mfd: arizona: Use irq_find_mapping when appropriate
[linux-2.6/btrfs-unstable.git] / drivers / md / raid10.c
blobbe1a9fca3b2d2ade369359d109d1a53ddf30d077
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
75 * Number of guaranteed r10bios in case of extreme VM load:
77 #define NR_RAID10_BIOS 256
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
89 #define IO_MADE_GOOD ((struct bio *)2)
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
97 static int max_queued_requests = 1024;
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
118 static void r10bio_pool_free(void *r10_bio, void *data)
120 kfree(r10_bio);
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
158 * Allocate bios.
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
198 return r10_bio;
200 out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207 out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
218 static void r10buf_pool_free(void *__r10_bio, void *data)
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
232 bio_put(bio);
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
238 r10bio_pool_free(r10bio, conf);
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
243 int i;
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
257 static void free_r10bio(struct r10bio *r10_bio)
259 struct r10conf *conf = r10_bio->mddev->private;
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
265 static void put_buf(struct r10bio *r10_bio)
267 struct r10conf *conf = r10_bio->mddev->private;
269 mempool_free(r10_bio, conf->r10buf_pool);
271 lower_barrier(conf);
274 static void reschedule_retry(struct r10bio *r10_bio)
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
296 static void raid_end_bio_io(struct r10bio *r10_bio)
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
318 allow_barrier(conf);
320 free_r10bio(r10_bio);
324 * Update disk head position estimator based on IRQ completion info.
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
328 struct r10conf *conf = r10_bio->mddev->private;
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
335 * Find the disk number which triggered given bio
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
340 int slot;
341 int repl = 0;
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
362 static void raid10_end_read_request(struct bio *bio)
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot, r10_bio);
378 if (uptodate) {
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
404 * oops, read error - keep the refcount on the rdev
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
417 static void close_write(struct r10bio *r10_bio)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
424 md_write_end(r10_bio->mddev);
427 static void one_write_done(struct r10bio *r10_bio)
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
442 static void raid10_end_write_request(struct bio *bio)
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
461 * this branch is our 'one mirror IO has finished' event handler:
463 if (bio->bi_error) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
477 } else {
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
487 sector_t first_bad;
488 int bad_sectors;
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
519 * Let's see if all mirrored write operations have finished
520 * already.
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
578 sector += stripe << geo->chunk_shift;
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 struct geom *geo = &conf->geo;
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
627 __raid10_find_phys(geo, r10bio);
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
668 chunk = sector >> geo->chunk_shift;
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
687 * The rdev for the device selected will have nr_pending incremented.
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
698 const sector_t this_sector = r10_bio->sector;
699 int disk, slot;
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
702 sector_t new_distance, best_dist;
703 struct md_rdev *best_rdev, *rdev = NULL;
704 int do_balance;
705 int best_slot;
706 struct geom *geo = &conf->geo;
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
710 sectors = r10_bio->sectors;
711 best_slot = -1;
712 best_rdev = NULL;
713 best_dist = MaxSector;
714 best_good_sectors = 0;
715 do_balance = 1;
717 * Check if we can balance. We can balance on the whole
718 * device if no resync is going on (recovery is ok), or below
719 * the resync window. We take the first readable disk when
720 * above the resync window.
722 if (conf->mddev->recovery_cp < MaxSector
723 && (this_sector + sectors >= conf->next_resync))
724 do_balance = 0;
726 for (slot = 0; slot < conf->copies ; slot++) {
727 sector_t first_bad;
728 int bad_sectors;
729 sector_t dev_sector;
731 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 continue;
733 disk = r10_bio->devs[slot].devnum;
734 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 rdev = rcu_dereference(conf->mirrors[disk].rdev);
738 if (rdev == NULL ||
739 test_bit(Faulty, &rdev->flags))
740 continue;
741 if (!test_bit(In_sync, &rdev->flags) &&
742 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743 continue;
745 dev_sector = r10_bio->devs[slot].addr;
746 if (is_badblock(rdev, dev_sector, sectors,
747 &first_bad, &bad_sectors)) {
748 if (best_dist < MaxSector)
749 /* Already have a better slot */
750 continue;
751 if (first_bad <= dev_sector) {
752 /* Cannot read here. If this is the
753 * 'primary' device, then we must not read
754 * beyond 'bad_sectors' from another device.
756 bad_sectors -= (dev_sector - first_bad);
757 if (!do_balance && sectors > bad_sectors)
758 sectors = bad_sectors;
759 if (best_good_sectors > sectors)
760 best_good_sectors = sectors;
761 } else {
762 sector_t good_sectors =
763 first_bad - dev_sector;
764 if (good_sectors > best_good_sectors) {
765 best_good_sectors = good_sectors;
766 best_slot = slot;
767 best_rdev = rdev;
769 if (!do_balance)
770 /* Must read from here */
771 break;
773 continue;
774 } else
775 best_good_sectors = sectors;
777 if (!do_balance)
778 break;
780 /* This optimisation is debatable, and completely destroys
781 * sequential read speed for 'far copies' arrays. So only
782 * keep it for 'near' arrays, and review those later.
784 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785 break;
787 /* for far > 1 always use the lowest address */
788 if (geo->far_copies > 1)
789 new_distance = r10_bio->devs[slot].addr;
790 else
791 new_distance = abs(r10_bio->devs[slot].addr -
792 conf->mirrors[disk].head_position);
793 if (new_distance < best_dist) {
794 best_dist = new_distance;
795 best_slot = slot;
796 best_rdev = rdev;
799 if (slot >= conf->copies) {
800 slot = best_slot;
801 rdev = best_rdev;
804 if (slot >= 0) {
805 atomic_inc(&rdev->nr_pending);
806 r10_bio->read_slot = slot;
807 } else
808 rdev = NULL;
809 rcu_read_unlock();
810 *max_sectors = best_good_sectors;
812 return rdev;
815 static int raid10_congested(struct mddev *mddev, int bits)
817 struct r10conf *conf = mddev->private;
818 int i, ret = 0;
820 if ((bits & (1 << WB_async_congested)) &&
821 conf->pending_count >= max_queued_requests)
822 return 1;
824 rcu_read_lock();
825 for (i = 0;
826 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827 && ret == 0;
828 i++) {
829 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
830 if (rdev && !test_bit(Faulty, &rdev->flags)) {
831 struct request_queue *q = bdev_get_queue(rdev->bdev);
833 ret |= bdi_congested(&q->backing_dev_info, bits);
836 rcu_read_unlock();
837 return ret;
840 static void flush_pending_writes(struct r10conf *conf)
842 /* Any writes that have been queued but are awaiting
843 * bitmap updates get flushed here.
845 spin_lock_irq(&conf->device_lock);
847 if (conf->pending_bio_list.head) {
848 struct bio *bio;
849 bio = bio_list_get(&conf->pending_bio_list);
850 conf->pending_count = 0;
851 spin_unlock_irq(&conf->device_lock);
852 /* flush any pending bitmap writes to disk
853 * before proceeding w/ I/O */
854 bitmap_unplug(conf->mddev->bitmap);
855 wake_up(&conf->wait_barrier);
857 while (bio) { /* submit pending writes */
858 struct bio *next = bio->bi_next;
859 bio->bi_next = NULL;
860 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
861 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862 /* Just ignore it */
863 bio_endio(bio);
864 else
865 generic_make_request(bio);
866 bio = next;
868 } else
869 spin_unlock_irq(&conf->device_lock);
872 /* Barriers....
873 * Sometimes we need to suspend IO while we do something else,
874 * either some resync/recovery, or reconfigure the array.
875 * To do this we raise a 'barrier'.
876 * The 'barrier' is a counter that can be raised multiple times
877 * to count how many activities are happening which preclude
878 * normal IO.
879 * We can only raise the barrier if there is no pending IO.
880 * i.e. if nr_pending == 0.
881 * We choose only to raise the barrier if no-one is waiting for the
882 * barrier to go down. This means that as soon as an IO request
883 * is ready, no other operations which require a barrier will start
884 * until the IO request has had a chance.
886 * So: regular IO calls 'wait_barrier'. When that returns there
887 * is no backgroup IO happening, It must arrange to call
888 * allow_barrier when it has finished its IO.
889 * backgroup IO calls must call raise_barrier. Once that returns
890 * there is no normal IO happeing. It must arrange to call
891 * lower_barrier when the particular background IO completes.
894 static void raise_barrier(struct r10conf *conf, int force)
896 BUG_ON(force && !conf->barrier);
897 spin_lock_irq(&conf->resync_lock);
899 /* Wait until no block IO is waiting (unless 'force') */
900 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
901 conf->resync_lock);
903 /* block any new IO from starting */
904 conf->barrier++;
906 /* Now wait for all pending IO to complete */
907 wait_event_lock_irq(conf->wait_barrier,
908 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
909 conf->resync_lock);
911 spin_unlock_irq(&conf->resync_lock);
914 static void lower_barrier(struct r10conf *conf)
916 unsigned long flags;
917 spin_lock_irqsave(&conf->resync_lock, flags);
918 conf->barrier--;
919 spin_unlock_irqrestore(&conf->resync_lock, flags);
920 wake_up(&conf->wait_barrier);
923 static void wait_barrier(struct r10conf *conf)
925 spin_lock_irq(&conf->resync_lock);
926 if (conf->barrier) {
927 conf->nr_waiting++;
928 /* Wait for the barrier to drop.
929 * However if there are already pending
930 * requests (preventing the barrier from
931 * rising completely), and the
932 * pre-process bio queue isn't empty,
933 * then don't wait, as we need to empty
934 * that queue to get the nr_pending
935 * count down.
937 wait_event_lock_irq(conf->wait_barrier,
938 !conf->barrier ||
939 (atomic_read(&conf->nr_pending) &&
940 current->bio_list &&
941 !bio_list_empty(current->bio_list)),
942 conf->resync_lock);
943 conf->nr_waiting--;
944 if (!conf->nr_waiting)
945 wake_up(&conf->wait_barrier);
947 atomic_inc(&conf->nr_pending);
948 spin_unlock_irq(&conf->resync_lock);
951 static void allow_barrier(struct r10conf *conf)
953 if ((atomic_dec_and_test(&conf->nr_pending)) ||
954 (conf->array_freeze_pending))
955 wake_up(&conf->wait_barrier);
958 static void freeze_array(struct r10conf *conf, int extra)
960 /* stop syncio and normal IO and wait for everything to
961 * go quiet.
962 * We increment barrier and nr_waiting, and then
963 * wait until nr_pending match nr_queued+extra
964 * This is called in the context of one normal IO request
965 * that has failed. Thus any sync request that might be pending
966 * will be blocked by nr_pending, and we need to wait for
967 * pending IO requests to complete or be queued for re-try.
968 * Thus the number queued (nr_queued) plus this request (extra)
969 * must match the number of pending IOs (nr_pending) before
970 * we continue.
972 spin_lock_irq(&conf->resync_lock);
973 conf->array_freeze_pending++;
974 conf->barrier++;
975 conf->nr_waiting++;
976 wait_event_lock_irq_cmd(conf->wait_barrier,
977 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
978 conf->resync_lock,
979 flush_pending_writes(conf));
981 conf->array_freeze_pending--;
982 spin_unlock_irq(&conf->resync_lock);
985 static void unfreeze_array(struct r10conf *conf)
987 /* reverse the effect of the freeze */
988 spin_lock_irq(&conf->resync_lock);
989 conf->barrier--;
990 conf->nr_waiting--;
991 wake_up(&conf->wait_barrier);
992 spin_unlock_irq(&conf->resync_lock);
995 static sector_t choose_data_offset(struct r10bio *r10_bio,
996 struct md_rdev *rdev)
998 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
999 test_bit(R10BIO_Previous, &r10_bio->state))
1000 return rdev->data_offset;
1001 else
1002 return rdev->new_data_offset;
1005 struct raid10_plug_cb {
1006 struct blk_plug_cb cb;
1007 struct bio_list pending;
1008 int pending_cnt;
1011 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1013 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1014 cb);
1015 struct mddev *mddev = plug->cb.data;
1016 struct r10conf *conf = mddev->private;
1017 struct bio *bio;
1019 if (from_schedule || current->bio_list) {
1020 spin_lock_irq(&conf->device_lock);
1021 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1022 conf->pending_count += plug->pending_cnt;
1023 spin_unlock_irq(&conf->device_lock);
1024 wake_up(&conf->wait_barrier);
1025 md_wakeup_thread(mddev->thread);
1026 kfree(plug);
1027 return;
1030 /* we aren't scheduling, so we can do the write-out directly. */
1031 bio = bio_list_get(&plug->pending);
1032 bitmap_unplug(mddev->bitmap);
1033 wake_up(&conf->wait_barrier);
1035 while (bio) { /* submit pending writes */
1036 struct bio *next = bio->bi_next;
1037 bio->bi_next = NULL;
1038 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1039 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1040 /* Just ignore it */
1041 bio_endio(bio);
1042 else
1043 generic_make_request(bio);
1044 bio = next;
1046 kfree(plug);
1049 static void __make_request(struct mddev *mddev, struct bio *bio)
1051 struct r10conf *conf = mddev->private;
1052 struct r10bio *r10_bio;
1053 struct bio *read_bio;
1054 int i;
1055 const int op = bio_op(bio);
1056 const int rw = bio_data_dir(bio);
1057 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1058 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1059 unsigned long flags;
1060 struct md_rdev *blocked_rdev;
1061 struct blk_plug_cb *cb;
1062 struct raid10_plug_cb *plug = NULL;
1063 int sectors_handled;
1064 int max_sectors;
1065 int sectors;
1067 md_write_start(mddev, bio);
1070 * Register the new request and wait if the reconstruction
1071 * thread has put up a bar for new requests.
1072 * Continue immediately if no resync is active currently.
1074 wait_barrier(conf);
1076 sectors = bio_sectors(bio);
1077 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1078 bio->bi_iter.bi_sector < conf->reshape_progress &&
1079 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1080 /* IO spans the reshape position. Need to wait for
1081 * reshape to pass
1083 allow_barrier(conf);
1084 wait_event(conf->wait_barrier,
1085 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1086 conf->reshape_progress >= bio->bi_iter.bi_sector +
1087 sectors);
1088 wait_barrier(conf);
1090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1091 bio_data_dir(bio) == WRITE &&
1092 (mddev->reshape_backwards
1093 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1094 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1095 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1096 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1097 /* Need to update reshape_position in metadata */
1098 mddev->reshape_position = conf->reshape_progress;
1099 set_mask_bits(&mddev->flags, 0,
1100 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1101 md_wakeup_thread(mddev->thread);
1102 wait_event(mddev->sb_wait,
1103 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1105 conf->reshape_safe = mddev->reshape_position;
1108 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1110 r10_bio->master_bio = bio;
1111 r10_bio->sectors = sectors;
1113 r10_bio->mddev = mddev;
1114 r10_bio->sector = bio->bi_iter.bi_sector;
1115 r10_bio->state = 0;
1117 /* We might need to issue multiple reads to different
1118 * devices if there are bad blocks around, so we keep
1119 * track of the number of reads in bio->bi_phys_segments.
1120 * If this is 0, there is only one r10_bio and no locking
1121 * will be needed when the request completes. If it is
1122 * non-zero, then it is the number of not-completed requests.
1124 bio->bi_phys_segments = 0;
1125 bio_clear_flag(bio, BIO_SEG_VALID);
1127 if (rw == READ) {
1129 * read balancing logic:
1131 struct md_rdev *rdev;
1132 int slot;
1134 read_again:
1135 rdev = read_balance(conf, r10_bio, &max_sectors);
1136 if (!rdev) {
1137 raid_end_bio_io(r10_bio);
1138 return;
1140 slot = r10_bio->read_slot;
1142 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1143 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1144 max_sectors);
1146 r10_bio->devs[slot].bio = read_bio;
1147 r10_bio->devs[slot].rdev = rdev;
1149 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1150 choose_data_offset(r10_bio, rdev);
1151 read_bio->bi_bdev = rdev->bdev;
1152 read_bio->bi_end_io = raid10_end_read_request;
1153 bio_set_op_attrs(read_bio, op, do_sync);
1154 read_bio->bi_private = r10_bio;
1156 if (max_sectors < r10_bio->sectors) {
1157 /* Could not read all from this device, so we will
1158 * need another r10_bio.
1160 sectors_handled = (r10_bio->sector + max_sectors
1161 - bio->bi_iter.bi_sector);
1162 r10_bio->sectors = max_sectors;
1163 spin_lock_irq(&conf->device_lock);
1164 if (bio->bi_phys_segments == 0)
1165 bio->bi_phys_segments = 2;
1166 else
1167 bio->bi_phys_segments++;
1168 spin_unlock_irq(&conf->device_lock);
1169 /* Cannot call generic_make_request directly
1170 * as that will be queued in __generic_make_request
1171 * and subsequent mempool_alloc might block
1172 * waiting for it. so hand bio over to raid10d.
1174 reschedule_retry(r10_bio);
1176 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1178 r10_bio->master_bio = bio;
1179 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1180 r10_bio->state = 0;
1181 r10_bio->mddev = mddev;
1182 r10_bio->sector = bio->bi_iter.bi_sector +
1183 sectors_handled;
1184 goto read_again;
1185 } else
1186 generic_make_request(read_bio);
1187 return;
1191 * WRITE:
1193 if (conf->pending_count >= max_queued_requests) {
1194 md_wakeup_thread(mddev->thread);
1195 wait_event(conf->wait_barrier,
1196 conf->pending_count < max_queued_requests);
1198 /* first select target devices under rcu_lock and
1199 * inc refcount on their rdev. Record them by setting
1200 * bios[x] to bio
1201 * If there are known/acknowledged bad blocks on any device
1202 * on which we have seen a write error, we want to avoid
1203 * writing to those blocks. This potentially requires several
1204 * writes to write around the bad blocks. Each set of writes
1205 * gets its own r10_bio with a set of bios attached. The number
1206 * of r10_bios is recored in bio->bi_phys_segments just as with
1207 * the read case.
1210 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1211 raid10_find_phys(conf, r10_bio);
1212 retry_write:
1213 blocked_rdev = NULL;
1214 rcu_read_lock();
1215 max_sectors = r10_bio->sectors;
1217 for (i = 0; i < conf->copies; i++) {
1218 int d = r10_bio->devs[i].devnum;
1219 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1220 struct md_rdev *rrdev = rcu_dereference(
1221 conf->mirrors[d].replacement);
1222 if (rdev == rrdev)
1223 rrdev = NULL;
1224 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1225 atomic_inc(&rdev->nr_pending);
1226 blocked_rdev = rdev;
1227 break;
1229 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1230 atomic_inc(&rrdev->nr_pending);
1231 blocked_rdev = rrdev;
1232 break;
1234 if (rdev && (test_bit(Faulty, &rdev->flags)))
1235 rdev = NULL;
1236 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1237 rrdev = NULL;
1239 r10_bio->devs[i].bio = NULL;
1240 r10_bio->devs[i].repl_bio = NULL;
1242 if (!rdev && !rrdev) {
1243 set_bit(R10BIO_Degraded, &r10_bio->state);
1244 continue;
1246 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1247 sector_t first_bad;
1248 sector_t dev_sector = r10_bio->devs[i].addr;
1249 int bad_sectors;
1250 int is_bad;
1252 is_bad = is_badblock(rdev, dev_sector,
1253 max_sectors,
1254 &first_bad, &bad_sectors);
1255 if (is_bad < 0) {
1256 /* Mustn't write here until the bad block
1257 * is acknowledged
1259 atomic_inc(&rdev->nr_pending);
1260 set_bit(BlockedBadBlocks, &rdev->flags);
1261 blocked_rdev = rdev;
1262 break;
1264 if (is_bad && first_bad <= dev_sector) {
1265 /* Cannot write here at all */
1266 bad_sectors -= (dev_sector - first_bad);
1267 if (bad_sectors < max_sectors)
1268 /* Mustn't write more than bad_sectors
1269 * to other devices yet
1271 max_sectors = bad_sectors;
1272 /* We don't set R10BIO_Degraded as that
1273 * only applies if the disk is missing,
1274 * so it might be re-added, and we want to
1275 * know to recover this chunk.
1276 * In this case the device is here, and the
1277 * fact that this chunk is not in-sync is
1278 * recorded in the bad block log.
1280 continue;
1282 if (is_bad) {
1283 int good_sectors = first_bad - dev_sector;
1284 if (good_sectors < max_sectors)
1285 max_sectors = good_sectors;
1288 if (rdev) {
1289 r10_bio->devs[i].bio = bio;
1290 atomic_inc(&rdev->nr_pending);
1292 if (rrdev) {
1293 r10_bio->devs[i].repl_bio = bio;
1294 atomic_inc(&rrdev->nr_pending);
1297 rcu_read_unlock();
1299 if (unlikely(blocked_rdev)) {
1300 /* Have to wait for this device to get unblocked, then retry */
1301 int j;
1302 int d;
1304 for (j = 0; j < i; j++) {
1305 if (r10_bio->devs[j].bio) {
1306 d = r10_bio->devs[j].devnum;
1307 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1309 if (r10_bio->devs[j].repl_bio) {
1310 struct md_rdev *rdev;
1311 d = r10_bio->devs[j].devnum;
1312 rdev = conf->mirrors[d].replacement;
1313 if (!rdev) {
1314 /* Race with remove_disk */
1315 smp_mb();
1316 rdev = conf->mirrors[d].rdev;
1318 rdev_dec_pending(rdev, mddev);
1321 allow_barrier(conf);
1322 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1323 wait_barrier(conf);
1324 goto retry_write;
1327 if (max_sectors < r10_bio->sectors) {
1328 /* We are splitting this into multiple parts, so
1329 * we need to prepare for allocating another r10_bio.
1331 r10_bio->sectors = max_sectors;
1332 spin_lock_irq(&conf->device_lock);
1333 if (bio->bi_phys_segments == 0)
1334 bio->bi_phys_segments = 2;
1335 else
1336 bio->bi_phys_segments++;
1337 spin_unlock_irq(&conf->device_lock);
1339 sectors_handled = r10_bio->sector + max_sectors -
1340 bio->bi_iter.bi_sector;
1342 atomic_set(&r10_bio->remaining, 1);
1343 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1345 for (i = 0; i < conf->copies; i++) {
1346 struct bio *mbio;
1347 int d = r10_bio->devs[i].devnum;
1348 if (r10_bio->devs[i].bio) {
1349 struct md_rdev *rdev = conf->mirrors[d].rdev;
1350 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1351 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1352 max_sectors);
1353 r10_bio->devs[i].bio = mbio;
1355 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1356 choose_data_offset(r10_bio,
1357 rdev));
1358 mbio->bi_bdev = rdev->bdev;
1359 mbio->bi_end_io = raid10_end_write_request;
1360 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1361 mbio->bi_private = r10_bio;
1363 atomic_inc(&r10_bio->remaining);
1365 cb = blk_check_plugged(raid10_unplug, mddev,
1366 sizeof(*plug));
1367 if (cb)
1368 plug = container_of(cb, struct raid10_plug_cb,
1369 cb);
1370 else
1371 plug = NULL;
1372 spin_lock_irqsave(&conf->device_lock, flags);
1373 if (plug) {
1374 bio_list_add(&plug->pending, mbio);
1375 plug->pending_cnt++;
1376 } else {
1377 bio_list_add(&conf->pending_bio_list, mbio);
1378 conf->pending_count++;
1380 spin_unlock_irqrestore(&conf->device_lock, flags);
1381 if (!plug)
1382 md_wakeup_thread(mddev->thread);
1385 if (r10_bio->devs[i].repl_bio) {
1386 struct md_rdev *rdev = conf->mirrors[d].replacement;
1387 if (rdev == NULL) {
1388 /* Replacement just got moved to main 'rdev' */
1389 smp_mb();
1390 rdev = conf->mirrors[d].rdev;
1392 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1393 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1394 max_sectors);
1395 r10_bio->devs[i].repl_bio = mbio;
1397 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1398 choose_data_offset(
1399 r10_bio, rdev));
1400 mbio->bi_bdev = rdev->bdev;
1401 mbio->bi_end_io = raid10_end_write_request;
1402 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1403 mbio->bi_private = r10_bio;
1405 atomic_inc(&r10_bio->remaining);
1406 spin_lock_irqsave(&conf->device_lock, flags);
1407 bio_list_add(&conf->pending_bio_list, mbio);
1408 conf->pending_count++;
1409 spin_unlock_irqrestore(&conf->device_lock, flags);
1410 if (!mddev_check_plugged(mddev))
1411 md_wakeup_thread(mddev->thread);
1415 /* Don't remove the bias on 'remaining' (one_write_done) until
1416 * after checking if we need to go around again.
1419 if (sectors_handled < bio_sectors(bio)) {
1420 one_write_done(r10_bio);
1421 /* We need another r10_bio. It has already been counted
1422 * in bio->bi_phys_segments.
1424 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1426 r10_bio->master_bio = bio;
1427 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1429 r10_bio->mddev = mddev;
1430 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1431 r10_bio->state = 0;
1432 goto retry_write;
1434 one_write_done(r10_bio);
1437 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1439 struct r10conf *conf = mddev->private;
1440 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1441 int chunk_sects = chunk_mask + 1;
1443 struct bio *split;
1445 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1446 md_flush_request(mddev, bio);
1447 return;
1450 do {
1453 * If this request crosses a chunk boundary, we need to split
1454 * it.
1456 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1457 bio_sectors(bio) > chunk_sects
1458 && (conf->geo.near_copies < conf->geo.raid_disks
1459 || conf->prev.near_copies <
1460 conf->prev.raid_disks))) {
1461 split = bio_split(bio, chunk_sects -
1462 (bio->bi_iter.bi_sector &
1463 (chunk_sects - 1)),
1464 GFP_NOIO, fs_bio_set);
1465 bio_chain(split, bio);
1466 } else {
1467 split = bio;
1470 __make_request(mddev, split);
1471 } while (split != bio);
1473 /* In case raid10d snuck in to freeze_array */
1474 wake_up(&conf->wait_barrier);
1477 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1479 struct r10conf *conf = mddev->private;
1480 int i;
1482 if (conf->geo.near_copies < conf->geo.raid_disks)
1483 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1484 if (conf->geo.near_copies > 1)
1485 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1486 if (conf->geo.far_copies > 1) {
1487 if (conf->geo.far_offset)
1488 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1489 else
1490 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1491 if (conf->geo.far_set_size != conf->geo.raid_disks)
1492 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1494 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495 conf->geo.raid_disks - mddev->degraded);
1496 rcu_read_lock();
1497 for (i = 0; i < conf->geo.raid_disks; i++) {
1498 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1499 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1501 rcu_read_unlock();
1502 seq_printf(seq, "]");
1505 /* check if there are enough drives for
1506 * every block to appear on atleast one.
1507 * Don't consider the device numbered 'ignore'
1508 * as we might be about to remove it.
1510 static int _enough(struct r10conf *conf, int previous, int ignore)
1512 int first = 0;
1513 int has_enough = 0;
1514 int disks, ncopies;
1515 if (previous) {
1516 disks = conf->prev.raid_disks;
1517 ncopies = conf->prev.near_copies;
1518 } else {
1519 disks = conf->geo.raid_disks;
1520 ncopies = conf->geo.near_copies;
1523 rcu_read_lock();
1524 do {
1525 int n = conf->copies;
1526 int cnt = 0;
1527 int this = first;
1528 while (n--) {
1529 struct md_rdev *rdev;
1530 if (this != ignore &&
1531 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1532 test_bit(In_sync, &rdev->flags))
1533 cnt++;
1534 this = (this+1) % disks;
1536 if (cnt == 0)
1537 goto out;
1538 first = (first + ncopies) % disks;
1539 } while (first != 0);
1540 has_enough = 1;
1541 out:
1542 rcu_read_unlock();
1543 return has_enough;
1546 static int enough(struct r10conf *conf, int ignore)
1548 /* when calling 'enough', both 'prev' and 'geo' must
1549 * be stable.
1550 * This is ensured if ->reconfig_mutex or ->device_lock
1551 * is held.
1553 return _enough(conf, 0, ignore) &&
1554 _enough(conf, 1, ignore);
1557 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1559 char b[BDEVNAME_SIZE];
1560 struct r10conf *conf = mddev->private;
1561 unsigned long flags;
1564 * If it is not operational, then we have already marked it as dead
1565 * else if it is the last working disks, ignore the error, let the
1566 * next level up know.
1567 * else mark the drive as failed
1569 spin_lock_irqsave(&conf->device_lock, flags);
1570 if (test_bit(In_sync, &rdev->flags)
1571 && !enough(conf, rdev->raid_disk)) {
1573 * Don't fail the drive, just return an IO error.
1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1576 return;
1578 if (test_and_clear_bit(In_sync, &rdev->flags))
1579 mddev->degraded++;
1581 * If recovery is running, make sure it aborts.
1583 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1584 set_bit(Blocked, &rdev->flags);
1585 set_bit(Faulty, &rdev->flags);
1586 set_mask_bits(&mddev->flags, 0,
1587 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1588 spin_unlock_irqrestore(&conf->device_lock, flags);
1589 printk(KERN_ALERT
1590 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1591 "md/raid10:%s: Operation continuing on %d devices.\n",
1592 mdname(mddev), bdevname(rdev->bdev, b),
1593 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1596 static void print_conf(struct r10conf *conf)
1598 int i;
1599 struct md_rdev *rdev;
1601 printk(KERN_DEBUG "RAID10 conf printout:\n");
1602 if (!conf) {
1603 printk(KERN_DEBUG "(!conf)\n");
1604 return;
1606 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1607 conf->geo.raid_disks);
1609 /* This is only called with ->reconfix_mutex held, so
1610 * rcu protection of rdev is not needed */
1611 for (i = 0; i < conf->geo.raid_disks; i++) {
1612 char b[BDEVNAME_SIZE];
1613 rdev = conf->mirrors[i].rdev;
1614 if (rdev)
1615 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1616 i, !test_bit(In_sync, &rdev->flags),
1617 !test_bit(Faulty, &rdev->flags),
1618 bdevname(rdev->bdev,b));
1622 static void close_sync(struct r10conf *conf)
1624 wait_barrier(conf);
1625 allow_barrier(conf);
1627 mempool_destroy(conf->r10buf_pool);
1628 conf->r10buf_pool = NULL;
1631 static int raid10_spare_active(struct mddev *mddev)
1633 int i;
1634 struct r10conf *conf = mddev->private;
1635 struct raid10_info *tmp;
1636 int count = 0;
1637 unsigned long flags;
1640 * Find all non-in_sync disks within the RAID10 configuration
1641 * and mark them in_sync
1643 for (i = 0; i < conf->geo.raid_disks; i++) {
1644 tmp = conf->mirrors + i;
1645 if (tmp->replacement
1646 && tmp->replacement->recovery_offset == MaxSector
1647 && !test_bit(Faulty, &tmp->replacement->flags)
1648 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649 /* Replacement has just become active */
1650 if (!tmp->rdev
1651 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652 count++;
1653 if (tmp->rdev) {
1654 /* Replaced device not technically faulty,
1655 * but we need to be sure it gets removed
1656 * and never re-added.
1658 set_bit(Faulty, &tmp->rdev->flags);
1659 sysfs_notify_dirent_safe(
1660 tmp->rdev->sysfs_state);
1662 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663 } else if (tmp->rdev
1664 && tmp->rdev->recovery_offset == MaxSector
1665 && !test_bit(Faulty, &tmp->rdev->flags)
1666 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1667 count++;
1668 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1671 spin_lock_irqsave(&conf->device_lock, flags);
1672 mddev->degraded -= count;
1673 spin_unlock_irqrestore(&conf->device_lock, flags);
1675 print_conf(conf);
1676 return count;
1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1681 struct r10conf *conf = mddev->private;
1682 int err = -EEXIST;
1683 int mirror;
1684 int first = 0;
1685 int last = conf->geo.raid_disks - 1;
1687 if (mddev->recovery_cp < MaxSector)
1688 /* only hot-add to in-sync arrays, as recovery is
1689 * very different from resync
1691 return -EBUSY;
1692 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1693 return -EINVAL;
1695 if (md_integrity_add_rdev(rdev, mddev))
1696 return -ENXIO;
1698 if (rdev->raid_disk >= 0)
1699 first = last = rdev->raid_disk;
1701 if (rdev->saved_raid_disk >= first &&
1702 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703 mirror = rdev->saved_raid_disk;
1704 else
1705 mirror = first;
1706 for ( ; mirror <= last ; mirror++) {
1707 struct raid10_info *p = &conf->mirrors[mirror];
1708 if (p->recovery_disabled == mddev->recovery_disabled)
1709 continue;
1710 if (p->rdev) {
1711 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712 p->replacement != NULL)
1713 continue;
1714 clear_bit(In_sync, &rdev->flags);
1715 set_bit(Replacement, &rdev->flags);
1716 rdev->raid_disk = mirror;
1717 err = 0;
1718 if (mddev->gendisk)
1719 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720 rdev->data_offset << 9);
1721 conf->fullsync = 1;
1722 rcu_assign_pointer(p->replacement, rdev);
1723 break;
1726 if (mddev->gendisk)
1727 disk_stack_limits(mddev->gendisk, rdev->bdev,
1728 rdev->data_offset << 9);
1730 p->head_position = 0;
1731 p->recovery_disabled = mddev->recovery_disabled - 1;
1732 rdev->raid_disk = mirror;
1733 err = 0;
1734 if (rdev->saved_raid_disk != mirror)
1735 conf->fullsync = 1;
1736 rcu_assign_pointer(p->rdev, rdev);
1737 break;
1739 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1742 print_conf(conf);
1743 return err;
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1748 struct r10conf *conf = mddev->private;
1749 int err = 0;
1750 int number = rdev->raid_disk;
1751 struct md_rdev **rdevp;
1752 struct raid10_info *p = conf->mirrors + number;
1754 print_conf(conf);
1755 if (rdev == p->rdev)
1756 rdevp = &p->rdev;
1757 else if (rdev == p->replacement)
1758 rdevp = &p->replacement;
1759 else
1760 return 0;
1762 if (test_bit(In_sync, &rdev->flags) ||
1763 atomic_read(&rdev->nr_pending)) {
1764 err = -EBUSY;
1765 goto abort;
1767 /* Only remove non-faulty devices if recovery
1768 * is not possible.
1770 if (!test_bit(Faulty, &rdev->flags) &&
1771 mddev->recovery_disabled != p->recovery_disabled &&
1772 (!p->replacement || p->replacement == rdev) &&
1773 number < conf->geo.raid_disks &&
1774 enough(conf, -1)) {
1775 err = -EBUSY;
1776 goto abort;
1778 *rdevp = NULL;
1779 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1780 synchronize_rcu();
1781 if (atomic_read(&rdev->nr_pending)) {
1782 /* lost the race, try later */
1783 err = -EBUSY;
1784 *rdevp = rdev;
1785 goto abort;
1788 if (p->replacement) {
1789 /* We must have just cleared 'rdev' */
1790 p->rdev = p->replacement;
1791 clear_bit(Replacement, &p->replacement->flags);
1792 smp_mb(); /* Make sure other CPUs may see both as identical
1793 * but will never see neither -- if they are careful.
1795 p->replacement = NULL;
1796 clear_bit(WantReplacement, &rdev->flags);
1797 } else
1798 /* We might have just remove the Replacement as faulty
1799 * Clear the flag just in case
1801 clear_bit(WantReplacement, &rdev->flags);
1803 err = md_integrity_register(mddev);
1805 abort:
1807 print_conf(conf);
1808 return err;
1811 static void end_sync_read(struct bio *bio)
1813 struct r10bio *r10_bio = bio->bi_private;
1814 struct r10conf *conf = r10_bio->mddev->private;
1815 int d;
1817 if (bio == r10_bio->master_bio) {
1818 /* this is a reshape read */
1819 d = r10_bio->read_slot; /* really the read dev */
1820 } else
1821 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1823 if (!bio->bi_error)
1824 set_bit(R10BIO_Uptodate, &r10_bio->state);
1825 else
1826 /* The write handler will notice the lack of
1827 * R10BIO_Uptodate and record any errors etc
1829 atomic_add(r10_bio->sectors,
1830 &conf->mirrors[d].rdev->corrected_errors);
1832 /* for reconstruct, we always reschedule after a read.
1833 * for resync, only after all reads
1835 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1836 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837 atomic_dec_and_test(&r10_bio->remaining)) {
1838 /* we have read all the blocks,
1839 * do the comparison in process context in raid10d
1841 reschedule_retry(r10_bio);
1845 static void end_sync_request(struct r10bio *r10_bio)
1847 struct mddev *mddev = r10_bio->mddev;
1849 while (atomic_dec_and_test(&r10_bio->remaining)) {
1850 if (r10_bio->master_bio == NULL) {
1851 /* the primary of several recovery bios */
1852 sector_t s = r10_bio->sectors;
1853 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854 test_bit(R10BIO_WriteError, &r10_bio->state))
1855 reschedule_retry(r10_bio);
1856 else
1857 put_buf(r10_bio);
1858 md_done_sync(mddev, s, 1);
1859 break;
1860 } else {
1861 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1862 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863 test_bit(R10BIO_WriteError, &r10_bio->state))
1864 reschedule_retry(r10_bio);
1865 else
1866 put_buf(r10_bio);
1867 r10_bio = r10_bio2;
1872 static void end_sync_write(struct bio *bio)
1874 struct r10bio *r10_bio = bio->bi_private;
1875 struct mddev *mddev = r10_bio->mddev;
1876 struct r10conf *conf = mddev->private;
1877 int d;
1878 sector_t first_bad;
1879 int bad_sectors;
1880 int slot;
1881 int repl;
1882 struct md_rdev *rdev = NULL;
1884 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885 if (repl)
1886 rdev = conf->mirrors[d].replacement;
1887 else
1888 rdev = conf->mirrors[d].rdev;
1890 if (bio->bi_error) {
1891 if (repl)
1892 md_error(mddev, rdev);
1893 else {
1894 set_bit(WriteErrorSeen, &rdev->flags);
1895 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896 set_bit(MD_RECOVERY_NEEDED,
1897 &rdev->mddev->recovery);
1898 set_bit(R10BIO_WriteError, &r10_bio->state);
1900 } else if (is_badblock(rdev,
1901 r10_bio->devs[slot].addr,
1902 r10_bio->sectors,
1903 &first_bad, &bad_sectors))
1904 set_bit(R10BIO_MadeGood, &r10_bio->state);
1906 rdev_dec_pending(rdev, mddev);
1908 end_sync_request(r10_bio);
1912 * Note: sync and recover and handled very differently for raid10
1913 * This code is for resync.
1914 * For resync, we read through virtual addresses and read all blocks.
1915 * If there is any error, we schedule a write. The lowest numbered
1916 * drive is authoritative.
1917 * However requests come for physical address, so we need to map.
1918 * For every physical address there are raid_disks/copies virtual addresses,
1919 * which is always are least one, but is not necessarly an integer.
1920 * This means that a physical address can span multiple chunks, so we may
1921 * have to submit multiple io requests for a single sync request.
1924 * We check if all blocks are in-sync and only write to blocks that
1925 * aren't in sync
1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1929 struct r10conf *conf = mddev->private;
1930 int i, first;
1931 struct bio *tbio, *fbio;
1932 int vcnt;
1934 atomic_set(&r10_bio->remaining, 1);
1936 /* find the first device with a block */
1937 for (i=0; i<conf->copies; i++)
1938 if (!r10_bio->devs[i].bio->bi_error)
1939 break;
1941 if (i == conf->copies)
1942 goto done;
1944 first = i;
1945 fbio = r10_bio->devs[i].bio;
1946 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1947 fbio->bi_iter.bi_idx = 0;
1949 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1950 /* now find blocks with errors */
1951 for (i=0 ; i < conf->copies ; i++) {
1952 int j, d;
1954 tbio = r10_bio->devs[i].bio;
1956 if (tbio->bi_end_io != end_sync_read)
1957 continue;
1958 if (i == first)
1959 continue;
1960 if (!r10_bio->devs[i].bio->bi_error) {
1961 /* We know that the bi_io_vec layout is the same for
1962 * both 'first' and 'i', so we just compare them.
1963 * All vec entries are PAGE_SIZE;
1965 int sectors = r10_bio->sectors;
1966 for (j = 0; j < vcnt; j++) {
1967 int len = PAGE_SIZE;
1968 if (sectors < (len / 512))
1969 len = sectors * 512;
1970 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1971 page_address(tbio->bi_io_vec[j].bv_page),
1972 len))
1973 break;
1974 sectors -= len/512;
1976 if (j == vcnt)
1977 continue;
1978 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1979 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1980 /* Don't fix anything. */
1981 continue;
1983 /* Ok, we need to write this bio, either to correct an
1984 * inconsistency or to correct an unreadable block.
1985 * First we need to fixup bv_offset, bv_len and
1986 * bi_vecs, as the read request might have corrupted these
1988 bio_reset(tbio);
1990 tbio->bi_vcnt = vcnt;
1991 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1992 tbio->bi_private = r10_bio;
1993 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994 tbio->bi_end_io = end_sync_write;
1995 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1997 bio_copy_data(tbio, fbio);
1999 d = r10_bio->devs[i].devnum;
2000 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2001 atomic_inc(&r10_bio->remaining);
2002 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2004 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2005 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2006 generic_make_request(tbio);
2009 /* Now write out to any replacement devices
2010 * that are active
2012 for (i = 0; i < conf->copies; i++) {
2013 int d;
2015 tbio = r10_bio->devs[i].repl_bio;
2016 if (!tbio || !tbio->bi_end_io)
2017 continue;
2018 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2019 && r10_bio->devs[i].bio != fbio)
2020 bio_copy_data(tbio, fbio);
2021 d = r10_bio->devs[i].devnum;
2022 atomic_inc(&r10_bio->remaining);
2023 md_sync_acct(conf->mirrors[d].replacement->bdev,
2024 bio_sectors(tbio));
2025 generic_make_request(tbio);
2028 done:
2029 if (atomic_dec_and_test(&r10_bio->remaining)) {
2030 md_done_sync(mddev, r10_bio->sectors, 1);
2031 put_buf(r10_bio);
2036 * Now for the recovery code.
2037 * Recovery happens across physical sectors.
2038 * We recover all non-is_sync drives by finding the virtual address of
2039 * each, and then choose a working drive that also has that virt address.
2040 * There is a separate r10_bio for each non-in_sync drive.
2041 * Only the first two slots are in use. The first for reading,
2042 * The second for writing.
2045 static void fix_recovery_read_error(struct r10bio *r10_bio)
2047 /* We got a read error during recovery.
2048 * We repeat the read in smaller page-sized sections.
2049 * If a read succeeds, write it to the new device or record
2050 * a bad block if we cannot.
2051 * If a read fails, record a bad block on both old and
2052 * new devices.
2054 struct mddev *mddev = r10_bio->mddev;
2055 struct r10conf *conf = mddev->private;
2056 struct bio *bio = r10_bio->devs[0].bio;
2057 sector_t sect = 0;
2058 int sectors = r10_bio->sectors;
2059 int idx = 0;
2060 int dr = r10_bio->devs[0].devnum;
2061 int dw = r10_bio->devs[1].devnum;
2063 while (sectors) {
2064 int s = sectors;
2065 struct md_rdev *rdev;
2066 sector_t addr;
2067 int ok;
2069 if (s > (PAGE_SIZE>>9))
2070 s = PAGE_SIZE >> 9;
2072 rdev = conf->mirrors[dr].rdev;
2073 addr = r10_bio->devs[0].addr + sect,
2074 ok = sync_page_io(rdev,
2075 addr,
2076 s << 9,
2077 bio->bi_io_vec[idx].bv_page,
2078 REQ_OP_READ, 0, false);
2079 if (ok) {
2080 rdev = conf->mirrors[dw].rdev;
2081 addr = r10_bio->devs[1].addr + sect;
2082 ok = sync_page_io(rdev,
2083 addr,
2084 s << 9,
2085 bio->bi_io_vec[idx].bv_page,
2086 REQ_OP_WRITE, 0, false);
2087 if (!ok) {
2088 set_bit(WriteErrorSeen, &rdev->flags);
2089 if (!test_and_set_bit(WantReplacement,
2090 &rdev->flags))
2091 set_bit(MD_RECOVERY_NEEDED,
2092 &rdev->mddev->recovery);
2095 if (!ok) {
2096 /* We don't worry if we cannot set a bad block -
2097 * it really is bad so there is no loss in not
2098 * recording it yet
2100 rdev_set_badblocks(rdev, addr, s, 0);
2102 if (rdev != conf->mirrors[dw].rdev) {
2103 /* need bad block on destination too */
2104 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2105 addr = r10_bio->devs[1].addr + sect;
2106 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2107 if (!ok) {
2108 /* just abort the recovery */
2109 printk(KERN_NOTICE
2110 "md/raid10:%s: recovery aborted"
2111 " due to read error\n",
2112 mdname(mddev));
2114 conf->mirrors[dw].recovery_disabled
2115 = mddev->recovery_disabled;
2116 set_bit(MD_RECOVERY_INTR,
2117 &mddev->recovery);
2118 break;
2123 sectors -= s;
2124 sect += s;
2125 idx++;
2129 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2131 struct r10conf *conf = mddev->private;
2132 int d;
2133 struct bio *wbio, *wbio2;
2135 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2136 fix_recovery_read_error(r10_bio);
2137 end_sync_request(r10_bio);
2138 return;
2142 * share the pages with the first bio
2143 * and submit the write request
2145 d = r10_bio->devs[1].devnum;
2146 wbio = r10_bio->devs[1].bio;
2147 wbio2 = r10_bio->devs[1].repl_bio;
2148 /* Need to test wbio2->bi_end_io before we call
2149 * generic_make_request as if the former is NULL,
2150 * the latter is free to free wbio2.
2152 if (wbio2 && !wbio2->bi_end_io)
2153 wbio2 = NULL;
2154 if (wbio->bi_end_io) {
2155 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2156 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2157 generic_make_request(wbio);
2159 if (wbio2) {
2160 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2161 md_sync_acct(conf->mirrors[d].replacement->bdev,
2162 bio_sectors(wbio2));
2163 generic_make_request(wbio2);
2168 * Used by fix_read_error() to decay the per rdev read_errors.
2169 * We halve the read error count for every hour that has elapsed
2170 * since the last recorded read error.
2173 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2175 long cur_time_mon;
2176 unsigned long hours_since_last;
2177 unsigned int read_errors = atomic_read(&rdev->read_errors);
2179 cur_time_mon = ktime_get_seconds();
2181 if (rdev->last_read_error == 0) {
2182 /* first time we've seen a read error */
2183 rdev->last_read_error = cur_time_mon;
2184 return;
2187 hours_since_last = (long)(cur_time_mon -
2188 rdev->last_read_error) / 3600;
2190 rdev->last_read_error = cur_time_mon;
2193 * if hours_since_last is > the number of bits in read_errors
2194 * just set read errors to 0. We do this to avoid
2195 * overflowing the shift of read_errors by hours_since_last.
2197 if (hours_since_last >= 8 * sizeof(read_errors))
2198 atomic_set(&rdev->read_errors, 0);
2199 else
2200 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204 int sectors, struct page *page, int rw)
2206 sector_t first_bad;
2207 int bad_sectors;
2209 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 return -1;
2212 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2213 /* success */
2214 return 1;
2215 if (rw == WRITE) {
2216 set_bit(WriteErrorSeen, &rdev->flags);
2217 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 set_bit(MD_RECOVERY_NEEDED,
2219 &rdev->mddev->recovery);
2221 /* need to record an error - either for the block or the device */
2222 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 md_error(rdev->mddev, rdev);
2224 return 0;
2228 * This is a kernel thread which:
2230 * 1. Retries failed read operations on working mirrors.
2231 * 2. Updates the raid superblock when problems encounter.
2232 * 3. Performs writes following reads for array synchronising.
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2237 int sect = 0; /* Offset from r10_bio->sector */
2238 int sectors = r10_bio->sectors;
2239 struct md_rdev*rdev;
2240 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2243 /* still own a reference to this rdev, so it cannot
2244 * have been cleared recently.
2246 rdev = conf->mirrors[d].rdev;
2248 if (test_bit(Faulty, &rdev->flags))
2249 /* drive has already been failed, just ignore any
2250 more fix_read_error() attempts */
2251 return;
2253 check_decay_read_errors(mddev, rdev);
2254 atomic_inc(&rdev->read_errors);
2255 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 char b[BDEVNAME_SIZE];
2257 bdevname(rdev->bdev, b);
2259 printk(KERN_NOTICE
2260 "md/raid10:%s: %s: Raid device exceeded "
2261 "read_error threshold [cur %d:max %d]\n",
2262 mdname(mddev), b,
2263 atomic_read(&rdev->read_errors), max_read_errors);
2264 printk(KERN_NOTICE
2265 "md/raid10:%s: %s: Failing raid device\n",
2266 mdname(mddev), b);
2267 md_error(mddev, rdev);
2268 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269 return;
2272 while(sectors) {
2273 int s = sectors;
2274 int sl = r10_bio->read_slot;
2275 int success = 0;
2276 int start;
2278 if (s > (PAGE_SIZE>>9))
2279 s = PAGE_SIZE >> 9;
2281 rcu_read_lock();
2282 do {
2283 sector_t first_bad;
2284 int bad_sectors;
2286 d = r10_bio->devs[sl].devnum;
2287 rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 if (rdev &&
2289 test_bit(In_sync, &rdev->flags) &&
2290 !test_bit(Faulty, &rdev->flags) &&
2291 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2292 &first_bad, &bad_sectors) == 0) {
2293 atomic_inc(&rdev->nr_pending);
2294 rcu_read_unlock();
2295 success = sync_page_io(rdev,
2296 r10_bio->devs[sl].addr +
2297 sect,
2298 s<<9,
2299 conf->tmppage,
2300 REQ_OP_READ, 0, false);
2301 rdev_dec_pending(rdev, mddev);
2302 rcu_read_lock();
2303 if (success)
2304 break;
2306 sl++;
2307 if (sl == conf->copies)
2308 sl = 0;
2309 } while (!success && sl != r10_bio->read_slot);
2310 rcu_read_unlock();
2312 if (!success) {
2313 /* Cannot read from anywhere, just mark the block
2314 * as bad on the first device to discourage future
2315 * reads.
2317 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318 rdev = conf->mirrors[dn].rdev;
2320 if (!rdev_set_badblocks(
2321 rdev,
2322 r10_bio->devs[r10_bio->read_slot].addr
2323 + sect,
2324 s, 0)) {
2325 md_error(mddev, rdev);
2326 r10_bio->devs[r10_bio->read_slot].bio
2327 = IO_BLOCKED;
2329 break;
2332 start = sl;
2333 /* write it back and re-read */
2334 rcu_read_lock();
2335 while (sl != r10_bio->read_slot) {
2336 char b[BDEVNAME_SIZE];
2338 if (sl==0)
2339 sl = conf->copies;
2340 sl--;
2341 d = r10_bio->devs[sl].devnum;
2342 rdev = rcu_dereference(conf->mirrors[d].rdev);
2343 if (!rdev ||
2344 test_bit(Faulty, &rdev->flags) ||
2345 !test_bit(In_sync, &rdev->flags))
2346 continue;
2348 atomic_inc(&rdev->nr_pending);
2349 rcu_read_unlock();
2350 if (r10_sync_page_io(rdev,
2351 r10_bio->devs[sl].addr +
2352 sect,
2353 s, conf->tmppage, WRITE)
2354 == 0) {
2355 /* Well, this device is dead */
2356 printk(KERN_NOTICE
2357 "md/raid10:%s: read correction "
2358 "write failed"
2359 " (%d sectors at %llu on %s)\n",
2360 mdname(mddev), s,
2361 (unsigned long long)(
2362 sect +
2363 choose_data_offset(r10_bio,
2364 rdev)),
2365 bdevname(rdev->bdev, b));
2366 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2367 "drive\n",
2368 mdname(mddev),
2369 bdevname(rdev->bdev, b));
2371 rdev_dec_pending(rdev, mddev);
2372 rcu_read_lock();
2374 sl = start;
2375 while (sl != r10_bio->read_slot) {
2376 char b[BDEVNAME_SIZE];
2378 if (sl==0)
2379 sl = conf->copies;
2380 sl--;
2381 d = r10_bio->devs[sl].devnum;
2382 rdev = rcu_dereference(conf->mirrors[d].rdev);
2383 if (!rdev ||
2384 test_bit(Faulty, &rdev->flags) ||
2385 !test_bit(In_sync, &rdev->flags))
2386 continue;
2388 atomic_inc(&rdev->nr_pending);
2389 rcu_read_unlock();
2390 switch (r10_sync_page_io(rdev,
2391 r10_bio->devs[sl].addr +
2392 sect,
2393 s, conf->tmppage,
2394 READ)) {
2395 case 0:
2396 /* Well, this device is dead */
2397 printk(KERN_NOTICE
2398 "md/raid10:%s: unable to read back "
2399 "corrected sectors"
2400 " (%d sectors at %llu on %s)\n",
2401 mdname(mddev), s,
2402 (unsigned long long)(
2403 sect +
2404 choose_data_offset(r10_bio, rdev)),
2405 bdevname(rdev->bdev, b));
2406 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407 "drive\n",
2408 mdname(mddev),
2409 bdevname(rdev->bdev, b));
2410 break;
2411 case 1:
2412 printk(KERN_INFO
2413 "md/raid10:%s: read error corrected"
2414 " (%d sectors at %llu on %s)\n",
2415 mdname(mddev), s,
2416 (unsigned long long)(
2417 sect +
2418 choose_data_offset(r10_bio, rdev)),
2419 bdevname(rdev->bdev, b));
2420 atomic_add(s, &rdev->corrected_errors);
2423 rdev_dec_pending(rdev, mddev);
2424 rcu_read_lock();
2426 rcu_read_unlock();
2428 sectors -= s;
2429 sect += s;
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2435 struct bio *bio = r10_bio->master_bio;
2436 struct mddev *mddev = r10_bio->mddev;
2437 struct r10conf *conf = mddev->private;
2438 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439 /* bio has the data to be written to slot 'i' where
2440 * we just recently had a write error.
2441 * We repeatedly clone the bio and trim down to one block,
2442 * then try the write. Where the write fails we record
2443 * a bad block.
2444 * It is conceivable that the bio doesn't exactly align with
2445 * blocks. We must handle this.
2447 * We currently own a reference to the rdev.
2450 int block_sectors;
2451 sector_t sector;
2452 int sectors;
2453 int sect_to_write = r10_bio->sectors;
2454 int ok = 1;
2456 if (rdev->badblocks.shift < 0)
2457 return 0;
2459 block_sectors = roundup(1 << rdev->badblocks.shift,
2460 bdev_logical_block_size(rdev->bdev) >> 9);
2461 sector = r10_bio->sector;
2462 sectors = ((r10_bio->sector + block_sectors)
2463 & ~(sector_t)(block_sectors - 1))
2464 - sector;
2466 while (sect_to_write) {
2467 struct bio *wbio;
2468 sector_t wsector;
2469 if (sectors > sect_to_write)
2470 sectors = sect_to_write;
2471 /* Write at 'sector' for 'sectors' */
2472 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2473 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2474 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2475 wbio->bi_iter.bi_sector = wsector +
2476 choose_data_offset(r10_bio, rdev);
2477 wbio->bi_bdev = rdev->bdev;
2478 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2480 if (submit_bio_wait(wbio) < 0)
2481 /* Failure! */
2482 ok = rdev_set_badblocks(rdev, wsector,
2483 sectors, 0)
2484 && ok;
2486 bio_put(wbio);
2487 sect_to_write -= sectors;
2488 sector += sectors;
2489 sectors = block_sectors;
2491 return ok;
2494 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2496 int slot = r10_bio->read_slot;
2497 struct bio *bio;
2498 struct r10conf *conf = mddev->private;
2499 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2500 char b[BDEVNAME_SIZE];
2501 unsigned long do_sync;
2502 int max_sectors;
2504 /* we got a read error. Maybe the drive is bad. Maybe just
2505 * the block and we can fix it.
2506 * We freeze all other IO, and try reading the block from
2507 * other devices. When we find one, we re-write
2508 * and check it that fixes the read error.
2509 * This is all done synchronously while the array is
2510 * frozen.
2512 bio = r10_bio->devs[slot].bio;
2513 bdevname(bio->bi_bdev, b);
2514 bio_put(bio);
2515 r10_bio->devs[slot].bio = NULL;
2517 if (mddev->ro == 0) {
2518 freeze_array(conf, 1);
2519 fix_read_error(conf, mddev, r10_bio);
2520 unfreeze_array(conf);
2521 } else
2522 r10_bio->devs[slot].bio = IO_BLOCKED;
2524 rdev_dec_pending(rdev, mddev);
2526 read_more:
2527 rdev = read_balance(conf, r10_bio, &max_sectors);
2528 if (rdev == NULL) {
2529 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2530 " read error for block %llu\n",
2531 mdname(mddev), b,
2532 (unsigned long long)r10_bio->sector);
2533 raid_end_bio_io(r10_bio);
2534 return;
2537 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2538 slot = r10_bio->read_slot;
2539 printk_ratelimited(
2540 KERN_ERR
2541 "md/raid10:%s: %s: redirecting "
2542 "sector %llu to another mirror\n",
2543 mdname(mddev),
2544 bdevname(rdev->bdev, b),
2545 (unsigned long long)r10_bio->sector);
2546 bio = bio_clone_mddev(r10_bio->master_bio,
2547 GFP_NOIO, mddev);
2548 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2549 r10_bio->devs[slot].bio = bio;
2550 r10_bio->devs[slot].rdev = rdev;
2551 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2552 + choose_data_offset(r10_bio, rdev);
2553 bio->bi_bdev = rdev->bdev;
2554 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2555 bio->bi_private = r10_bio;
2556 bio->bi_end_io = raid10_end_read_request;
2557 if (max_sectors < r10_bio->sectors) {
2558 /* Drat - have to split this up more */
2559 struct bio *mbio = r10_bio->master_bio;
2560 int sectors_handled =
2561 r10_bio->sector + max_sectors
2562 - mbio->bi_iter.bi_sector;
2563 r10_bio->sectors = max_sectors;
2564 spin_lock_irq(&conf->device_lock);
2565 if (mbio->bi_phys_segments == 0)
2566 mbio->bi_phys_segments = 2;
2567 else
2568 mbio->bi_phys_segments++;
2569 spin_unlock_irq(&conf->device_lock);
2570 generic_make_request(bio);
2572 r10_bio = mempool_alloc(conf->r10bio_pool,
2573 GFP_NOIO);
2574 r10_bio->master_bio = mbio;
2575 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2576 r10_bio->state = 0;
2577 set_bit(R10BIO_ReadError,
2578 &r10_bio->state);
2579 r10_bio->mddev = mddev;
2580 r10_bio->sector = mbio->bi_iter.bi_sector
2581 + sectors_handled;
2583 goto read_more;
2584 } else
2585 generic_make_request(bio);
2588 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2590 /* Some sort of write request has finished and it
2591 * succeeded in writing where we thought there was a
2592 * bad block. So forget the bad block.
2593 * Or possibly if failed and we need to record
2594 * a bad block.
2596 int m;
2597 struct md_rdev *rdev;
2599 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2600 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2601 for (m = 0; m < conf->copies; m++) {
2602 int dev = r10_bio->devs[m].devnum;
2603 rdev = conf->mirrors[dev].rdev;
2604 if (r10_bio->devs[m].bio == NULL)
2605 continue;
2606 if (!r10_bio->devs[m].bio->bi_error) {
2607 rdev_clear_badblocks(
2608 rdev,
2609 r10_bio->devs[m].addr,
2610 r10_bio->sectors, 0);
2611 } else {
2612 if (!rdev_set_badblocks(
2613 rdev,
2614 r10_bio->devs[m].addr,
2615 r10_bio->sectors, 0))
2616 md_error(conf->mddev, rdev);
2618 rdev = conf->mirrors[dev].replacement;
2619 if (r10_bio->devs[m].repl_bio == NULL)
2620 continue;
2622 if (!r10_bio->devs[m].repl_bio->bi_error) {
2623 rdev_clear_badblocks(
2624 rdev,
2625 r10_bio->devs[m].addr,
2626 r10_bio->sectors, 0);
2627 } else {
2628 if (!rdev_set_badblocks(
2629 rdev,
2630 r10_bio->devs[m].addr,
2631 r10_bio->sectors, 0))
2632 md_error(conf->mddev, rdev);
2635 put_buf(r10_bio);
2636 } else {
2637 bool fail = false;
2638 for (m = 0; m < conf->copies; m++) {
2639 int dev = r10_bio->devs[m].devnum;
2640 struct bio *bio = r10_bio->devs[m].bio;
2641 rdev = conf->mirrors[dev].rdev;
2642 if (bio == IO_MADE_GOOD) {
2643 rdev_clear_badblocks(
2644 rdev,
2645 r10_bio->devs[m].addr,
2646 r10_bio->sectors, 0);
2647 rdev_dec_pending(rdev, conf->mddev);
2648 } else if (bio != NULL && bio->bi_error) {
2649 fail = true;
2650 if (!narrow_write_error(r10_bio, m)) {
2651 md_error(conf->mddev, rdev);
2652 set_bit(R10BIO_Degraded,
2653 &r10_bio->state);
2655 rdev_dec_pending(rdev, conf->mddev);
2657 bio = r10_bio->devs[m].repl_bio;
2658 rdev = conf->mirrors[dev].replacement;
2659 if (rdev && bio == IO_MADE_GOOD) {
2660 rdev_clear_badblocks(
2661 rdev,
2662 r10_bio->devs[m].addr,
2663 r10_bio->sectors, 0);
2664 rdev_dec_pending(rdev, conf->mddev);
2667 if (fail) {
2668 spin_lock_irq(&conf->device_lock);
2669 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2670 conf->nr_queued++;
2671 spin_unlock_irq(&conf->device_lock);
2672 md_wakeup_thread(conf->mddev->thread);
2673 } else {
2674 if (test_bit(R10BIO_WriteError,
2675 &r10_bio->state))
2676 close_write(r10_bio);
2677 raid_end_bio_io(r10_bio);
2682 static void raid10d(struct md_thread *thread)
2684 struct mddev *mddev = thread->mddev;
2685 struct r10bio *r10_bio;
2686 unsigned long flags;
2687 struct r10conf *conf = mddev->private;
2688 struct list_head *head = &conf->retry_list;
2689 struct blk_plug plug;
2691 md_check_recovery(mddev);
2693 if (!list_empty_careful(&conf->bio_end_io_list) &&
2694 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2695 LIST_HEAD(tmp);
2696 spin_lock_irqsave(&conf->device_lock, flags);
2697 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2698 while (!list_empty(&conf->bio_end_io_list)) {
2699 list_move(conf->bio_end_io_list.prev, &tmp);
2700 conf->nr_queued--;
2703 spin_unlock_irqrestore(&conf->device_lock, flags);
2704 while (!list_empty(&tmp)) {
2705 r10_bio = list_first_entry(&tmp, struct r10bio,
2706 retry_list);
2707 list_del(&r10_bio->retry_list);
2708 if (mddev->degraded)
2709 set_bit(R10BIO_Degraded, &r10_bio->state);
2711 if (test_bit(R10BIO_WriteError,
2712 &r10_bio->state))
2713 close_write(r10_bio);
2714 raid_end_bio_io(r10_bio);
2718 blk_start_plug(&plug);
2719 for (;;) {
2721 flush_pending_writes(conf);
2723 spin_lock_irqsave(&conf->device_lock, flags);
2724 if (list_empty(head)) {
2725 spin_unlock_irqrestore(&conf->device_lock, flags);
2726 break;
2728 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2729 list_del(head->prev);
2730 conf->nr_queued--;
2731 spin_unlock_irqrestore(&conf->device_lock, flags);
2733 mddev = r10_bio->mddev;
2734 conf = mddev->private;
2735 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2736 test_bit(R10BIO_WriteError, &r10_bio->state))
2737 handle_write_completed(conf, r10_bio);
2738 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2739 reshape_request_write(mddev, r10_bio);
2740 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2741 sync_request_write(mddev, r10_bio);
2742 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2743 recovery_request_write(mddev, r10_bio);
2744 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2745 handle_read_error(mddev, r10_bio);
2746 else {
2747 /* just a partial read to be scheduled from a
2748 * separate context
2750 int slot = r10_bio->read_slot;
2751 generic_make_request(r10_bio->devs[slot].bio);
2754 cond_resched();
2755 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2756 md_check_recovery(mddev);
2758 blk_finish_plug(&plug);
2761 static int init_resync(struct r10conf *conf)
2763 int buffs;
2764 int i;
2766 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2767 BUG_ON(conf->r10buf_pool);
2768 conf->have_replacement = 0;
2769 for (i = 0; i < conf->geo.raid_disks; i++)
2770 if (conf->mirrors[i].replacement)
2771 conf->have_replacement = 1;
2772 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2773 if (!conf->r10buf_pool)
2774 return -ENOMEM;
2775 conf->next_resync = 0;
2776 return 0;
2780 * perform a "sync" on one "block"
2782 * We need to make sure that no normal I/O request - particularly write
2783 * requests - conflict with active sync requests.
2785 * This is achieved by tracking pending requests and a 'barrier' concept
2786 * that can be installed to exclude normal IO requests.
2788 * Resync and recovery are handled very differently.
2789 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2791 * For resync, we iterate over virtual addresses, read all copies,
2792 * and update if there are differences. If only one copy is live,
2793 * skip it.
2794 * For recovery, we iterate over physical addresses, read a good
2795 * value for each non-in_sync drive, and over-write.
2797 * So, for recovery we may have several outstanding complex requests for a
2798 * given address, one for each out-of-sync device. We model this by allocating
2799 * a number of r10_bio structures, one for each out-of-sync device.
2800 * As we setup these structures, we collect all bio's together into a list
2801 * which we then process collectively to add pages, and then process again
2802 * to pass to generic_make_request.
2804 * The r10_bio structures are linked using a borrowed master_bio pointer.
2805 * This link is counted in ->remaining. When the r10_bio that points to NULL
2806 * has its remaining count decremented to 0, the whole complex operation
2807 * is complete.
2811 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2812 int *skipped)
2814 struct r10conf *conf = mddev->private;
2815 struct r10bio *r10_bio;
2816 struct bio *biolist = NULL, *bio;
2817 sector_t max_sector, nr_sectors;
2818 int i;
2819 int max_sync;
2820 sector_t sync_blocks;
2821 sector_t sectors_skipped = 0;
2822 int chunks_skipped = 0;
2823 sector_t chunk_mask = conf->geo.chunk_mask;
2825 if (!conf->r10buf_pool)
2826 if (init_resync(conf))
2827 return 0;
2830 * Allow skipping a full rebuild for incremental assembly
2831 * of a clean array, like RAID1 does.
2833 if (mddev->bitmap == NULL &&
2834 mddev->recovery_cp == MaxSector &&
2835 mddev->reshape_position == MaxSector &&
2836 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2837 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2838 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2839 conf->fullsync == 0) {
2840 *skipped = 1;
2841 return mddev->dev_sectors - sector_nr;
2844 skipped:
2845 max_sector = mddev->dev_sectors;
2846 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2847 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2848 max_sector = mddev->resync_max_sectors;
2849 if (sector_nr >= max_sector) {
2850 /* If we aborted, we need to abort the
2851 * sync on the 'current' bitmap chucks (there can
2852 * be several when recovering multiple devices).
2853 * as we may have started syncing it but not finished.
2854 * We can find the current address in
2855 * mddev->curr_resync, but for recovery,
2856 * we need to convert that to several
2857 * virtual addresses.
2859 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2860 end_reshape(conf);
2861 close_sync(conf);
2862 return 0;
2865 if (mddev->curr_resync < max_sector) { /* aborted */
2866 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2867 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2868 &sync_blocks, 1);
2869 else for (i = 0; i < conf->geo.raid_disks; i++) {
2870 sector_t sect =
2871 raid10_find_virt(conf, mddev->curr_resync, i);
2872 bitmap_end_sync(mddev->bitmap, sect,
2873 &sync_blocks, 1);
2875 } else {
2876 /* completed sync */
2877 if ((!mddev->bitmap || conf->fullsync)
2878 && conf->have_replacement
2879 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2880 /* Completed a full sync so the replacements
2881 * are now fully recovered.
2883 rcu_read_lock();
2884 for (i = 0; i < conf->geo.raid_disks; i++) {
2885 struct md_rdev *rdev =
2886 rcu_dereference(conf->mirrors[i].replacement);
2887 if (rdev)
2888 rdev->recovery_offset = MaxSector;
2890 rcu_read_unlock();
2892 conf->fullsync = 0;
2894 bitmap_close_sync(mddev->bitmap);
2895 close_sync(conf);
2896 *skipped = 1;
2897 return sectors_skipped;
2900 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2901 return reshape_request(mddev, sector_nr, skipped);
2903 if (chunks_skipped >= conf->geo.raid_disks) {
2904 /* if there has been nothing to do on any drive,
2905 * then there is nothing to do at all..
2907 *skipped = 1;
2908 return (max_sector - sector_nr) + sectors_skipped;
2911 if (max_sector > mddev->resync_max)
2912 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2914 /* make sure whole request will fit in a chunk - if chunks
2915 * are meaningful
2917 if (conf->geo.near_copies < conf->geo.raid_disks &&
2918 max_sector > (sector_nr | chunk_mask))
2919 max_sector = (sector_nr | chunk_mask) + 1;
2922 * If there is non-resync activity waiting for a turn, then let it
2923 * though before starting on this new sync request.
2925 if (conf->nr_waiting)
2926 schedule_timeout_uninterruptible(1);
2928 /* Again, very different code for resync and recovery.
2929 * Both must result in an r10bio with a list of bios that
2930 * have bi_end_io, bi_sector, bi_bdev set,
2931 * and bi_private set to the r10bio.
2932 * For recovery, we may actually create several r10bios
2933 * with 2 bios in each, that correspond to the bios in the main one.
2934 * In this case, the subordinate r10bios link back through a
2935 * borrowed master_bio pointer, and the counter in the master
2936 * includes a ref from each subordinate.
2938 /* First, we decide what to do and set ->bi_end_io
2939 * To end_sync_read if we want to read, and
2940 * end_sync_write if we will want to write.
2943 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2944 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2945 /* recovery... the complicated one */
2946 int j;
2947 r10_bio = NULL;
2949 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2950 int still_degraded;
2951 struct r10bio *rb2;
2952 sector_t sect;
2953 int must_sync;
2954 int any_working;
2955 struct raid10_info *mirror = &conf->mirrors[i];
2956 struct md_rdev *mrdev, *mreplace;
2958 rcu_read_lock();
2959 mrdev = rcu_dereference(mirror->rdev);
2960 mreplace = rcu_dereference(mirror->replacement);
2962 if ((mrdev == NULL ||
2963 test_bit(Faulty, &mrdev->flags) ||
2964 test_bit(In_sync, &mrdev->flags)) &&
2965 (mreplace == NULL ||
2966 test_bit(Faulty, &mreplace->flags))) {
2967 rcu_read_unlock();
2968 continue;
2971 still_degraded = 0;
2972 /* want to reconstruct this device */
2973 rb2 = r10_bio;
2974 sect = raid10_find_virt(conf, sector_nr, i);
2975 if (sect >= mddev->resync_max_sectors) {
2976 /* last stripe is not complete - don't
2977 * try to recover this sector.
2979 rcu_read_unlock();
2980 continue;
2982 if (mreplace && test_bit(Faulty, &mreplace->flags))
2983 mreplace = NULL;
2984 /* Unless we are doing a full sync, or a replacement
2985 * we only need to recover the block if it is set in
2986 * the bitmap
2988 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2989 &sync_blocks, 1);
2990 if (sync_blocks < max_sync)
2991 max_sync = sync_blocks;
2992 if (!must_sync &&
2993 mreplace == NULL &&
2994 !conf->fullsync) {
2995 /* yep, skip the sync_blocks here, but don't assume
2996 * that there will never be anything to do here
2998 chunks_skipped = -1;
2999 rcu_read_unlock();
3000 continue;
3002 atomic_inc(&mrdev->nr_pending);
3003 if (mreplace)
3004 atomic_inc(&mreplace->nr_pending);
3005 rcu_read_unlock();
3007 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3008 r10_bio->state = 0;
3009 raise_barrier(conf, rb2 != NULL);
3010 atomic_set(&r10_bio->remaining, 0);
3012 r10_bio->master_bio = (struct bio*)rb2;
3013 if (rb2)
3014 atomic_inc(&rb2->remaining);
3015 r10_bio->mddev = mddev;
3016 set_bit(R10BIO_IsRecover, &r10_bio->state);
3017 r10_bio->sector = sect;
3019 raid10_find_phys(conf, r10_bio);
3021 /* Need to check if the array will still be
3022 * degraded
3024 rcu_read_lock();
3025 for (j = 0; j < conf->geo.raid_disks; j++) {
3026 struct md_rdev *rdev = rcu_dereference(
3027 conf->mirrors[j].rdev);
3028 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3029 still_degraded = 1;
3030 break;
3034 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035 &sync_blocks, still_degraded);
3037 any_working = 0;
3038 for (j=0; j<conf->copies;j++) {
3039 int k;
3040 int d = r10_bio->devs[j].devnum;
3041 sector_t from_addr, to_addr;
3042 struct md_rdev *rdev =
3043 rcu_dereference(conf->mirrors[d].rdev);
3044 sector_t sector, first_bad;
3045 int bad_sectors;
3046 if (!rdev ||
3047 !test_bit(In_sync, &rdev->flags))
3048 continue;
3049 /* This is where we read from */
3050 any_working = 1;
3051 sector = r10_bio->devs[j].addr;
3053 if (is_badblock(rdev, sector, max_sync,
3054 &first_bad, &bad_sectors)) {
3055 if (first_bad > sector)
3056 max_sync = first_bad - sector;
3057 else {
3058 bad_sectors -= (sector
3059 - first_bad);
3060 if (max_sync > bad_sectors)
3061 max_sync = bad_sectors;
3062 continue;
3065 bio = r10_bio->devs[0].bio;
3066 bio_reset(bio);
3067 bio->bi_next = biolist;
3068 biolist = bio;
3069 bio->bi_private = r10_bio;
3070 bio->bi_end_io = end_sync_read;
3071 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3072 from_addr = r10_bio->devs[j].addr;
3073 bio->bi_iter.bi_sector = from_addr +
3074 rdev->data_offset;
3075 bio->bi_bdev = rdev->bdev;
3076 atomic_inc(&rdev->nr_pending);
3077 /* and we write to 'i' (if not in_sync) */
3079 for (k=0; k<conf->copies; k++)
3080 if (r10_bio->devs[k].devnum == i)
3081 break;
3082 BUG_ON(k == conf->copies);
3083 to_addr = r10_bio->devs[k].addr;
3084 r10_bio->devs[0].devnum = d;
3085 r10_bio->devs[0].addr = from_addr;
3086 r10_bio->devs[1].devnum = i;
3087 r10_bio->devs[1].addr = to_addr;
3089 if (!test_bit(In_sync, &mrdev->flags)) {
3090 bio = r10_bio->devs[1].bio;
3091 bio_reset(bio);
3092 bio->bi_next = biolist;
3093 biolist = bio;
3094 bio->bi_private = r10_bio;
3095 bio->bi_end_io = end_sync_write;
3096 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3097 bio->bi_iter.bi_sector = to_addr
3098 + mrdev->data_offset;
3099 bio->bi_bdev = mrdev->bdev;
3100 atomic_inc(&r10_bio->remaining);
3101 } else
3102 r10_bio->devs[1].bio->bi_end_io = NULL;
3104 /* and maybe write to replacement */
3105 bio = r10_bio->devs[1].repl_bio;
3106 if (bio)
3107 bio->bi_end_io = NULL;
3108 /* Note: if mreplace != NULL, then bio
3109 * cannot be NULL as r10buf_pool_alloc will
3110 * have allocated it.
3111 * So the second test here is pointless.
3112 * But it keeps semantic-checkers happy, and
3113 * this comment keeps human reviewers
3114 * happy.
3116 if (mreplace == NULL || bio == NULL ||
3117 test_bit(Faulty, &mreplace->flags))
3118 break;
3119 bio_reset(bio);
3120 bio->bi_next = biolist;
3121 biolist = bio;
3122 bio->bi_private = r10_bio;
3123 bio->bi_end_io = end_sync_write;
3124 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3125 bio->bi_iter.bi_sector = to_addr +
3126 mreplace->data_offset;
3127 bio->bi_bdev = mreplace->bdev;
3128 atomic_inc(&r10_bio->remaining);
3129 break;
3131 rcu_read_unlock();
3132 if (j == conf->copies) {
3133 /* Cannot recover, so abort the recovery or
3134 * record a bad block */
3135 if (any_working) {
3136 /* problem is that there are bad blocks
3137 * on other device(s)
3139 int k;
3140 for (k = 0; k < conf->copies; k++)
3141 if (r10_bio->devs[k].devnum == i)
3142 break;
3143 if (!test_bit(In_sync,
3144 &mrdev->flags)
3145 && !rdev_set_badblocks(
3146 mrdev,
3147 r10_bio->devs[k].addr,
3148 max_sync, 0))
3149 any_working = 0;
3150 if (mreplace &&
3151 !rdev_set_badblocks(
3152 mreplace,
3153 r10_bio->devs[k].addr,
3154 max_sync, 0))
3155 any_working = 0;
3157 if (!any_working) {
3158 if (!test_and_set_bit(MD_RECOVERY_INTR,
3159 &mddev->recovery))
3160 printk(KERN_INFO "md/raid10:%s: insufficient "
3161 "working devices for recovery.\n",
3162 mdname(mddev));
3163 mirror->recovery_disabled
3164 = mddev->recovery_disabled;
3166 put_buf(r10_bio);
3167 if (rb2)
3168 atomic_dec(&rb2->remaining);
3169 r10_bio = rb2;
3170 rdev_dec_pending(mrdev, mddev);
3171 if (mreplace)
3172 rdev_dec_pending(mreplace, mddev);
3173 break;
3175 rdev_dec_pending(mrdev, mddev);
3176 if (mreplace)
3177 rdev_dec_pending(mreplace, mddev);
3179 if (biolist == NULL) {
3180 while (r10_bio) {
3181 struct r10bio *rb2 = r10_bio;
3182 r10_bio = (struct r10bio*) rb2->master_bio;
3183 rb2->master_bio = NULL;
3184 put_buf(rb2);
3186 goto giveup;
3188 } else {
3189 /* resync. Schedule a read for every block at this virt offset */
3190 int count = 0;
3192 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3194 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3195 &sync_blocks, mddev->degraded) &&
3196 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3197 &mddev->recovery)) {
3198 /* We can skip this block */
3199 *skipped = 1;
3200 return sync_blocks + sectors_skipped;
3202 if (sync_blocks < max_sync)
3203 max_sync = sync_blocks;
3204 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3205 r10_bio->state = 0;
3207 r10_bio->mddev = mddev;
3208 atomic_set(&r10_bio->remaining, 0);
3209 raise_barrier(conf, 0);
3210 conf->next_resync = sector_nr;
3212 r10_bio->master_bio = NULL;
3213 r10_bio->sector = sector_nr;
3214 set_bit(R10BIO_IsSync, &r10_bio->state);
3215 raid10_find_phys(conf, r10_bio);
3216 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3218 for (i = 0; i < conf->copies; i++) {
3219 int d = r10_bio->devs[i].devnum;
3220 sector_t first_bad, sector;
3221 int bad_sectors;
3222 struct md_rdev *rdev;
3224 if (r10_bio->devs[i].repl_bio)
3225 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3227 bio = r10_bio->devs[i].bio;
3228 bio_reset(bio);
3229 bio->bi_error = -EIO;
3230 rcu_read_lock();
3231 rdev = rcu_dereference(conf->mirrors[d].rdev);
3232 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3233 rcu_read_unlock();
3234 continue;
3236 sector = r10_bio->devs[i].addr;
3237 if (is_badblock(rdev, sector, max_sync,
3238 &first_bad, &bad_sectors)) {
3239 if (first_bad > sector)
3240 max_sync = first_bad - sector;
3241 else {
3242 bad_sectors -= (sector - first_bad);
3243 if (max_sync > bad_sectors)
3244 max_sync = bad_sectors;
3245 rcu_read_unlock();
3246 continue;
3249 atomic_inc(&rdev->nr_pending);
3250 atomic_inc(&r10_bio->remaining);
3251 bio->bi_next = biolist;
3252 biolist = bio;
3253 bio->bi_private = r10_bio;
3254 bio->bi_end_io = end_sync_read;
3255 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3256 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3257 bio->bi_bdev = rdev->bdev;
3258 count++;
3260 rdev = rcu_dereference(conf->mirrors[d].replacement);
3261 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3262 rcu_read_unlock();
3263 continue;
3265 atomic_inc(&rdev->nr_pending);
3266 rcu_read_unlock();
3268 /* Need to set up for writing to the replacement */
3269 bio = r10_bio->devs[i].repl_bio;
3270 bio_reset(bio);
3271 bio->bi_error = -EIO;
3273 sector = r10_bio->devs[i].addr;
3274 bio->bi_next = biolist;
3275 biolist = bio;
3276 bio->bi_private = r10_bio;
3277 bio->bi_end_io = end_sync_write;
3278 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3279 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3280 bio->bi_bdev = rdev->bdev;
3281 count++;
3284 if (count < 2) {
3285 for (i=0; i<conf->copies; i++) {
3286 int d = r10_bio->devs[i].devnum;
3287 if (r10_bio->devs[i].bio->bi_end_io)
3288 rdev_dec_pending(conf->mirrors[d].rdev,
3289 mddev);
3290 if (r10_bio->devs[i].repl_bio &&
3291 r10_bio->devs[i].repl_bio->bi_end_io)
3292 rdev_dec_pending(
3293 conf->mirrors[d].replacement,
3294 mddev);
3296 put_buf(r10_bio);
3297 biolist = NULL;
3298 goto giveup;
3302 nr_sectors = 0;
3303 if (sector_nr + max_sync < max_sector)
3304 max_sector = sector_nr + max_sync;
3305 do {
3306 struct page *page;
3307 int len = PAGE_SIZE;
3308 if (sector_nr + (len>>9) > max_sector)
3309 len = (max_sector - sector_nr) << 9;
3310 if (len == 0)
3311 break;
3312 for (bio= biolist ; bio ; bio=bio->bi_next) {
3313 struct bio *bio2;
3314 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3315 if (bio_add_page(bio, page, len, 0))
3316 continue;
3318 /* stop here */
3319 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3320 for (bio2 = biolist;
3321 bio2 && bio2 != bio;
3322 bio2 = bio2->bi_next) {
3323 /* remove last page from this bio */
3324 bio2->bi_vcnt--;
3325 bio2->bi_iter.bi_size -= len;
3326 bio_clear_flag(bio2, BIO_SEG_VALID);
3328 goto bio_full;
3330 nr_sectors += len>>9;
3331 sector_nr += len>>9;
3332 } while (biolist->bi_vcnt < RESYNC_PAGES);
3333 bio_full:
3334 r10_bio->sectors = nr_sectors;
3336 while (biolist) {
3337 bio = biolist;
3338 biolist = biolist->bi_next;
3340 bio->bi_next = NULL;
3341 r10_bio = bio->bi_private;
3342 r10_bio->sectors = nr_sectors;
3344 if (bio->bi_end_io == end_sync_read) {
3345 md_sync_acct(bio->bi_bdev, nr_sectors);
3346 bio->bi_error = 0;
3347 generic_make_request(bio);
3351 if (sectors_skipped)
3352 /* pretend they weren't skipped, it makes
3353 * no important difference in this case
3355 md_done_sync(mddev, sectors_skipped, 1);
3357 return sectors_skipped + nr_sectors;
3358 giveup:
3359 /* There is nowhere to write, so all non-sync
3360 * drives must be failed or in resync, all drives
3361 * have a bad block, so try the next chunk...
3363 if (sector_nr + max_sync < max_sector)
3364 max_sector = sector_nr + max_sync;
3366 sectors_skipped += (max_sector - sector_nr);
3367 chunks_skipped ++;
3368 sector_nr = max_sector;
3369 goto skipped;
3372 static sector_t
3373 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3375 sector_t size;
3376 struct r10conf *conf = mddev->private;
3378 if (!raid_disks)
3379 raid_disks = min(conf->geo.raid_disks,
3380 conf->prev.raid_disks);
3381 if (!sectors)
3382 sectors = conf->dev_sectors;
3384 size = sectors >> conf->geo.chunk_shift;
3385 sector_div(size, conf->geo.far_copies);
3386 size = size * raid_disks;
3387 sector_div(size, conf->geo.near_copies);
3389 return size << conf->geo.chunk_shift;
3392 static void calc_sectors(struct r10conf *conf, sector_t size)
3394 /* Calculate the number of sectors-per-device that will
3395 * actually be used, and set conf->dev_sectors and
3396 * conf->stride
3399 size = size >> conf->geo.chunk_shift;
3400 sector_div(size, conf->geo.far_copies);
3401 size = size * conf->geo.raid_disks;
3402 sector_div(size, conf->geo.near_copies);
3403 /* 'size' is now the number of chunks in the array */
3404 /* calculate "used chunks per device" */
3405 size = size * conf->copies;
3407 /* We need to round up when dividing by raid_disks to
3408 * get the stride size.
3410 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3412 conf->dev_sectors = size << conf->geo.chunk_shift;
3414 if (conf->geo.far_offset)
3415 conf->geo.stride = 1 << conf->geo.chunk_shift;
3416 else {
3417 sector_div(size, conf->geo.far_copies);
3418 conf->geo.stride = size << conf->geo.chunk_shift;
3422 enum geo_type {geo_new, geo_old, geo_start};
3423 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3425 int nc, fc, fo;
3426 int layout, chunk, disks;
3427 switch (new) {
3428 case geo_old:
3429 layout = mddev->layout;
3430 chunk = mddev->chunk_sectors;
3431 disks = mddev->raid_disks - mddev->delta_disks;
3432 break;
3433 case geo_new:
3434 layout = mddev->new_layout;
3435 chunk = mddev->new_chunk_sectors;
3436 disks = mddev->raid_disks;
3437 break;
3438 default: /* avoid 'may be unused' warnings */
3439 case geo_start: /* new when starting reshape - raid_disks not
3440 * updated yet. */
3441 layout = mddev->new_layout;
3442 chunk = mddev->new_chunk_sectors;
3443 disks = mddev->raid_disks + mddev->delta_disks;
3444 break;
3446 if (layout >> 19)
3447 return -1;
3448 if (chunk < (PAGE_SIZE >> 9) ||
3449 !is_power_of_2(chunk))
3450 return -2;
3451 nc = layout & 255;
3452 fc = (layout >> 8) & 255;
3453 fo = layout & (1<<16);
3454 geo->raid_disks = disks;
3455 geo->near_copies = nc;
3456 geo->far_copies = fc;
3457 geo->far_offset = fo;
3458 switch (layout >> 17) {
3459 case 0: /* original layout. simple but not always optimal */
3460 geo->far_set_size = disks;
3461 break;
3462 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3463 * actually using this, but leave code here just in case.*/
3464 geo->far_set_size = disks/fc;
3465 WARN(geo->far_set_size < fc,
3466 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3467 break;
3468 case 2: /* "improved" layout fixed to match documentation */
3469 geo->far_set_size = fc * nc;
3470 break;
3471 default: /* Not a valid layout */
3472 return -1;
3474 geo->chunk_mask = chunk - 1;
3475 geo->chunk_shift = ffz(~chunk);
3476 return nc*fc;
3479 static struct r10conf *setup_conf(struct mddev *mddev)
3481 struct r10conf *conf = NULL;
3482 int err = -EINVAL;
3483 struct geom geo;
3484 int copies;
3486 copies = setup_geo(&geo, mddev, geo_new);
3488 if (copies == -2) {
3489 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3490 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3491 mdname(mddev), PAGE_SIZE);
3492 goto out;
3495 if (copies < 2 || copies > mddev->raid_disks) {
3496 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3497 mdname(mddev), mddev->new_layout);
3498 goto out;
3501 err = -ENOMEM;
3502 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3503 if (!conf)
3504 goto out;
3506 /* FIXME calc properly */
3507 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3508 max(0,-mddev->delta_disks)),
3509 GFP_KERNEL);
3510 if (!conf->mirrors)
3511 goto out;
3513 conf->tmppage = alloc_page(GFP_KERNEL);
3514 if (!conf->tmppage)
3515 goto out;
3517 conf->geo = geo;
3518 conf->copies = copies;
3519 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3520 r10bio_pool_free, conf);
3521 if (!conf->r10bio_pool)
3522 goto out;
3524 calc_sectors(conf, mddev->dev_sectors);
3525 if (mddev->reshape_position == MaxSector) {
3526 conf->prev = conf->geo;
3527 conf->reshape_progress = MaxSector;
3528 } else {
3529 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3530 err = -EINVAL;
3531 goto out;
3533 conf->reshape_progress = mddev->reshape_position;
3534 if (conf->prev.far_offset)
3535 conf->prev.stride = 1 << conf->prev.chunk_shift;
3536 else
3537 /* far_copies must be 1 */
3538 conf->prev.stride = conf->dev_sectors;
3540 conf->reshape_safe = conf->reshape_progress;
3541 spin_lock_init(&conf->device_lock);
3542 INIT_LIST_HEAD(&conf->retry_list);
3543 INIT_LIST_HEAD(&conf->bio_end_io_list);
3545 spin_lock_init(&conf->resync_lock);
3546 init_waitqueue_head(&conf->wait_barrier);
3547 atomic_set(&conf->nr_pending, 0);
3549 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3550 if (!conf->thread)
3551 goto out;
3553 conf->mddev = mddev;
3554 return conf;
3556 out:
3557 if (err == -ENOMEM)
3558 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3559 mdname(mddev));
3560 if (conf) {
3561 mempool_destroy(conf->r10bio_pool);
3562 kfree(conf->mirrors);
3563 safe_put_page(conf->tmppage);
3564 kfree(conf);
3566 return ERR_PTR(err);
3569 static int raid10_run(struct mddev *mddev)
3571 struct r10conf *conf;
3572 int i, disk_idx, chunk_size;
3573 struct raid10_info *disk;
3574 struct md_rdev *rdev;
3575 sector_t size;
3576 sector_t min_offset_diff = 0;
3577 int first = 1;
3578 bool discard_supported = false;
3580 if (mddev->private == NULL) {
3581 conf = setup_conf(mddev);
3582 if (IS_ERR(conf))
3583 return PTR_ERR(conf);
3584 mddev->private = conf;
3586 conf = mddev->private;
3587 if (!conf)
3588 goto out;
3590 mddev->thread = conf->thread;
3591 conf->thread = NULL;
3593 chunk_size = mddev->chunk_sectors << 9;
3594 if (mddev->queue) {
3595 blk_queue_max_discard_sectors(mddev->queue,
3596 mddev->chunk_sectors);
3597 blk_queue_max_write_same_sectors(mddev->queue, 0);
3598 blk_queue_io_min(mddev->queue, chunk_size);
3599 if (conf->geo.raid_disks % conf->geo.near_copies)
3600 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3601 else
3602 blk_queue_io_opt(mddev->queue, chunk_size *
3603 (conf->geo.raid_disks / conf->geo.near_copies));
3606 rdev_for_each(rdev, mddev) {
3607 long long diff;
3608 struct request_queue *q;
3610 disk_idx = rdev->raid_disk;
3611 if (disk_idx < 0)
3612 continue;
3613 if (disk_idx >= conf->geo.raid_disks &&
3614 disk_idx >= conf->prev.raid_disks)
3615 continue;
3616 disk = conf->mirrors + disk_idx;
3618 if (test_bit(Replacement, &rdev->flags)) {
3619 if (disk->replacement)
3620 goto out_free_conf;
3621 disk->replacement = rdev;
3622 } else {
3623 if (disk->rdev)
3624 goto out_free_conf;
3625 disk->rdev = rdev;
3627 q = bdev_get_queue(rdev->bdev);
3628 diff = (rdev->new_data_offset - rdev->data_offset);
3629 if (!mddev->reshape_backwards)
3630 diff = -diff;
3631 if (diff < 0)
3632 diff = 0;
3633 if (first || diff < min_offset_diff)
3634 min_offset_diff = diff;
3636 if (mddev->gendisk)
3637 disk_stack_limits(mddev->gendisk, rdev->bdev,
3638 rdev->data_offset << 9);
3640 disk->head_position = 0;
3642 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3643 discard_supported = true;
3646 if (mddev->queue) {
3647 if (discard_supported)
3648 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3649 mddev->queue);
3650 else
3651 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3652 mddev->queue);
3654 /* need to check that every block has at least one working mirror */
3655 if (!enough(conf, -1)) {
3656 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3657 mdname(mddev));
3658 goto out_free_conf;
3661 if (conf->reshape_progress != MaxSector) {
3662 /* must ensure that shape change is supported */
3663 if (conf->geo.far_copies != 1 &&
3664 conf->geo.far_offset == 0)
3665 goto out_free_conf;
3666 if (conf->prev.far_copies != 1 &&
3667 conf->prev.far_offset == 0)
3668 goto out_free_conf;
3671 mddev->degraded = 0;
3672 for (i = 0;
3673 i < conf->geo.raid_disks
3674 || i < conf->prev.raid_disks;
3675 i++) {
3677 disk = conf->mirrors + i;
3679 if (!disk->rdev && disk->replacement) {
3680 /* The replacement is all we have - use it */
3681 disk->rdev = disk->replacement;
3682 disk->replacement = NULL;
3683 clear_bit(Replacement, &disk->rdev->flags);
3686 if (!disk->rdev ||
3687 !test_bit(In_sync, &disk->rdev->flags)) {
3688 disk->head_position = 0;
3689 mddev->degraded++;
3690 if (disk->rdev &&
3691 disk->rdev->saved_raid_disk < 0)
3692 conf->fullsync = 1;
3694 disk->recovery_disabled = mddev->recovery_disabled - 1;
3697 if (mddev->recovery_cp != MaxSector)
3698 printk(KERN_NOTICE "md/raid10:%s: not clean"
3699 " -- starting background reconstruction\n",
3700 mdname(mddev));
3701 printk(KERN_INFO
3702 "md/raid10:%s: active with %d out of %d devices\n",
3703 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3704 conf->geo.raid_disks);
3706 * Ok, everything is just fine now
3708 mddev->dev_sectors = conf->dev_sectors;
3709 size = raid10_size(mddev, 0, 0);
3710 md_set_array_sectors(mddev, size);
3711 mddev->resync_max_sectors = size;
3713 if (mddev->queue) {
3714 int stripe = conf->geo.raid_disks *
3715 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3717 /* Calculate max read-ahead size.
3718 * We need to readahead at least twice a whole stripe....
3719 * maybe...
3721 stripe /= conf->geo.near_copies;
3722 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3723 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3726 if (md_integrity_register(mddev))
3727 goto out_free_conf;
3729 if (conf->reshape_progress != MaxSector) {
3730 unsigned long before_length, after_length;
3732 before_length = ((1 << conf->prev.chunk_shift) *
3733 conf->prev.far_copies);
3734 after_length = ((1 << conf->geo.chunk_shift) *
3735 conf->geo.far_copies);
3737 if (max(before_length, after_length) > min_offset_diff) {
3738 /* This cannot work */
3739 printk("md/raid10: offset difference not enough to continue reshape\n");
3740 goto out_free_conf;
3742 conf->offset_diff = min_offset_diff;
3744 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3745 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3746 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3747 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3748 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3749 "reshape");
3752 return 0;
3754 out_free_conf:
3755 md_unregister_thread(&mddev->thread);
3756 mempool_destroy(conf->r10bio_pool);
3757 safe_put_page(conf->tmppage);
3758 kfree(conf->mirrors);
3759 kfree(conf);
3760 mddev->private = NULL;
3761 out:
3762 return -EIO;
3765 static void raid10_free(struct mddev *mddev, void *priv)
3767 struct r10conf *conf = priv;
3769 mempool_destroy(conf->r10bio_pool);
3770 safe_put_page(conf->tmppage);
3771 kfree(conf->mirrors);
3772 kfree(conf->mirrors_old);
3773 kfree(conf->mirrors_new);
3774 kfree(conf);
3777 static void raid10_quiesce(struct mddev *mddev, int state)
3779 struct r10conf *conf = mddev->private;
3781 switch(state) {
3782 case 1:
3783 raise_barrier(conf, 0);
3784 break;
3785 case 0:
3786 lower_barrier(conf);
3787 break;
3791 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3793 /* Resize of 'far' arrays is not supported.
3794 * For 'near' and 'offset' arrays we can set the
3795 * number of sectors used to be an appropriate multiple
3796 * of the chunk size.
3797 * For 'offset', this is far_copies*chunksize.
3798 * For 'near' the multiplier is the LCM of
3799 * near_copies and raid_disks.
3800 * So if far_copies > 1 && !far_offset, fail.
3801 * Else find LCM(raid_disks, near_copy)*far_copies and
3802 * multiply by chunk_size. Then round to this number.
3803 * This is mostly done by raid10_size()
3805 struct r10conf *conf = mddev->private;
3806 sector_t oldsize, size;
3808 if (mddev->reshape_position != MaxSector)
3809 return -EBUSY;
3811 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3812 return -EINVAL;
3814 oldsize = raid10_size(mddev, 0, 0);
3815 size = raid10_size(mddev, sectors, 0);
3816 if (mddev->external_size &&
3817 mddev->array_sectors > size)
3818 return -EINVAL;
3819 if (mddev->bitmap) {
3820 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3821 if (ret)
3822 return ret;
3824 md_set_array_sectors(mddev, size);
3825 if (mddev->queue) {
3826 set_capacity(mddev->gendisk, mddev->array_sectors);
3827 revalidate_disk(mddev->gendisk);
3829 if (sectors > mddev->dev_sectors &&
3830 mddev->recovery_cp > oldsize) {
3831 mddev->recovery_cp = oldsize;
3832 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3834 calc_sectors(conf, sectors);
3835 mddev->dev_sectors = conf->dev_sectors;
3836 mddev->resync_max_sectors = size;
3837 return 0;
3840 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3842 struct md_rdev *rdev;
3843 struct r10conf *conf;
3845 if (mddev->degraded > 0) {
3846 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3847 mdname(mddev));
3848 return ERR_PTR(-EINVAL);
3850 sector_div(size, devs);
3852 /* Set new parameters */
3853 mddev->new_level = 10;
3854 /* new layout: far_copies = 1, near_copies = 2 */
3855 mddev->new_layout = (1<<8) + 2;
3856 mddev->new_chunk_sectors = mddev->chunk_sectors;
3857 mddev->delta_disks = mddev->raid_disks;
3858 mddev->raid_disks *= 2;
3859 /* make sure it will be not marked as dirty */
3860 mddev->recovery_cp = MaxSector;
3861 mddev->dev_sectors = size;
3863 conf = setup_conf(mddev);
3864 if (!IS_ERR(conf)) {
3865 rdev_for_each(rdev, mddev)
3866 if (rdev->raid_disk >= 0) {
3867 rdev->new_raid_disk = rdev->raid_disk * 2;
3868 rdev->sectors = size;
3870 conf->barrier = 1;
3873 return conf;
3876 static void *raid10_takeover(struct mddev *mddev)
3878 struct r0conf *raid0_conf;
3880 /* raid10 can take over:
3881 * raid0 - providing it has only two drives
3883 if (mddev->level == 0) {
3884 /* for raid0 takeover only one zone is supported */
3885 raid0_conf = mddev->private;
3886 if (raid0_conf->nr_strip_zones > 1) {
3887 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3888 " with more than one zone.\n",
3889 mdname(mddev));
3890 return ERR_PTR(-EINVAL);
3892 return raid10_takeover_raid0(mddev,
3893 raid0_conf->strip_zone->zone_end,
3894 raid0_conf->strip_zone->nb_dev);
3896 return ERR_PTR(-EINVAL);
3899 static int raid10_check_reshape(struct mddev *mddev)
3901 /* Called when there is a request to change
3902 * - layout (to ->new_layout)
3903 * - chunk size (to ->new_chunk_sectors)
3904 * - raid_disks (by delta_disks)
3905 * or when trying to restart a reshape that was ongoing.
3907 * We need to validate the request and possibly allocate
3908 * space if that might be an issue later.
3910 * Currently we reject any reshape of a 'far' mode array,
3911 * allow chunk size to change if new is generally acceptable,
3912 * allow raid_disks to increase, and allow
3913 * a switch between 'near' mode and 'offset' mode.
3915 struct r10conf *conf = mddev->private;
3916 struct geom geo;
3918 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3919 return -EINVAL;
3921 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3922 /* mustn't change number of copies */
3923 return -EINVAL;
3924 if (geo.far_copies > 1 && !geo.far_offset)
3925 /* Cannot switch to 'far' mode */
3926 return -EINVAL;
3928 if (mddev->array_sectors & geo.chunk_mask)
3929 /* not factor of array size */
3930 return -EINVAL;
3932 if (!enough(conf, -1))
3933 return -EINVAL;
3935 kfree(conf->mirrors_new);
3936 conf->mirrors_new = NULL;
3937 if (mddev->delta_disks > 0) {
3938 /* allocate new 'mirrors' list */
3939 conf->mirrors_new = kzalloc(
3940 sizeof(struct raid10_info)
3941 *(mddev->raid_disks +
3942 mddev->delta_disks),
3943 GFP_KERNEL);
3944 if (!conf->mirrors_new)
3945 return -ENOMEM;
3947 return 0;
3951 * Need to check if array has failed when deciding whether to:
3952 * - start an array
3953 * - remove non-faulty devices
3954 * - add a spare
3955 * - allow a reshape
3956 * This determination is simple when no reshape is happening.
3957 * However if there is a reshape, we need to carefully check
3958 * both the before and after sections.
3959 * This is because some failed devices may only affect one
3960 * of the two sections, and some non-in_sync devices may
3961 * be insync in the section most affected by failed devices.
3963 static int calc_degraded(struct r10conf *conf)
3965 int degraded, degraded2;
3966 int i;
3968 rcu_read_lock();
3969 degraded = 0;
3970 /* 'prev' section first */
3971 for (i = 0; i < conf->prev.raid_disks; i++) {
3972 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3973 if (!rdev || test_bit(Faulty, &rdev->flags))
3974 degraded++;
3975 else if (!test_bit(In_sync, &rdev->flags))
3976 /* When we can reduce the number of devices in
3977 * an array, this might not contribute to
3978 * 'degraded'. It does now.
3980 degraded++;
3982 rcu_read_unlock();
3983 if (conf->geo.raid_disks == conf->prev.raid_disks)
3984 return degraded;
3985 rcu_read_lock();
3986 degraded2 = 0;
3987 for (i = 0; i < conf->geo.raid_disks; i++) {
3988 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3989 if (!rdev || test_bit(Faulty, &rdev->flags))
3990 degraded2++;
3991 else if (!test_bit(In_sync, &rdev->flags)) {
3992 /* If reshape is increasing the number of devices,
3993 * this section has already been recovered, so
3994 * it doesn't contribute to degraded.
3995 * else it does.
3997 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3998 degraded2++;
4001 rcu_read_unlock();
4002 if (degraded2 > degraded)
4003 return degraded2;
4004 return degraded;
4007 static int raid10_start_reshape(struct mddev *mddev)
4009 /* A 'reshape' has been requested. This commits
4010 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4011 * This also checks if there are enough spares and adds them
4012 * to the array.
4013 * We currently require enough spares to make the final
4014 * array non-degraded. We also require that the difference
4015 * between old and new data_offset - on each device - is
4016 * enough that we never risk over-writing.
4019 unsigned long before_length, after_length;
4020 sector_t min_offset_diff = 0;
4021 int first = 1;
4022 struct geom new;
4023 struct r10conf *conf = mddev->private;
4024 struct md_rdev *rdev;
4025 int spares = 0;
4026 int ret;
4028 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4029 return -EBUSY;
4031 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4032 return -EINVAL;
4034 before_length = ((1 << conf->prev.chunk_shift) *
4035 conf->prev.far_copies);
4036 after_length = ((1 << conf->geo.chunk_shift) *
4037 conf->geo.far_copies);
4039 rdev_for_each(rdev, mddev) {
4040 if (!test_bit(In_sync, &rdev->flags)
4041 && !test_bit(Faulty, &rdev->flags))
4042 spares++;
4043 if (rdev->raid_disk >= 0) {
4044 long long diff = (rdev->new_data_offset
4045 - rdev->data_offset);
4046 if (!mddev->reshape_backwards)
4047 diff = -diff;
4048 if (diff < 0)
4049 diff = 0;
4050 if (first || diff < min_offset_diff)
4051 min_offset_diff = diff;
4055 if (max(before_length, after_length) > min_offset_diff)
4056 return -EINVAL;
4058 if (spares < mddev->delta_disks)
4059 return -EINVAL;
4061 conf->offset_diff = min_offset_diff;
4062 spin_lock_irq(&conf->device_lock);
4063 if (conf->mirrors_new) {
4064 memcpy(conf->mirrors_new, conf->mirrors,
4065 sizeof(struct raid10_info)*conf->prev.raid_disks);
4066 smp_mb();
4067 kfree(conf->mirrors_old);
4068 conf->mirrors_old = conf->mirrors;
4069 conf->mirrors = conf->mirrors_new;
4070 conf->mirrors_new = NULL;
4072 setup_geo(&conf->geo, mddev, geo_start);
4073 smp_mb();
4074 if (mddev->reshape_backwards) {
4075 sector_t size = raid10_size(mddev, 0, 0);
4076 if (size < mddev->array_sectors) {
4077 spin_unlock_irq(&conf->device_lock);
4078 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4079 mdname(mddev));
4080 return -EINVAL;
4082 mddev->resync_max_sectors = size;
4083 conf->reshape_progress = size;
4084 } else
4085 conf->reshape_progress = 0;
4086 conf->reshape_safe = conf->reshape_progress;
4087 spin_unlock_irq(&conf->device_lock);
4089 if (mddev->delta_disks && mddev->bitmap) {
4090 ret = bitmap_resize(mddev->bitmap,
4091 raid10_size(mddev, 0,
4092 conf->geo.raid_disks),
4093 0, 0);
4094 if (ret)
4095 goto abort;
4097 if (mddev->delta_disks > 0) {
4098 rdev_for_each(rdev, mddev)
4099 if (rdev->raid_disk < 0 &&
4100 !test_bit(Faulty, &rdev->flags)) {
4101 if (raid10_add_disk(mddev, rdev) == 0) {
4102 if (rdev->raid_disk >=
4103 conf->prev.raid_disks)
4104 set_bit(In_sync, &rdev->flags);
4105 else
4106 rdev->recovery_offset = 0;
4108 if (sysfs_link_rdev(mddev, rdev))
4109 /* Failure here is OK */;
4111 } else if (rdev->raid_disk >= conf->prev.raid_disks
4112 && !test_bit(Faulty, &rdev->flags)) {
4113 /* This is a spare that was manually added */
4114 set_bit(In_sync, &rdev->flags);
4117 /* When a reshape changes the number of devices,
4118 * ->degraded is measured against the larger of the
4119 * pre and post numbers.
4121 spin_lock_irq(&conf->device_lock);
4122 mddev->degraded = calc_degraded(conf);
4123 spin_unlock_irq(&conf->device_lock);
4124 mddev->raid_disks = conf->geo.raid_disks;
4125 mddev->reshape_position = conf->reshape_progress;
4126 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4128 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4129 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4131 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4132 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4134 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4135 "reshape");
4136 if (!mddev->sync_thread) {
4137 ret = -EAGAIN;
4138 goto abort;
4140 conf->reshape_checkpoint = jiffies;
4141 md_wakeup_thread(mddev->sync_thread);
4142 md_new_event(mddev);
4143 return 0;
4145 abort:
4146 mddev->recovery = 0;
4147 spin_lock_irq(&conf->device_lock);
4148 conf->geo = conf->prev;
4149 mddev->raid_disks = conf->geo.raid_disks;
4150 rdev_for_each(rdev, mddev)
4151 rdev->new_data_offset = rdev->data_offset;
4152 smp_wmb();
4153 conf->reshape_progress = MaxSector;
4154 conf->reshape_safe = MaxSector;
4155 mddev->reshape_position = MaxSector;
4156 spin_unlock_irq(&conf->device_lock);
4157 return ret;
4160 /* Calculate the last device-address that could contain
4161 * any block from the chunk that includes the array-address 's'
4162 * and report the next address.
4163 * i.e. the address returned will be chunk-aligned and after
4164 * any data that is in the chunk containing 's'.
4166 static sector_t last_dev_address(sector_t s, struct geom *geo)
4168 s = (s | geo->chunk_mask) + 1;
4169 s >>= geo->chunk_shift;
4170 s *= geo->near_copies;
4171 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4172 s *= geo->far_copies;
4173 s <<= geo->chunk_shift;
4174 return s;
4177 /* Calculate the first device-address that could contain
4178 * any block from the chunk that includes the array-address 's'.
4179 * This too will be the start of a chunk
4181 static sector_t first_dev_address(sector_t s, struct geom *geo)
4183 s >>= geo->chunk_shift;
4184 s *= geo->near_copies;
4185 sector_div(s, geo->raid_disks);
4186 s *= geo->far_copies;
4187 s <<= geo->chunk_shift;
4188 return s;
4191 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4192 int *skipped)
4194 /* We simply copy at most one chunk (smallest of old and new)
4195 * at a time, possibly less if that exceeds RESYNC_PAGES,
4196 * or we hit a bad block or something.
4197 * This might mean we pause for normal IO in the middle of
4198 * a chunk, but that is not a problem as mddev->reshape_position
4199 * can record any location.
4201 * If we will want to write to a location that isn't
4202 * yet recorded as 'safe' (i.e. in metadata on disk) then
4203 * we need to flush all reshape requests and update the metadata.
4205 * When reshaping forwards (e.g. to more devices), we interpret
4206 * 'safe' as the earliest block which might not have been copied
4207 * down yet. We divide this by previous stripe size and multiply
4208 * by previous stripe length to get lowest device offset that we
4209 * cannot write to yet.
4210 * We interpret 'sector_nr' as an address that we want to write to.
4211 * From this we use last_device_address() to find where we might
4212 * write to, and first_device_address on the 'safe' position.
4213 * If this 'next' write position is after the 'safe' position,
4214 * we must update the metadata to increase the 'safe' position.
4216 * When reshaping backwards, we round in the opposite direction
4217 * and perform the reverse test: next write position must not be
4218 * less than current safe position.
4220 * In all this the minimum difference in data offsets
4221 * (conf->offset_diff - always positive) allows a bit of slack,
4222 * so next can be after 'safe', but not by more than offset_diff
4224 * We need to prepare all the bios here before we start any IO
4225 * to ensure the size we choose is acceptable to all devices.
4226 * The means one for each copy for write-out and an extra one for
4227 * read-in.
4228 * We store the read-in bio in ->master_bio and the others in
4229 * ->devs[x].bio and ->devs[x].repl_bio.
4231 struct r10conf *conf = mddev->private;
4232 struct r10bio *r10_bio;
4233 sector_t next, safe, last;
4234 int max_sectors;
4235 int nr_sectors;
4236 int s;
4237 struct md_rdev *rdev;
4238 int need_flush = 0;
4239 struct bio *blist;
4240 struct bio *bio, *read_bio;
4241 int sectors_done = 0;
4243 if (sector_nr == 0) {
4244 /* If restarting in the middle, skip the initial sectors */
4245 if (mddev->reshape_backwards &&
4246 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4247 sector_nr = (raid10_size(mddev, 0, 0)
4248 - conf->reshape_progress);
4249 } else if (!mddev->reshape_backwards &&
4250 conf->reshape_progress > 0)
4251 sector_nr = conf->reshape_progress;
4252 if (sector_nr) {
4253 mddev->curr_resync_completed = sector_nr;
4254 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4255 *skipped = 1;
4256 return sector_nr;
4260 /* We don't use sector_nr to track where we are up to
4261 * as that doesn't work well for ->reshape_backwards.
4262 * So just use ->reshape_progress.
4264 if (mddev->reshape_backwards) {
4265 /* 'next' is the earliest device address that we might
4266 * write to for this chunk in the new layout
4268 next = first_dev_address(conf->reshape_progress - 1,
4269 &conf->geo);
4271 /* 'safe' is the last device address that we might read from
4272 * in the old layout after a restart
4274 safe = last_dev_address(conf->reshape_safe - 1,
4275 &conf->prev);
4277 if (next + conf->offset_diff < safe)
4278 need_flush = 1;
4280 last = conf->reshape_progress - 1;
4281 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4282 & conf->prev.chunk_mask);
4283 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4284 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4285 } else {
4286 /* 'next' is after the last device address that we
4287 * might write to for this chunk in the new layout
4289 next = last_dev_address(conf->reshape_progress, &conf->geo);
4291 /* 'safe' is the earliest device address that we might
4292 * read from in the old layout after a restart
4294 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4296 /* Need to update metadata if 'next' might be beyond 'safe'
4297 * as that would possibly corrupt data
4299 if (next > safe + conf->offset_diff)
4300 need_flush = 1;
4302 sector_nr = conf->reshape_progress;
4303 last = sector_nr | (conf->geo.chunk_mask
4304 & conf->prev.chunk_mask);
4306 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4307 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4310 if (need_flush ||
4311 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4312 /* Need to update reshape_position in metadata */
4313 wait_barrier(conf);
4314 mddev->reshape_position = conf->reshape_progress;
4315 if (mddev->reshape_backwards)
4316 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4317 - conf->reshape_progress;
4318 else
4319 mddev->curr_resync_completed = conf->reshape_progress;
4320 conf->reshape_checkpoint = jiffies;
4321 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4322 md_wakeup_thread(mddev->thread);
4323 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4324 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4325 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4326 allow_barrier(conf);
4327 return sectors_done;
4329 conf->reshape_safe = mddev->reshape_position;
4330 allow_barrier(conf);
4333 read_more:
4334 /* Now schedule reads for blocks from sector_nr to last */
4335 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4336 r10_bio->state = 0;
4337 raise_barrier(conf, sectors_done != 0);
4338 atomic_set(&r10_bio->remaining, 0);
4339 r10_bio->mddev = mddev;
4340 r10_bio->sector = sector_nr;
4341 set_bit(R10BIO_IsReshape, &r10_bio->state);
4342 r10_bio->sectors = last - sector_nr + 1;
4343 rdev = read_balance(conf, r10_bio, &max_sectors);
4344 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4346 if (!rdev) {
4347 /* Cannot read from here, so need to record bad blocks
4348 * on all the target devices.
4350 // FIXME
4351 mempool_free(r10_bio, conf->r10buf_pool);
4352 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4353 return sectors_done;
4356 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4358 read_bio->bi_bdev = rdev->bdev;
4359 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4360 + rdev->data_offset);
4361 read_bio->bi_private = r10_bio;
4362 read_bio->bi_end_io = end_sync_read;
4363 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4364 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4365 read_bio->bi_error = 0;
4366 read_bio->bi_vcnt = 0;
4367 read_bio->bi_iter.bi_size = 0;
4368 r10_bio->master_bio = read_bio;
4369 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4371 /* Now find the locations in the new layout */
4372 __raid10_find_phys(&conf->geo, r10_bio);
4374 blist = read_bio;
4375 read_bio->bi_next = NULL;
4377 rcu_read_lock();
4378 for (s = 0; s < conf->copies*2; s++) {
4379 struct bio *b;
4380 int d = r10_bio->devs[s/2].devnum;
4381 struct md_rdev *rdev2;
4382 if (s&1) {
4383 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4384 b = r10_bio->devs[s/2].repl_bio;
4385 } else {
4386 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4387 b = r10_bio->devs[s/2].bio;
4389 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4390 continue;
4392 bio_reset(b);
4393 b->bi_bdev = rdev2->bdev;
4394 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4395 rdev2->new_data_offset;
4396 b->bi_private = r10_bio;
4397 b->bi_end_io = end_reshape_write;
4398 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4399 b->bi_next = blist;
4400 blist = b;
4403 /* Now add as many pages as possible to all of these bios. */
4405 nr_sectors = 0;
4406 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4407 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4408 int len = (max_sectors - s) << 9;
4409 if (len > PAGE_SIZE)
4410 len = PAGE_SIZE;
4411 for (bio = blist; bio ; bio = bio->bi_next) {
4412 struct bio *bio2;
4413 if (bio_add_page(bio, page, len, 0))
4414 continue;
4416 /* Didn't fit, must stop */
4417 for (bio2 = blist;
4418 bio2 && bio2 != bio;
4419 bio2 = bio2->bi_next) {
4420 /* Remove last page from this bio */
4421 bio2->bi_vcnt--;
4422 bio2->bi_iter.bi_size -= len;
4423 bio_clear_flag(bio2, BIO_SEG_VALID);
4425 goto bio_full;
4427 sector_nr += len >> 9;
4428 nr_sectors += len >> 9;
4430 bio_full:
4431 rcu_read_unlock();
4432 r10_bio->sectors = nr_sectors;
4434 /* Now submit the read */
4435 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4436 atomic_inc(&r10_bio->remaining);
4437 read_bio->bi_next = NULL;
4438 generic_make_request(read_bio);
4439 sector_nr += nr_sectors;
4440 sectors_done += nr_sectors;
4441 if (sector_nr <= last)
4442 goto read_more;
4444 /* Now that we have done the whole section we can
4445 * update reshape_progress
4447 if (mddev->reshape_backwards)
4448 conf->reshape_progress -= sectors_done;
4449 else
4450 conf->reshape_progress += sectors_done;
4452 return sectors_done;
4455 static void end_reshape_request(struct r10bio *r10_bio);
4456 static int handle_reshape_read_error(struct mddev *mddev,
4457 struct r10bio *r10_bio);
4458 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4460 /* Reshape read completed. Hopefully we have a block
4461 * to write out.
4462 * If we got a read error then we do sync 1-page reads from
4463 * elsewhere until we find the data - or give up.
4465 struct r10conf *conf = mddev->private;
4466 int s;
4468 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4469 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4470 /* Reshape has been aborted */
4471 md_done_sync(mddev, r10_bio->sectors, 0);
4472 return;
4475 /* We definitely have the data in the pages, schedule the
4476 * writes.
4478 atomic_set(&r10_bio->remaining, 1);
4479 for (s = 0; s < conf->copies*2; s++) {
4480 struct bio *b;
4481 int d = r10_bio->devs[s/2].devnum;
4482 struct md_rdev *rdev;
4483 rcu_read_lock();
4484 if (s&1) {
4485 rdev = rcu_dereference(conf->mirrors[d].replacement);
4486 b = r10_bio->devs[s/2].repl_bio;
4487 } else {
4488 rdev = rcu_dereference(conf->mirrors[d].rdev);
4489 b = r10_bio->devs[s/2].bio;
4491 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4492 rcu_read_unlock();
4493 continue;
4495 atomic_inc(&rdev->nr_pending);
4496 rcu_read_unlock();
4497 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4498 atomic_inc(&r10_bio->remaining);
4499 b->bi_next = NULL;
4500 generic_make_request(b);
4502 end_reshape_request(r10_bio);
4505 static void end_reshape(struct r10conf *conf)
4507 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4508 return;
4510 spin_lock_irq(&conf->device_lock);
4511 conf->prev = conf->geo;
4512 md_finish_reshape(conf->mddev);
4513 smp_wmb();
4514 conf->reshape_progress = MaxSector;
4515 conf->reshape_safe = MaxSector;
4516 spin_unlock_irq(&conf->device_lock);
4518 /* read-ahead size must cover two whole stripes, which is
4519 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4521 if (conf->mddev->queue) {
4522 int stripe = conf->geo.raid_disks *
4523 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4524 stripe /= conf->geo.near_copies;
4525 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4526 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4528 conf->fullsync = 0;
4531 static int handle_reshape_read_error(struct mddev *mddev,
4532 struct r10bio *r10_bio)
4534 /* Use sync reads to get the blocks from somewhere else */
4535 int sectors = r10_bio->sectors;
4536 struct r10conf *conf = mddev->private;
4537 struct {
4538 struct r10bio r10_bio;
4539 struct r10dev devs[conf->copies];
4540 } on_stack;
4541 struct r10bio *r10b = &on_stack.r10_bio;
4542 int slot = 0;
4543 int idx = 0;
4544 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4546 r10b->sector = r10_bio->sector;
4547 __raid10_find_phys(&conf->prev, r10b);
4549 while (sectors) {
4550 int s = sectors;
4551 int success = 0;
4552 int first_slot = slot;
4554 if (s > (PAGE_SIZE >> 9))
4555 s = PAGE_SIZE >> 9;
4557 rcu_read_lock();
4558 while (!success) {
4559 int d = r10b->devs[slot].devnum;
4560 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4561 sector_t addr;
4562 if (rdev == NULL ||
4563 test_bit(Faulty, &rdev->flags) ||
4564 !test_bit(In_sync, &rdev->flags))
4565 goto failed;
4567 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4568 atomic_inc(&rdev->nr_pending);
4569 rcu_read_unlock();
4570 success = sync_page_io(rdev,
4571 addr,
4572 s << 9,
4573 bvec[idx].bv_page,
4574 REQ_OP_READ, 0, false);
4575 rdev_dec_pending(rdev, mddev);
4576 rcu_read_lock();
4577 if (success)
4578 break;
4579 failed:
4580 slot++;
4581 if (slot >= conf->copies)
4582 slot = 0;
4583 if (slot == first_slot)
4584 break;
4586 rcu_read_unlock();
4587 if (!success) {
4588 /* couldn't read this block, must give up */
4589 set_bit(MD_RECOVERY_INTR,
4590 &mddev->recovery);
4591 return -EIO;
4593 sectors -= s;
4594 idx++;
4596 return 0;
4599 static void end_reshape_write(struct bio *bio)
4601 struct r10bio *r10_bio = bio->bi_private;
4602 struct mddev *mddev = r10_bio->mddev;
4603 struct r10conf *conf = mddev->private;
4604 int d;
4605 int slot;
4606 int repl;
4607 struct md_rdev *rdev = NULL;
4609 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4610 if (repl)
4611 rdev = conf->mirrors[d].replacement;
4612 if (!rdev) {
4613 smp_mb();
4614 rdev = conf->mirrors[d].rdev;
4617 if (bio->bi_error) {
4618 /* FIXME should record badblock */
4619 md_error(mddev, rdev);
4622 rdev_dec_pending(rdev, mddev);
4623 end_reshape_request(r10_bio);
4626 static void end_reshape_request(struct r10bio *r10_bio)
4628 if (!atomic_dec_and_test(&r10_bio->remaining))
4629 return;
4630 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4631 bio_put(r10_bio->master_bio);
4632 put_buf(r10_bio);
4635 static void raid10_finish_reshape(struct mddev *mddev)
4637 struct r10conf *conf = mddev->private;
4639 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4640 return;
4642 if (mddev->delta_disks > 0) {
4643 sector_t size = raid10_size(mddev, 0, 0);
4644 md_set_array_sectors(mddev, size);
4645 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4646 mddev->recovery_cp = mddev->resync_max_sectors;
4647 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4649 mddev->resync_max_sectors = size;
4650 if (mddev->queue) {
4651 set_capacity(mddev->gendisk, mddev->array_sectors);
4652 revalidate_disk(mddev->gendisk);
4654 } else {
4655 int d;
4656 rcu_read_lock();
4657 for (d = conf->geo.raid_disks ;
4658 d < conf->geo.raid_disks - mddev->delta_disks;
4659 d++) {
4660 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4661 if (rdev)
4662 clear_bit(In_sync, &rdev->flags);
4663 rdev = rcu_dereference(conf->mirrors[d].replacement);
4664 if (rdev)
4665 clear_bit(In_sync, &rdev->flags);
4667 rcu_read_unlock();
4669 mddev->layout = mddev->new_layout;
4670 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4671 mddev->reshape_position = MaxSector;
4672 mddev->delta_disks = 0;
4673 mddev->reshape_backwards = 0;
4676 static struct md_personality raid10_personality =
4678 .name = "raid10",
4679 .level = 10,
4680 .owner = THIS_MODULE,
4681 .make_request = raid10_make_request,
4682 .run = raid10_run,
4683 .free = raid10_free,
4684 .status = raid10_status,
4685 .error_handler = raid10_error,
4686 .hot_add_disk = raid10_add_disk,
4687 .hot_remove_disk= raid10_remove_disk,
4688 .spare_active = raid10_spare_active,
4689 .sync_request = raid10_sync_request,
4690 .quiesce = raid10_quiesce,
4691 .size = raid10_size,
4692 .resize = raid10_resize,
4693 .takeover = raid10_takeover,
4694 .check_reshape = raid10_check_reshape,
4695 .start_reshape = raid10_start_reshape,
4696 .finish_reshape = raid10_finish_reshape,
4697 .congested = raid10_congested,
4700 static int __init raid_init(void)
4702 return register_md_personality(&raid10_personality);
4705 static void raid_exit(void)
4707 unregister_md_personality(&raid10_personality);
4710 module_init(raid_init);
4711 module_exit(raid_exit);
4712 MODULE_LICENSE("GPL");
4713 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4714 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4715 MODULE_ALIAS("md-raid10");
4716 MODULE_ALIAS("md-level-10");
4718 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);