2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/cpu.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/export.h>
30 #include <linux/radix-tree.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/kmemleak.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes
[RADIX_TREE_MAX_PATH
+ 1] __read_mostly
;
45 * Radix tree node cache.
47 static struct kmem_cache
*radix_tree_node_cachep
;
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
63 * Per-cpu pool of preloaded nodes
65 struct radix_tree_preload
{
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node
*nodes
;
70 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
72 static inline struct radix_tree_node
*entry_to_node(void *ptr
)
74 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INTERNAL_NODE
);
77 static inline void *node_to_entry(void *ptr
)
79 return (void *)((unsigned long)ptr
| RADIX_TREE_INTERNAL_NODE
);
82 #define RADIX_TREE_RETRY node_to_entry(NULL)
84 #ifdef CONFIG_RADIX_TREE_MULTIORDER
85 /* Sibling slots point directly to another slot in the same node */
86 static inline bool is_sibling_entry(struct radix_tree_node
*parent
, void *node
)
89 return (parent
->slots
<= ptr
) &&
90 (ptr
< parent
->slots
+ RADIX_TREE_MAP_SIZE
);
93 static inline bool is_sibling_entry(struct radix_tree_node
*parent
, void *node
)
99 static inline unsigned long get_slot_offset(struct radix_tree_node
*parent
,
102 return slot
- parent
->slots
;
105 static unsigned int radix_tree_descend(struct radix_tree_node
*parent
,
106 struct radix_tree_node
**nodep
, unsigned long index
)
108 unsigned int offset
= (index
>> parent
->shift
) & RADIX_TREE_MAP_MASK
;
109 void **entry
= rcu_dereference_raw(parent
->slots
[offset
]);
111 #ifdef CONFIG_RADIX_TREE_MULTIORDER
112 if (radix_tree_is_internal_node(entry
)) {
113 if (is_sibling_entry(parent
, entry
)) {
114 void **sibentry
= (void **) entry_to_node(entry
);
115 offset
= get_slot_offset(parent
, sibentry
);
116 entry
= rcu_dereference_raw(*sibentry
);
121 *nodep
= (void *)entry
;
125 static inline gfp_t
root_gfp_mask(struct radix_tree_root
*root
)
127 return root
->gfp_mask
& __GFP_BITS_MASK
;
130 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
133 __set_bit(offset
, node
->tags
[tag
]);
136 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
139 __clear_bit(offset
, node
->tags
[tag
]);
142 static inline int tag_get(struct radix_tree_node
*node
, unsigned int tag
,
145 return test_bit(offset
, node
->tags
[tag
]);
148 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned int tag
)
150 root
->gfp_mask
|= (__force gfp_t
)(1 << (tag
+ __GFP_BITS_SHIFT
));
153 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned tag
)
155 root
->gfp_mask
&= (__force gfp_t
)~(1 << (tag
+ __GFP_BITS_SHIFT
));
158 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
160 root
->gfp_mask
&= __GFP_BITS_MASK
;
163 static inline int root_tag_get(struct radix_tree_root
*root
, unsigned int tag
)
165 return (__force
int)root
->gfp_mask
& (1 << (tag
+ __GFP_BITS_SHIFT
));
168 static inline unsigned root_tags_get(struct radix_tree_root
*root
)
170 return (__force
unsigned)root
->gfp_mask
>> __GFP_BITS_SHIFT
;
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
177 static inline int any_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
180 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
181 if (node
->tags
[tag
][idx
])
188 * radix_tree_find_next_bit - find the next set bit in a memory region
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
198 static __always_inline
unsigned long
199 radix_tree_find_next_bit(struct radix_tree_node
*node
, unsigned int tag
,
200 unsigned long offset
)
202 const unsigned long *addr
= node
->tags
[tag
];
204 if (offset
< RADIX_TREE_MAP_SIZE
) {
207 addr
+= offset
/ BITS_PER_LONG
;
208 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
210 return __ffs(tmp
) + offset
;
211 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
212 while (offset
< RADIX_TREE_MAP_SIZE
) {
215 return __ffs(tmp
) + offset
;
216 offset
+= BITS_PER_LONG
;
219 return RADIX_TREE_MAP_SIZE
;
222 static unsigned int iter_offset(const struct radix_tree_iter
*iter
)
224 return (iter
->index
>> iter_shift(iter
)) & RADIX_TREE_MAP_MASK
;
228 * The maximum index which can be stored in a radix tree
230 static inline unsigned long shift_maxindex(unsigned int shift
)
232 return (RADIX_TREE_MAP_SIZE
<< shift
) - 1;
235 static inline unsigned long node_maxindex(struct radix_tree_node
*node
)
237 return shift_maxindex(node
->shift
);
241 static void dump_node(struct radix_tree_node
*node
, unsigned long index
)
245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 node
, node
->offset
, index
, index
| node_maxindex(node
),
248 node
->tags
[0][0], node
->tags
[1][0], node
->tags
[2][0],
249 node
->shift
, node
->count
, node
->exceptional
);
251 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++) {
252 unsigned long first
= index
| (i
<< node
->shift
);
253 unsigned long last
= first
| ((1UL << node
->shift
) - 1);
254 void *entry
= node
->slots
[i
];
257 if (entry
== RADIX_TREE_RETRY
) {
258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 i
, first
, last
, node
);
260 } else if (!radix_tree_is_internal_node(entry
)) {
261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 entry
, i
, first
, last
, node
);
263 } else if (is_sibling_entry(node
, entry
)) {
264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 entry
, i
, first
, last
, node
,
266 *(void **)entry_to_node(entry
));
268 dump_node(entry_to_node(entry
), first
);
274 static void radix_tree_dump(struct radix_tree_root
*root
)
276 pr_debug("radix root: %p rnode %p tags %x\n",
278 root
->gfp_mask
>> __GFP_BITS_SHIFT
);
279 if (!radix_tree_is_internal_node(root
->rnode
))
281 dump_node(entry_to_node(root
->rnode
), 0);
286 * This assumes that the caller has performed appropriate preallocation, and
287 * that the caller has pinned this thread of control to the current CPU.
289 static struct radix_tree_node
*
290 radix_tree_node_alloc(struct radix_tree_root
*root
,
291 struct radix_tree_node
*parent
,
292 unsigned int shift
, unsigned int offset
,
293 unsigned int count
, unsigned int exceptional
)
295 struct radix_tree_node
*ret
= NULL
;
296 gfp_t gfp_mask
= root_gfp_mask(root
);
299 * Preload code isn't irq safe and it doesn't make sense to use
300 * preloading during an interrupt anyway as all the allocations have
301 * to be atomic. So just do normal allocation when in interrupt.
303 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
304 struct radix_tree_preload
*rtp
;
307 * Even if the caller has preloaded, try to allocate from the
308 * cache first for the new node to get accounted to the memory
311 ret
= kmem_cache_alloc(radix_tree_node_cachep
,
312 gfp_mask
| __GFP_NOWARN
);
317 * Provided the caller has preloaded here, we will always
318 * succeed in getting a node here (and never reach
321 rtp
= this_cpu_ptr(&radix_tree_preloads
);
324 rtp
->nodes
= ret
->private_data
;
325 ret
->private_data
= NULL
;
329 * Update the allocation stack trace as this is more useful
332 kmemleak_update_trace(ret
);
335 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
337 BUG_ON(radix_tree_is_internal_node(ret
));
339 ret
->parent
= parent
;
341 ret
->offset
= offset
;
343 ret
->exceptional
= exceptional
;
348 static void radix_tree_node_rcu_free(struct rcu_head
*head
)
350 struct radix_tree_node
*node
=
351 container_of(head
, struct radix_tree_node
, rcu_head
);
354 * Must only free zeroed nodes into the slab. We can be left with
355 * non-NULL entries by radix_tree_free_nodes, so clear the entries
358 memset(node
->slots
, 0, sizeof(node
->slots
));
359 memset(node
->tags
, 0, sizeof(node
->tags
));
360 INIT_LIST_HEAD(&node
->private_list
);
362 kmem_cache_free(radix_tree_node_cachep
, node
);
366 radix_tree_node_free(struct radix_tree_node
*node
)
368 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
373 * ensure that the addition of a single element in the tree cannot fail. On
374 * success, return zero, with preemption disabled. On error, return -ENOMEM
375 * with preemption not disabled.
377 * To make use of this facility, the radix tree must be initialised without
378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
380 static int __radix_tree_preload(gfp_t gfp_mask
, unsigned nr
)
382 struct radix_tree_preload
*rtp
;
383 struct radix_tree_node
*node
;
387 * Nodes preloaded by one cgroup can be be used by another cgroup, so
388 * they should never be accounted to any particular memory cgroup.
390 gfp_mask
&= ~__GFP_ACCOUNT
;
393 rtp
= this_cpu_ptr(&radix_tree_preloads
);
394 while (rtp
->nr
< nr
) {
396 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
400 rtp
= this_cpu_ptr(&radix_tree_preloads
);
402 node
->private_data
= rtp
->nodes
;
406 kmem_cache_free(radix_tree_node_cachep
, node
);
415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
416 * ensure that the addition of a single element in the tree cannot fail. On
417 * success, return zero, with preemption disabled. On error, return -ENOMEM
418 * with preemption not disabled.
420 * To make use of this facility, the radix tree must be initialised without
421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
423 int radix_tree_preload(gfp_t gfp_mask
)
425 /* Warn on non-sensical use... */
426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
427 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
429 EXPORT_SYMBOL(radix_tree_preload
);
432 * The same as above function, except we don't guarantee preloading happens.
433 * We do it, if we decide it helps. On success, return zero with preemption
434 * disabled. On error, return -ENOMEM with preemption not disabled.
436 int radix_tree_maybe_preload(gfp_t gfp_mask
)
438 if (gfpflags_allow_blocking(gfp_mask
))
439 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
440 /* Preloading doesn't help anything with this gfp mask, skip it */
444 EXPORT_SYMBOL(radix_tree_maybe_preload
);
446 #ifdef CONFIG_RADIX_TREE_MULTIORDER
448 * Preload with enough objects to ensure that we can split a single entry
449 * of order @old_order into many entries of size @new_order
451 int radix_tree_split_preload(unsigned int old_order
, unsigned int new_order
,
454 unsigned top
= 1 << (old_order
% RADIX_TREE_MAP_SHIFT
);
455 unsigned layers
= (old_order
/ RADIX_TREE_MAP_SHIFT
) -
456 (new_order
/ RADIX_TREE_MAP_SHIFT
);
459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
460 BUG_ON(new_order
>= old_order
);
463 nr
= nr
* RADIX_TREE_MAP_SIZE
+ 1;
464 return __radix_tree_preload(gfp_mask
, top
* nr
);
469 * The same as function above, but preload number of nodes required to insert
470 * (1 << order) continuous naturally-aligned elements.
472 int radix_tree_maybe_preload_order(gfp_t gfp_mask
, int order
)
474 unsigned long nr_subtrees
;
475 int nr_nodes
, subtree_height
;
477 /* Preloading doesn't help anything with this gfp mask, skip it */
478 if (!gfpflags_allow_blocking(gfp_mask
)) {
484 * Calculate number and height of fully populated subtrees it takes to
485 * store (1 << order) elements.
487 nr_subtrees
= 1 << order
;
488 for (subtree_height
= 0; nr_subtrees
> RADIX_TREE_MAP_SIZE
;
490 nr_subtrees
>>= RADIX_TREE_MAP_SHIFT
;
493 * The worst case is zero height tree with a single item at index 0 and
494 * then inserting items starting at ULONG_MAX - (1 << order).
496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
499 nr_nodes
= RADIX_TREE_MAX_PATH
;
501 /* Plus branch to fully populated subtrees. */
502 nr_nodes
+= RADIX_TREE_MAX_PATH
- subtree_height
;
504 /* Root node is shared. */
507 /* Plus nodes required to build subtrees. */
508 nr_nodes
+= nr_subtrees
* height_to_maxnodes
[subtree_height
];
510 return __radix_tree_preload(gfp_mask
, nr_nodes
);
513 static unsigned radix_tree_load_root(struct radix_tree_root
*root
,
514 struct radix_tree_node
**nodep
, unsigned long *maxindex
)
516 struct radix_tree_node
*node
= rcu_dereference_raw(root
->rnode
);
520 if (likely(radix_tree_is_internal_node(node
))) {
521 node
= entry_to_node(node
);
522 *maxindex
= node_maxindex(node
);
523 return node
->shift
+ RADIX_TREE_MAP_SHIFT
;
531 * Extend a radix tree so it can store key @index.
533 static int radix_tree_extend(struct radix_tree_root
*root
,
534 unsigned long index
, unsigned int shift
)
536 struct radix_tree_node
*slot
;
537 unsigned int maxshift
;
540 /* Figure out what the shift should be. */
542 while (index
> shift_maxindex(maxshift
))
543 maxshift
+= RADIX_TREE_MAP_SHIFT
;
550 struct radix_tree_node
*node
= radix_tree_node_alloc(root
,
551 NULL
, shift
, 0, 1, 0);
555 /* Propagate the aggregated tag info into the new root */
556 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
557 if (root_tag_get(root
, tag
))
558 tag_set(node
, tag
, 0);
561 BUG_ON(shift
> BITS_PER_LONG
);
562 if (radix_tree_is_internal_node(slot
)) {
563 entry_to_node(slot
)->parent
= node
;
564 } else if (radix_tree_exceptional_entry(slot
)) {
565 /* Moving an exceptional root->rnode to a node */
566 node
->exceptional
= 1;
568 node
->slots
[0] = slot
;
569 slot
= node_to_entry(node
);
570 rcu_assign_pointer(root
->rnode
, slot
);
571 shift
+= RADIX_TREE_MAP_SHIFT
;
572 } while (shift
<= maxshift
);
574 return maxshift
+ RADIX_TREE_MAP_SHIFT
;
578 * radix_tree_shrink - shrink radix tree to minimum height
579 * @root radix tree root
581 static inline void radix_tree_shrink(struct radix_tree_root
*root
,
582 radix_tree_update_node_t update_node
,
586 struct radix_tree_node
*node
= root
->rnode
;
587 struct radix_tree_node
*child
;
589 if (!radix_tree_is_internal_node(node
))
591 node
= entry_to_node(node
);
594 * The candidate node has more than one child, or its child
595 * is not at the leftmost slot, or the child is a multiorder
596 * entry, we cannot shrink.
598 if (node
->count
!= 1)
600 child
= node
->slots
[0];
603 if (!radix_tree_is_internal_node(child
) && node
->shift
)
606 if (radix_tree_is_internal_node(child
))
607 entry_to_node(child
)->parent
= NULL
;
610 * We don't need rcu_assign_pointer(), since we are simply
611 * moving the node from one part of the tree to another: if it
612 * was safe to dereference the old pointer to it
613 * (node->slots[0]), it will be safe to dereference the new
614 * one (root->rnode) as far as dependent read barriers go.
619 * We have a dilemma here. The node's slot[0] must not be
620 * NULLed in case there are concurrent lookups expecting to
621 * find the item. However if this was a bottom-level node,
622 * then it may be subject to the slot pointer being visible
623 * to callers dereferencing it. If item corresponding to
624 * slot[0] is subsequently deleted, these callers would expect
625 * their slot to become empty sooner or later.
627 * For example, lockless pagecache will look up a slot, deref
628 * the page pointer, and if the page has 0 refcount it means it
629 * was concurrently deleted from pagecache so try the deref
630 * again. Fortunately there is already a requirement for logic
631 * to retry the entire slot lookup -- the indirect pointer
632 * problem (replacing direct root node with an indirect pointer
633 * also results in a stale slot). So tag the slot as indirect
634 * to force callers to retry.
637 if (!radix_tree_is_internal_node(child
)) {
638 node
->slots
[0] = RADIX_TREE_RETRY
;
640 update_node(node
, private);
643 WARN_ON_ONCE(!list_empty(&node
->private_list
));
644 radix_tree_node_free(node
);
648 static void delete_node(struct radix_tree_root
*root
,
649 struct radix_tree_node
*node
,
650 radix_tree_update_node_t update_node
, void *private)
653 struct radix_tree_node
*parent
;
656 if (node
== entry_to_node(root
->rnode
))
657 radix_tree_shrink(root
, update_node
, private);
661 parent
= node
->parent
;
663 parent
->slots
[node
->offset
] = NULL
;
666 root_tag_clear_all(root
);
670 WARN_ON_ONCE(!list_empty(&node
->private_list
));
671 radix_tree_node_free(node
);
678 * __radix_tree_create - create a slot in a radix tree
679 * @root: radix tree root
681 * @order: index occupies 2^order aligned slots
682 * @nodep: returns node
683 * @slotp: returns slot
685 * Create, if necessary, and return the node and slot for an item
686 * at position @index in the radix tree @root.
688 * Until there is more than one item in the tree, no nodes are
689 * allocated and @root->rnode is used as a direct slot instead of
690 * pointing to a node, in which case *@nodep will be NULL.
692 * Returns -ENOMEM, or 0 for success.
694 int __radix_tree_create(struct radix_tree_root
*root
, unsigned long index
,
695 unsigned order
, struct radix_tree_node
**nodep
,
698 struct radix_tree_node
*node
= NULL
, *child
;
699 void **slot
= (void **)&root
->rnode
;
700 unsigned long maxindex
;
701 unsigned int shift
, offset
= 0;
702 unsigned long max
= index
| ((1UL << order
) - 1);
704 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
706 /* Make sure the tree is high enough. */
707 if (order
> 0 && max
== ((1UL << order
) - 1))
709 if (max
> maxindex
) {
710 int error
= radix_tree_extend(root
, max
, shift
);
717 while (shift
> order
) {
718 shift
-= RADIX_TREE_MAP_SHIFT
;
720 /* Have to add a child node. */
721 child
= radix_tree_node_alloc(root
, node
, shift
,
725 rcu_assign_pointer(*slot
, node_to_entry(child
));
728 } else if (!radix_tree_is_internal_node(child
))
731 /* Go a level down */
732 node
= entry_to_node(child
);
733 offset
= radix_tree_descend(node
, &child
, index
);
734 slot
= &node
->slots
[offset
];
744 #ifdef CONFIG_RADIX_TREE_MULTIORDER
746 * Free any nodes below this node. The tree is presumed to not need
747 * shrinking, and any user data in the tree is presumed to not need a
748 * destructor called on it. If we need to add a destructor, we can
749 * add that functionality later. Note that we may not clear tags or
750 * slots from the tree as an RCU walker may still have a pointer into
751 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
752 * but we'll still have to clear those in rcu_free.
754 static void radix_tree_free_nodes(struct radix_tree_node
*node
)
757 struct radix_tree_node
*child
= entry_to_node(node
);
760 void *entry
= child
->slots
[offset
];
761 if (radix_tree_is_internal_node(entry
) &&
762 !is_sibling_entry(child
, entry
)) {
763 child
= entry_to_node(entry
);
768 while (offset
== RADIX_TREE_MAP_SIZE
) {
769 struct radix_tree_node
*old
= child
;
770 offset
= child
->offset
+ 1;
771 child
= child
->parent
;
772 WARN_ON_ONCE(!list_empty(&old
->private_list
));
773 radix_tree_node_free(old
);
774 if (old
== entry_to_node(node
))
780 static inline int insert_entries(struct radix_tree_node
*node
, void **slot
,
781 void *item
, unsigned order
, bool replace
)
783 struct radix_tree_node
*child
;
784 unsigned i
, n
, tag
, offset
, tags
= 0;
787 if (order
> node
->shift
)
788 n
= 1 << (order
- node
->shift
);
791 offset
= get_slot_offset(node
, slot
);
798 offset
= offset
& ~(n
- 1);
799 slot
= &node
->slots
[offset
];
801 child
= node_to_entry(slot
);
803 for (i
= 0; i
< n
; i
++) {
807 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
808 if (tag_get(node
, tag
, offset
+ i
))
815 for (i
= 0; i
< n
; i
++) {
816 struct radix_tree_node
*old
= slot
[i
];
818 rcu_assign_pointer(slot
[i
], child
);
819 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
820 if (tags
& (1 << tag
))
821 tag_clear(node
, tag
, offset
+ i
);
823 rcu_assign_pointer(slot
[i
], item
);
824 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
825 if (tags
& (1 << tag
))
826 tag_set(node
, tag
, offset
);
828 if (radix_tree_is_internal_node(old
) &&
829 !is_sibling_entry(node
, old
) &&
830 (old
!= RADIX_TREE_RETRY
))
831 radix_tree_free_nodes(old
);
832 if (radix_tree_exceptional_entry(old
))
837 if (radix_tree_exceptional_entry(item
))
838 node
->exceptional
+= n
;
843 static inline int insert_entries(struct radix_tree_node
*node
, void **slot
,
844 void *item
, unsigned order
, bool replace
)
848 rcu_assign_pointer(*slot
, item
);
851 if (radix_tree_exceptional_entry(item
))
859 * __radix_tree_insert - insert into a radix tree
860 * @root: radix tree root
862 * @order: key covers the 2^order indices around index
863 * @item: item to insert
865 * Insert an item into the radix tree at position @index.
867 int __radix_tree_insert(struct radix_tree_root
*root
, unsigned long index
,
868 unsigned order
, void *item
)
870 struct radix_tree_node
*node
;
874 BUG_ON(radix_tree_is_internal_node(item
));
876 error
= __radix_tree_create(root
, index
, order
, &node
, &slot
);
880 error
= insert_entries(node
, slot
, item
, order
, false);
885 unsigned offset
= get_slot_offset(node
, slot
);
886 BUG_ON(tag_get(node
, 0, offset
));
887 BUG_ON(tag_get(node
, 1, offset
));
888 BUG_ON(tag_get(node
, 2, offset
));
890 BUG_ON(root_tags_get(root
));
895 EXPORT_SYMBOL(__radix_tree_insert
);
898 * __radix_tree_lookup - lookup an item in a radix tree
899 * @root: radix tree root
901 * @nodep: returns node
902 * @slotp: returns slot
904 * Lookup and return the item at position @index in the radix
907 * Until there is more than one item in the tree, no nodes are
908 * allocated and @root->rnode is used as a direct slot instead of
909 * pointing to a node, in which case *@nodep will be NULL.
911 void *__radix_tree_lookup(struct radix_tree_root
*root
, unsigned long index
,
912 struct radix_tree_node
**nodep
, void ***slotp
)
914 struct radix_tree_node
*node
, *parent
;
915 unsigned long maxindex
;
920 slot
= (void **)&root
->rnode
;
921 radix_tree_load_root(root
, &node
, &maxindex
);
922 if (index
> maxindex
)
925 while (radix_tree_is_internal_node(node
)) {
928 if (node
== RADIX_TREE_RETRY
)
930 parent
= entry_to_node(node
);
931 offset
= radix_tree_descend(parent
, &node
, index
);
932 slot
= parent
->slots
+ offset
;
943 * radix_tree_lookup_slot - lookup a slot in a radix tree
944 * @root: radix tree root
947 * Returns: the slot corresponding to the position @index in the
948 * radix tree @root. This is useful for update-if-exists operations.
950 * This function can be called under rcu_read_lock iff the slot is not
951 * modified by radix_tree_replace_slot, otherwise it must be called
952 * exclusive from other writers. Any dereference of the slot must be done
953 * using radix_tree_deref_slot.
955 void **radix_tree_lookup_slot(struct radix_tree_root
*root
, unsigned long index
)
959 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
963 EXPORT_SYMBOL(radix_tree_lookup_slot
);
966 * radix_tree_lookup - perform lookup operation on a radix tree
967 * @root: radix tree root
970 * Lookup the item at the position @index in the radix tree @root.
972 * This function can be called under rcu_read_lock, however the caller
973 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
974 * them safely). No RCU barriers are required to access or modify the
975 * returned item, however.
977 void *radix_tree_lookup(struct radix_tree_root
*root
, unsigned long index
)
979 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
981 EXPORT_SYMBOL(radix_tree_lookup
);
983 static inline int slot_count(struct radix_tree_node
*node
,
987 #ifdef CONFIG_RADIX_TREE_MULTIORDER
988 void *ptr
= node_to_entry(slot
);
989 unsigned offset
= get_slot_offset(node
, slot
);
992 for (i
= 1; offset
+ i
< RADIX_TREE_MAP_SIZE
; i
++) {
993 if (node
->slots
[offset
+ i
] != ptr
)
1001 static void replace_slot(struct radix_tree_root
*root
,
1002 struct radix_tree_node
*node
,
1003 void **slot
, void *item
,
1004 bool warn_typeswitch
)
1006 void *old
= rcu_dereference_raw(*slot
);
1007 int count
, exceptional
;
1009 WARN_ON_ONCE(radix_tree_is_internal_node(item
));
1011 count
= !!item
- !!old
;
1012 exceptional
= !!radix_tree_exceptional_entry(item
) -
1013 !!radix_tree_exceptional_entry(old
);
1015 WARN_ON_ONCE(warn_typeswitch
&& (count
|| exceptional
));
1018 node
->count
+= count
;
1020 exceptional
*= slot_count(node
, slot
);
1021 node
->exceptional
+= exceptional
;
1025 rcu_assign_pointer(*slot
, item
);
1028 static inline void delete_sibling_entries(struct radix_tree_node
*node
,
1031 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1032 bool exceptional
= radix_tree_exceptional_entry(*slot
);
1033 void *ptr
= node_to_entry(slot
);
1034 unsigned offset
= get_slot_offset(node
, slot
);
1037 for (i
= 1; offset
+ i
< RADIX_TREE_MAP_SIZE
; i
++) {
1038 if (node
->slots
[offset
+ i
] != ptr
)
1040 node
->slots
[offset
+ i
] = NULL
;
1043 node
->exceptional
--;
1049 * __radix_tree_replace - replace item in a slot
1050 * @root: radix tree root
1051 * @node: pointer to tree node
1052 * @slot: pointer to slot in @node
1053 * @item: new item to store in the slot.
1054 * @update_node: callback for changing leaf nodes
1055 * @private: private data to pass to @update_node
1057 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1058 * across slot lookup and replacement.
1060 void __radix_tree_replace(struct radix_tree_root
*root
,
1061 struct radix_tree_node
*node
,
1062 void **slot
, void *item
,
1063 radix_tree_update_node_t update_node
, void *private)
1066 delete_sibling_entries(node
, slot
);
1068 * This function supports replacing exceptional entries and
1069 * deleting entries, but that needs accounting against the
1070 * node unless the slot is root->rnode.
1072 replace_slot(root
, node
, slot
, item
,
1073 !node
&& slot
!= (void **)&root
->rnode
);
1079 update_node(node
, private);
1081 delete_node(root
, node
, update_node
, private);
1085 * radix_tree_replace_slot - replace item in a slot
1086 * @root: radix tree root
1087 * @slot: pointer to slot
1088 * @item: new item to store in the slot.
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1092 * across slot lookup and replacement.
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1100 void radix_tree_replace_slot(struct radix_tree_root
*root
,
1101 void **slot
, void *item
)
1103 replace_slot(root
, NULL
, slot
, item
, true);
1107 * radix_tree_iter_replace - replace item in a slot
1108 * @root: radix tree root
1109 * @slot: pointer to slot
1110 * @item: new item to store in the slot.
1112 * For use with radix_tree_split() and radix_tree_for_each_slot().
1113 * Caller must hold tree write locked across split and replacement.
1115 void radix_tree_iter_replace(struct radix_tree_root
*root
,
1116 const struct radix_tree_iter
*iter
, void **slot
, void *item
)
1118 __radix_tree_replace(root
, iter
->node
, slot
, item
, NULL
, NULL
);
1121 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1123 * radix_tree_join - replace multiple entries with one multiorder entry
1124 * @root: radix tree root
1125 * @index: an index inside the new entry
1126 * @order: order of the new entry
1129 * Call this function to replace several entries with one larger entry.
1130 * The existing entries are presumed to not need freeing as a result of
1133 * The replacement entry will have all the tags set on it that were set
1134 * on any of the entries it is replacing.
1136 int radix_tree_join(struct radix_tree_root
*root
, unsigned long index
,
1137 unsigned order
, void *item
)
1139 struct radix_tree_node
*node
;
1143 BUG_ON(radix_tree_is_internal_node(item
));
1145 error
= __radix_tree_create(root
, index
, order
, &node
, &slot
);
1147 error
= insert_entries(node
, slot
, item
, order
, true);
1155 * radix_tree_split - Split an entry into smaller entries
1156 * @root: radix tree root
1157 * @index: An index within the large entry
1158 * @order: Order of new entries
1160 * Call this function as the first step in replacing a multiorder entry
1161 * with several entries of lower order. After this function returns,
1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1163 * and call radix_tree_iter_replace() to set up each new entry.
1165 * The tags from this entry are replicated to all the new entries.
1167 * The radix tree should be locked against modification during the entire
1168 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1169 * should prompt RCU walkers to restart the lookup from the root.
1171 int radix_tree_split(struct radix_tree_root
*root
, unsigned long index
,
1174 struct radix_tree_node
*parent
, *node
, *child
;
1176 unsigned int offset
, end
;
1177 unsigned n
, tag
, tags
= 0;
1179 if (!__radix_tree_lookup(root
, index
, &parent
, &slot
))
1184 offset
= get_slot_offset(parent
, slot
);
1186 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1187 if (tag_get(parent
, tag
, offset
))
1190 for (end
= offset
+ 1; end
< RADIX_TREE_MAP_SIZE
; end
++) {
1191 if (!is_sibling_entry(parent
, parent
->slots
[end
]))
1193 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1194 if (tags
& (1 << tag
))
1195 tag_set(parent
, tag
, end
);
1196 /* rcu_assign_pointer ensures tags are set before RETRY */
1197 rcu_assign_pointer(parent
->slots
[end
], RADIX_TREE_RETRY
);
1199 rcu_assign_pointer(parent
->slots
[offset
], RADIX_TREE_RETRY
);
1200 parent
->exceptional
-= (end
- offset
);
1202 if (order
== parent
->shift
)
1204 if (order
> parent
->shift
) {
1205 while (offset
< end
)
1206 offset
+= insert_entries(parent
, &parent
->slots
[offset
],
1207 RADIX_TREE_RETRY
, order
, true);
1214 if (node
->shift
> order
) {
1215 child
= radix_tree_node_alloc(root
, node
,
1216 node
->shift
- RADIX_TREE_MAP_SHIFT
,
1220 if (node
!= parent
) {
1222 node
->slots
[offset
] = node_to_entry(child
);
1223 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1224 if (tags
& (1 << tag
))
1225 tag_set(node
, tag
, offset
);
1233 n
= insert_entries(node
, &node
->slots
[offset
],
1234 RADIX_TREE_RETRY
, order
, false);
1235 BUG_ON(n
> RADIX_TREE_MAP_SIZE
);
1237 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1238 if (tags
& (1 << tag
))
1239 tag_set(node
, tag
, offset
);
1242 while (offset
== RADIX_TREE_MAP_SIZE
) {
1245 offset
= node
->offset
;
1247 node
= node
->parent
;
1248 rcu_assign_pointer(node
->slots
[offset
],
1249 node_to_entry(child
));
1252 if ((node
== parent
) && (offset
== end
))
1257 /* Shouldn't happen; did user forget to preload? */
1258 /* TODO: free all the allocated nodes */
1265 * radix_tree_tag_set - set a tag on a radix tree node
1266 * @root: radix tree root
1270 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1271 * corresponding to @index in the radix tree. From
1272 * the root all the way down to the leaf node.
1274 * Returns the address of the tagged item. Setting a tag on a not-present
1277 void *radix_tree_tag_set(struct radix_tree_root
*root
,
1278 unsigned long index
, unsigned int tag
)
1280 struct radix_tree_node
*node
, *parent
;
1281 unsigned long maxindex
;
1283 radix_tree_load_root(root
, &node
, &maxindex
);
1284 BUG_ON(index
> maxindex
);
1286 while (radix_tree_is_internal_node(node
)) {
1289 parent
= entry_to_node(node
);
1290 offset
= radix_tree_descend(parent
, &node
, index
);
1293 if (!tag_get(parent
, tag
, offset
))
1294 tag_set(parent
, tag
, offset
);
1297 /* set the root's tag bit */
1298 if (!root_tag_get(root
, tag
))
1299 root_tag_set(root
, tag
);
1303 EXPORT_SYMBOL(radix_tree_tag_set
);
1305 static void node_tag_clear(struct radix_tree_root
*root
,
1306 struct radix_tree_node
*node
,
1307 unsigned int tag
, unsigned int offset
)
1310 if (!tag_get(node
, tag
, offset
))
1312 tag_clear(node
, tag
, offset
);
1313 if (any_tag_set(node
, tag
))
1316 offset
= node
->offset
;
1317 node
= node
->parent
;
1320 /* clear the root's tag bit */
1321 if (root_tag_get(root
, tag
))
1322 root_tag_clear(root
, tag
);
1325 static void node_tag_set(struct radix_tree_root
*root
,
1326 struct radix_tree_node
*node
,
1327 unsigned int tag
, unsigned int offset
)
1330 if (tag_get(node
, tag
, offset
))
1332 tag_set(node
, tag
, offset
);
1333 offset
= node
->offset
;
1334 node
= node
->parent
;
1337 if (!root_tag_get(root
, tag
))
1338 root_tag_set(root
, tag
);
1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1343 * @root: radix tree root
1344 * @iter: iterator state
1347 void radix_tree_iter_tag_set(struct radix_tree_root
*root
,
1348 const struct radix_tree_iter
*iter
, unsigned int tag
)
1350 node_tag_set(root
, iter
->node
, tag
, iter_offset(iter
));
1354 * radix_tree_tag_clear - clear a tag on a radix tree node
1355 * @root: radix tree root
1359 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1360 * corresponding to @index in the radix tree. If this causes
1361 * the leaf node to have no tags set then clear the tag in the
1362 * next-to-leaf node, etc.
1364 * Returns the address of the tagged item on success, else NULL. ie:
1365 * has the same return value and semantics as radix_tree_lookup().
1367 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
1368 unsigned long index
, unsigned int tag
)
1370 struct radix_tree_node
*node
, *parent
;
1371 unsigned long maxindex
;
1372 int uninitialized_var(offset
);
1374 radix_tree_load_root(root
, &node
, &maxindex
);
1375 if (index
> maxindex
)
1380 while (radix_tree_is_internal_node(node
)) {
1381 parent
= entry_to_node(node
);
1382 offset
= radix_tree_descend(parent
, &node
, index
);
1386 node_tag_clear(root
, parent
, tag
, offset
);
1390 EXPORT_SYMBOL(radix_tree_tag_clear
);
1393 * radix_tree_tag_get - get a tag on a radix tree node
1394 * @root: radix tree root
1396 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1400 * 0: tag not present or not set
1403 * Note that the return value of this function may not be relied on, even if
1404 * the RCU lock is held, unless tag modification and node deletion are excluded
1407 int radix_tree_tag_get(struct radix_tree_root
*root
,
1408 unsigned long index
, unsigned int tag
)
1410 struct radix_tree_node
*node
, *parent
;
1411 unsigned long maxindex
;
1413 if (!root_tag_get(root
, tag
))
1416 radix_tree_load_root(root
, &node
, &maxindex
);
1417 if (index
> maxindex
)
1422 while (radix_tree_is_internal_node(node
)) {
1425 parent
= entry_to_node(node
);
1426 offset
= radix_tree_descend(parent
, &node
, index
);
1430 if (!tag_get(parent
, tag
, offset
))
1432 if (node
== RADIX_TREE_RETRY
)
1438 EXPORT_SYMBOL(radix_tree_tag_get
);
1440 static inline void __set_iter_shift(struct radix_tree_iter
*iter
,
1443 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1444 iter
->shift
= shift
;
1448 /* Construct iter->tags bit-mask from node->tags[tag] array */
1449 static void set_iter_tags(struct radix_tree_iter
*iter
,
1450 struct radix_tree_node
*node
, unsigned offset
,
1453 unsigned tag_long
= offset
/ BITS_PER_LONG
;
1454 unsigned tag_bit
= offset
% BITS_PER_LONG
;
1456 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
1458 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1459 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
1460 /* Pick tags from next element */
1462 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
1463 (BITS_PER_LONG
- tag_bit
);
1464 /* Clip chunk size, here only BITS_PER_LONG tags */
1465 iter
->next_index
= __radix_tree_iter_add(iter
, BITS_PER_LONG
);
1469 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1470 static void **skip_siblings(struct radix_tree_node
**nodep
,
1471 void **slot
, struct radix_tree_iter
*iter
)
1473 void *sib
= node_to_entry(slot
- 1);
1475 while (iter
->index
< iter
->next_index
) {
1476 *nodep
= rcu_dereference_raw(*slot
);
1477 if (*nodep
&& *nodep
!= sib
)
1480 iter
->index
= __radix_tree_iter_add(iter
, 1);
1488 void ** __radix_tree_next_slot(void **slot
, struct radix_tree_iter
*iter
,
1491 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1492 struct radix_tree_node
*node
= rcu_dereference_raw(*slot
);
1494 slot
= skip_siblings(&node
, slot
, iter
);
1496 while (radix_tree_is_internal_node(node
)) {
1498 unsigned long next_index
;
1500 if (node
== RADIX_TREE_RETRY
)
1502 node
= entry_to_node(node
);
1504 iter
->shift
= node
->shift
;
1506 if (flags
& RADIX_TREE_ITER_TAGGED
) {
1507 offset
= radix_tree_find_next_bit(node
, tag
, 0);
1508 if (offset
== RADIX_TREE_MAP_SIZE
)
1510 slot
= &node
->slots
[offset
];
1511 iter
->index
= __radix_tree_iter_add(iter
, offset
);
1512 set_iter_tags(iter
, node
, offset
, tag
);
1513 node
= rcu_dereference_raw(*slot
);
1516 slot
= &node
->slots
[0];
1518 node
= rcu_dereference_raw(*slot
);
1523 if (offset
== RADIX_TREE_MAP_SIZE
)
1526 iter
->index
= __radix_tree_iter_add(iter
, offset
);
1528 if ((flags
& RADIX_TREE_ITER_CONTIG
) && (offset
> 0))
1530 next_index
= (iter
->index
| shift_maxindex(iter
->shift
)) + 1;
1531 if (next_index
< iter
->next_index
)
1532 iter
->next_index
= next_index
;
1537 iter
->next_index
= 0;
1540 EXPORT_SYMBOL(__radix_tree_next_slot
);
1542 static void **skip_siblings(struct radix_tree_node
**nodep
,
1543 void **slot
, struct radix_tree_iter
*iter
)
1549 void **radix_tree_iter_resume(void **slot
, struct radix_tree_iter
*iter
)
1551 struct radix_tree_node
*node
;
1554 iter
->index
= __radix_tree_iter_add(iter
, 1);
1555 node
= rcu_dereference_raw(*slot
);
1556 skip_siblings(&node
, slot
, iter
);
1557 iter
->next_index
= iter
->index
;
1561 EXPORT_SYMBOL(radix_tree_iter_resume
);
1564 * radix_tree_next_chunk - find next chunk of slots for iteration
1566 * @root: radix tree root
1567 * @iter: iterator state
1568 * @flags: RADIX_TREE_ITER_* flags and tag index
1569 * Returns: pointer to chunk first slot, or NULL if iteration is over
1571 void **radix_tree_next_chunk(struct radix_tree_root
*root
,
1572 struct radix_tree_iter
*iter
, unsigned flags
)
1574 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1575 struct radix_tree_node
*node
, *child
;
1576 unsigned long index
, offset
, maxindex
;
1578 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
1582 * Catch next_index overflow after ~0UL. iter->index never overflows
1583 * during iterating; it can be zero only at the beginning.
1584 * And we cannot overflow iter->next_index in a single step,
1585 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1587 * This condition also used by radix_tree_next_slot() to stop
1588 * contiguous iterating, and forbid switching to the next chunk.
1590 index
= iter
->next_index
;
1591 if (!index
&& iter
->index
)
1595 radix_tree_load_root(root
, &child
, &maxindex
);
1596 if (index
> maxindex
)
1601 if (!radix_tree_is_internal_node(child
)) {
1602 /* Single-slot tree */
1603 iter
->index
= index
;
1604 iter
->next_index
= maxindex
+ 1;
1607 __set_iter_shift(iter
, 0);
1608 return (void **)&root
->rnode
;
1612 node
= entry_to_node(child
);
1613 offset
= radix_tree_descend(node
, &child
, index
);
1615 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
1616 !tag_get(node
, tag
, offset
) : !child
) {
1618 if (flags
& RADIX_TREE_ITER_CONTIG
)
1621 if (flags
& RADIX_TREE_ITER_TAGGED
)
1622 offset
= radix_tree_find_next_bit(node
, tag
,
1625 while (++offset
< RADIX_TREE_MAP_SIZE
) {
1626 void *slot
= node
->slots
[offset
];
1627 if (is_sibling_entry(node
, slot
))
1632 index
&= ~node_maxindex(node
);
1633 index
+= offset
<< node
->shift
;
1634 /* Overflow after ~0UL */
1637 if (offset
== RADIX_TREE_MAP_SIZE
)
1639 child
= rcu_dereference_raw(node
->slots
[offset
]);
1644 if (child
== RADIX_TREE_RETRY
)
1646 } while (radix_tree_is_internal_node(child
));
1648 /* Update the iterator state */
1649 iter
->index
= (index
&~ node_maxindex(node
)) | (offset
<< node
->shift
);
1650 iter
->next_index
= (index
| node_maxindex(node
)) + 1;
1652 __set_iter_shift(iter
, node
->shift
);
1654 if (flags
& RADIX_TREE_ITER_TAGGED
)
1655 set_iter_tags(iter
, node
, offset
, tag
);
1657 return node
->slots
+ offset
;
1659 EXPORT_SYMBOL(radix_tree_next_chunk
);
1662 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1663 * @root: radix tree root
1664 * @results: where the results of the lookup are placed
1665 * @first_index: start the lookup from this key
1666 * @max_items: place up to this many items at *results
1668 * Performs an index-ascending scan of the tree for present items. Places
1669 * them at *@results and returns the number of items which were placed at
1672 * The implementation is naive.
1674 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1675 * rcu_read_lock. In this case, rather than the returned results being
1676 * an atomic snapshot of the tree at a single point in time, the
1677 * semantics of an RCU protected gang lookup are as though multiple
1678 * radix_tree_lookups have been issued in individual locks, and results
1679 * stored in 'results'.
1682 radix_tree_gang_lookup(struct radix_tree_root
*root
, void **results
,
1683 unsigned long first_index
, unsigned int max_items
)
1685 struct radix_tree_iter iter
;
1687 unsigned int ret
= 0;
1689 if (unlikely(!max_items
))
1692 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1693 results
[ret
] = rcu_dereference_raw(*slot
);
1696 if (radix_tree_is_internal_node(results
[ret
])) {
1697 slot
= radix_tree_iter_retry(&iter
);
1700 if (++ret
== max_items
)
1706 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1709 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1710 * @root: radix tree root
1711 * @results: where the results of the lookup are placed
1712 * @indices: where their indices should be placed (but usually NULL)
1713 * @first_index: start the lookup from this key
1714 * @max_items: place up to this many items at *results
1716 * Performs an index-ascending scan of the tree for present items. Places
1717 * their slots at *@results and returns the number of items which were
1718 * placed at *@results.
1720 * The implementation is naive.
1722 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1723 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1724 * protection, radix_tree_deref_slot may fail requiring a retry.
1727 radix_tree_gang_lookup_slot(struct radix_tree_root
*root
,
1728 void ***results
, unsigned long *indices
,
1729 unsigned long first_index
, unsigned int max_items
)
1731 struct radix_tree_iter iter
;
1733 unsigned int ret
= 0;
1735 if (unlikely(!max_items
))
1738 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1739 results
[ret
] = slot
;
1741 indices
[ret
] = iter
.index
;
1742 if (++ret
== max_items
)
1748 EXPORT_SYMBOL(radix_tree_gang_lookup_slot
);
1751 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1753 * @root: radix tree root
1754 * @results: where the results of the lookup are placed
1755 * @first_index: start the lookup from this key
1756 * @max_items: place up to this many items at *results
1757 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1759 * Performs an index-ascending scan of the tree for present items which
1760 * have the tag indexed by @tag set. Places the items at *@results and
1761 * returns the number of items which were placed at *@results.
1764 radix_tree_gang_lookup_tag(struct radix_tree_root
*root
, void **results
,
1765 unsigned long first_index
, unsigned int max_items
,
1768 struct radix_tree_iter iter
;
1770 unsigned int ret
= 0;
1772 if (unlikely(!max_items
))
1775 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1776 results
[ret
] = rcu_dereference_raw(*slot
);
1779 if (radix_tree_is_internal_node(results
[ret
])) {
1780 slot
= radix_tree_iter_retry(&iter
);
1783 if (++ret
== max_items
)
1789 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1792 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1793 * radix tree based on a tag
1794 * @root: radix tree root
1795 * @results: where the results of the lookup are placed
1796 * @first_index: start the lookup from this key
1797 * @max_items: place up to this many items at *results
1798 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1800 * Performs an index-ascending scan of the tree for present items which
1801 * have the tag indexed by @tag set. Places the slots at *@results and
1802 * returns the number of slots which were placed at *@results.
1805 radix_tree_gang_lookup_tag_slot(struct radix_tree_root
*root
, void ***results
,
1806 unsigned long first_index
, unsigned int max_items
,
1809 struct radix_tree_iter iter
;
1811 unsigned int ret
= 0;
1813 if (unlikely(!max_items
))
1816 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1817 results
[ret
] = slot
;
1818 if (++ret
== max_items
)
1824 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1827 * __radix_tree_delete_node - try to free node after clearing a slot
1828 * @root: radix tree root
1829 * @node: node containing @index
1830 * @update_node: callback for changing leaf nodes
1831 * @private: private data to pass to @update_node
1833 * After clearing the slot at @index in @node from radix tree
1834 * rooted at @root, call this function to attempt freeing the
1835 * node and shrinking the tree.
1837 void __radix_tree_delete_node(struct radix_tree_root
*root
,
1838 struct radix_tree_node
*node
,
1839 radix_tree_update_node_t update_node
,
1842 delete_node(root
, node
, update_node
, private);
1846 * radix_tree_delete_item - delete an item from a radix tree
1847 * @root: radix tree root
1849 * @item: expected item
1851 * Remove @item at @index from the radix tree rooted at @root.
1853 * Returns the address of the deleted item, or NULL if it was not present
1854 * or the entry at the given @index was not @item.
1856 void *radix_tree_delete_item(struct radix_tree_root
*root
,
1857 unsigned long index
, void *item
)
1859 struct radix_tree_node
*node
;
1860 unsigned int offset
;
1865 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
1869 if (item
&& entry
!= item
)
1873 root_tag_clear_all(root
);
1878 offset
= get_slot_offset(node
, slot
);
1880 /* Clear all tags associated with the item to be deleted. */
1881 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1882 node_tag_clear(root
, node
, tag
, offset
);
1884 __radix_tree_replace(root
, node
, slot
, NULL
, NULL
, NULL
);
1888 EXPORT_SYMBOL(radix_tree_delete_item
);
1891 * radix_tree_delete - delete an item from a radix tree
1892 * @root: radix tree root
1895 * Remove the item at @index from the radix tree rooted at @root.
1897 * Returns the address of the deleted item, or NULL if it was not present.
1899 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1901 return radix_tree_delete_item(root
, index
, NULL
);
1903 EXPORT_SYMBOL(radix_tree_delete
);
1905 void radix_tree_clear_tags(struct radix_tree_root
*root
,
1906 struct radix_tree_node
*node
,
1910 unsigned int tag
, offset
= get_slot_offset(node
, slot
);
1911 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1912 node_tag_clear(root
, node
, tag
, offset
);
1914 /* Clear root node tags */
1915 root
->gfp_mask
&= __GFP_BITS_MASK
;
1920 * radix_tree_tagged - test whether any items in the tree are tagged
1921 * @root: radix tree root
1924 int radix_tree_tagged(struct radix_tree_root
*root
, unsigned int tag
)
1926 return root_tag_get(root
, tag
);
1928 EXPORT_SYMBOL(radix_tree_tagged
);
1931 radix_tree_node_ctor(void *arg
)
1933 struct radix_tree_node
*node
= arg
;
1935 memset(node
, 0, sizeof(*node
));
1936 INIT_LIST_HEAD(&node
->private_list
);
1939 static __init
unsigned long __maxindex(unsigned int height
)
1941 unsigned int width
= height
* RADIX_TREE_MAP_SHIFT
;
1942 int shift
= RADIX_TREE_INDEX_BITS
- width
;
1946 if (shift
>= BITS_PER_LONG
)
1948 return ~0UL >> shift
;
1951 static __init
void radix_tree_init_maxnodes(void)
1953 unsigned long height_to_maxindex
[RADIX_TREE_MAX_PATH
+ 1];
1956 for (i
= 0; i
< ARRAY_SIZE(height_to_maxindex
); i
++)
1957 height_to_maxindex
[i
] = __maxindex(i
);
1958 for (i
= 0; i
< ARRAY_SIZE(height_to_maxnodes
); i
++) {
1959 for (j
= i
; j
> 0; j
--)
1960 height_to_maxnodes
[i
] += height_to_maxindex
[j
- 1] + 1;
1964 static int radix_tree_cpu_dead(unsigned int cpu
)
1966 struct radix_tree_preload
*rtp
;
1967 struct radix_tree_node
*node
;
1969 /* Free per-cpu pool of preloaded nodes */
1970 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1973 rtp
->nodes
= node
->private_data
;
1974 kmem_cache_free(radix_tree_node_cachep
, node
);
1980 void __init
radix_tree_init(void)
1983 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1984 sizeof(struct radix_tree_node
), 0,
1985 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1986 radix_tree_node_ctor
);
1987 radix_tree_init_maxnodes();
1988 ret
= cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD
, "lib/radix:dead",
1989 NULL
, radix_tree_cpu_dead
);