine as that doesn't recurse).
2491 blk_qc_t direct_make_request(struct bio *bio)
2493 struct request_queue *q = bio->bi_disk->queue;
2494 bool nowait = bio->bi_opf & REQ_NOWAIT;
2495 blk_qc_t ret;
2497 if (!generic_make_request_checks(bio))
2498 return BLK_QC_T_NONE;
2500 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2501 if (nowait && !blk_queue_dying(q))
2502 bio->bi_status = BLK_STS_AGAIN;
2503 else
2504 bio->bi_status = BLK_STS_IOERR;
2505 bio_endio(bio);
2506 return BLK_QC_T_NONE;
2509 ret = q->make_request_fn(q, bio);
2510 blk_queue_exit(q);
2511 return ret;
2513 EXPORT_SYMBOL_GPL(direct_make_request);
2516 * submit_bio - submit a bio to the block device layer for I/O
2517 * @bio: The &struct bio which describes the I/O
2519 * submit_bio() is very similar in purpose to generic_make_request(), and
2520 * uses that function to do most of the work. Both are fairly rough
2521 * interfaces; @bio must be presetup and ready for I/O.
2524 blk_qc_t submit_bio(struct bio *bio)
2527 * If it's a regular read/write or a barrier with data attached,
2528 * go through the normal accounting stuff before submission.
2530 if (bio_has_data(bio)) {
2531 unsigned int count;
2533 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2534 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2535 else
2536 count = bio_sectors(bio);
2538 if (op_is_write(bio_op(bio))) {
2539 count_vm_events(PGPGOUT, count);
2540 } else {
2541 task_io_account_read(bio->bi_iter.bi_size);
2542 count_vm_events(PGPGIN, count);
2545 if (unlikely(block_dump)) {
2546 char b[BDEVNAME_SIZE];
2547 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2548 current->comm, task_pid_nr(current),
2549 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2550 (unsigned long long)bio->bi_iter.bi_sector,
2551 bio_devname(bio, b), count);
2555 return generic_make_request(bio);
2557 EXPORT_SYMBOL(submit_bio);
2559 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2561 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2562 return false;
2564 if (current->plug)
2565 blk_flush_plug_list(current->plug, false);
2566 return q->poll_fn(q, cookie);
2568 EXPORT_SYMBOL_GPL(blk_poll);
2571 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2572 * for new the queue limits
2573 * @q: the queue
2574 * @rq: the request being checked
2576 * Description:
2577 * @rq may have been made based on weaker limitations of upper-level queues
2578 * in request stacking drivers, and it may violate the limitation of @q.
2579 * Since the block layer and the underlying device driver trust @rq
2580 * after it is inserted to @q, it should be checked against @q before
2581 * the insertion using this generic function.
2583 * Request stacking drivers like request-based dm may change the queue
2584 * limits when retrying requests on other queues. Those requests need
2585 * to be checked against the new queue limits again during dispatch.
2587 static int blk_cloned_rq_check_limits(struct request_queue *q,
2588 struct request *rq)
2590 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2591 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2592 return -EIO;
2596 * queue's settings related to segment counting like q->bounce_pfn
2597 * may differ from that of other stacking queues.
2598 * Recalculate it to check the request correctly on this queue's
2599 * limitation.
2601 blk_recalc_rq_segments(rq);
2602 if (rq->nr_phys_segments > queue_max_segments(q)) {
2603 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2604 return -EIO;
2607 return 0;
2611 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2612 * @q: the queue to submit the request
2613 * @rq: the request being queued
2615 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2617 unsigned long flags;
2618 int where = ELEVATOR_INSERT_BACK;
2620 if (blk_cloned_rq_check_limits(q, rq))
2621 return BLK_STS_IOERR;
2623 if (rq->rq_disk &&
2624 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2625 return BLK_STS_IOERR;
2627 if (q->mq_ops) {
2628 if (blk_queue_io_stat(q))
2629 blk_account_io_start(rq, true);
2631 * Since we have a scheduler attached on the top device,
2632 * bypass a potential scheduler on the bottom device for
2633 * insert.
2635 return blk_mq_request_issue_directly(rq);
2638 spin_lock_irqsave(q->queue_lock, flags);
2639 if (unlikely(blk_queue_dying(q))) {
2640 spin_unlock_irqrestore(q->queue_lock, flags);
2641 return BLK_STS_IOERR;
2645 * Submitting request must be dequeued before calling this function
2646 * because it will be linked to another request_queue
2648 BUG_ON(blk_queued_rq(rq));
2650 if (op_is_flush(rq->cmd_flags))
2651 where = ELEVATOR_INSERT_FLUSH;
2653 add_acct_request(q, rq, where);
2654 if (where == ELEVATOR_INSERT_FLUSH)
2655 __blk_run_queue(q);
2656 spin_unlock_irqrestore(q->queue_lock, flags);
2658 return BLK_STS_OK;
2660 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2663 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2664 * @rq: request to examine
2666 * Description:
2667 * A request could be merge of IOs which require different failure
2668 * handling. This function determines the number of bytes which
2669 * can be failed from the beginning of the request without
2670 * crossing into area which need to be retried further.
2672 * Return:
2673 * The number of bytes to fail.
2675 unsigned int blk_rq_err_bytes(const struct request *rq)
2677 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2678 unsigned int bytes = 0;
2679 struct bio *bio;
2681 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2682 return blk_rq_bytes(rq);
2685 * Currently the only 'mixing' which can happen is between
2686 * different fastfail types. We can safely fail portions
2687 * which have all the failfast bits that the first one has -
2688 * the ones which are at least as eager to fail as the first
2689 * one.
2691 for (bio = rq->bio; bio; bio = bio->bi_next) {
2692 if ((bio->bi_opf & ff) != ff)
2693 break;
2694 bytes += bio->bi_iter.bi_size;
2697 /* this could lead to infinite loop */
2698 BUG_ON(blk_rq_bytes(rq) && !bytes);
2699 return bytes;
2701 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2703 void blk_account_io_completion(struct request *req, unsigned int bytes)
2705 if (blk_do_io_stat(req)) {
2706 const int rw = rq_data_dir(req);
2707 struct hd_struct *part;
2708 int cpu;
2710 cpu = part_stat_lock();
2711 part = req->part;
2712 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2713 part_stat_unlock();
2717 void blk_account_io_done(struct request *req, u64 now)
2720 * Account IO completion. flush_rq isn't accounted as a
2721 * normal IO on queueing nor completion. Accounting the
2722 * containing request is enough.
2724 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2725 unsigned long duration;
2726 const int rw = rq_data_dir(req);
2727 struct hd_struct *part;
2728 int cpu;
2730 duration = nsecs_to_jiffies(now - req->start_time_ns);
2731 cpu = part_stat_lock();
2732 part = req->part;
2734 part_stat_inc(cpu, part, ios[rw]);
2735 part_stat_add(cpu, part, ticks[rw], duration);
2736 part_round_stats(req->q, cpu, part);
2737 part_dec_in_flight(req->q, part, rw);
2739 hd_struct_put(part);
2740 part_stat_unlock();
2744 #ifdef CONFIG_PM
2746 * Don't process normal requests when queue is suspended
2747 * or in the process of suspending/resuming
2749 static bool blk_pm_allow_request(struct request *rq)
2751 switch (rq->q->rpm_status) {
2752 case RPM_RESUMING:
2753 case RPM_SUSPENDING:
2754 return rq->rq_flags & RQF_PM;
2755 case RPM_SUSPENDED:
2756 return false;
2759 return true;
2761 #else
2762 static bool blk_pm_allow_request(struct request *rq)
2764 return true;
2766 #endif
2768 void blk_account_io_start(struct request *rq, bool new_io)
2770 struct hd_struct *part;
2771 int rw = rq_data_dir(rq);
2772 int cpu;
2774 if (!blk_do_io_stat(rq))
2775 return;
2777 cpu = part_stat_lock();
2779 if (!new_io) {
2780 part = rq->part;
2781 part_stat_inc(cpu, part, merges[rw]);
2782 } else {
2783 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2784 if (!hd_struct_try_get(part)) {
2786 * The partition is already being removed,
2787 * the request will be accounted on the disk only
2789 * We take a reference on disk->part0 although that
2790 * partition will never be deleted, so we can treat
2791 * it as any other partition.
2793 part = &rq->rq_disk->part0;
2794 hd_struct_get(part);
2796 part_round_stats(rq->q, cpu, part);
2797 part_inc_in_flight(rq->q, part, rw);
2798 rq->part = part;
2801 part_stat_unlock();
2804 static struct request *elv_next_request(struct request_queue *q)
2806 struct request *rq;
2807 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2809 WARN_ON_ONCE(q->mq_ops);
2811 while (1) {
2812 list_for_each_entry(rq, &q->queue_head, queuelist) {
2813 if (blk_pm_allow_request(rq))
2814 return rq;
2816 if (rq->rq_flags & RQF_SOFTBARRIER)
2817 break;
2821 * Flush request is running and flush request isn't queueable
2822 * in the drive, we can hold the queue till flush request is
2823 * finished. Even we don't do this, driver can't dispatch next
2824 * requests and will requeue them. And this can improve
2825 * throughput too. For example, we have request flush1, write1,
2826 * flush 2. flush1 is dispatched, then queue is hold, write1
2827 * isn't inserted to queue. After flush1 is finished, flush2
2828 * will be dispatched. Since disk cache is already clean,
2829 * flush2 will be finished very soon, so looks like flush2 is
2830 * folded to flush1.
2831 * Since the queue is hold, a flag is set to indicate the queue
2832 * should be restarted later. Please see flush_end_io() for
2833 * details.
2835 if (fq->flush_pending_idx != fq->flush_running_idx &&
2836 !queue_flush_queueable(q)) {
2837 fq->flush_queue_delayed = 1;
2838 return NULL;
2840 if (unlikely(blk_queue_bypass(q)) ||
2841 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2842 return NULL;
2847 * blk_peek_request - peek at the top of a request queue
2848 * @q: request queue to peek at
2850 * Description:
2851 * Return the request at the top of @q. The returned request
2852 * should be started using blk_start_request() before LLD starts
2853 * processing it.
2855 * Return:
2856 * Pointer to the request at the top of @q if available. Null
2857 * otherwise.
2859 struct request *blk_peek_request(struct request_queue *q)
2861 struct request *rq;
2862 int ret;
2864 lockdep_assert_held(q->queue_lock);
2865 WARN_ON_ONCE(q->mq_ops);
2867 while ((rq = elv_next_request(q)) != NULL) {
2868 if (!(rq->rq_flags & RQF_STARTED)) {
2870 * This is the first time the device driver
2871 * sees this request (possibly after
2872 * requeueing). Notify IO scheduler.
2874 if (rq->rq_flags & RQF_SORTED)
2875 elv_activate_rq(q, rq);
2878 * just mark as started even if we don't start
2879 * it, a request that has been delayed should
2880 * not be passed by new incoming requests
2882 rq->rq_flags |= RQF_STARTED;
2883 trace_block_rq_issue(q, rq);
2886 if (!q->boundary_rq || q->boundary_rq == rq) {
2887 q->end_sector = rq_end_sector(rq);
2888 q->boundary_rq = NULL;
2891 if (rq->rq_flags & RQF_DONTPREP)
2892 break;
2894 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2896 * make sure space for the drain appears we
2897 * know we can do this because max_hw_segments
2898 * has been adjusted to be one fewer than the
2899 * device can handle
2901 rq->nr_phys_segments++;
2904 if (!q->prep_rq_fn)
2905 break;
2907 ret = q->prep_rq_fn(q, rq);
2908 if (ret == BLKPREP_OK) {
2909 break;
2910 } else if (ret == BLKPREP_DEFER) {
2912 * the request may have been (partially) prepped.
2913 * we need to keep this request in the front to
2914 * avoid resource deadlock. RQF_STARTED will
2915 * prevent other fs requests from passing this one.
2917 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2918 !(rq->rq_flags & RQF_DONTPREP)) {
2920 * remove the space for the drain we added
2921 * so that we don't add it again
2923 --rq->nr_phys_segments;
2926 rq = NULL;
2927 break;
2928 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2929 rq->rq_flags |= RQF_QUIET;
2931 * Mark this request as started so we don't trigger
2932 * any debug logic in the end I/O path.
2934 blk_start_request(rq);
2935 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2936 BLK_STS_TARGET : BLK_STS_IOERR);
2937 } else {
2938 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2939 break;
2943 return rq;
2945 EXPORT_SYMBOL(blk_peek_request);
2947 static void blk_dequeue_request(struct request *rq)
2949 struct request_queue *q = rq->q;
2951 BUG_ON(list_empty(&rq->queuelist));
2952 BUG_ON(ELV_ON_HASH(rq));
2954 list_del_init(&rq->queuelist);
2957 * the time frame between a request being removed from the lists
2958 * and to it is freed is accounted as io that is in progress at
2959 * the driver side.
2961 if (blk_account_rq(rq))
2962 q->in_flight[rq_is_sync(rq)]++;
2966 * blk_start_request - start request processing on the driver
2967 * @req: request to dequeue
2969 * Description:
2970 * Dequeue @req and start timeout timer on it. This hands off the
2971 * request to the driver.
2973 void blk_start_request(struct request *req)
2975 lockdep_assert_held(req->q->queue_lock);
2976 WARN_ON_ONCE(req->q->mq_ops);
2978 blk_dequeue_request(req);
2980 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2981 req->io_start_time_ns = ktime_get_ns();
2982 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2983 req->throtl_size = blk_rq_sectors(req);
2984 #endif
2985 req->rq_flags |= RQF_STATS;
2986 wbt_issue(req->q->rq_wb, req);
2989 BUG_ON(blk_rq_is_complete(req));
2990 blk_add_timer(req);
2992 EXPORT_SYMBOL(blk_start_request);
2995 * blk_fetch_request - fetch a request from a request queue
2996 * @q: request queue to fetch a request from
2998 * Description:
2999 * Return the request at the top of @q. The request is started on
3000 * return and LLD can start processing it immediately.
3002 * Return:
3003 * Pointer to the request at the top of @q if available. Null
3004 * otherwise.
3006 struct request *blk_fetch_request(struct request_queue *q)
3008 struct request *rq;
3010 lockdep_assert_held(q->queue_lock);
3011 WARN_ON_ONCE(q->mq_ops);
3013 rq = blk_peek_request(q);
3014 if (rq)
3015 blk_start_request(rq);
3016 return rq;
3018 EXPORT_SYMBOL(blk_fetch_request);
3021 * Steal bios from a request and add them to a bio list.
3022 * The request must not have been partially completed before.
3024 void blk_steal_bios(struct bio_list *list, struct request *rq)
3026 if (rq->bio) {
3027 if (list->tail)
3028 list->tail->bi_next = rq->bio;
3029 else
3030 list->head = rq->bio;
3031 list->tail = rq->biotail;
3033 rq->bio = NULL;
3034 rq->biotail = NULL;
3037 rq->__data_len = 0;
3039 EXPORT_SYMBOL_GPL(blk_steal_bios);
3042 * blk_update_request - Special helper function for request stacking drivers
3043 * @req: the request being processed
3044 * @error: block status code
3045 * @nr_bytes: number of bytes to complete @req
3047 * Description:
3048 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3049 * the request structure even if @req doesn't have leftover.
3050 * If @req has leftover, sets it up for the next range of segments.
3052 * This special helper function is only for request stacking drivers
3053 * (e.g. request-based dm) so that they can handle partial completion.
3054 * Actual device drivers should use blk_end_request instead.
3056 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3057 * %false return from this function.
3059 * Return:
3060 * %false - this request doesn't have any more data
3061 * %true - this request has more data
3063 bool blk_update_request(struct request *req, blk_status_t error,
3064 unsigned int nr_bytes)
3066 int total_bytes;
3068 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3070 if (!req->bio)
3071 return false;
3073 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3074 !(req->rq_flags & RQF_QUIET)))
3075 print_req_error(req, error);
3077 blk_account_io_completion(req, nr_bytes);
3079 total_bytes = 0;
3080 while (req->bio) {
3081 struct bio *bio = req->bio;
3082 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3084 if (bio_bytes == bio->bi_iter.bi_size) {
3085 req->bio = bio->bi_next;
3086 bio->bi_next = NULL;
3089 /* Completion has already been traced */
3090 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3091 req_bio_endio(req, bio, bio_bytes, error);
3093 total_bytes += bio_bytes;
3094 nr_bytes -= bio_bytes;
3096 if (!nr_bytes)
3097 break;
3101 * completely done
3103 if (!req->bio) {
3105 * Reset counters so that the request stacking driver
3106 * can find how many bytes remain in the request
3107 * later.
3109 req->__data_len = 0;
3110 return false;
3113 req->__data_len -= total_bytes;
3115 /* update sector only for requests with clear definition of sector */
3116 if (!blk_rq_is_passthrough(req))
3117 req->__sector += total_bytes >> 9;
3119 /* mixed attributes always follow the first bio */
3120 if (req->rq_flags & RQF_MIXED_MERGE) {
3121 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3122 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3125 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3127 * If total number of sectors is less than the first segment
3128 * size, something has gone terribly wrong.
3130 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3131 blk_dump_rq_flags(req, "request botched");
3132 req->__data_len = blk_rq_cur_bytes(req);
3135 /* recalculate the number of segments */
3136 blk_recalc_rq_segments(req);
3139 return true;
3141 EXPORT_SYMBOL_GPL(blk_update_request);
3143 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3144 unsigned int nr_bytes,
3145 unsigned int bidi_bytes)
3147 if (blk_update_request(rq, error, nr_bytes))
3148 return true;
3150 /* Bidi request must be completed as a whole */
3151 if (unlikely(blk_bidi_rq(rq)) &&
3152 blk_update_request(rq->next_rq, error, bidi_bytes))
3153 return true;
3155 if (blk_queue_add_random(rq->q))
3156 add_disk_randomness(rq->rq_disk);
3158 return false;
3162 * blk_unprep_request - unprepare a request
3163 * @req: the request
3165 * This function makes a request ready for complete resubmission (or
3166 * completion). It happens only after all error handling is complete,
3167 * so represents the appropriate moment to deallocate any resources
3168 * that were allocated to the request in the prep_rq_fn. The queue
3169 * lock is held when calling this.
3171 void blk_unprep_request(struct request *req)
3173 struct request_queue *q = req->q;
3175 req->rq_flags &= ~RQF_DONTPREP;
3176 if (q->unprep_rq_fn)
3177 q->unprep_rq_fn(q, req);
3179 EXPORT_SYMBOL_GPL(blk_unprep_request);
3181 void blk_finish_request(struct request *req, blk_status_t error)
3183 struct request_queue *q = req->q;
3184 u64 now = ktime_get_ns();
3186 lockdep_assert_held(req->q->queue_lock);
3187 WARN_ON_ONCE(q->mq_ops);
3189 if (req->rq_flags & RQF_STATS)
3190 blk_stat_add(req, now);
3192 if (req->rq_flags & RQF_QUEUED)
3193 blk_queue_end_tag(q, req);
3195 BUG_ON(blk_queued_rq(req));
3197 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3198 laptop_io_completion(req->q->backing_dev_info);
3200 blk_delete_timer(req);
3202 if (req->rq_flags & RQF_DONTPREP)
3203 blk_unprep_request(req);
3205 blk_account_io_done(req, now);
3207 if (req->end_io) {
3208 wbt_done(req->q->rq_wb, req);
3209 req->end_io(req, error);
3210 } else {
3211 if (blk_bidi_rq(req))
3212 __blk_put_request(req->next_rq->q, req->next_rq);
3214 __blk_put_request(q, req);
3217 EXPORT_SYMBOL(blk_finish_request);
3220 * blk_end_bidi_request - Complete a bidi request
3221 * @rq: the request to complete
3222 * @error: block status code
3223 * @nr_bytes: number of bytes to complete @rq
3224 * @bidi_bytes: number of bytes to complete @rq->next_rq
3226 * Description:
3227 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3228 * Drivers that supports bidi can safely call this member for any
3229 * type of request, bidi or uni. In the later case @bidi_bytes is
3230 * just ignored.
3232 * Return:
3233 * %false - we are done with this request
3234 * %true - still buffers pending for this request
3236 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3237 unsigned int nr_bytes, unsigned int bidi_bytes)
3239 struct request_queue *q = rq->q;
3240 unsigned long flags;
3242 WARN_ON_ONCE(q->mq_ops);
3244 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3245 return true;
3247 spin_lock_irqsave(q->queue_lock, flags);
3248 blk_finish_request(rq, error);
3249 spin_unlock_irqrestore(q->queue_lock, flags);
3251 return false;
3255 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3256 * @rq: the request to complete
3257 * @error: block status code
3258 * @nr_bytes: number of bytes to complete @rq
3259 * @bidi_bytes: number of bytes to complete @rq->next_rq
3261 * Description:
3262 * Identical to blk_end_bidi_request() except that queue lock is
3263 * assumed to be locked on entry and remains so on return.
3265 * Return:
3266 * %false - we are done with this request
3267 * %true - still buffers pending for this request
3269 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3270 unsigned int nr_bytes, unsigned int bidi_bytes)
3272 lockdep_assert_held(rq->q->queue_lock);
3273 WARN_ON_ONCE(rq->q->mq_ops);
3275 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3276 return true;
3278 blk_finish_request(rq, error);
3280 return false;
3284 * blk_end_request - Helper function for drivers to complete the request.
3285 * @rq: the request being processed
3286 * @error: block status code
3287 * @nr_bytes: number of bytes to complete
3289 * Description:
3290 * Ends I/O on a number of bytes attached to @rq.
3291 * If @rq has leftover, sets it up for the next range of segments.
3293 * Return:
3294 * %false - we are done with this request
3295 * %true - still buffers pending for this request
3297 bool blk_end_request(struct request *rq, blk_status_t error,
3298 unsigned int nr_bytes)
3300 WARN_ON_ONCE(rq->q->mq_ops);
3301 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3303 EXPORT_SYMBOL(blk_end_request);
3306 * blk_end_request_all - Helper function for drives to finish the request.
3307 * @rq: the request to finish
3308 * @error: block status code
3310 * Description:
3311 * Completely finish @rq.
3313 void blk_end_request_all(struct request *rq, blk_status_t error)
3315 bool pending;
3316 unsigned int bidi_bytes = 0;
3318 if (unlikely(blk_bidi_rq(rq)))
3319 bidi_bytes = blk_rq_bytes(rq->next_rq);
3321 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3322 BUG_ON(pending);
3324 EXPORT_SYMBOL(blk_end_request_all);
3327 * __blk_end_request - Helper function for drivers to complete the request.
3328 * @rq: the request being processed
3329 * @error: block status code
3330 * @nr_bytes: number of bytes to complete
3332 * Description:
3333 * Must be called with queue lock held unlike blk_end_request().
3335 * Return:
3336 * %false - we are done with this request
3337 * %true - still buffers pending for this request
3339 bool __blk_end_request(struct request *rq, blk_status_t error,
3340 unsigned int nr_bytes)
3342 lockdep_assert_held(rq->q->queue_lock);
3343 WARN_ON_ONCE(rq->q->mq_ops);
3345 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3347 EXPORT_SYMBOL(__blk_end_request);
3350 * __blk_end_request_all - Helper function for drives to finish the request.
3351 * @rq: the request to finish
3352 * @error: block status code
3354 * Description:
3355 * Completely finish @rq. Must be called with queue lock held.
3357 void __blk_end_request_all(struct request *rq, blk_status_t error)
3359 bool pending;
3360 unsigned int bidi_bytes = 0;
3362 lockdep_assert_held(rq->q->queue_lock);
3363 WARN_ON_ONCE(rq->q->mq_ops);
3365 if (unlikely(blk_bidi_rq(rq)))
3366 bidi_bytes = blk_rq_bytes(rq->next_rq);
3368 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3369 BUG_ON(pending);
3371 EXPORT_SYMBOL(__blk_end_request_all);
3374 * __blk_end_request_cur - Helper function to finish the current request chunk.
3375 * @rq: the request to finish the current chunk for
3376 * @error: block status code
3378 * Description:
3379 * Complete the current consecutively mapped chunk from @rq. Must
3380 * be called with queue lock held.
3382 * Return:
3383 * %false - we are done with this request
3384 * %true - still buffers pending for this request
3386 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3388 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3390 EXPORT_SYMBOL(__blk_end_request_cur);
3392 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3393 struct bio *bio)
3395 if (bio_has_data(bio))
3396 rq->nr_phys_segments = bio_phys_segments(q, bio);
3397 else if (bio_op(bio) == REQ_OP_DISCARD)
3398 rq->nr_phys_segments = 1;
3400 rq->__data_len = bio->bi_iter.bi_size;
3401 rq->bio = rq->biotail = bio;
3403 if (bio->bi_disk)
3404 rq->rq_disk = bio->bi_disk;
3407 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3409 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3410 * @rq: the request to be flushed
3412 * Description:
3413 * Flush all pages in @rq.
3415 void rq_flush_dcache_pages(struct request *rq)
3417 struct req_iterator iter;
3418 struct bio_vec bvec;
3420 rq_for_each_segment(bvec, rq, iter)
3421 flush_dcache_page(bvec.bv_page);
3423 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3424 #endif
3427 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3428 * @q : the queue of the device being checked
3430 * Description:
3431 * Check if underlying low-level drivers of a device are busy.
3432 * If the drivers want to export their busy state, they must set own
3433 * exporting function using blk_queue_lld_busy() first.
3435 * Basically, this function is used only by request stacking drivers
3436 * to stop dispatching requests to underlying devices when underlying
3437 * devices are busy. This behavior helps more I/O merging on the queue
3438 * of the request stacking driver and prevents I/O throughput regression
3439 * on burst I/O load.
3441 * Return:
3442 * 0 - Not busy (The request stacking driver should dispatch request)
3443 * 1 - Busy (The request stacking driver should stop dispatching request)
3445 int blk_lld_busy(struct request_queue *q)
3447 if (q->lld_busy_fn)
3448 return q->lld_busy_fn(q);
3450 return 0;
3452 EXPORT_SYMBOL_GPL(blk_lld_busy);
3455 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3456 * @rq: the clone request to be cleaned up
3458 * Description:
3459 * Free all bios in @rq for a cloned request.
3461 void blk_rq_unprep_clone(struct request *rq)
3463 struct bio *bio;
3465 while ((bio = rq->bio) != NULL) {
3466 rq->bio = bio->bi_next;
3468 bio_put(bio);
3471 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3474 * Copy attributes of the original request to the clone request.
3475 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3477 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3479 dst->cpu = src->cpu;
3480 dst->__sector = blk_rq_pos(src);
3481 dst->__data_len = blk_rq_bytes(src);
3482 dst->nr_phys_segments = src->nr_phys_segments;
3483 dst->ioprio = src->ioprio;
3484 dst->extra_len = src->extra_len;
3488 * blk_rq_prep_clone - Helper function to setup clone request
3489 * @rq: the request to be setup
3490 * @rq_src: original request to be cloned
3491 * @bs: bio_set that bios for clone are allocated from
3492 * @gfp_mask: memory allocation mask for bio
3493 * @bio_ctr: setup function to be called for each clone bio.
3494 * Returns %0 for success, non %0 for failure.
3495 * @data: private data to be passed to @bio_ctr
3497 * Description:
3498 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3499 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3500 * are not copied, and copying such parts is the caller's responsibility.
3501 * Also, pages which the original bios are pointing to are not copied
3502 * and the cloned bios just point same pages.
3503 * So cloned bios must be completed before original bios, which means
3504 * the caller must complete @rq before @rq_src.
3506 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3507 struct bio_set *bs, gfp_t gfp_mask,
3508 int (*bio_ctr)(struct bio *, struct bio *, void *),
3509 void *data)
3511 struct bio *bio, *bio_src;
3513 if (!bs)
3514 bs = &fs_bio_set;
3516 __rq_for_each_bio(bio_src, rq_src) {
3517 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3518 if (!bio)
3519 goto free_and_out;
3521 if (bio_ctr && bio_ctr(bio, bio_src, data))
3522 goto free_and_out;
3524 if (rq->bio) {
3525 rq->biotail->bi_next = bio;
3526 rq->biotail = bio;
3527 } else
3528 rq->bio = rq->biotail = bio;
3531 __blk_rq_prep_clone(rq, rq_src);
3533 return 0;
3535 free_and_out:
3536 if (bio)
3537 bio_put(bio);
3538 blk_rq_unprep_clone(rq);
3540 return -ENOMEM;
3542 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3544 int kblockd_schedule_work(struct work_struct *work)
3546 return queue_work(kblockd_workqueue, work);
3548 EXPORT_SYMBOL(kblockd_schedule_work);
3550 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3552 return queue_work_on(cpu, kblockd_workqueue, work);
3554 EXPORT_SYMBOL(kblockd_schedule_work_on);
3556 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3557 unsigned long delay)
3559 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3561 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3564 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3565 * @plug: The &struct blk_plug that needs to be initialized
3567 * Description:
3568 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3569 * pending I/O should the task end up blocking between blk_start_plug() and
3570 * blk_finish_plug(). This is important from a performance perspective, but
3571 * also ensures that we don't deadlock. For instance, if the task is blocking
3572 * for a memory allocation, memory reclaim could end up wanting to free a
3573 * page belonging to that request that is currently residing in our private
3574 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3575 * this kind of deadlock.
3577 void blk_start_plug(struct blk_plug *plug)
3579 struct task_struct *tsk = current;
3582 * If this is a nested plug, don't actually assign it.
3584 if (tsk->plug)
3585 return;
3587 INIT_LIST_HEAD(&plug->list);
3588 INIT_LIST_HEAD(&plug->mq_list);
3589 INIT_LIST_HEAD(&plug->cb_list);
3591 * Store ordering should not be needed here, since a potential
3592 * preempt will imply a full memory barrier
3594 tsk->plug = plug;
3596 EXPORT_SYMBOL(blk_start_plug);
3598 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3600 struct request *rqa = container_of(a, struct request, queuelist);
3601 struct request *rqb = container_of(b, struct request, queuelist);
3603 return !(rqa->q < rqb->q ||
3604 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3608 * If 'from_schedule' is true, then postpone the dispatch of requests
3609 * until a safe kblockd context. We due this to avoid accidental big
3610 * additional stack usage in driver dispatch, in places where the originally
3611 * plugger did not intend it.
3613 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3614 bool from_schedule)
3615 __releases(q->queue_lock)
3617 lockdep_assert_held(q->queue_lock);
3619 trace_block_unplug(q, depth, !from_schedule);
3621 if (from_schedule)
3622 blk_run_queue_async(q);
3623 else
3624 __blk_run_queue(q);
3625 spin_unlock_irq(q->queue_lock);
3628 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3630 LIST_HEAD(callbacks);
3632 while (!list_empty(&plug->cb_list)) {
3633 list_splice_init(&plug->cb_list, &callbacks);
3635 while (!list_empty(&callbacks)) {
3636 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3637 struct blk_plug_cb,
3638 list);
3639 list_del(&cb->list);
3640 cb->callback(cb, from_schedule);
3645 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3646 int size)
3648 struct blk_plug *plug = current->plug;
3649 struct blk_plug_cb *cb;
3651 if (!plug)
3652 return NULL;
3654 list_for_each_entry(cb, &plug->cb_list, list)
3655 if (cb->callback == unplug && cb->data == data)
3656 return cb;
3658 /* Not currently on the callback list */
3659 BUG_ON(size < sizeof(*cb));
3660 cb = kzalloc(size, GFP_ATOMIC);
3661 if (cb) {
3662 cb->data = data;
3663 cb->callback = unplug;
3664 list_add(&cb->list, &plug->cb_list);
3666 return cb;
3668 EXPORT_SYMBOL(blk_check_plugged);
3670 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3672 struct request_queue *q;
3673 struct request *rq;
3674 LIST_HEAD(list);
3675 unsigned int depth;
3677 flush_plug_callbacks(plug, from_schedule);
3679 if (!list_empty(&plug->mq_list))
3680 blk_mq_flush_plug_list(plug, from_schedule);
3682 if (list_empty(&plug->list))
3683 return;
3685 list_splice_init(&plug->list, &list);
3687 list_sort(NULL, &list, plug_rq_cmp);
3689 q = NULL;
3690 depth = 0;
3692 while (!list_empty(&list)) {
3693 rq = list_entry_rq(list.next);
3694 list_del_init(&rq->queuelist);
3695 BUG_ON(!rq->q);
3696 if (rq->q != q) {
3698 * This drops the queue lock
3700 if (q)
3701 queue_unplugged(q, depth, from_schedule);
3702 q = rq->q;
3703 depth = 0;
3704 spin_lock_irq(q->queue_lock);
3708 * Short-circuit if @q is dead
3710 if (unlikely(blk_queue_dying(q))) {
3711 __blk_end_request_all(rq, BLK_STS_IOERR);
3712 continue;
3716 * rq is already accounted, so use raw insert
3718 if (op_is_flush(rq->cmd_flags))
3719 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3720 else
3721 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3723 depth++;
3727 * This drops the queue lock
3729 if (q)
3730 queue_unplugged(q, depth, from_schedule);
3733 void blk_finish_plug(struct blk_plug *plug)
3735 if (plug != current->plug)
3736 return;
3737 blk_flush_plug_list(plug, false);
3739 current->plug = NULL;
3741 EXPORT_SYMBOL(blk_finish_plug);
3743 #ifdef CONFIG_PM
3745 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3746 * @q: the queue of the device
3747 * @dev: the device the queue belongs to
3749 * Description:
3750 * Initialize runtime-PM-related fields for @q and start auto suspend for
3751 * @dev. Drivers that want to take advantage of request-based runtime PM
3752 * should call this function after @dev has been initialized, and its
3753 * request queue @q has been allocated, and runtime PM for it can not happen
3754 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3755 * cases, driver should call this function before any I/O has taken place.
3757 * This function takes care of setting up using auto suspend for the device,
3758 * the autosuspend delay is set to -1 to make runtime suspend impossible
3759 * until an updated value is either set by user or by driver. Drivers do
3760 * not need to touch other autosuspend settings.
3762 * The block layer runtime PM is request based, so only works for drivers
3763 * that use request as their IO unit instead of those directly use bio's.
3765 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3767 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3768 if (q->mq_ops)
3769 return;
3771 q->dev = dev;
3772 q->rpm_status = RPM_ACTIVE;
3773 pm_runtime_set_autosuspend_delay(q->dev, -1);
3774 pm_runtime_use_autosuspend(q->dev);
3776 EXPORT_SYMBOL(blk_pm_runtime_init);
3779 * blk_pre_runtime_suspend - Pre runtime suspend check
3780 * @q: the queue of the device
3782 * Description:
3783 * This function will check if runtime suspend is allowed for the device
3784 * by examining if there are any requests pending in the queue. If there
3785 * are requests pending, the device can not be runtime suspended; otherwise,
3786 * the queue's status will be updated to SUSPENDING and the driver can
3787 * proceed to suspend the device.
3789 * For the not allowed case, we mark last busy for the device so that
3790 * runtime PM core will try to autosuspend it some time later.
3792 * This function should be called near the start of the device's
3793 * runtime_suspend callback.
3795 * Return:
3796 * 0 - OK to runtime suspend the device
3797 * -EBUSY - Device should not be runtime suspended
3799 int blk_pre_runtime_suspend(struct request_queue *q)
3801 int ret = 0;
3803 if (!q->dev)
3804 return ret;
3806 spin_lock_irq(q->queue_lock);
3807 if (q->nr_pending) {
3808 ret = -EBUSY;
3809 pm_runtime_mark_last_busy(q->dev);
3810 } else {
3811 q->rpm_status = RPM_SUSPENDING;
3813 spin_unlock_irq(q->queue_lock);
3814 return ret;
3816 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3819 * blk_post_runtime_suspend - Post runtime suspend processing
3820 * @q: the queue of the device
3821 * @err: return value of the device's runtime_suspend function
3823 * Description:
3824 * Update the queue's runtime status according to the return value of the
3825 * device's runtime suspend function and mark last busy for the device so
3826 * that PM core will try to auto suspend the device at a later time.
3828 * This function should be called near the end of the device's
3829 * runtime_suspend callback.
3831 void blk_post_runtime_suspend(struct request_queue *q, int err)
3833 if (!q->dev)
3834 return;
3836 spin_lock_irq(q->queue_lock);
3837 if (!err) {
3838 q->rpm_status = RPM_SUSPENDED;
3839 } else {
3840 q->rpm_status = RPM_ACTIVE;
3841 pm_runtime_mark_last_busy(q->dev);
3843 spin_unlock_irq(q->queue_lock);
3845 EXPORT_SYMBOL(blk_post_runtime_suspend);
3848 * blk_pre_runtime_resume - Pre runtime resume processing
3849 * @q: the queue of the device
3851 * Description:
3852 * Update the queue's runtime status to RESUMING in preparation for the
3853 * runtime resume of the device.
3855 * This function should be called near the start of the device's
3856 * runtime_resume callback.
3858 void blk_pre_runtime_resume(struct request_queue *q)
3860 if (!q->dev)
3861 return;
3863 spin_lock_irq(q->queue_lock);
3864 q->rpm_status = RPM_RESUMING;
3865 spin_unlock_irq(q->queue_lock);
3867 EXPORT_SYMBOL(blk_pre_runtime_resume);
3870 * blk_post_runtime_resume - Post runtime resume processing
3871 * @q: the queue of the device
3872 * @err: return value of the device's runtime_resume function
3874 * Description:
3875 * Update the queue's runtime status according to the return value of the
3876 * device's runtime_resume function. If it is successfully resumed, process
3877 * the requests that are queued into the device's queue when it is resuming
3878 * and then mark last busy and initiate autosuspend for it.
3880 * This function should be called near the end of the device's
3881 * runtime_resume callback.
3883 void blk_post_runtime_resume(struct request_queue *q, int err)
3885 if (!q->dev)
3886 return;
3888 spin_lock_irq(q->queue_lock);
3889 if (!err) {
3890 q->rpm_status = RPM_ACTIVE;
3891 __blk_run_queue(q);
3892 pm_runtime_mark_last_busy(q->dev);
3893 pm_request_autosuspend(q->dev);
3894 } else {
3895 q->rpm_status = RPM_SUSPENDED;
3897 spin_unlock_irq(q->queue_lock);
3899 EXPORT_SYMBOL(blk_post_runtime_resume);
3902 * blk_set_runtime_active - Force runtime status of the queue to be active
3903 * @q: the queue of the device
3905 * If the device is left runtime suspended during system suspend the resume
3906 * hook typically resumes the device and corrects runtime status
3907 * accordingly. However, that does not affect the queue runtime PM status
3908 * which is still "suspended". This prevents processing requests from the
3909 * queue.
3911 * This function can be used in driver's resume hook to correct queue
3912 * runtime PM status and re-enable peeking requests from the queue. It
3913 * should be called before first request is added to the queue.
3915 void blk_set_runtime_active(struct request_queue *q)
3917 spin_lock_irq(q->queue_lock);
3918 q->rpm_status = RPM_ACTIVE;
3919 pm_runtime_mark_last_busy(q->dev);
3920 pm_request_autosuspend(q->dev);
3921 spin_unlock_irq(q->queue_lock);
3923 EXPORT_SYMBOL(blk_set_runtime_active);
3924 #endif
3926 int __init blk_dev_init(void)
3928 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3929 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3930 FIELD_SIZEOF(struct request, cmd_flags));
3931 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3932 FIELD_SIZEOF(struct bio, bi_opf));
3934 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3935 kblockd_workqueue = alloc_workqueue("kblockd",
3936 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3937 if (!kblockd_workqueue)
3938 panic("Failed to create kblockd\n");
3940 request_cachep = kmem_cache_create("blkdev_requests",
3941 sizeof(struct request), 0, SLAB_PANIC, NULL);
3943 blk_requestq_cachep = kmem_cache_create("request_queue",
3944 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3946 #ifdef CONFIG_DEBUG_FS
3947 blk_debugfs_root = debugfs_create_dir("block", NULL);
3948 #endif
3950 return 0;