2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
44 #include "blk-mq-sched.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry
*blk_debugfs_root
;
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
57 DEFINE_IDA(blk_queue_ida
);
60 * For the allocated request tables
62 struct kmem_cache
*request_cachep
;
65 * For queue allocation
67 struct kmem_cache
*blk_requestq_cachep
;
70 * Controlling structure to kblockd
72 static struct workqueue_struct
*kblockd_workqueue
;
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
79 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
83 spin_lock_irqsave(q
->queue_lock
, flags
);
84 queue_flag_set(flag
, q
);
85 spin_unlock_irqrestore(q
->queue_lock
, flags
);
87 EXPORT_SYMBOL(blk_queue_flag_set
);
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
94 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
98 spin_lock_irqsave(q
->queue_lock
, flags
);
99 queue_flag_clear(flag
, q
);
100 spin_unlock_irqrestore(q
->queue_lock
, flags
);
102 EXPORT_SYMBOL(blk_queue_flag_clear
);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
117 spin_lock_irqsave(q
->queue_lock
, flags
);
118 res
= queue_flag_test_and_set(flag
, q
);
119 spin_unlock_irqrestore(q
->queue_lock
, flags
);
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
133 bool blk_queue_flag_test_and_clear(unsigned int flag
, struct request_queue
*q
)
138 spin_lock_irqsave(q
->queue_lock
, flags
);
139 res
= queue_flag_test_and_clear(flag
, q
);
140 spin_unlock_irqrestore(q
->queue_lock
, flags
);
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear
);
146 static void blk_clear_congested(struct request_list
*rl
, int sync
)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl
== &rl
->q
->root_rl
)
156 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
160 static void blk_set_congested(struct request_list
*rl
, int sync
)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
165 /* see blk_clear_congested() */
166 if (rl
== &rl
->q
->root_rl
)
167 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
171 void blk_queue_congestion_threshold(struct request_queue
*q
)
175 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
176 if (nr
> q
->nr_requests
)
178 q
->nr_congestion_on
= nr
;
180 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
183 q
->nr_congestion_off
= nr
;
186 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
188 memset(rq
, 0, sizeof(*rq
));
190 INIT_LIST_HEAD(&rq
->queuelist
);
191 INIT_LIST_HEAD(&rq
->timeout_list
);
194 rq
->__sector
= (sector_t
) -1;
195 INIT_HLIST_NODE(&rq
->hash
);
196 RB_CLEAR_NODE(&rq
->rb_node
);
198 rq
->internal_tag
= -1;
199 rq
->start_time_ns
= ktime_get_ns();
202 EXPORT_SYMBOL(blk_rq_init
);
204 static const struct {
208 [BLK_STS_OK
] = { 0, "" },
209 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
210 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
211 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
212 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
213 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
214 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
215 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
216 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
217 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
219 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
224 /* everything else not covered above: */
225 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
228 blk_status_t
errno_to_blk_status(int errno
)
232 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
233 if (blk_errors
[i
].errno
== errno
)
234 return (__force blk_status_t
)i
;
237 return BLK_STS_IOERR
;
239 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
241 int blk_status_to_errno(blk_status_t status
)
243 int idx
= (__force
int)status
;
245 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
247 return blk_errors
[idx
].errno
;
249 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
251 static void print_req_error(struct request
*req
, blk_status_t status
)
253 int idx
= (__force
int)status
;
255 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
258 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
259 __func__
, blk_errors
[idx
].name
, req
->rq_disk
?
260 req
->rq_disk
->disk_name
: "?",
261 (unsigned long long)blk_rq_pos(req
));
264 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
265 unsigned int nbytes
, blk_status_t error
)
268 bio
->bi_status
= error
;
270 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
271 bio_set_flag(bio
, BIO_QUIET
);
273 bio_advance(bio
, nbytes
);
275 /* don't actually finish bio if it's part of flush sequence */
277 * XXX this code looks suspicious - it's not consistent with advancing
280 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
284 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
286 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
287 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
288 (unsigned long long) rq
->cmd_flags
);
290 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
291 (unsigned long long)blk_rq_pos(rq
),
292 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
293 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
294 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
296 EXPORT_SYMBOL(blk_dump_rq_flags
);
298 static void blk_delay_work(struct work_struct
*work
)
300 struct request_queue
*q
;
302 q
= container_of(work
, struct request_queue
, delay_work
.work
);
303 spin_lock_irq(q
->queue_lock
);
305 spin_unlock_irq(q
->queue_lock
);
309 * blk_delay_queue - restart queueing after defined interval
310 * @q: The &struct request_queue in question
311 * @msecs: Delay in msecs
314 * Sometimes queueing needs to be postponed for a little while, to allow
315 * resources to come back. This function will make sure that queueing is
316 * restarted around the specified time.
318 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
320 lockdep_assert_held(q
->queue_lock
);
321 WARN_ON_ONCE(q
->mq_ops
);
323 if (likely(!blk_queue_dead(q
)))
324 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
325 msecs_to_jiffies(msecs
));
327 EXPORT_SYMBOL(blk_delay_queue
);
330 * blk_start_queue_async - asynchronously restart a previously stopped queue
331 * @q: The &struct request_queue in question
334 * blk_start_queue_async() will clear the stop flag on the queue, and
335 * ensure that the request_fn for the queue is run from an async
338 void blk_start_queue_async(struct request_queue
*q
)
340 lockdep_assert_held(q
->queue_lock
);
341 WARN_ON_ONCE(q
->mq_ops
);
343 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
344 blk_run_queue_async(q
);
346 EXPORT_SYMBOL(blk_start_queue_async
);
349 * blk_start_queue - restart a previously stopped queue
350 * @q: The &struct request_queue in question
353 * blk_start_queue() will clear the stop flag on the queue, and call
354 * the request_fn for the queue if it was in a stopped state when
355 * entered. Also see blk_stop_queue().
357 void blk_start_queue(struct request_queue
*q
)
359 lockdep_assert_held(q
->queue_lock
);
360 WARN_ON_ONCE(q
->mq_ops
);
362 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
365 EXPORT_SYMBOL(blk_start_queue
);
368 * blk_stop_queue - stop a queue
369 * @q: The &struct request_queue in question
372 * The Linux block layer assumes that a block driver will consume all
373 * entries on the request queue when the request_fn strategy is called.
374 * Often this will not happen, because of hardware limitations (queue
375 * depth settings). If a device driver gets a 'queue full' response,
376 * or if it simply chooses not to queue more I/O at one point, it can
377 * call this function to prevent the request_fn from being called until
378 * the driver has signalled it's ready to go again. This happens by calling
379 * blk_start_queue() to restart queue operations.
381 void blk_stop_queue(struct request_queue
*q
)
383 lockdep_assert_held(q
->queue_lock
);
384 WARN_ON_ONCE(q
->mq_ops
);
386 cancel_delayed_work(&q
->delay_work
);
387 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
389 EXPORT_SYMBOL(blk_stop_queue
);
392 * blk_sync_queue - cancel any pending callbacks on a queue
396 * The block layer may perform asynchronous callback activity
397 * on a queue, such as calling the unplug function after a timeout.
398 * A block device may call blk_sync_queue to ensure that any
399 * such activity is cancelled, thus allowing it to release resources
400 * that the callbacks might use. The caller must already have made sure
401 * that its ->make_request_fn will not re-add plugging prior to calling
404 * This function does not cancel any asynchronous activity arising
405 * out of elevator or throttling code. That would require elevator_exit()
406 * and blkcg_exit_queue() to be called with queue lock initialized.
409 void blk_sync_queue(struct request_queue
*q
)
411 del_timer_sync(&q
->timeout
);
412 cancel_work_sync(&q
->timeout_work
);
415 struct blk_mq_hw_ctx
*hctx
;
418 cancel_delayed_work_sync(&q
->requeue_work
);
419 queue_for_each_hw_ctx(q
, hctx
, i
)
420 cancel_delayed_work_sync(&hctx
->run_work
);
422 cancel_delayed_work_sync(&q
->delay_work
);
425 EXPORT_SYMBOL(blk_sync_queue
);
428 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
429 * @q: request queue pointer
431 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
432 * set and 1 if the flag was already set.
434 int blk_set_preempt_only(struct request_queue
*q
)
436 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY
, q
);
438 EXPORT_SYMBOL_GPL(blk_set_preempt_only
);
440 void blk_clear_preempt_only(struct request_queue
*q
)
442 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY
, q
);
443 wake_up_all(&q
->mq_freeze_wq
);
445 EXPORT_SYMBOL_GPL(blk_clear_preempt_only
);
448 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
449 * @q: The queue to run
452 * Invoke request handling on a queue if there are any pending requests.
453 * May be used to restart request handling after a request has completed.
454 * This variant runs the queue whether or not the queue has been
455 * stopped. Must be called with the queue lock held and interrupts
456 * disabled. See also @blk_run_queue.
458 inline void __blk_run_queue_uncond(struct request_queue
*q
)
460 lockdep_assert_held(q
->queue_lock
);
461 WARN_ON_ONCE(q
->mq_ops
);
463 if (unlikely(blk_queue_dead(q
)))
467 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
468 * the queue lock internally. As a result multiple threads may be
469 * running such a request function concurrently. Keep track of the
470 * number of active request_fn invocations such that blk_drain_queue()
471 * can wait until all these request_fn calls have finished.
473 q
->request_fn_active
++;
475 q
->request_fn_active
--;
477 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
480 * __blk_run_queue - run a single device queue
481 * @q: The queue to run
484 * See @blk_run_queue.
486 void __blk_run_queue(struct request_queue
*q
)
488 lockdep_assert_held(q
->queue_lock
);
489 WARN_ON_ONCE(q
->mq_ops
);
491 if (unlikely(blk_queue_stopped(q
)))
494 __blk_run_queue_uncond(q
);
496 EXPORT_SYMBOL(__blk_run_queue
);
499 * blk_run_queue_async - run a single device queue in workqueue context
500 * @q: The queue to run
503 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
507 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
508 * has canceled q->delay_work, callers must hold the queue lock to avoid
509 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
511 void blk_run_queue_async(struct request_queue
*q
)
513 lockdep_assert_held(q
->queue_lock
);
514 WARN_ON_ONCE(q
->mq_ops
);
516 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
517 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
519 EXPORT_SYMBOL(blk_run_queue_async
);
522 * blk_run_queue - run a single device queue
523 * @q: The queue to run
526 * Invoke request handling on this queue, if it has pending work to do.
527 * May be used to restart queueing when a request has completed.
529 void blk_run_queue(struct request_queue
*q
)
533 WARN_ON_ONCE(q
->mq_ops
);
535 spin_lock_irqsave(q
->queue_lock
, flags
);
537 spin_unlock_irqrestore(q
->queue_lock
, flags
);
539 EXPORT_SYMBOL(blk_run_queue
);
541 void blk_put_queue(struct request_queue
*q
)
543 kobject_put(&q
->kobj
);
545 EXPORT_SYMBOL(blk_put_queue
);
548 * __blk_drain_queue - drain requests from request_queue
550 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
552 * Drain requests from @q. If @drain_all is set, all requests are drained.
553 * If not, only ELVPRIV requests are drained. The caller is responsible
554 * for ensuring that no new requests which need to be drained are queued.
556 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
557 __releases(q
->queue_lock
)
558 __acquires(q
->queue_lock
)
562 lockdep_assert_held(q
->queue_lock
);
563 WARN_ON_ONCE(q
->mq_ops
);
569 * The caller might be trying to drain @q before its
570 * elevator is initialized.
573 elv_drain_elevator(q
);
575 blkcg_drain_queue(q
);
578 * This function might be called on a queue which failed
579 * driver init after queue creation or is not yet fully
580 * active yet. Some drivers (e.g. fd and loop) get unhappy
581 * in such cases. Kick queue iff dispatch queue has
582 * something on it and @q has request_fn set.
584 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
587 drain
|= q
->nr_rqs_elvpriv
;
588 drain
|= q
->request_fn_active
;
591 * Unfortunately, requests are queued at and tracked from
592 * multiple places and there's no single counter which can
593 * be drained. Check all the queues and counters.
596 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
597 drain
|= !list_empty(&q
->queue_head
);
598 for (i
= 0; i
< 2; i
++) {
599 drain
|= q
->nr_rqs
[i
];
600 drain
|= q
->in_flight
[i
];
602 drain
|= !list_empty(&fq
->flush_queue
[i
]);
609 spin_unlock_irq(q
->queue_lock
);
613 spin_lock_irq(q
->queue_lock
);
617 * With queue marked dead, any woken up waiter will fail the
618 * allocation path, so the wakeup chaining is lost and we're
619 * left with hung waiters. We need to wake up those waiters.
622 struct request_list
*rl
;
624 blk_queue_for_each_rl(rl
, q
)
625 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
626 wake_up_all(&rl
->wait
[i
]);
630 void blk_drain_queue(struct request_queue
*q
)
632 spin_lock_irq(q
->queue_lock
);
633 __blk_drain_queue(q
, true);
634 spin_unlock_irq(q
->queue_lock
);
638 * blk_queue_bypass_start - enter queue bypass mode
639 * @q: queue of interest
641 * In bypass mode, only the dispatch FIFO queue of @q is used. This
642 * function makes @q enter bypass mode and drains all requests which were
643 * throttled or issued before. On return, it's guaranteed that no request
644 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
645 * inside queue or RCU read lock.
647 void blk_queue_bypass_start(struct request_queue
*q
)
649 WARN_ON_ONCE(q
->mq_ops
);
651 spin_lock_irq(q
->queue_lock
);
653 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
654 spin_unlock_irq(q
->queue_lock
);
657 * Queues start drained. Skip actual draining till init is
658 * complete. This avoids lenghty delays during queue init which
659 * can happen many times during boot.
661 if (blk_queue_init_done(q
)) {
662 spin_lock_irq(q
->queue_lock
);
663 __blk_drain_queue(q
, false);
664 spin_unlock_irq(q
->queue_lock
);
666 /* ensure blk_queue_bypass() is %true inside RCU read lock */
670 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
673 * blk_queue_bypass_end - leave queue bypass mode
674 * @q: queue of interest
676 * Leave bypass mode and restore the normal queueing behavior.
678 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
679 * this function is called for both blk-sq and blk-mq queues.
681 void blk_queue_bypass_end(struct request_queue
*q
)
683 spin_lock_irq(q
->queue_lock
);
684 if (!--q
->bypass_depth
)
685 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
686 WARN_ON_ONCE(q
->bypass_depth
< 0);
687 spin_unlock_irq(q
->queue_lock
);
689 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
691 void blk_set_queue_dying(struct request_queue
*q
)
693 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
696 * When queue DYING flag is set, we need to block new req
697 * entering queue, so we call blk_freeze_queue_start() to
698 * prevent I/O from crossing blk_queue_enter().
700 blk_freeze_queue_start(q
);
703 blk_mq_wake_waiters(q
);
705 struct request_list
*rl
;
707 spin_lock_irq(q
->queue_lock
);
708 blk_queue_for_each_rl(rl
, q
) {
710 wake_up_all(&rl
->wait
[BLK_RW_SYNC
]);
711 wake_up_all(&rl
->wait
[BLK_RW_ASYNC
]);
714 spin_unlock_irq(q
->queue_lock
);
717 /* Make blk_queue_enter() reexamine the DYING flag. */
718 wake_up_all(&q
->mq_freeze_wq
);
720 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
723 * blk_cleanup_queue - shutdown a request queue
724 * @q: request queue to shutdown
726 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
727 * put it. All future requests will be failed immediately with -ENODEV.
729 void blk_cleanup_queue(struct request_queue
*q
)
731 spinlock_t
*lock
= q
->queue_lock
;
733 /* mark @q DYING, no new request or merges will be allowed afterwards */
734 mutex_lock(&q
->sysfs_lock
);
735 blk_set_queue_dying(q
);
739 * A dying queue is permanently in bypass mode till released. Note
740 * that, unlike blk_queue_bypass_start(), we aren't performing
741 * synchronize_rcu() after entering bypass mode to avoid the delay
742 * as some drivers create and destroy a lot of queues while
743 * probing. This is still safe because blk_release_queue() will be
744 * called only after the queue refcnt drops to zero and nothing,
745 * RCU or not, would be traversing the queue by then.
748 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
750 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
751 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
752 queue_flag_set(QUEUE_FLAG_DYING
, q
);
753 spin_unlock_irq(lock
);
754 mutex_unlock(&q
->sysfs_lock
);
757 * Drain all requests queued before DYING marking. Set DEAD flag to
758 * prevent that q->request_fn() gets invoked after draining finished.
762 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
763 spin_unlock_irq(lock
);
766 * make sure all in-progress dispatch are completed because
767 * blk_freeze_queue() can only complete all requests, and
768 * dispatch may still be in-progress since we dispatch requests
769 * from more than one contexts
772 blk_mq_quiesce_queue(q
);
774 /* for synchronous bio-based driver finish in-flight integrity i/o */
775 blk_flush_integrity();
777 /* @q won't process any more request, flush async actions */
778 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
782 * I/O scheduler exit is only safe after the sysfs scheduler attribute
785 WARN_ON_ONCE(q
->kobj
.state_in_sysfs
);
788 * Since the I/O scheduler exit code may access cgroup information,
789 * perform I/O scheduler exit before disassociating from the block
794 elevator_exit(q
, q
->elevator
);
799 * Remove all references to @q from the block cgroup controller before
800 * restoring @q->queue_lock to avoid that restoring this pointer causes
801 * e.g. blkcg_print_blkgs() to crash.
806 * Since the cgroup code may dereference the @q->backing_dev_info
807 * pointer, only decrease its reference count after having removed the
808 * association with the block cgroup controller.
810 bdi_put(q
->backing_dev_info
);
813 blk_mq_free_queue(q
);
814 percpu_ref_exit(&q
->q_usage_counter
);
817 if (q
->queue_lock
!= &q
->__queue_lock
)
818 q
->queue_lock
= &q
->__queue_lock
;
819 spin_unlock_irq(lock
);
821 /* @q is and will stay empty, shutdown and put */
824 EXPORT_SYMBOL(blk_cleanup_queue
);
826 /* Allocate memory local to the request queue */
827 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
829 struct request_queue
*q
= data
;
831 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
834 static void free_request_simple(void *element
, void *data
)
836 kmem_cache_free(request_cachep
, element
);
839 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
841 struct request_queue
*q
= data
;
844 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
846 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
853 static void free_request_size(void *element
, void *data
)
855 struct request_queue
*q
= data
;
858 q
->exit_rq_fn(q
, element
);
862 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
865 if (unlikely(rl
->rq_pool
) || q
->mq_ops
)
869 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
870 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
871 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
872 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
875 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
876 alloc_request_size
, free_request_size
,
877 q
, gfp_mask
, q
->node
);
879 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
880 alloc_request_simple
, free_request_simple
,
881 q
, gfp_mask
, q
->node
);
886 if (rl
!= &q
->root_rl
)
887 WARN_ON_ONCE(!blk_get_queue(q
));
892 void blk_exit_rl(struct request_queue
*q
, struct request_list
*rl
)
895 mempool_destroy(rl
->rq_pool
);
896 if (rl
!= &q
->root_rl
)
901 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
903 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
, NULL
);
905 EXPORT_SYMBOL(blk_alloc_queue
);
908 * blk_queue_enter() - try to increase q->q_usage_counter
909 * @q: request queue pointer
910 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
912 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
914 const bool preempt
= flags
& BLK_MQ_REQ_PREEMPT
;
917 bool success
= false;
920 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
922 * The code that sets the PREEMPT_ONLY flag is
923 * responsible for ensuring that that flag is globally
924 * visible before the queue is unfrozen.
926 if (preempt
|| !blk_queue_preempt_only(q
)) {
929 percpu_ref_put(&q
->q_usage_counter
);
937 if (flags
& BLK_MQ_REQ_NOWAIT
)
941 * read pair of barrier in blk_freeze_queue_start(),
942 * we need to order reading __PERCPU_REF_DEAD flag of
943 * .q_usage_counter and reading .mq_freeze_depth or
944 * queue dying flag, otherwise the following wait may
945 * never return if the two reads are reordered.
949 wait_event(q
->mq_freeze_wq
,
950 (atomic_read(&q
->mq_freeze_depth
) == 0 &&
951 (preempt
|| !blk_queue_preempt_only(q
))) ||
953 if (blk_queue_dying(q
))
958 void blk_queue_exit(struct request_queue
*q
)
960 percpu_ref_put(&q
->q_usage_counter
);
963 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
965 struct request_queue
*q
=
966 container_of(ref
, struct request_queue
, q_usage_counter
);
968 wake_up_all(&q
->mq_freeze_wq
);
971 static void blk_rq_timed_out_timer(struct timer_list
*t
)
973 struct request_queue
*q
= from_timer(q
, t
, timeout
);
975 kblockd_schedule_work(&q
->timeout_work
);
979 * blk_alloc_queue_node - allocate a request queue
980 * @gfp_mask: memory allocation flags
981 * @node_id: NUMA node to allocate memory from
982 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
983 * serialize calls to the legacy .request_fn() callback. Ignored for
984 * blk-mq request queues.
986 * Note: pass the queue lock as the third argument to this function instead of
987 * setting the queue lock pointer explicitly to avoid triggering a sporadic
988 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
989 * the queue lock pointer must be set before blkcg_init_queue() is called.
991 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
,
994 struct request_queue
*q
;
997 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
998 gfp_mask
| __GFP_ZERO
, node_id
);
1002 INIT_LIST_HEAD(&q
->queue_head
);
1003 q
->last_merge
= NULL
;
1005 q
->boundary_rq
= NULL
;
1007 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
1011 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
1015 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
1016 if (!q
->backing_dev_info
)
1019 q
->stats
= blk_alloc_queue_stats();
1023 q
->backing_dev_info
->ra_pages
=
1024 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
1025 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
1026 q
->backing_dev_info
->name
= "block";
1029 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
1030 laptop_mode_timer_fn
, 0);
1031 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
1032 INIT_WORK(&q
->timeout_work
, NULL
);
1033 INIT_LIST_HEAD(&q
->queue_head
);
1034 INIT_LIST_HEAD(&q
->timeout_list
);
1035 INIT_LIST_HEAD(&q
->icq_list
);
1036 #ifdef CONFIG_BLK_CGROUP
1037 INIT_LIST_HEAD(&q
->blkg_list
);
1039 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
1041 kobject_init(&q
->kobj
, &blk_queue_ktype
);
1043 #ifdef CONFIG_BLK_DEV_IO_TRACE
1044 mutex_init(&q
->blk_trace_mutex
);
1046 mutex_init(&q
->sysfs_lock
);
1047 spin_lock_init(&q
->__queue_lock
);
1050 q
->queue_lock
= lock
? : &q
->__queue_lock
;
1053 * A queue starts its life with bypass turned on to avoid
1054 * unnecessary bypass on/off overhead and nasty surprises during
1055 * init. The initial bypass will be finished when the queue is
1056 * registered by blk_register_queue().
1058 q
->bypass_depth
= 1;
1059 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS
, q
);
1061 init_waitqueue_head(&q
->mq_freeze_wq
);
1064 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1065 * See blk_register_queue() for details.
1067 if (percpu_ref_init(&q
->q_usage_counter
,
1068 blk_queue_usage_counter_release
,
1069 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1072 if (blkcg_init_queue(q
))
1078 percpu_ref_exit(&q
->q_usage_counter
);
1080 blk_free_queue_stats(q
->stats
);
1082 bdi_put(q
->backing_dev_info
);
1084 bioset_exit(&q
->bio_split
);
1086 ida_simple_remove(&blk_queue_ida
, q
->id
);
1088 kmem_cache_free(blk_requestq_cachep
, q
);
1091 EXPORT_SYMBOL(blk_alloc_queue_node
);
1094 * blk_init_queue - prepare a request queue for use with a block device
1095 * @rfn: The function to be called to process requests that have been
1096 * placed on the queue.
1097 * @lock: Request queue spin lock
1100 * If a block device wishes to use the standard request handling procedures,
1101 * which sorts requests and coalesces adjacent requests, then it must
1102 * call blk_init_queue(). The function @rfn will be called when there
1103 * are requests on the queue that need to be processed. If the device
1104 * supports plugging, then @rfn may not be called immediately when requests
1105 * are available on the queue, but may be called at some time later instead.
1106 * Plugged queues are generally unplugged when a buffer belonging to one
1107 * of the requests on the queue is needed, or due to memory pressure.
1109 * @rfn is not required, or even expected, to remove all requests off the
1110 * queue, but only as many as it can handle at a time. If it does leave
1111 * requests on the queue, it is responsible for arranging that the requests
1112 * get dealt with eventually.
1114 * The queue spin lock must be held while manipulating the requests on the
1115 * request queue; this lock will be taken also from interrupt context, so irq
1116 * disabling is needed for it.
1118 * Function returns a pointer to the initialized request queue, or %NULL if
1119 * it didn't succeed.
1122 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1123 * when the block device is deactivated (such as at module unload).
1126 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1128 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
1130 EXPORT_SYMBOL(blk_init_queue
);
1132 struct request_queue
*
1133 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1135 struct request_queue
*q
;
1137 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
, lock
);
1141 q
->request_fn
= rfn
;
1142 if (blk_init_allocated_queue(q
) < 0) {
1143 blk_cleanup_queue(q
);
1149 EXPORT_SYMBOL(blk_init_queue_node
);
1151 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
1154 int blk_init_allocated_queue(struct request_queue
*q
)
1156 WARN_ON_ONCE(q
->mq_ops
);
1158 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
);
1162 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
1163 goto out_free_flush_queue
;
1165 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
1166 goto out_exit_flush_rq
;
1168 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
1169 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
1172 * This also sets hw/phys segments, boundary and size
1174 blk_queue_make_request(q
, blk_queue_bio
);
1176 q
->sg_reserved_size
= INT_MAX
;
1178 if (elevator_init(q
))
1179 goto out_exit_flush_rq
;
1184 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
1185 out_free_flush_queue
:
1186 blk_free_flush_queue(q
->fq
);
1189 EXPORT_SYMBOL(blk_init_allocated_queue
);
1191 bool blk_get_queue(struct request_queue
*q
)
1193 if (likely(!blk_queue_dying(q
))) {
1200 EXPORT_SYMBOL(blk_get_queue
);
1202 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
1204 if (rq
->rq_flags
& RQF_ELVPRIV
) {
1205 elv_put_request(rl
->q
, rq
);
1207 put_io_context(rq
->elv
.icq
->ioc
);
1210 mempool_free(rq
, rl
->rq_pool
);
1214 * ioc_batching returns true if the ioc is a valid batching request and
1215 * should be given priority access to a request.
1217 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
1223 * Make sure the process is able to allocate at least 1 request
1224 * even if the batch times out, otherwise we could theoretically
1227 return ioc
->nr_batch_requests
== q
->nr_batching
||
1228 (ioc
->nr_batch_requests
> 0
1229 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1233 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1234 * will cause the process to be a "batcher" on all queues in the system. This
1235 * is the behaviour we want though - once it gets a wakeup it should be given
1238 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
1240 if (!ioc
|| ioc_batching(q
, ioc
))
1243 ioc
->nr_batch_requests
= q
->nr_batching
;
1244 ioc
->last_waited
= jiffies
;
1247 static void __freed_request(struct request_list
*rl
, int sync
)
1249 struct request_queue
*q
= rl
->q
;
1251 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
1252 blk_clear_congested(rl
, sync
);
1254 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
1255 if (waitqueue_active(&rl
->wait
[sync
]))
1256 wake_up(&rl
->wait
[sync
]);
1258 blk_clear_rl_full(rl
, sync
);
1263 * A request has just been released. Account for it, update the full and
1264 * congestion status, wake up any waiters. Called under q->queue_lock.
1266 static void freed_request(struct request_list
*rl
, bool sync
,
1267 req_flags_t rq_flags
)
1269 struct request_queue
*q
= rl
->q
;
1273 if (rq_flags
& RQF_ELVPRIV
)
1274 q
->nr_rqs_elvpriv
--;
1276 __freed_request(rl
, sync
);
1278 if (unlikely(rl
->starved
[sync
^ 1]))
1279 __freed_request(rl
, sync
^ 1);
1282 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
1284 struct request_list
*rl
;
1285 int on_thresh
, off_thresh
;
1287 WARN_ON_ONCE(q
->mq_ops
);
1289 spin_lock_irq(q
->queue_lock
);
1290 q
->nr_requests
= nr
;
1291 blk_queue_congestion_threshold(q
);
1292 on_thresh
= queue_congestion_on_threshold(q
);
1293 off_thresh
= queue_congestion_off_threshold(q
);
1295 blk_queue_for_each_rl(rl
, q
) {
1296 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1297 blk_set_congested(rl
, BLK_RW_SYNC
);
1298 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1299 blk_clear_congested(rl
, BLK_RW_SYNC
);
1301 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1302 blk_set_congested(rl
, BLK_RW_ASYNC
);
1303 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1304 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1306 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1307 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1309 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1310 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1313 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1314 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1316 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1317 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1321 spin_unlock_irq(q
->queue_lock
);
1326 * __get_request - get a free request
1327 * @rl: request list to allocate from
1328 * @op: operation and flags
1329 * @bio: bio to allocate request for (can be %NULL)
1330 * @flags: BLQ_MQ_REQ_* flags
1331 * @gfp_mask: allocator flags
1333 * Get a free request from @q. This function may fail under memory
1334 * pressure or if @q is dead.
1336 * Must be called with @q->queue_lock held and,
1337 * Returns ERR_PTR on failure, with @q->queue_lock held.
1338 * Returns request pointer on success, with @q->queue_lock *not held*.
1340 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1341 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp_mask
)
1343 struct request_queue
*q
= rl
->q
;
1345 struct elevator_type
*et
= q
->elevator
->type
;
1346 struct io_context
*ioc
= rq_ioc(bio
);
1347 struct io_cq
*icq
= NULL
;
1348 const bool is_sync
= op_is_sync(op
);
1350 req_flags_t rq_flags
= RQF_ALLOCED
;
1352 lockdep_assert_held(q
->queue_lock
);
1354 if (unlikely(blk_queue_dying(q
)))
1355 return ERR_PTR(-ENODEV
);
1357 may_queue
= elv_may_queue(q
, op
);
1358 if (may_queue
== ELV_MQUEUE_NO
)
1361 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1362 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1364 * The queue will fill after this allocation, so set
1365 * it as full, and mark this process as "batching".
1366 * This process will be allowed to complete a batch of
1367 * requests, others will be blocked.
1369 if (!blk_rl_full(rl
, is_sync
)) {
1370 ioc_set_batching(q
, ioc
);
1371 blk_set_rl_full(rl
, is_sync
);
1373 if (may_queue
!= ELV_MQUEUE_MUST
1374 && !ioc_batching(q
, ioc
)) {
1376 * The queue is full and the allocating
1377 * process is not a "batcher", and not
1378 * exempted by the IO scheduler
1380 return ERR_PTR(-ENOMEM
);
1384 blk_set_congested(rl
, is_sync
);
1388 * Only allow batching queuers to allocate up to 50% over the defined
1389 * limit of requests, otherwise we could have thousands of requests
1390 * allocated with any setting of ->nr_requests
1392 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1393 return ERR_PTR(-ENOMEM
);
1395 q
->nr_rqs
[is_sync
]++;
1396 rl
->count
[is_sync
]++;
1397 rl
->starved
[is_sync
] = 0;
1400 * Decide whether the new request will be managed by elevator. If
1401 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1402 * prevent the current elevator from being destroyed until the new
1403 * request is freed. This guarantees icq's won't be destroyed and
1404 * makes creating new ones safe.
1406 * Flush requests do not use the elevator so skip initialization.
1407 * This allows a request to share the flush and elevator data.
1409 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1410 * it will be created after releasing queue_lock.
1412 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1413 rq_flags
|= RQF_ELVPRIV
;
1414 q
->nr_rqs_elvpriv
++;
1415 if (et
->icq_cache
&& ioc
)
1416 icq
= ioc_lookup_icq(ioc
, q
);
1419 if (blk_queue_io_stat(q
))
1420 rq_flags
|= RQF_IO_STAT
;
1421 spin_unlock_irq(q
->queue_lock
);
1423 /* allocate and init request */
1424 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1429 blk_rq_set_rl(rq
, rl
);
1431 rq
->rq_flags
= rq_flags
;
1432 if (flags
& BLK_MQ_REQ_PREEMPT
)
1433 rq
->rq_flags
|= RQF_PREEMPT
;
1436 if (rq_flags
& RQF_ELVPRIV
) {
1437 if (unlikely(et
->icq_cache
&& !icq
)) {
1439 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1445 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1448 /* @rq->elv.icq holds io_context until @rq is freed */
1450 get_io_context(icq
->ioc
);
1454 * ioc may be NULL here, and ioc_batching will be false. That's
1455 * OK, if the queue is under the request limit then requests need
1456 * not count toward the nr_batch_requests limit. There will always
1457 * be some limit enforced by BLK_BATCH_TIME.
1459 if (ioc_batching(q
, ioc
))
1460 ioc
->nr_batch_requests
--;
1462 trace_block_getrq(q
, bio
, op
);
1467 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1468 * and may fail indefinitely under memory pressure and thus
1469 * shouldn't stall IO. Treat this request as !elvpriv. This will
1470 * disturb iosched and blkcg but weird is bettern than dead.
1472 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1473 __func__
, dev_name(q
->backing_dev_info
->dev
));
1475 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1478 spin_lock_irq(q
->queue_lock
);
1479 q
->nr_rqs_elvpriv
--;
1480 spin_unlock_irq(q
->queue_lock
);
1485 * Allocation failed presumably due to memory. Undo anything we
1486 * might have messed up.
1488 * Allocating task should really be put onto the front of the wait
1489 * queue, but this is pretty rare.
1491 spin_lock_irq(q
->queue_lock
);
1492 freed_request(rl
, is_sync
, rq_flags
);
1495 * in the very unlikely event that allocation failed and no
1496 * requests for this direction was pending, mark us starved so that
1497 * freeing of a request in the other direction will notice
1498 * us. another possible fix would be to split the rq mempool into
1502 if (unlikely(rl
->count
[is_sync
] == 0))
1503 rl
->starved
[is_sync
] = 1;
1504 return ERR_PTR(-ENOMEM
);
1508 * get_request - get a free request
1509 * @q: request_queue to allocate request from
1510 * @op: operation and flags
1511 * @bio: bio to allocate request for (can be %NULL)
1512 * @flags: BLK_MQ_REQ_* flags.
1513 * @gfp: allocator flags
1515 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1516 * this function keeps retrying under memory pressure and fails iff @q is dead.
1518 * Must be called with @q->queue_lock held and,
1519 * Returns ERR_PTR on failure, with @q->queue_lock held.
1520 * Returns request pointer on success, with @q->queue_lock *not held*.
1522 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1523 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp
)
1525 const bool is_sync
= op_is_sync(op
);
1527 struct request_list
*rl
;
1530 lockdep_assert_held(q
->queue_lock
);
1531 WARN_ON_ONCE(q
->mq_ops
);
1533 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1535 rq
= __get_request(rl
, op
, bio
, flags
, gfp
);
1539 if (op
& REQ_NOWAIT
) {
1541 return ERR_PTR(-EAGAIN
);
1544 if ((flags
& BLK_MQ_REQ_NOWAIT
) || unlikely(blk_queue_dying(q
))) {
1549 /* wait on @rl and retry */
1550 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1551 TASK_UNINTERRUPTIBLE
);
1553 trace_block_sleeprq(q
, bio
, op
);
1555 spin_unlock_irq(q
->queue_lock
);
1559 * After sleeping, we become a "batching" process and will be able
1560 * to allocate at least one request, and up to a big batch of them
1561 * for a small period time. See ioc_batching, ioc_set_batching
1563 ioc_set_batching(q
, current
->io_context
);
1565 spin_lock_irq(q
->queue_lock
);
1566 finish_wait(&rl
->wait
[is_sync
], &wait
);
1571 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1572 static struct request
*blk_old_get_request(struct request_queue
*q
,
1573 unsigned int op
, blk_mq_req_flags_t flags
)
1576 gfp_t gfp_mask
= flags
& BLK_MQ_REQ_NOWAIT
? GFP_ATOMIC
: GFP_NOIO
;
1579 WARN_ON_ONCE(q
->mq_ops
);
1581 /* create ioc upfront */
1582 create_io_context(gfp_mask
, q
->node
);
1584 ret
= blk_queue_enter(q
, flags
);
1586 return ERR_PTR(ret
);
1587 spin_lock_irq(q
->queue_lock
);
1588 rq
= get_request(q
, op
, NULL
, flags
, gfp_mask
);
1590 spin_unlock_irq(q
->queue_lock
);
1595 /* q->queue_lock is unlocked at this point */
1597 rq
->__sector
= (sector_t
) -1;
1598 rq
->bio
= rq
->biotail
= NULL
;
1603 * blk_get_request - allocate a request
1604 * @q: request queue to allocate a request for
1605 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1606 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1608 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
1609 blk_mq_req_flags_t flags
)
1611 struct request
*req
;
1613 WARN_ON_ONCE(op
& REQ_NOWAIT
);
1614 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
1617 req
= blk_mq_alloc_request(q
, op
, flags
);
1618 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
1619 q
->mq_ops
->initialize_rq_fn(req
);
1621 req
= blk_old_get_request(q
, op
, flags
);
1622 if (!IS_ERR(req
) && q
->initialize_rq_fn
)
1623 q
->initialize_rq_fn(req
);
1628 EXPORT_SYMBOL(blk_get_request
);
1631 * blk_requeue_request - put a request back on queue
1632 * @q: request queue where request should be inserted
1633 * @rq: request to be inserted
1636 * Drivers often keep queueing requests until the hardware cannot accept
1637 * more, when that condition happens we need to put the request back
1638 * on the queue. Must be called with queue lock held.
1640 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1642 lockdep_assert_held(q
->queue_lock
);
1643 WARN_ON_ONCE(q
->mq_ops
);
1645 blk_delete_timer(rq
);
1646 blk_clear_rq_complete(rq
);
1647 trace_block_rq_requeue(q
, rq
);
1648 wbt_requeue(q
->rq_wb
, rq
);
1650 if (rq
->rq_flags
& RQF_QUEUED
)
1651 blk_queue_end_tag(q
, rq
);
1653 BUG_ON(blk_queued_rq(rq
));
1655 elv_requeue_request(q
, rq
);
1657 EXPORT_SYMBOL(blk_requeue_request
);
1659 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1662 blk_account_io_start(rq
, true);
1663 __elv_add_request(q
, rq
, where
);
1666 static void part_round_stats_single(struct request_queue
*q
, int cpu
,
1667 struct hd_struct
*part
, unsigned long now
,
1668 unsigned int inflight
)
1671 __part_stat_add(cpu
, part
, time_in_queue
,
1672 inflight
* (now
- part
->stamp
));
1673 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1679 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1680 * @q: target block queue
1681 * @cpu: cpu number for stats access
1682 * @part: target partition
1684 * The average IO queue length and utilisation statistics are maintained
1685 * by observing the current state of the queue length and the amount of
1686 * time it has been in this state for.
1688 * Normally, that accounting is done on IO completion, but that can result
1689 * in more than a second's worth of IO being accounted for within any one
1690 * second, leading to >100% utilisation. To deal with that, we call this
1691 * function to do a round-off before returning the results when reading
1692 * /proc/diskstats. This accounts immediately for all queue usage up to
1693 * the current jiffies and restarts the counters again.
1695 void part_round_stats(struct request_queue
*q
, int cpu
, struct hd_struct
*part
)
1697 struct hd_struct
*part2
= NULL
;
1698 unsigned long now
= jiffies
;
1699 unsigned int inflight
[2];
1702 if (part
->stamp
!= now
)
1706 part2
= &part_to_disk(part
)->part0
;
1707 if (part2
->stamp
!= now
)
1714 part_in_flight(q
, part
, inflight
);
1717 part_round_stats_single(q
, cpu
, part2
, now
, inflight
[1]);
1719 part_round_stats_single(q
, cpu
, part
, now
, inflight
[0]);
1721 EXPORT_SYMBOL_GPL(part_round_stats
);
1724 static void blk_pm_put_request(struct request
*rq
)
1726 if (rq
->q
->dev
&& !(rq
->rq_flags
& RQF_PM
) && !--rq
->q
->nr_pending
)
1727 pm_runtime_mark_last_busy(rq
->q
->dev
);
1730 static inline void blk_pm_put_request(struct request
*rq
) {}
1733 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1735 req_flags_t rq_flags
= req
->rq_flags
;
1741 blk_mq_free_request(req
);
1745 lockdep_assert_held(q
->queue_lock
);
1747 blk_req_zone_write_unlock(req
);
1748 blk_pm_put_request(req
);
1750 elv_completed_request(q
, req
);
1752 /* this is a bio leak */
1753 WARN_ON(req
->bio
!= NULL
);
1755 wbt_done(q
->rq_wb
, req
);
1758 * Request may not have originated from ll_rw_blk. if not,
1759 * it didn't come out of our reserved rq pools
1761 if (rq_flags
& RQF_ALLOCED
) {
1762 struct request_list
*rl
= blk_rq_rl(req
);
1763 bool sync
= op_is_sync(req
->cmd_flags
);
1765 BUG_ON(!list_empty(&req
->queuelist
));
1766 BUG_ON(ELV_ON_HASH(req
));
1768 blk_free_request(rl
, req
);
1769 freed_request(rl
, sync
, rq_flags
);
1774 EXPORT_SYMBOL_GPL(__blk_put_request
);
1776 void blk_put_request(struct request
*req
)
1778 struct request_queue
*q
= req
->q
;
1781 blk_mq_free_request(req
);
1783 unsigned long flags
;
1785 spin_lock_irqsave(q
->queue_lock
, flags
);
1786 __blk_put_request(q
, req
);
1787 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1790 EXPORT_SYMBOL(blk_put_request
);
1792 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1795 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1797 if (!ll_back_merge_fn(q
, req
, bio
))
1800 trace_block_bio_backmerge(q
, req
, bio
);
1802 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1803 blk_rq_set_mixed_merge(req
);
1805 req
->biotail
->bi_next
= bio
;
1807 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1808 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1810 blk_account_io_start(req
, false);
1814 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1817 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1819 if (!ll_front_merge_fn(q
, req
, bio
))
1822 trace_block_bio_frontmerge(q
, req
, bio
);
1824 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1825 blk_rq_set_mixed_merge(req
);
1827 bio
->bi_next
= req
->bio
;
1830 req
->__sector
= bio
->bi_iter
.bi_sector
;
1831 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1832 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1834 blk_account_io_start(req
, false);
1838 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1841 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1843 if (segments
>= queue_max_discard_segments(q
))
1845 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1846 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1849 req
->biotail
->bi_next
= bio
;
1851 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1852 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1853 req
->nr_phys_segments
= segments
+ 1;
1855 blk_account_io_start(req
, false);
1858 req_set_nomerge(q
, req
);
1863 * blk_attempt_plug_merge - try to merge with %current's plugged list
1864 * @q: request_queue new bio is being queued at
1865 * @bio: new bio being queued
1866 * @request_count: out parameter for number of traversed plugged requests
1867 * @same_queue_rq: pointer to &struct request that gets filled in when
1868 * another request associated with @q is found on the plug list
1869 * (optional, may be %NULL)
1871 * Determine whether @bio being queued on @q can be merged with a request
1872 * on %current's plugged list. Returns %true if merge was successful,
1875 * Plugging coalesces IOs from the same issuer for the same purpose without
1876 * going through @q->queue_lock. As such it's more of an issuing mechanism
1877 * than scheduling, and the request, while may have elvpriv data, is not
1878 * added on the elevator at this point. In addition, we don't have
1879 * reliable access to the elevator outside queue lock. Only check basic
1880 * merging parameters without querying the elevator.
1882 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1884 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1885 unsigned int *request_count
,
1886 struct request
**same_queue_rq
)
1888 struct blk_plug
*plug
;
1890 struct list_head
*plug_list
;
1892 plug
= current
->plug
;
1898 plug_list
= &plug
->mq_list
;
1900 plug_list
= &plug
->list
;
1902 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1903 bool merged
= false;
1908 * Only blk-mq multiple hardware queues case checks the
1909 * rq in the same queue, there should be only one such
1913 *same_queue_rq
= rq
;
1916 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1919 switch (blk_try_merge(rq
, bio
)) {
1920 case ELEVATOR_BACK_MERGE
:
1921 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1923 case ELEVATOR_FRONT_MERGE
:
1924 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1926 case ELEVATOR_DISCARD_MERGE
:
1927 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1940 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1942 struct blk_plug
*plug
;
1944 struct list_head
*plug_list
;
1945 unsigned int ret
= 0;
1947 plug
= current
->plug
;
1952 plug_list
= &plug
->mq_list
;
1954 plug_list
= &plug
->list
;
1956 list_for_each_entry(rq
, plug_list
, queuelist
) {
1964 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
1966 struct io_context
*ioc
= rq_ioc(bio
);
1968 if (bio
->bi_opf
& REQ_RAHEAD
)
1969 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1971 req
->__sector
= bio
->bi_iter
.bi_sector
;
1972 if (ioprio_valid(bio_prio(bio
)))
1973 req
->ioprio
= bio_prio(bio
);
1975 req
->ioprio
= ioc
->ioprio
;
1977 req
->ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1978 req
->write_hint
= bio
->bi_write_hint
;
1979 blk_rq_bio_prep(req
->q
, req
, bio
);
1981 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
1983 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1985 struct blk_plug
*plug
;
1986 int where
= ELEVATOR_INSERT_SORT
;
1987 struct request
*req
, *free
;
1988 unsigned int request_count
= 0;
1989 unsigned int wb_acct
;
1992 * low level driver can indicate that it wants pages above a
1993 * certain limit bounced to low memory (ie for highmem, or even
1994 * ISA dma in theory)
1996 blk_queue_bounce(q
, &bio
);
1998 blk_queue_split(q
, &bio
);
2000 if (!bio_integrity_prep(bio
))
2001 return BLK_QC_T_NONE
;
2003 if (op_is_flush(bio
->bi_opf
)) {
2004 spin_lock_irq(q
->queue_lock
);
2005 where
= ELEVATOR_INSERT_FLUSH
;
2010 * Check if we can merge with the plugged list before grabbing
2013 if (!blk_queue_nomerges(q
)) {
2014 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
2015 return BLK_QC_T_NONE
;
2017 request_count
= blk_plug_queued_count(q
);
2019 spin_lock_irq(q
->queue_lock
);
2021 switch (elv_merge(q
, &req
, bio
)) {
2022 case ELEVATOR_BACK_MERGE
:
2023 if (!bio_attempt_back_merge(q
, req
, bio
))
2025 elv_bio_merged(q
, req
, bio
);
2026 free
= attempt_back_merge(q
, req
);
2028 __blk_put_request(q
, free
);
2030 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
2032 case ELEVATOR_FRONT_MERGE
:
2033 if (!bio_attempt_front_merge(q
, req
, bio
))
2035 elv_bio_merged(q
, req
, bio
);
2036 free
= attempt_front_merge(q
, req
);
2038 __blk_put_request(q
, free
);
2040 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
2047 wb_acct
= wbt_wait(q
->rq_wb
, bio
, q
->queue_lock
);
2050 * Grab a free request. This is might sleep but can not fail.
2051 * Returns with the queue unlocked.
2053 blk_queue_enter_live(q
);
2054 req
= get_request(q
, bio
->bi_opf
, bio
, 0, GFP_NOIO
);
2057 __wbt_done(q
->rq_wb
, wb_acct
);
2058 if (PTR_ERR(req
) == -ENOMEM
)
2059 bio
->bi_status
= BLK_STS_RESOURCE
;
2061 bio
->bi_status
= BLK_STS_IOERR
;
2066 wbt_track(req
, wb_acct
);
2069 * After dropping the lock and possibly sleeping here, our request
2070 * may now be mergeable after it had proven unmergeable (above).
2071 * We don't worry about that case for efficiency. It won't happen
2072 * often, and the elevators are able to handle it.
2074 blk_init_request_from_bio(req
, bio
);
2076 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
2077 req
->cpu
= raw_smp_processor_id();
2079 plug
= current
->plug
;
2082 * If this is the first request added after a plug, fire
2085 * @request_count may become stale because of schedule
2086 * out, so check plug list again.
2088 if (!request_count
|| list_empty(&plug
->list
))
2089 trace_block_plug(q
);
2091 struct request
*last
= list_entry_rq(plug
->list
.prev
);
2092 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
2093 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
2094 blk_flush_plug_list(plug
, false);
2095 trace_block_plug(q
);
2098 list_add_tail(&req
->queuelist
, &plug
->list
);
2099 blk_account_io_start(req
, true);
2101 spin_lock_irq(q
->queue_lock
);
2102 add_acct_request(q
, req
, where
);
2105 spin_unlock_irq(q
->queue_lock
);
2108 return BLK_QC_T_NONE
;
2111 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
2113 char b
[BDEVNAME_SIZE
];
2115 printk(KERN_INFO
"attempt to access beyond end of device\n");
2116 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
2117 bio_devname(bio
, b
), bio
->bi_opf
,
2118 (unsigned long long)bio_end_sector(bio
),
2119 (long long)maxsector
);
2122 #ifdef CONFIG_FAIL_MAKE_REQUEST
2124 static DECLARE_FAULT_ATTR(fail_make_request
);
2126 static int __init
setup_fail_make_request(char *str
)
2128 return setup_fault_attr(&fail_make_request
, str
);
2130 __setup("fail_make_request=", setup_fail_make_request
);
2132 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
2134 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
2137 static int __init
fail_make_request_debugfs(void)
2139 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
2140 NULL
, &fail_make_request
);
2142 return PTR_ERR_OR_ZERO(dir
);
2145 late_initcall(fail_make_request_debugfs
);
2147 #else /* CONFIG_FAIL_MAKE_REQUEST */
2149 static inline bool should_fail_request(struct hd_struct
*part
,
2155 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2157 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
2159 if (part
->policy
&& op_is_write(bio_op(bio
))) {
2160 char b
[BDEVNAME_SIZE
];
2163 "generic_make_request: Trying to write "
2164 "to read-only block-device %s (partno %d)\n",
2165 bio_devname(bio
, b
), part
->partno
);
2172 static noinline
int should_fail_bio(struct bio
*bio
)
2174 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
2178 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
2181 * Check whether this bio extends beyond the end of the device or partition.
2182 * This may well happen - the kernel calls bread() without checking the size of
2183 * the device, e.g., when mounting a file system.
2185 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
2187 unsigned int nr_sectors
= bio_sectors(bio
);
2189 if (nr_sectors
&& maxsector
&&
2190 (nr_sectors
> maxsector
||
2191 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
2192 handle_bad_sector(bio
, maxsector
);
2199 * Remap block n of partition p to block n+start(p) of the disk.
2201 static inline int blk_partition_remap(struct bio
*bio
)
2203 struct hd_struct
*p
;
2207 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
2210 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
2212 if (unlikely(bio_check_ro(bio
, p
)))
2216 * Zone reset does not include bi_size so bio_sectors() is always 0.
2217 * Include a test for the reset op code and perform the remap if needed.
2219 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
2220 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
2222 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
2223 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
2224 bio
->bi_iter
.bi_sector
- p
->start_sect
);
2233 static noinline_for_stack
bool
2234 generic_make_request_checks(struct bio
*bio
)
2236 struct request_queue
*q
;
2237 int nr_sectors
= bio_sectors(bio
);
2238 blk_status_t status
= BLK_STS_IOERR
;
2239 char b
[BDEVNAME_SIZE
];
2243 q
= bio
->bi_disk
->queue
;
2246 "generic_make_request: Trying to access "
2247 "nonexistent block-device %s (%Lu)\n",
2248 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
2253 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2254 * if queue is not a request based queue.
2256 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_rq_based(q
))
2259 if (should_fail_bio(bio
))
2262 if (bio
->bi_partno
) {
2263 if (unlikely(blk_partition_remap(bio
)))
2266 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
2268 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
2273 * Filter flush bio's early so that make_request based
2274 * drivers without flush support don't have to worry
2277 if (op_is_flush(bio
->bi_opf
) &&
2278 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
2279 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
2281 status
= BLK_STS_OK
;
2286 switch (bio_op(bio
)) {
2287 case REQ_OP_DISCARD
:
2288 if (!blk_queue_discard(q
))
2291 case REQ_OP_SECURE_ERASE
:
2292 if (!blk_queue_secure_erase(q
))
2295 case REQ_OP_WRITE_SAME
:
2296 if (!q
->limits
.max_write_same_sectors
)
2299 case REQ_OP_ZONE_REPORT
:
2300 case REQ_OP_ZONE_RESET
:
2301 if (!blk_queue_is_zoned(q
))
2304 case REQ_OP_WRITE_ZEROES
:
2305 if (!q
->limits
.max_write_zeroes_sectors
)
2313 * Various block parts want %current->io_context and lazy ioc
2314 * allocation ends up trading a lot of pain for a small amount of
2315 * memory. Just allocate it upfront. This may fail and block
2316 * layer knows how to live with it.
2318 create_io_context(GFP_ATOMIC
, q
->node
);
2320 if (!blkcg_bio_issue_check(q
, bio
))
2323 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
2324 trace_block_bio_queue(q
, bio
);
2325 /* Now that enqueuing has been traced, we need to trace
2326 * completion as well.
2328 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
2333 status
= BLK_STS_NOTSUPP
;
2335 bio
->bi_status
= status
;
2341 * generic_make_request - hand a buffer to its device driver for I/O
2342 * @bio: The bio describing the location in memory and on the device.
2344 * generic_make_request() is used to make I/O requests of block
2345 * devices. It is passed a &struct bio, which describes the I/O that needs
2348 * generic_make_request() does not return any status. The
2349 * success/failure status of the request, along with notification of
2350 * completion, is delivered asynchronously through the bio->bi_end_io
2351 * function described (one day) else where.
2353 * The caller of generic_make_request must make sure that bi_io_vec
2354 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2355 * set to describe the device address, and the
2356 * bi_end_io and optionally bi_private are set to describe how
2357 * completion notification should be signaled.
2359 * generic_make_request and the drivers it calls may use bi_next if this
2360 * bio happens to be merged with someone else, and may resubmit the bio to
2361 * a lower device by calling into generic_make_request recursively, which
2362 * means the bio should NOT be touched after the call to ->make_request_fn.
2364 blk_qc_t
generic_make_request(struct bio
*bio
)
2367 * bio_list_on_stack[0] contains bios submitted by the current
2369 * bio_list_on_stack[1] contains bios that were submitted before
2370 * the current make_request_fn, but that haven't been processed
2373 struct bio_list bio_list_on_stack
[2];
2374 blk_mq_req_flags_t flags
= 0;
2375 struct request_queue
*q
= bio
->bi_disk
->queue
;
2376 blk_qc_t ret
= BLK_QC_T_NONE
;
2378 if (bio
->bi_opf
& REQ_NOWAIT
)
2379 flags
= BLK_MQ_REQ_NOWAIT
;
2380 if (bio_flagged(bio
, BIO_QUEUE_ENTERED
))
2381 blk_queue_enter_live(q
);
2382 else if (blk_queue_enter(q
, flags
) < 0) {
2383 if (!blk_queue_dying(q
) && (bio
->bi_opf
& REQ_NOWAIT
))
2384 bio_wouldblock_error(bio
);
2390 if (!generic_make_request_checks(bio
))
2394 * We only want one ->make_request_fn to be active at a time, else
2395 * stack usage with stacked devices could be a problem. So use
2396 * current->bio_list to keep a list of requests submited by a
2397 * make_request_fn function. current->bio_list is also used as a
2398 * flag to say if generic_make_request is currently active in this
2399 * task or not. If it is NULL, then no make_request is active. If
2400 * it is non-NULL, then a make_request is active, and new requests
2401 * should be added at the tail
2403 if (current
->bio_list
) {
2404 bio_list_add(¤t
->bio_list
[0], bio
);
2408 /* following loop may be a bit non-obvious, and so deserves some
2410 * Before entering the loop, bio->bi_next is NULL (as all callers
2411 * ensure that) so we have a list with a single bio.
2412 * We pretend that we have just taken it off a longer list, so
2413 * we assign bio_list to a pointer to the bio_list_on_stack,
2414 * thus initialising the bio_list of new bios to be
2415 * added. ->make_request() may indeed add some more bios
2416 * through a recursive call to generic_make_request. If it
2417 * did, we find a non-NULL value in bio_list and re-enter the loop
2418 * from the top. In this case we really did just take the bio
2419 * of the top of the list (no pretending) and so remove it from
2420 * bio_list, and call into ->make_request() again.
2422 BUG_ON(bio
->bi_next
);
2423 bio_list_init(&bio_list_on_stack
[0]);
2424 current
->bio_list
= bio_list_on_stack
;
2426 bool enter_succeeded
= true;
2428 if (unlikely(q
!= bio
->bi_disk
->queue
)) {
2431 q
= bio
->bi_disk
->queue
;
2433 if (bio
->bi_opf
& REQ_NOWAIT
)
2434 flags
= BLK_MQ_REQ_NOWAIT
;
2435 if (blk_queue_enter(q
, flags
) < 0) {
2436 enter_succeeded
= false;
2441 if (enter_succeeded
) {
2442 struct bio_list lower
, same
;
2444 /* Create a fresh bio_list for all subordinate requests */
2445 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2446 bio_list_init(&bio_list_on_stack
[0]);
2447 ret
= q
->make_request_fn(q
, bio
);
2449 /* sort new bios into those for a lower level
2450 * and those for the same level
2452 bio_list_init(&lower
);
2453 bio_list_init(&same
);
2454 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2455 if (q
== bio
->bi_disk
->queue
)
2456 bio_list_add(&same
, bio
);
2458 bio_list_add(&lower
, bio
);
2459 /* now assemble so we handle the lowest level first */
2460 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2461 bio_list_merge(&bio_list_on_stack
[0], &same
);
2462 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2464 if (unlikely(!blk_queue_dying(q
) &&
2465 (bio
->bi_opf
& REQ_NOWAIT
)))
2466 bio_wouldblock_error(bio
);
2470 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2472 current
->bio_list
= NULL
; /* deactivate */
2479 EXPORT_SYMBOL(generic_make_request
);
2482 * direct_make_request - hand a buffer directly to its device driver for I/O
2483 * @bio: The bio describing the location in memory and on the device.
2485 * This function behaves like generic_make_request(), but does not protect
2486 * against recursion. Must only be used if the called driver is known
2487 * to not call generic_make_request (or direct_make_request) again from
2488 * its make_request function. (Calling direct_make_request again from
2489 * a workqueue is perfectly fine as that doesn't recurse).
2491 blk_qc_t
direct_make_request(struct bio
*bio
)
2493 struct request_queue
*q
= bio
->bi_disk
->queue
;
2494 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
2497 if (!generic_make_request_checks(bio
))
2498 return BLK_QC_T_NONE
;
2500 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
2501 if (nowait
&& !blk_queue_dying(q
))
2502 bio
->bi_status
= BLK_STS_AGAIN
;
2504 bio
->bi_status
= BLK_STS_IOERR
;
2506 return BLK_QC_T_NONE
;
2509 ret
= q
->make_request_fn(q
, bio
);
2513 EXPORT_SYMBOL_GPL(direct_make_request
);
2516 * submit_bio - submit a bio to the block device layer for I/O
2517 * @bio: The &struct bio which describes the I/O
2519 * submit_bio() is very similar in purpose to generic_make_request(), and
2520 * uses that function to do most of the work. Both are fairly rough
2521 * interfaces; @bio must be presetup and ready for I/O.
2524 blk_qc_t
submit_bio(struct bio
*bio
)
2527 * If it's a regular read/write or a barrier with data attached,
2528 * go through the normal accounting stuff before submission.
2530 if (bio_has_data(bio
)) {
2533 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2534 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
2536 count
= bio_sectors(bio
);
2538 if (op_is_write(bio_op(bio
))) {
2539 count_vm_events(PGPGOUT
, count
);
2541 task_io_account_read(bio
->bi_iter
.bi_size
);
2542 count_vm_events(PGPGIN
, count
);
2545 if (unlikely(block_dump
)) {
2546 char b
[BDEVNAME_SIZE
];
2547 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2548 current
->comm
, task_pid_nr(current
),
2549 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2550 (unsigned long long)bio
->bi_iter
.bi_sector
,
2551 bio_devname(bio
, b
), count
);
2555 return generic_make_request(bio
);
2557 EXPORT_SYMBOL(submit_bio
);
2559 bool blk_poll(struct request_queue
*q
, blk_qc_t cookie
)
2561 if (!q
->poll_fn
|| !blk_qc_t_valid(cookie
))
2565 blk_flush_plug_list(current
->plug
, false);
2566 return q
->poll_fn(q
, cookie
);
2568 EXPORT_SYMBOL_GPL(blk_poll
);
2571 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2572 * for new the queue limits
2574 * @rq: the request being checked
2577 * @rq may have been made based on weaker limitations of upper-level queues
2578 * in request stacking drivers, and it may violate the limitation of @q.
2579 * Since the block layer and the underlying device driver trust @rq
2580 * after it is inserted to @q, it should be checked against @q before
2581 * the insertion using this generic function.
2583 * Request stacking drivers like request-based dm may change the queue
2584 * limits when retrying requests on other queues. Those requests need
2585 * to be checked against the new queue limits again during dispatch.
2587 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2590 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2591 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2596 * queue's settings related to segment counting like q->bounce_pfn
2597 * may differ from that of other stacking queues.
2598 * Recalculate it to check the request correctly on this queue's
2601 blk_recalc_rq_segments(rq
);
2602 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2603 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2611 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2612 * @q: the queue to submit the request
2613 * @rq: the request being queued
2615 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2617 unsigned long flags
;
2618 int where
= ELEVATOR_INSERT_BACK
;
2620 if (blk_cloned_rq_check_limits(q
, rq
))
2621 return BLK_STS_IOERR
;
2624 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2625 return BLK_STS_IOERR
;
2628 if (blk_queue_io_stat(q
))
2629 blk_account_io_start(rq
, true);
2631 * Since we have a scheduler attached on the top device,
2632 * bypass a potential scheduler on the bottom device for
2635 return blk_mq_request_issue_directly(rq
);
2638 spin_lock_irqsave(q
->queue_lock
, flags
);
2639 if (unlikely(blk_queue_dying(q
))) {
2640 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2641 return BLK_STS_IOERR
;
2645 * Submitting request must be dequeued before calling this function
2646 * because it will be linked to another request_queue
2648 BUG_ON(blk_queued_rq(rq
));
2650 if (op_is_flush(rq
->cmd_flags
))
2651 where
= ELEVATOR_INSERT_FLUSH
;
2653 add_acct_request(q
, rq
, where
);
2654 if (where
== ELEVATOR_INSERT_FLUSH
)
2656 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2660 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2663 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2664 * @rq: request to examine
2667 * A request could be merge of IOs which require different failure
2668 * handling. This function determines the number of bytes which
2669 * can be failed from the beginning of the request without
2670 * crossing into area which need to be retried further.
2673 * The number of bytes to fail.
2675 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2677 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2678 unsigned int bytes
= 0;
2681 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2682 return blk_rq_bytes(rq
);
2685 * Currently the only 'mixing' which can happen is between
2686 * different fastfail types. We can safely fail portions
2687 * which have all the failfast bits that the first one has -
2688 * the ones which are at least as eager to fail as the first
2691 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2692 if ((bio
->bi_opf
& ff
) != ff
)
2694 bytes
+= bio
->bi_iter
.bi_size
;
2697 /* this could lead to infinite loop */
2698 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2701 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2703 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2705 if (blk_do_io_stat(req
)) {
2706 const int rw
= rq_data_dir(req
);
2707 struct hd_struct
*part
;
2710 cpu
= part_stat_lock();
2712 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2717 void blk_account_io_done(struct request
*req
, u64 now
)
2720 * Account IO completion. flush_rq isn't accounted as a
2721 * normal IO on queueing nor completion. Accounting the
2722 * containing request is enough.
2724 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2725 unsigned long duration
;
2726 const int rw
= rq_data_dir(req
);
2727 struct hd_struct
*part
;
2730 duration
= nsecs_to_jiffies(now
- req
->start_time_ns
);
2731 cpu
= part_stat_lock();
2734 part_stat_inc(cpu
, part
, ios
[rw
]);
2735 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2736 part_round_stats(req
->q
, cpu
, part
);
2737 part_dec_in_flight(req
->q
, part
, rw
);
2739 hd_struct_put(part
);
2746 * Don't process normal requests when queue is suspended
2747 * or in the process of suspending/resuming
2749 static bool blk_pm_allow_request(struct request
*rq
)
2751 switch (rq
->q
->rpm_status
) {
2753 case RPM_SUSPENDING
:
2754 return rq
->rq_flags
& RQF_PM
;
2762 static bool blk_pm_allow_request(struct request
*rq
)
2768 void blk_account_io_start(struct request
*rq
, bool new_io
)
2770 struct hd_struct
*part
;
2771 int rw
= rq_data_dir(rq
);
2774 if (!blk_do_io_stat(rq
))
2777 cpu
= part_stat_lock();
2781 part_stat_inc(cpu
, part
, merges
[rw
]);
2783 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2784 if (!hd_struct_try_get(part
)) {
2786 * The partition is already being removed,
2787 * the request will be accounted on the disk only
2789 * We take a reference on disk->part0 although that
2790 * partition will never be deleted, so we can treat
2791 * it as any other partition.
2793 part
= &rq
->rq_disk
->part0
;
2794 hd_struct_get(part
);
2796 part_round_stats(rq
->q
, cpu
, part
);
2797 part_inc_in_flight(rq
->q
, part
, rw
);
2804 static struct request
*elv_next_request(struct request_queue
*q
)
2807 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
2809 WARN_ON_ONCE(q
->mq_ops
);
2812 list_for_each_entry(rq
, &q
->queue_head
, queuelist
) {
2813 if (blk_pm_allow_request(rq
))
2816 if (rq
->rq_flags
& RQF_SOFTBARRIER
)
2821 * Flush request is running and flush request isn't queueable
2822 * in the drive, we can hold the queue till flush request is
2823 * finished. Even we don't do this, driver can't dispatch next
2824 * requests and will requeue them. And this can improve
2825 * throughput too. For example, we have request flush1, write1,
2826 * flush 2. flush1 is dispatched, then queue is hold, write1
2827 * isn't inserted to queue. After flush1 is finished, flush2
2828 * will be dispatched. Since disk cache is already clean,
2829 * flush2 will be finished very soon, so looks like flush2 is
2831 * Since the queue is hold, a flag is set to indicate the queue
2832 * should be restarted later. Please see flush_end_io() for
2835 if (fq
->flush_pending_idx
!= fq
->flush_running_idx
&&
2836 !queue_flush_queueable(q
)) {
2837 fq
->flush_queue_delayed
= 1;
2840 if (unlikely(blk_queue_bypass(q
)) ||
2841 !q
->elevator
->type
->ops
.sq
.elevator_dispatch_fn(q
, 0))
2847 * blk_peek_request - peek at the top of a request queue
2848 * @q: request queue to peek at
2851 * Return the request at the top of @q. The returned request
2852 * should be started using blk_start_request() before LLD starts
2856 * Pointer to the request at the top of @q if available. Null
2859 struct request
*blk_peek_request(struct request_queue
*q
)
2864 lockdep_assert_held(q
->queue_lock
);
2865 WARN_ON_ONCE(q
->mq_ops
);
2867 while ((rq
= elv_next_request(q
)) != NULL
) {
2868 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2870 * This is the first time the device driver
2871 * sees this request (possibly after
2872 * requeueing). Notify IO scheduler.
2874 if (rq
->rq_flags
& RQF_SORTED
)
2875 elv_activate_rq(q
, rq
);
2878 * just mark as started even if we don't start
2879 * it, a request that has been delayed should
2880 * not be passed by new incoming requests
2882 rq
->rq_flags
|= RQF_STARTED
;
2883 trace_block_rq_issue(q
, rq
);
2886 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2887 q
->end_sector
= rq_end_sector(rq
);
2888 q
->boundary_rq
= NULL
;
2891 if (rq
->rq_flags
& RQF_DONTPREP
)
2894 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2896 * make sure space for the drain appears we
2897 * know we can do this because max_hw_segments
2898 * has been adjusted to be one fewer than the
2901 rq
->nr_phys_segments
++;
2907 ret
= q
->prep_rq_fn(q
, rq
);
2908 if (ret
== BLKPREP_OK
) {
2910 } else if (ret
== BLKPREP_DEFER
) {
2912 * the request may have been (partially) prepped.
2913 * we need to keep this request in the front to
2914 * avoid resource deadlock. RQF_STARTED will
2915 * prevent other fs requests from passing this one.
2917 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2918 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2920 * remove the space for the drain we added
2921 * so that we don't add it again
2923 --rq
->nr_phys_segments
;
2928 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2929 rq
->rq_flags
|= RQF_QUIET
;
2931 * Mark this request as started so we don't trigger
2932 * any debug logic in the end I/O path.
2934 blk_start_request(rq
);
2935 __blk_end_request_all(rq
, ret
== BLKPREP_INVALID
?
2936 BLK_STS_TARGET
: BLK_STS_IOERR
);
2938 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2945 EXPORT_SYMBOL(blk_peek_request
);
2947 static void blk_dequeue_request(struct request
*rq
)
2949 struct request_queue
*q
= rq
->q
;
2951 BUG_ON(list_empty(&rq
->queuelist
));
2952 BUG_ON(ELV_ON_HASH(rq
));
2954 list_del_init(&rq
->queuelist
);
2957 * the time frame between a request being removed from the lists
2958 * and to it is freed is accounted as io that is in progress at
2961 if (blk_account_rq(rq
))
2962 q
->in_flight
[rq_is_sync(rq
)]++;
2966 * blk_start_request - start request processing on the driver
2967 * @req: request to dequeue
2970 * Dequeue @req and start timeout timer on it. This hands off the
2971 * request to the driver.
2973 void blk_start_request(struct request
*req
)
2975 lockdep_assert_held(req
->q
->queue_lock
);
2976 WARN_ON_ONCE(req
->q
->mq_ops
);
2978 blk_dequeue_request(req
);
2980 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2981 req
->io_start_time_ns
= ktime_get_ns();
2982 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2983 req
->throtl_size
= blk_rq_sectors(req
);
2985 req
->rq_flags
|= RQF_STATS
;
2986 wbt_issue(req
->q
->rq_wb
, req
);
2989 BUG_ON(blk_rq_is_complete(req
));
2992 EXPORT_SYMBOL(blk_start_request
);
2995 * blk_fetch_request - fetch a request from a request queue
2996 * @q: request queue to fetch a request from
2999 * Return the request at the top of @q. The request is started on
3000 * return and LLD can start processing it immediately.
3003 * Pointer to the request at the top of @q if available. Null
3006 struct request
*blk_fetch_request(struct request_queue
*q
)
3010 lockdep_assert_held(q
->queue_lock
);
3011 WARN_ON_ONCE(q
->mq_ops
);
3013 rq
= blk_peek_request(q
);
3015 blk_start_request(rq
);
3018 EXPORT_SYMBOL(blk_fetch_request
);
3021 * Steal bios from a request and add them to a bio list.
3022 * The request must not have been partially completed before.
3024 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3028 list
->tail
->bi_next
= rq
->bio
;
3030 list
->head
= rq
->bio
;
3031 list
->tail
= rq
->biotail
;
3039 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3042 * blk_update_request - Special helper function for request stacking drivers
3043 * @req: the request being processed
3044 * @error: block status code
3045 * @nr_bytes: number of bytes to complete @req
3048 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3049 * the request structure even if @req doesn't have leftover.
3050 * If @req has leftover, sets it up for the next range of segments.
3052 * This special helper function is only for request stacking drivers
3053 * (e.g. request-based dm) so that they can handle partial completion.
3054 * Actual device drivers should use blk_end_request instead.
3056 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3057 * %false return from this function.
3060 * %false - this request doesn't have any more data
3061 * %true - this request has more data
3063 bool blk_update_request(struct request
*req
, blk_status_t error
,
3064 unsigned int nr_bytes
)
3068 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
3073 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
3074 !(req
->rq_flags
& RQF_QUIET
)))
3075 print_req_error(req
, error
);
3077 blk_account_io_completion(req
, nr_bytes
);
3081 struct bio
*bio
= req
->bio
;
3082 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
3084 if (bio_bytes
== bio
->bi_iter
.bi_size
) {
3085 req
->bio
= bio
->bi_next
;
3086 bio
->bi_next
= NULL
;
3089 /* Completion has already been traced */
3090 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
3091 req_bio_endio(req
, bio
, bio_bytes
, error
);
3093 total_bytes
+= bio_bytes
;
3094 nr_bytes
-= bio_bytes
;
3105 * Reset counters so that the request stacking driver
3106 * can find how many bytes remain in the request
3109 req
->__data_len
= 0;
3113 req
->__data_len
-= total_bytes
;
3115 /* update sector only for requests with clear definition of sector */
3116 if (!blk_rq_is_passthrough(req
))
3117 req
->__sector
+= total_bytes
>> 9;
3119 /* mixed attributes always follow the first bio */
3120 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
3121 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
3122 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
3125 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
3127 * If total number of sectors is less than the first segment
3128 * size, something has gone terribly wrong.
3130 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
3131 blk_dump_rq_flags(req
, "request botched");
3132 req
->__data_len
= blk_rq_cur_bytes(req
);
3135 /* recalculate the number of segments */
3136 blk_recalc_rq_segments(req
);
3141 EXPORT_SYMBOL_GPL(blk_update_request
);
3143 static bool blk_update_bidi_request(struct request
*rq
, blk_status_t error
,
3144 unsigned int nr_bytes
,
3145 unsigned int bidi_bytes
)
3147 if (blk_update_request(rq
, error
, nr_bytes
))
3150 /* Bidi request must be completed as a whole */
3151 if (unlikely(blk_bidi_rq(rq
)) &&
3152 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
3155 if (blk_queue_add_random(rq
->q
))
3156 add_disk_randomness(rq
->rq_disk
);
3162 * blk_unprep_request - unprepare a request
3165 * This function makes a request ready for complete resubmission (or
3166 * completion). It happens only after all error handling is complete,
3167 * so represents the appropriate moment to deallocate any resources
3168 * that were allocated to the request in the prep_rq_fn. The queue
3169 * lock is held when calling this.
3171 void blk_unprep_request(struct request
*req
)
3173 struct request_queue
*q
= req
->q
;
3175 req
->rq_flags
&= ~RQF_DONTPREP
;
3176 if (q
->unprep_rq_fn
)
3177 q
->unprep_rq_fn(q
, req
);
3179 EXPORT_SYMBOL_GPL(blk_unprep_request
);
3181 void blk_finish_request(struct request
*req
, blk_status_t error
)
3183 struct request_queue
*q
= req
->q
;
3184 u64 now
= ktime_get_ns();
3186 lockdep_assert_held(req
->q
->queue_lock
);
3187 WARN_ON_ONCE(q
->mq_ops
);
3189 if (req
->rq_flags
& RQF_STATS
)
3190 blk_stat_add(req
, now
);
3192 if (req
->rq_flags
& RQF_QUEUED
)
3193 blk_queue_end_tag(q
, req
);
3195 BUG_ON(blk_queued_rq(req
));
3197 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
3198 laptop_io_completion(req
->q
->backing_dev_info
);
3200 blk_delete_timer(req
);
3202 if (req
->rq_flags
& RQF_DONTPREP
)
3203 blk_unprep_request(req
);
3205 blk_account_io_done(req
, now
);
3208 wbt_done(req
->q
->rq_wb
, req
);
3209 req
->end_io(req
, error
);
3211 if (blk_bidi_rq(req
))
3212 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
3214 __blk_put_request(q
, req
);
3217 EXPORT_SYMBOL(blk_finish_request
);
3220 * blk_end_bidi_request - Complete a bidi request
3221 * @rq: the request to complete
3222 * @error: block status code
3223 * @nr_bytes: number of bytes to complete @rq
3224 * @bidi_bytes: number of bytes to complete @rq->next_rq
3227 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3228 * Drivers that supports bidi can safely call this member for any
3229 * type of request, bidi or uni. In the later case @bidi_bytes is
3233 * %false - we are done with this request
3234 * %true - still buffers pending for this request
3236 static bool blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3237 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3239 struct request_queue
*q
= rq
->q
;
3240 unsigned long flags
;
3242 WARN_ON_ONCE(q
->mq_ops
);
3244 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3247 spin_lock_irqsave(q
->queue_lock
, flags
);
3248 blk_finish_request(rq
, error
);
3249 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3255 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3256 * @rq: the request to complete
3257 * @error: block status code
3258 * @nr_bytes: number of bytes to complete @rq
3259 * @bidi_bytes: number of bytes to complete @rq->next_rq
3262 * Identical to blk_end_bidi_request() except that queue lock is
3263 * assumed to be locked on entry and remains so on return.
3266 * %false - we are done with this request
3267 * %true - still buffers pending for this request
3269 static bool __blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3270 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3272 lockdep_assert_held(rq
->q
->queue_lock
);
3273 WARN_ON_ONCE(rq
->q
->mq_ops
);
3275 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3278 blk_finish_request(rq
, error
);
3284 * blk_end_request - Helper function for drivers to complete the request.
3285 * @rq: the request being processed
3286 * @error: block status code
3287 * @nr_bytes: number of bytes to complete
3290 * Ends I/O on a number of bytes attached to @rq.
3291 * If @rq has leftover, sets it up for the next range of segments.
3294 * %false - we are done with this request
3295 * %true - still buffers pending for this request
3297 bool blk_end_request(struct request
*rq
, blk_status_t error
,
3298 unsigned int nr_bytes
)
3300 WARN_ON_ONCE(rq
->q
->mq_ops
);
3301 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3303 EXPORT_SYMBOL(blk_end_request
);
3306 * blk_end_request_all - Helper function for drives to finish the request.
3307 * @rq: the request to finish
3308 * @error: block status code
3311 * Completely finish @rq.
3313 void blk_end_request_all(struct request
*rq
, blk_status_t error
)
3316 unsigned int bidi_bytes
= 0;
3318 if (unlikely(blk_bidi_rq(rq
)))
3319 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3321 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3324 EXPORT_SYMBOL(blk_end_request_all
);
3327 * __blk_end_request - Helper function for drivers to complete the request.
3328 * @rq: the request being processed
3329 * @error: block status code
3330 * @nr_bytes: number of bytes to complete
3333 * Must be called with queue lock held unlike blk_end_request().
3336 * %false - we are done with this request
3337 * %true - still buffers pending for this request
3339 bool __blk_end_request(struct request
*rq
, blk_status_t error
,
3340 unsigned int nr_bytes
)
3342 lockdep_assert_held(rq
->q
->queue_lock
);
3343 WARN_ON_ONCE(rq
->q
->mq_ops
);
3345 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3347 EXPORT_SYMBOL(__blk_end_request
);
3350 * __blk_end_request_all - Helper function for drives to finish the request.
3351 * @rq: the request to finish
3352 * @error: block status code
3355 * Completely finish @rq. Must be called with queue lock held.
3357 void __blk_end_request_all(struct request
*rq
, blk_status_t error
)
3360 unsigned int bidi_bytes
= 0;
3362 lockdep_assert_held(rq
->q
->queue_lock
);
3363 WARN_ON_ONCE(rq
->q
->mq_ops
);
3365 if (unlikely(blk_bidi_rq(rq
)))
3366 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3368 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3371 EXPORT_SYMBOL(__blk_end_request_all
);
3374 * __blk_end_request_cur - Helper function to finish the current request chunk.
3375 * @rq: the request to finish the current chunk for
3376 * @error: block status code
3379 * Complete the current consecutively mapped chunk from @rq. Must
3380 * be called with queue lock held.
3383 * %false - we are done with this request
3384 * %true - still buffers pending for this request
3386 bool __blk_end_request_cur(struct request
*rq
, blk_status_t error
)
3388 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
3390 EXPORT_SYMBOL(__blk_end_request_cur
);
3392 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3395 if (bio_has_data(bio
))
3396 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3397 else if (bio_op(bio
) == REQ_OP_DISCARD
)
3398 rq
->nr_phys_segments
= 1;
3400 rq
->__data_len
= bio
->bi_iter
.bi_size
;
3401 rq
->bio
= rq
->biotail
= bio
;
3404 rq
->rq_disk
= bio
->bi_disk
;
3407 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3409 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3410 * @rq: the request to be flushed
3413 * Flush all pages in @rq.
3415 void rq_flush_dcache_pages(struct request
*rq
)
3417 struct req_iterator iter
;
3418 struct bio_vec bvec
;
3420 rq_for_each_segment(bvec
, rq
, iter
)
3421 flush_dcache_page(bvec
.bv_page
);
3423 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
3427 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3428 * @q : the queue of the device being checked
3431 * Check if underlying low-level drivers of a device are busy.
3432 * If the drivers want to export their busy state, they must set own
3433 * exporting function using blk_queue_lld_busy() first.
3435 * Basically, this function is used only by request stacking drivers
3436 * to stop dispatching requests to underlying devices when underlying
3437 * devices are busy. This behavior helps more I/O merging on the queue
3438 * of the request stacking driver and prevents I/O throughput regression
3439 * on burst I/O load.
3442 * 0 - Not busy (The request stacking driver should dispatch request)
3443 * 1 - Busy (The request stacking driver should stop dispatching request)
3445 int blk_lld_busy(struct request_queue
*q
)
3448 return q
->lld_busy_fn(q
);
3452 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3455 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3456 * @rq: the clone request to be cleaned up
3459 * Free all bios in @rq for a cloned request.
3461 void blk_rq_unprep_clone(struct request
*rq
)
3465 while ((bio
= rq
->bio
) != NULL
) {
3466 rq
->bio
= bio
->bi_next
;
3471 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3474 * Copy attributes of the original request to the clone request.
3475 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3477 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3479 dst
->cpu
= src
->cpu
;
3480 dst
->__sector
= blk_rq_pos(src
);
3481 dst
->__data_len
= blk_rq_bytes(src
);
3482 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3483 dst
->ioprio
= src
->ioprio
;
3484 dst
->extra_len
= src
->extra_len
;
3488 * blk_rq_prep_clone - Helper function to setup clone request
3489 * @rq: the request to be setup
3490 * @rq_src: original request to be cloned
3491 * @bs: bio_set that bios for clone are allocated from
3492 * @gfp_mask: memory allocation mask for bio
3493 * @bio_ctr: setup function to be called for each clone bio.
3494 * Returns %0 for success, non %0 for failure.
3495 * @data: private data to be passed to @bio_ctr
3498 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3499 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3500 * are not copied, and copying such parts is the caller's responsibility.
3501 * Also, pages which the original bios are pointing to are not copied
3502 * and the cloned bios just point same pages.
3503 * So cloned bios must be completed before original bios, which means
3504 * the caller must complete @rq before @rq_src.
3506 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3507 struct bio_set
*bs
, gfp_t gfp_mask
,
3508 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3511 struct bio
*bio
, *bio_src
;
3516 __rq_for_each_bio(bio_src
, rq_src
) {
3517 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3521 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3525 rq
->biotail
->bi_next
= bio
;
3528 rq
->bio
= rq
->biotail
= bio
;
3531 __blk_rq_prep_clone(rq
, rq_src
);
3538 blk_rq_unprep_clone(rq
);
3542 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3544 int kblockd_schedule_work(struct work_struct
*work
)
3546 return queue_work(kblockd_workqueue
, work
);
3548 EXPORT_SYMBOL(kblockd_schedule_work
);
3550 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3552 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3554 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3556 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3557 unsigned long delay
)
3559 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3561 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
3564 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3565 * @plug: The &struct blk_plug that needs to be initialized
3568 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3569 * pending I/O should the task end up blocking between blk_start_plug() and
3570 * blk_finish_plug(). This is important from a performance perspective, but
3571 * also ensures that we don't deadlock. For instance, if the task is blocking
3572 * for a memory allocation, memory reclaim could end up wanting to free a
3573 * page belonging to that request that is currently residing in our private
3574 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3575 * this kind of deadlock.
3577 void blk_start_plug(struct blk_plug
*plug
)
3579 struct task_struct
*tsk
= current
;
3582 * If this is a nested plug, don't actually assign it.
3587 INIT_LIST_HEAD(&plug
->list
);
3588 INIT_LIST_HEAD(&plug
->mq_list
);
3589 INIT_LIST_HEAD(&plug
->cb_list
);
3591 * Store ordering should not be needed here, since a potential
3592 * preempt will imply a full memory barrier
3596 EXPORT_SYMBOL(blk_start_plug
);
3598 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3600 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3601 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3603 return !(rqa
->q
< rqb
->q
||
3604 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3608 * If 'from_schedule' is true, then postpone the dispatch of requests
3609 * until a safe kblockd context. We due this to avoid accidental big
3610 * additional stack usage in driver dispatch, in places where the originally
3611 * plugger did not intend it.
3613 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3615 __releases(q
->queue_lock
)
3617 lockdep_assert_held(q
->queue_lock
);
3619 trace_block_unplug(q
, depth
, !from_schedule
);
3622 blk_run_queue_async(q
);
3625 spin_unlock_irq(q
->queue_lock
);
3628 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3630 LIST_HEAD(callbacks
);
3632 while (!list_empty(&plug
->cb_list
)) {
3633 list_splice_init(&plug
->cb_list
, &callbacks
);
3635 while (!list_empty(&callbacks
)) {
3636 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3639 list_del(&cb
->list
);
3640 cb
->callback(cb
, from_schedule
);
3645 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3648 struct blk_plug
*plug
= current
->plug
;
3649 struct blk_plug_cb
*cb
;
3654 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3655 if (cb
->callback
== unplug
&& cb
->data
== data
)
3658 /* Not currently on the callback list */
3659 BUG_ON(size
< sizeof(*cb
));
3660 cb
= kzalloc(size
, GFP_ATOMIC
);
3663 cb
->callback
= unplug
;
3664 list_add(&cb
->list
, &plug
->cb_list
);
3668 EXPORT_SYMBOL(blk_check_plugged
);
3670 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3672 struct request_queue
*q
;
3677 flush_plug_callbacks(plug
, from_schedule
);
3679 if (!list_empty(&plug
->mq_list
))
3680 blk_mq_flush_plug_list(plug
, from_schedule
);
3682 if (list_empty(&plug
->list
))
3685 list_splice_init(&plug
->list
, &list
);
3687 list_sort(NULL
, &list
, plug_rq_cmp
);
3692 while (!list_empty(&list
)) {
3693 rq
= list_entry_rq(list
.next
);
3694 list_del_init(&rq
->queuelist
);
3698 * This drops the queue lock
3701 queue_unplugged(q
, depth
, from_schedule
);
3704 spin_lock_irq(q
->queue_lock
);
3708 * Short-circuit if @q is dead
3710 if (unlikely(blk_queue_dying(q
))) {
3711 __blk_end_request_all(rq
, BLK_STS_IOERR
);
3716 * rq is already accounted, so use raw insert
3718 if (op_is_flush(rq
->cmd_flags
))
3719 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3721 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3727 * This drops the queue lock
3730 queue_unplugged(q
, depth
, from_schedule
);
3733 void blk_finish_plug(struct blk_plug
*plug
)
3735 if (plug
!= current
->plug
)
3737 blk_flush_plug_list(plug
, false);
3739 current
->plug
= NULL
;
3741 EXPORT_SYMBOL(blk_finish_plug
);
3745 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3746 * @q: the queue of the device
3747 * @dev: the device the queue belongs to
3750 * Initialize runtime-PM-related fields for @q and start auto suspend for
3751 * @dev. Drivers that want to take advantage of request-based runtime PM
3752 * should call this function after @dev has been initialized, and its
3753 * request queue @q has been allocated, and runtime PM for it can not happen
3754 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3755 * cases, driver should call this function before any I/O has taken place.
3757 * This function takes care of setting up using auto suspend for the device,
3758 * the autosuspend delay is set to -1 to make runtime suspend impossible
3759 * until an updated value is either set by user or by driver. Drivers do
3760 * not need to touch other autosuspend settings.
3762 * The block layer runtime PM is request based, so only works for drivers
3763 * that use request as their IO unit instead of those directly use bio's.
3765 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3767 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3772 q
->rpm_status
= RPM_ACTIVE
;
3773 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3774 pm_runtime_use_autosuspend(q
->dev
);
3776 EXPORT_SYMBOL(blk_pm_runtime_init
);
3779 * blk_pre_runtime_suspend - Pre runtime suspend check
3780 * @q: the queue of the device
3783 * This function will check if runtime suspend is allowed for the device
3784 * by examining if there are any requests pending in the queue. If there
3785 * are requests pending, the device can not be runtime suspended; otherwise,
3786 * the queue's status will be updated to SUSPENDING and the driver can
3787 * proceed to suspend the device.
3789 * For the not allowed case, we mark last busy for the device so that
3790 * runtime PM core will try to autosuspend it some time later.
3792 * This function should be called near the start of the device's
3793 * runtime_suspend callback.
3796 * 0 - OK to runtime suspend the device
3797 * -EBUSY - Device should not be runtime suspended
3799 int blk_pre_runtime_suspend(struct request_queue
*q
)
3806 spin_lock_irq(q
->queue_lock
);
3807 if (q
->nr_pending
) {
3809 pm_runtime_mark_last_busy(q
->dev
);
3811 q
->rpm_status
= RPM_SUSPENDING
;
3813 spin_unlock_irq(q
->queue_lock
);
3816 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3819 * blk_post_runtime_suspend - Post runtime suspend processing
3820 * @q: the queue of the device
3821 * @err: return value of the device's runtime_suspend function
3824 * Update the queue's runtime status according to the return value of the
3825 * device's runtime suspend function and mark last busy for the device so
3826 * that PM core will try to auto suspend the device at a later time.
3828 * This function should be called near the end of the device's
3829 * runtime_suspend callback.
3831 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3836 spin_lock_irq(q
->queue_lock
);
3838 q
->rpm_status
= RPM_SUSPENDED
;
3840 q
->rpm_status
= RPM_ACTIVE
;
3841 pm_runtime_mark_last_busy(q
->dev
);
3843 spin_unlock_irq(q
->queue_lock
);
3845 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3848 * blk_pre_runtime_resume - Pre runtime resume processing
3849 * @q: the queue of the device
3852 * Update the queue's runtime status to RESUMING in preparation for the
3853 * runtime resume of the device.
3855 * This function should be called near the start of the device's
3856 * runtime_resume callback.
3858 void blk_pre_runtime_resume(struct request_queue
*q
)
3863 spin_lock_irq(q
->queue_lock
);
3864 q
->rpm_status
= RPM_RESUMING
;
3865 spin_unlock_irq(q
->queue_lock
);
3867 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3870 * blk_post_runtime_resume - Post runtime resume processing
3871 * @q: the queue of the device
3872 * @err: return value of the device's runtime_resume function
3875 * Update the queue's runtime status according to the return value of the
3876 * device's runtime_resume function. If it is successfully resumed, process
3877 * the requests that are queued into the device's queue when it is resuming
3878 * and then mark last busy and initiate autosuspend for it.
3880 * This function should be called near the end of the device's
3881 * runtime_resume callback.
3883 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3888 spin_lock_irq(q
->queue_lock
);
3890 q
->rpm_status
= RPM_ACTIVE
;
3892 pm_runtime_mark_last_busy(q
->dev
);
3893 pm_request_autosuspend(q
->dev
);
3895 q
->rpm_status
= RPM_SUSPENDED
;
3897 spin_unlock_irq(q
->queue_lock
);
3899 EXPORT_SYMBOL(blk_post_runtime_resume
);
3902 * blk_set_runtime_active - Force runtime status of the queue to be active
3903 * @q: the queue of the device
3905 * If the device is left runtime suspended during system suspend the resume
3906 * hook typically resumes the device and corrects runtime status
3907 * accordingly. However, that does not affect the queue runtime PM status
3908 * which is still "suspended". This prevents processing requests from the
3911 * This function can be used in driver's resume hook to correct queue
3912 * runtime PM status and re-enable peeking requests from the queue. It
3913 * should be called before first request is added to the queue.
3915 void blk_set_runtime_active(struct request_queue
*q
)
3917 spin_lock_irq(q
->queue_lock
);
3918 q
->rpm_status
= RPM_ACTIVE
;
3919 pm_runtime_mark_last_busy(q
->dev
);
3920 pm_request_autosuspend(q
->dev
);
3921 spin_unlock_irq(q
->queue_lock
);
3923 EXPORT_SYMBOL(blk_set_runtime_active
);
3926 int __init
blk_dev_init(void)
3928 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3929 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3930 FIELD_SIZEOF(struct request
, cmd_flags
));
3931 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3932 FIELD_SIZEOF(struct bio
, bi_opf
));
3934 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3935 kblockd_workqueue
= alloc_workqueue("kblockd",
3936 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3937 if (!kblockd_workqueue
)
3938 panic("Failed to create kblockd\n");
3940 request_cachep
= kmem_cache_create("blkdev_requests",
3941 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3943 blk_requestq_cachep
= kmem_cache_create("request_queue",
3944 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3946 #ifdef CONFIG_DEBUG_FS
3947 blk_debugfs_root
= debugfs_create_dir("block", NULL
);