sh: intc: Fix up multi-evt irq association.
[linux-2.6/btrfs-unstable.git] / fs / ubifs / orphan.c
blobcebf17ea045824a052e024a0e0e954c0b5a0c9e9
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
22 #include "ubifs.h"
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 static int dbg_check_orphans(struct ubifs_info *c);
57 /**
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
62 * Add an orphan. This function is called when an inodes link count drops to
63 * zero.
65 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
67 struct ubifs_orphan *orphan, *o;
68 struct rb_node **p, *parent = NULL;
70 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
71 if (!orphan)
72 return -ENOMEM;
73 orphan->inum = inum;
74 orphan->new = 1;
76 spin_lock(&c->orphan_lock);
77 if (c->tot_orphans >= c->max_orphans) {
78 spin_unlock(&c->orphan_lock);
79 kfree(orphan);
80 return -ENFILE;
82 p = &c->orph_tree.rb_node;
83 while (*p) {
84 parent = *p;
85 o = rb_entry(parent, struct ubifs_orphan, rb);
86 if (inum < o->inum)
87 p = &(*p)->rb_left;
88 else if (inum > o->inum)
89 p = &(*p)->rb_right;
90 else {
91 ubifs_err("orphaned twice");
92 spin_unlock(&c->orphan_lock);
93 kfree(orphan);
94 return 0;
97 c->tot_orphans += 1;
98 c->new_orphans += 1;
99 rb_link_node(&orphan->rb, parent, p);
100 rb_insert_color(&orphan->rb, &c->orph_tree);
101 list_add_tail(&orphan->list, &c->orph_list);
102 list_add_tail(&orphan->new_list, &c->orph_new);
103 spin_unlock(&c->orphan_lock);
104 dbg_gen("ino %lu", (unsigned long)inum);
105 return 0;
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
113 * Delete an orphan. This function is called when an inode is deleted.
115 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
117 struct ubifs_orphan *o;
118 struct rb_node *p;
120 spin_lock(&c->orphan_lock);
121 p = c->orph_tree.rb_node;
122 while (p) {
123 o = rb_entry(p, struct ubifs_orphan, rb);
124 if (inum < o->inum)
125 p = p->rb_left;
126 else if (inum > o->inum)
127 p = p->rb_right;
128 else {
129 if (o->dnext) {
130 spin_unlock(&c->orphan_lock);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum);
133 return;
135 if (o->cnext) {
136 o->dnext = c->orph_dnext;
137 c->orph_dnext = o;
138 spin_unlock(&c->orphan_lock);
139 dbg_gen("delete later ino %lu",
140 (unsigned long)inum);
141 return;
143 rb_erase(p, &c->orph_tree);
144 list_del(&o->list);
145 c->tot_orphans -= 1;
146 if (o->new) {
147 list_del(&o->new_list);
148 c->new_orphans -= 1;
150 spin_unlock(&c->orphan_lock);
151 kfree(o);
152 dbg_gen("inum %lu", (unsigned long)inum);
153 return;
156 spin_unlock(&c->orphan_lock);
157 ubifs_err("missing orphan ino %lu", (unsigned long)inum);
158 dump_stack();
162 * ubifs_orphan_start_commit - start commit of orphans.
163 * @c: UBIFS file-system description object
165 * Start commit of orphans.
167 int ubifs_orphan_start_commit(struct ubifs_info *c)
169 struct ubifs_orphan *orphan, **last;
171 spin_lock(&c->orphan_lock);
172 last = &c->orph_cnext;
173 list_for_each_entry(orphan, &c->orph_new, new_list) {
174 ubifs_assert(orphan->new);
175 orphan->new = 0;
176 *last = orphan;
177 last = &orphan->cnext;
179 *last = NULL;
180 c->cmt_orphans = c->new_orphans;
181 c->new_orphans = 0;
182 dbg_cmt("%d orphans to commit", c->cmt_orphans);
183 INIT_LIST_HEAD(&c->orph_new);
184 if (c->tot_orphans == 0)
185 c->no_orphs = 1;
186 else
187 c->no_orphs = 0;
188 spin_unlock(&c->orphan_lock);
189 return 0;
193 * avail_orphs - calculate available space.
194 * @c: UBIFS file-system description object
196 * This function returns the number of orphans that can be written in the
197 * available space.
199 static int avail_orphs(struct ubifs_info *c)
201 int avail_lebs, avail, gap;
203 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
204 avail = avail_lebs *
205 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
206 gap = c->leb_size - c->ohead_offs;
207 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
208 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
209 return avail;
213 * tot_avail_orphs - calculate total space.
214 * @c: UBIFS file-system description object
216 * This function returns the number of orphans that can be written in half
217 * the total space. That leaves half the space for adding new orphans.
219 static int tot_avail_orphs(struct ubifs_info *c)
221 int avail_lebs, avail;
223 avail_lebs = c->orph_lebs;
224 avail = avail_lebs *
225 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
226 return avail / 2;
230 * do_write_orph_node - write a node to the orphan head.
231 * @c: UBIFS file-system description object
232 * @len: length of node
233 * @atomic: write atomically
235 * This function writes a node to the orphan head from the orphan buffer. If
236 * %atomic is not zero, then the write is done atomically. On success, %0 is
237 * returned, otherwise a negative error code is returned.
239 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
241 int err = 0;
243 if (atomic) {
244 ubifs_assert(c->ohead_offs == 0);
245 ubifs_prepare_node(c, c->orph_buf, len, 1);
246 len = ALIGN(len, c->min_io_size);
247 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
248 } else {
249 if (c->ohead_offs == 0) {
250 /* Ensure LEB has been unmapped */
251 err = ubifs_leb_unmap(c, c->ohead_lnum);
252 if (err)
253 return err;
255 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
256 c->ohead_offs);
258 return err;
262 * write_orph_node - write an orphan node.
263 * @c: UBIFS file-system description object
264 * @atomic: write atomically
266 * This function builds an orphan node from the cnext list and writes it to the
267 * orphan head. On success, %0 is returned, otherwise a negative error code
268 * is returned.
270 static int write_orph_node(struct ubifs_info *c, int atomic)
272 struct ubifs_orphan *orphan, *cnext;
273 struct ubifs_orph_node *orph;
274 int gap, err, len, cnt, i;
276 ubifs_assert(c->cmt_orphans > 0);
277 gap = c->leb_size - c->ohead_offs;
278 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
279 c->ohead_lnum += 1;
280 c->ohead_offs = 0;
281 gap = c->leb_size;
282 if (c->ohead_lnum > c->orph_last) {
284 * We limit the number of orphans so that this should
285 * never happen.
287 ubifs_err("out of space in orphan area");
288 return -EINVAL;
291 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
292 if (cnt > c->cmt_orphans)
293 cnt = c->cmt_orphans;
294 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
295 ubifs_assert(c->orph_buf);
296 orph = c->orph_buf;
297 orph->ch.node_type = UBIFS_ORPH_NODE;
298 spin_lock(&c->orphan_lock);
299 cnext = c->orph_cnext;
300 for (i = 0; i < cnt; i++) {
301 orphan = cnext;
302 orph->inos[i] = cpu_to_le64(orphan->inum);
303 cnext = orphan->cnext;
304 orphan->cnext = NULL;
306 c->orph_cnext = cnext;
307 c->cmt_orphans -= cnt;
308 spin_unlock(&c->orphan_lock);
309 if (c->cmt_orphans)
310 orph->cmt_no = cpu_to_le64(c->cmt_no);
311 else
312 /* Mark the last node of the commit */
313 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
314 ubifs_assert(c->ohead_offs + len <= c->leb_size);
315 ubifs_assert(c->ohead_lnum >= c->orph_first);
316 ubifs_assert(c->ohead_lnum <= c->orph_last);
317 err = do_write_orph_node(c, len, atomic);
318 c->ohead_offs += ALIGN(len, c->min_io_size);
319 c->ohead_offs = ALIGN(c->ohead_offs, 8);
320 return err;
324 * write_orph_nodes - write orphan nodes until there are no more to commit.
325 * @c: UBIFS file-system description object
326 * @atomic: write atomically
328 * This function writes orphan nodes for all the orphans to commit. On success,
329 * %0 is returned, otherwise a negative error code is returned.
331 static int write_orph_nodes(struct ubifs_info *c, int atomic)
333 int err;
335 while (c->cmt_orphans > 0) {
336 err = write_orph_node(c, atomic);
337 if (err)
338 return err;
340 if (atomic) {
341 int lnum;
343 /* Unmap any unused LEBs after consolidation */
344 lnum = c->ohead_lnum + 1;
345 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
346 err = ubifs_leb_unmap(c, lnum);
347 if (err)
348 return err;
351 return 0;
355 * consolidate - consolidate the orphan area.
356 * @c: UBIFS file-system description object
358 * This function enables consolidation by putting all the orphans into the list
359 * to commit. The list is in the order that the orphans were added, and the
360 * LEBs are written atomically in order, so at no time can orphans be lost by
361 * an unclean unmount.
363 * This function returns %0 on success and a negative error code on failure.
365 static int consolidate(struct ubifs_info *c)
367 int tot_avail = tot_avail_orphs(c), err = 0;
369 spin_lock(&c->orphan_lock);
370 dbg_cmt("there is space for %d orphans and there are %d",
371 tot_avail, c->tot_orphans);
372 if (c->tot_orphans - c->new_orphans <= tot_avail) {
373 struct ubifs_orphan *orphan, **last;
374 int cnt = 0;
376 /* Change the cnext list to include all non-new orphans */
377 last = &c->orph_cnext;
378 list_for_each_entry(orphan, &c->orph_list, list) {
379 if (orphan->new)
380 continue;
381 *last = orphan;
382 last = &orphan->cnext;
383 cnt += 1;
385 *last = NULL;
386 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
387 c->cmt_orphans = cnt;
388 c->ohead_lnum = c->orph_first;
389 c->ohead_offs = 0;
390 } else {
392 * We limit the number of orphans so that this should
393 * never happen.
395 ubifs_err("out of space in orphan area");
396 err = -EINVAL;
398 spin_unlock(&c->orphan_lock);
399 return err;
403 * commit_orphans - commit orphans.
404 * @c: UBIFS file-system description object
406 * This function commits orphans to flash. On success, %0 is returned,
407 * otherwise a negative error code is returned.
409 static int commit_orphans(struct ubifs_info *c)
411 int avail, atomic = 0, err;
413 ubifs_assert(c->cmt_orphans > 0);
414 avail = avail_orphs(c);
415 if (avail < c->cmt_orphans) {
416 /* Not enough space to write new orphans, so consolidate */
417 err = consolidate(c);
418 if (err)
419 return err;
420 atomic = 1;
422 err = write_orph_nodes(c, atomic);
423 return err;
427 * erase_deleted - erase the orphans marked for deletion.
428 * @c: UBIFS file-system description object
430 * During commit, the orphans being committed cannot be deleted, so they are
431 * marked for deletion and deleted by this function. Also, the recovery
432 * adds killed orphans to the deletion list, and therefore they are deleted
433 * here too.
435 static void erase_deleted(struct ubifs_info *c)
437 struct ubifs_orphan *orphan, *dnext;
439 spin_lock(&c->orphan_lock);
440 dnext = c->orph_dnext;
441 while (dnext) {
442 orphan = dnext;
443 dnext = orphan->dnext;
444 ubifs_assert(!orphan->new);
445 rb_erase(&orphan->rb, &c->orph_tree);
446 list_del(&orphan->list);
447 c->tot_orphans -= 1;
448 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
449 kfree(orphan);
451 c->orph_dnext = NULL;
452 spin_unlock(&c->orphan_lock);
456 * ubifs_orphan_end_commit - end commit of orphans.
457 * @c: UBIFS file-system description object
459 * End commit of orphans.
461 int ubifs_orphan_end_commit(struct ubifs_info *c)
463 int err;
465 if (c->cmt_orphans != 0) {
466 err = commit_orphans(c);
467 if (err)
468 return err;
470 erase_deleted(c);
471 err = dbg_check_orphans(c);
472 return err;
476 * ubifs_clear_orphans - erase all LEBs used for orphans.
477 * @c: UBIFS file-system description object
479 * If recovery is not required, then the orphans from the previous session
480 * are not needed. This function locates the LEBs used to record
481 * orphans, and un-maps them.
483 int ubifs_clear_orphans(struct ubifs_info *c)
485 int lnum, err;
487 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
488 err = ubifs_leb_unmap(c, lnum);
489 if (err)
490 return err;
492 c->ohead_lnum = c->orph_first;
493 c->ohead_offs = 0;
494 return 0;
498 * insert_dead_orphan - insert an orphan.
499 * @c: UBIFS file-system description object
500 * @inum: orphan inode number
502 * This function is a helper to the 'do_kill_orphans()' function. The orphan
503 * must be kept until the next commit, so it is added to the rb-tree and the
504 * deletion list.
506 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
508 struct ubifs_orphan *orphan, *o;
509 struct rb_node **p, *parent = NULL;
511 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
512 if (!orphan)
513 return -ENOMEM;
514 orphan->inum = inum;
516 p = &c->orph_tree.rb_node;
517 while (*p) {
518 parent = *p;
519 o = rb_entry(parent, struct ubifs_orphan, rb);
520 if (inum < o->inum)
521 p = &(*p)->rb_left;
522 else if (inum > o->inum)
523 p = &(*p)->rb_right;
524 else {
525 /* Already added - no problem */
526 kfree(orphan);
527 return 0;
530 c->tot_orphans += 1;
531 rb_link_node(&orphan->rb, parent, p);
532 rb_insert_color(&orphan->rb, &c->orph_tree);
533 list_add_tail(&orphan->list, &c->orph_list);
534 orphan->dnext = c->orph_dnext;
535 c->orph_dnext = orphan;
536 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
537 c->new_orphans, c->tot_orphans);
538 return 0;
542 * do_kill_orphans - remove orphan inodes from the index.
543 * @c: UBIFS file-system description object
544 * @sleb: scanned LEB
545 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
546 * @outofdate: whether the LEB is out of date is returned here
547 * @last_flagged: whether the end orphan node is encountered
549 * This function is a helper to the 'kill_orphans()' function. It goes through
550 * every orphan node in a LEB and for every inode number recorded, removes
551 * all keys for that inode from the TNC.
553 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
554 unsigned long long *last_cmt_no, int *outofdate,
555 int *last_flagged)
557 struct ubifs_scan_node *snod;
558 struct ubifs_orph_node *orph;
559 unsigned long long cmt_no;
560 ino_t inum;
561 int i, n, err, first = 1;
563 list_for_each_entry(snod, &sleb->nodes, list) {
564 if (snod->type != UBIFS_ORPH_NODE) {
565 ubifs_err("invalid node type %d in orphan area at "
566 "%d:%d", snod->type, sleb->lnum, snod->offs);
567 ubifs_dump_node(c, snod->node);
568 return -EINVAL;
571 orph = snod->node;
573 /* Check commit number */
574 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
576 * The commit number on the master node may be less, because
577 * of a failed commit. If there are several failed commits in a
578 * row, the commit number written on orphan nodes will continue
579 * to increase (because the commit number is adjusted here) even
580 * though the commit number on the master node stays the same
581 * because the master node has not been re-written.
583 if (cmt_no > c->cmt_no)
584 c->cmt_no = cmt_no;
585 if (cmt_no < *last_cmt_no && *last_flagged) {
587 * The last orphan node had a higher commit number and
588 * was flagged as the last written for that commit
589 * number. That makes this orphan node, out of date.
591 if (!first) {
592 ubifs_err("out of order commit number %llu in "
593 "orphan node at %d:%d",
594 cmt_no, sleb->lnum, snod->offs);
595 ubifs_dump_node(c, snod->node);
596 return -EINVAL;
598 dbg_rcvry("out of date LEB %d", sleb->lnum);
599 *outofdate = 1;
600 return 0;
603 if (first)
604 first = 0;
606 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
607 for (i = 0; i < n; i++) {
608 inum = le64_to_cpu(orph->inos[i]);
609 dbg_rcvry("deleting orphaned inode %lu",
610 (unsigned long)inum);
611 err = ubifs_tnc_remove_ino(c, inum);
612 if (err)
613 return err;
614 err = insert_dead_orphan(c, inum);
615 if (err)
616 return err;
619 *last_cmt_no = cmt_no;
620 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
621 dbg_rcvry("last orph node for commit %llu at %d:%d",
622 cmt_no, sleb->lnum, snod->offs);
623 *last_flagged = 1;
624 } else
625 *last_flagged = 0;
628 return 0;
632 * kill_orphans - remove all orphan inodes from the index.
633 * @c: UBIFS file-system description object
635 * If recovery is required, then orphan inodes recorded during the previous
636 * session (which ended with an unclean unmount) must be deleted from the index.
637 * This is done by updating the TNC, but since the index is not updated until
638 * the next commit, the LEBs where the orphan information is recorded are not
639 * erased until the next commit.
641 static int kill_orphans(struct ubifs_info *c)
643 unsigned long long last_cmt_no = 0;
644 int lnum, err = 0, outofdate = 0, last_flagged = 0;
646 c->ohead_lnum = c->orph_first;
647 c->ohead_offs = 0;
648 /* Check no-orphans flag and skip this if no orphans */
649 if (c->no_orphs) {
650 dbg_rcvry("no orphans");
651 return 0;
654 * Orph nodes always start at c->orph_first and are written to each
655 * successive LEB in turn. Generally unused LEBs will have been unmapped
656 * but may contain out of date orphan nodes if the unmap didn't go
657 * through. In addition, the last orphan node written for each commit is
658 * marked (top bit of orph->cmt_no is set to 1). It is possible that
659 * there are orphan nodes from the next commit (i.e. the commit did not
660 * complete successfully). In that case, no orphans will have been lost
661 * due to the way that orphans are written, and any orphans added will
662 * be valid orphans anyway and so can be deleted.
664 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
665 struct ubifs_scan_leb *sleb;
667 dbg_rcvry("LEB %d", lnum);
668 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
669 if (IS_ERR(sleb)) {
670 if (PTR_ERR(sleb) == -EUCLEAN)
671 sleb = ubifs_recover_leb(c, lnum, 0,
672 c->sbuf, -1);
673 if (IS_ERR(sleb)) {
674 err = PTR_ERR(sleb);
675 break;
678 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
679 &last_flagged);
680 if (err || outofdate) {
681 ubifs_scan_destroy(sleb);
682 break;
684 if (sleb->endpt) {
685 c->ohead_lnum = lnum;
686 c->ohead_offs = sleb->endpt;
688 ubifs_scan_destroy(sleb);
690 return err;
694 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
695 * @c: UBIFS file-system description object
696 * @unclean: indicates recovery from unclean unmount
697 * @read_only: indicates read only mount
699 * This function is called when mounting to erase orphans from the previous
700 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
701 * orphans are deleted.
703 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
705 int err = 0;
707 c->max_orphans = tot_avail_orphs(c);
709 if (!read_only) {
710 c->orph_buf = vmalloc(c->leb_size);
711 if (!c->orph_buf)
712 return -ENOMEM;
715 if (unclean)
716 err = kill_orphans(c);
717 else if (!read_only)
718 err = ubifs_clear_orphans(c);
720 return err;
724 * Everything below is related to debugging.
727 struct check_orphan {
728 struct rb_node rb;
729 ino_t inum;
732 struct check_info {
733 unsigned long last_ino;
734 unsigned long tot_inos;
735 unsigned long missing;
736 unsigned long long leaf_cnt;
737 struct ubifs_ino_node *node;
738 struct rb_root root;
741 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
743 struct ubifs_orphan *o;
744 struct rb_node *p;
746 spin_lock(&c->orphan_lock);
747 p = c->orph_tree.rb_node;
748 while (p) {
749 o = rb_entry(p, struct ubifs_orphan, rb);
750 if (inum < o->inum)
751 p = p->rb_left;
752 else if (inum > o->inum)
753 p = p->rb_right;
754 else {
755 spin_unlock(&c->orphan_lock);
756 return 1;
759 spin_unlock(&c->orphan_lock);
760 return 0;
763 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
765 struct check_orphan *orphan, *o;
766 struct rb_node **p, *parent = NULL;
768 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
769 if (!orphan)
770 return -ENOMEM;
771 orphan->inum = inum;
773 p = &root->rb_node;
774 while (*p) {
775 parent = *p;
776 o = rb_entry(parent, struct check_orphan, rb);
777 if (inum < o->inum)
778 p = &(*p)->rb_left;
779 else if (inum > o->inum)
780 p = &(*p)->rb_right;
781 else {
782 kfree(orphan);
783 return 0;
786 rb_link_node(&orphan->rb, parent, p);
787 rb_insert_color(&orphan->rb, root);
788 return 0;
791 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
793 struct check_orphan *o;
794 struct rb_node *p;
796 p = root->rb_node;
797 while (p) {
798 o = rb_entry(p, struct check_orphan, rb);
799 if (inum < o->inum)
800 p = p->rb_left;
801 else if (inum > o->inum)
802 p = p->rb_right;
803 else
804 return 1;
806 return 0;
809 static void dbg_free_check_tree(struct rb_root *root)
811 struct rb_node *this = root->rb_node;
812 struct check_orphan *o;
814 while (this) {
815 if (this->rb_left) {
816 this = this->rb_left;
817 continue;
818 } else if (this->rb_right) {
819 this = this->rb_right;
820 continue;
822 o = rb_entry(this, struct check_orphan, rb);
823 this = rb_parent(this);
824 if (this) {
825 if (this->rb_left == &o->rb)
826 this->rb_left = NULL;
827 else
828 this->rb_right = NULL;
830 kfree(o);
834 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
835 void *priv)
837 struct check_info *ci = priv;
838 ino_t inum;
839 int err;
841 inum = key_inum(c, &zbr->key);
842 if (inum != ci->last_ino) {
843 /* Lowest node type is the inode node, so it comes first */
844 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
845 ubifs_err("found orphan node ino %lu, type %d",
846 (unsigned long)inum, key_type(c, &zbr->key));
847 ci->last_ino = inum;
848 ci->tot_inos += 1;
849 err = ubifs_tnc_read_node(c, zbr, ci->node);
850 if (err) {
851 ubifs_err("node read failed, error %d", err);
852 return err;
854 if (ci->node->nlink == 0)
855 /* Must be recorded as an orphan */
856 if (!dbg_find_check_orphan(&ci->root, inum) &&
857 !dbg_find_orphan(c, inum)) {
858 ubifs_err("missing orphan, ino %lu",
859 (unsigned long)inum);
860 ci->missing += 1;
863 ci->leaf_cnt += 1;
864 return 0;
867 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
869 struct ubifs_scan_node *snod;
870 struct ubifs_orph_node *orph;
871 ino_t inum;
872 int i, n, err;
874 list_for_each_entry(snod, &sleb->nodes, list) {
875 cond_resched();
876 if (snod->type != UBIFS_ORPH_NODE)
877 continue;
878 orph = snod->node;
879 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
880 for (i = 0; i < n; i++) {
881 inum = le64_to_cpu(orph->inos[i]);
882 err = dbg_ins_check_orphan(&ci->root, inum);
883 if (err)
884 return err;
887 return 0;
890 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
892 int lnum, err = 0;
893 void *buf;
895 /* Check no-orphans flag and skip this if no orphans */
896 if (c->no_orphs)
897 return 0;
899 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
900 if (!buf) {
901 ubifs_err("cannot allocate memory to check orphans");
902 return 0;
905 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
906 struct ubifs_scan_leb *sleb;
908 sleb = ubifs_scan(c, lnum, 0, buf, 0);
909 if (IS_ERR(sleb)) {
910 err = PTR_ERR(sleb);
911 break;
914 err = dbg_read_orphans(ci, sleb);
915 ubifs_scan_destroy(sleb);
916 if (err)
917 break;
920 vfree(buf);
921 return err;
924 static int dbg_check_orphans(struct ubifs_info *c)
926 struct check_info ci;
927 int err;
929 if (!dbg_is_chk_orph(c))
930 return 0;
932 ci.last_ino = 0;
933 ci.tot_inos = 0;
934 ci.missing = 0;
935 ci.leaf_cnt = 0;
936 ci.root = RB_ROOT;
937 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
938 if (!ci.node) {
939 ubifs_err("out of memory");
940 return -ENOMEM;
943 err = dbg_scan_orphans(c, &ci);
944 if (err)
945 goto out;
947 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
948 if (err) {
949 ubifs_err("cannot scan TNC, error %d", err);
950 goto out;
953 if (ci.missing) {
954 ubifs_err("%lu missing orphan(s)", ci.missing);
955 err = -EINVAL;
956 goto out;
959 dbg_cmt("last inode number is %lu", ci.last_ino);
960 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
961 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
963 out:
964 dbg_free_check_tree(&ci.root);
965 kfree(ci.node);
966 return err;