mtd: mtd_oobtest: Fix bitflip_limit usage in test case 3
[linux-2.6/btrfs-unstable.git] / fs / xfs / xfs_log.c
blobbcc7cfabb787079c5a0bf1dd9b4da3c2b159bcd8
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
38 kmem_zone_t *xfs_log_ticket_zone;
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 char *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
147 do {
148 int cycle, space;
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
173 do {
174 int tmp;
175 int cycle, space;
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
206 struct xlog_ticket *tic;
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
237 struct xlog_ticket *tic;
238 int need_bytes;
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
250 return true;
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
261 list_add_tail(&tic->t_queue, &head->waiters);
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
271 XFS_STATS_INC(xs_sleep_logspace);
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
313 int free_bytes;
314 int error = 0;
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
340 return error;
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
368 * Replenish the byte reservation required by moving the grant write head.
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
382 XFS_STATS_INC(xs_try_logspace);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
390 tic->t_tid++;
392 xlog_grant_push_ail(log, tic->t_unit_res);
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
397 if (tic->t_cnt > 0)
398 return 0;
400 trace_xfs_log_regrant(log, tic);
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
412 out_error:
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return -EIO;
451 XFS_STATS_INC(xs_try_logspace);
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return -ENOMEM;
459 tic->t_trans_type = t_type;
460 *ticp = tic;
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
465 trace_xfs_log_reserve(log, tic);
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
478 out_error:
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
491 * NOTES:
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
511 xfs_lsn_t
512 xfs_log_done(
513 struct xfs_mount *mp,
514 struct xlog_ticket *ticket,
515 struct xlog_in_core **iclog,
516 uint flags)
518 struct xlog *log = mp->m_log;
519 xfs_lsn_t lsn = 0;
521 if (XLOG_FORCED_SHUTDOWN(log) ||
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 lsn = (xfs_lsn_t) -1;
529 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
530 flags |= XFS_LOG_REL_PERM_RESERV;
535 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
536 (flags & XFS_LOG_REL_PERM_RESERV)) {
537 trace_xfs_log_done_nonperm(log, ticket);
540 * Release ticket if not permanent reservation or a specific
541 * request has been made to release a permanent reservation.
543 xlog_ungrant_log_space(log, ticket);
544 xfs_log_ticket_put(ticket);
545 } else {
546 trace_xfs_log_done_perm(log, ticket);
548 xlog_regrant_reserve_log_space(log, ticket);
549 /* If this ticket was a permanent reservation and we aren't
550 * trying to release it, reset the inited flags; so next time
551 * we write, a start record will be written out.
553 ticket->t_flags |= XLOG_TIC_INITED;
556 return lsn;
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit. If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
566 xfs_log_notify(
567 struct xfs_mount *mp,
568 struct xlog_in_core *iclog,
569 xfs_log_callback_t *cb)
571 int abortflg;
573 spin_lock(&iclog->ic_callback_lock);
574 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
575 if (!abortflg) {
576 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
577 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
578 cb->cb_next = NULL;
579 *(iclog->ic_callback_tail) = cb;
580 iclog->ic_callback_tail = &(cb->cb_next);
582 spin_unlock(&iclog->ic_callback_lock);
583 return abortflg;
587 xfs_log_release_iclog(
588 struct xfs_mount *mp,
589 struct xlog_in_core *iclog)
591 if (xlog_state_release_iclog(mp->m_log, iclog)) {
592 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
593 return -EIO;
596 return 0;
600 * Mount a log filesystem
602 * mp - ubiquitous xfs mount point structure
603 * log_target - buftarg of on-disk log device
604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks - Number of BBSIZE blocks in on-disk log
607 * Return error or zero.
610 xfs_log_mount(
611 xfs_mount_t *mp,
612 xfs_buftarg_t *log_target,
613 xfs_daddr_t blk_offset,
614 int num_bblks)
616 int error = 0;
617 int min_logfsbs;
619 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
620 xfs_notice(mp, "Mounting V%d Filesystem",
621 XFS_SB_VERSION_NUM(&mp->m_sb));
622 } else {
623 xfs_notice(mp,
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625 XFS_SB_VERSION_NUM(&mp->m_sb));
626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 if (IS_ERR(mp->m_log)) {
631 error = PTR_ERR(mp->m_log);
632 goto out;
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
649 min_logfsbs = xfs_log_calc_minimum_size(mp);
651 if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 xfs_warn(mp,
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp->m_sb.sb_logblocks, min_logfsbs);
655 error = -EINVAL;
656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 xfs_warn(mp,
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 error = -EINVAL;
661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 xfs_warn(mp,
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 XFS_MAX_LOG_BYTES);
666 error = -EINVAL;
668 if (error) {
669 if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 ASSERT(0);
672 goto out_free_log;
674 xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
680 * Initialize the AIL now we have a log.
682 error = xfs_trans_ail_init(mp);
683 if (error) {
684 xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 goto out_free_log;
687 mp->m_log->l_ailp = mp->m_ail;
690 * skip log recovery on a norecovery mount. pretend it all
691 * just worked.
693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
696 if (readonly)
697 mp->m_flags &= ~XFS_MOUNT_RDONLY;
699 error = xlog_recover(mp->m_log);
701 if (readonly)
702 mp->m_flags |= XFS_MOUNT_RDONLY;
703 if (error) {
704 xfs_warn(mp, "log mount/recovery failed: error %d",
705 error);
706 goto out_destroy_ail;
710 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
711 "log");
712 if (error)
713 goto out_destroy_ail;
715 /* Normal transactions can now occur */
716 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
719 * Now the log has been fully initialised and we know were our
720 * space grant counters are, we can initialise the permanent ticket
721 * needed for delayed logging to work.
723 xlog_cil_init_post_recovery(mp->m_log);
725 return 0;
727 out_destroy_ail:
728 xfs_trans_ail_destroy(mp);
729 out_free_log:
730 xlog_dealloc_log(mp->m_log);
731 out:
732 return error;
736 * Finish the recovery of the file system. This is separate from the
737 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
738 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
739 * here.
741 * If we finish recovery successfully, start the background log work. If we are
742 * not doing recovery, then we have a RO filesystem and we don't need to start
743 * it.
746 xfs_log_mount_finish(xfs_mount_t *mp)
748 int error = 0;
750 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
751 error = xlog_recover_finish(mp->m_log);
752 if (!error)
753 xfs_log_work_queue(mp);
754 } else {
755 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
759 return error;
763 * Final log writes as part of unmount.
765 * Mark the filesystem clean as unmount happens. Note that during relocation
766 * this routine needs to be executed as part of source-bag while the
767 * deallocation must not be done until source-end.
771 * Unmount record used to have a string "Unmount filesystem--" in the
772 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
773 * We just write the magic number now since that particular field isn't
774 * currently architecture converted and "Unmount" is a bit foo.
775 * As far as I know, there weren't any dependencies on the old behaviour.
779 xfs_log_unmount_write(xfs_mount_t *mp)
781 struct xlog *log = mp->m_log;
782 xlog_in_core_t *iclog;
783 #ifdef DEBUG
784 xlog_in_core_t *first_iclog;
785 #endif
786 xlog_ticket_t *tic = NULL;
787 xfs_lsn_t lsn;
788 int error;
791 * Don't write out unmount record on read-only mounts.
792 * Or, if we are doing a forced umount (typically because of IO errors).
794 if (mp->m_flags & XFS_MOUNT_RDONLY)
795 return 0;
797 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
798 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
800 #ifdef DEBUG
801 first_iclog = iclog = log->l_iclog;
802 do {
803 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
804 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
805 ASSERT(iclog->ic_offset == 0);
807 iclog = iclog->ic_next;
808 } while (iclog != first_iclog);
809 #endif
810 if (! (XLOG_FORCED_SHUTDOWN(log))) {
811 error = xfs_log_reserve(mp, 600, 1, &tic,
812 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
813 if (!error) {
814 /* the data section must be 32 bit size aligned */
815 struct {
816 __uint16_t magic;
817 __uint16_t pad1;
818 __uint32_t pad2; /* may as well make it 64 bits */
819 } magic = {
820 .magic = XLOG_UNMOUNT_TYPE,
822 struct xfs_log_iovec reg = {
823 .i_addr = &magic,
824 .i_len = sizeof(magic),
825 .i_type = XLOG_REG_TYPE_UNMOUNT,
827 struct xfs_log_vec vec = {
828 .lv_niovecs = 1,
829 .lv_iovecp = &reg,
832 /* remove inited flag, and account for space used */
833 tic->t_flags = 0;
834 tic->t_curr_res -= sizeof(magic);
835 error = xlog_write(log, &vec, tic, &lsn,
836 NULL, XLOG_UNMOUNT_TRANS);
838 * At this point, we're umounting anyway,
839 * so there's no point in transitioning log state
840 * to IOERROR. Just continue...
844 if (error)
845 xfs_alert(mp, "%s: unmount record failed", __func__);
848 spin_lock(&log->l_icloglock);
849 iclog = log->l_iclog;
850 atomic_inc(&iclog->ic_refcnt);
851 xlog_state_want_sync(log, iclog);
852 spin_unlock(&log->l_icloglock);
853 error = xlog_state_release_iclog(log, iclog);
855 spin_lock(&log->l_icloglock);
856 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
857 iclog->ic_state == XLOG_STATE_DIRTY)) {
858 if (!XLOG_FORCED_SHUTDOWN(log)) {
859 xlog_wait(&iclog->ic_force_wait,
860 &log->l_icloglock);
861 } else {
862 spin_unlock(&log->l_icloglock);
864 } else {
865 spin_unlock(&log->l_icloglock);
867 if (tic) {
868 trace_xfs_log_umount_write(log, tic);
869 xlog_ungrant_log_space(log, tic);
870 xfs_log_ticket_put(tic);
872 } else {
874 * We're already in forced_shutdown mode, couldn't
875 * even attempt to write out the unmount transaction.
877 * Go through the motions of sync'ing and releasing
878 * the iclog, even though no I/O will actually happen,
879 * we need to wait for other log I/Os that may already
880 * be in progress. Do this as a separate section of
881 * code so we'll know if we ever get stuck here that
882 * we're in this odd situation of trying to unmount
883 * a file system that went into forced_shutdown as
884 * the result of an unmount..
886 spin_lock(&log->l_icloglock);
887 iclog = log->l_iclog;
888 atomic_inc(&iclog->ic_refcnt);
890 xlog_state_want_sync(log, iclog);
891 spin_unlock(&log->l_icloglock);
892 error = xlog_state_release_iclog(log, iclog);
894 spin_lock(&log->l_icloglock);
896 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
897 || iclog->ic_state == XLOG_STATE_DIRTY
898 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
900 xlog_wait(&iclog->ic_force_wait,
901 &log->l_icloglock);
902 } else {
903 spin_unlock(&log->l_icloglock);
907 return error;
908 } /* xfs_log_unmount_write */
911 * Empty the log for unmount/freeze.
913 * To do this, we first need to shut down the background log work so it is not
914 * trying to cover the log as we clean up. We then need to unpin all objects in
915 * the log so we can then flush them out. Once they have completed their IO and
916 * run the callbacks removing themselves from the AIL, we can write the unmount
917 * record.
919 void
920 xfs_log_quiesce(
921 struct xfs_mount *mp)
923 cancel_delayed_work_sync(&mp->m_log->l_work);
924 xfs_log_force(mp, XFS_LOG_SYNC);
927 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
928 * will push it, xfs_wait_buftarg() will not wait for it. Further,
929 * xfs_buf_iowait() cannot be used because it was pushed with the
930 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
931 * the IO to complete.
933 xfs_ail_push_all_sync(mp->m_ail);
934 xfs_wait_buftarg(mp->m_ddev_targp);
935 xfs_buf_lock(mp->m_sb_bp);
936 xfs_buf_unlock(mp->m_sb_bp);
938 xfs_log_unmount_write(mp);
942 * Shut down and release the AIL and Log.
944 * During unmount, we need to ensure we flush all the dirty metadata objects
945 * from the AIL so that the log is empty before we write the unmount record to
946 * the log. Once this is done, we can tear down the AIL and the log.
948 void
949 xfs_log_unmount(
950 struct xfs_mount *mp)
952 xfs_log_quiesce(mp);
954 xfs_trans_ail_destroy(mp);
956 xfs_sysfs_del(&mp->m_log->l_kobj);
958 xlog_dealloc_log(mp->m_log);
961 void
962 xfs_log_item_init(
963 struct xfs_mount *mp,
964 struct xfs_log_item *item,
965 int type,
966 const struct xfs_item_ops *ops)
968 item->li_mountp = mp;
969 item->li_ailp = mp->m_ail;
970 item->li_type = type;
971 item->li_ops = ops;
972 item->li_lv = NULL;
974 INIT_LIST_HEAD(&item->li_ail);
975 INIT_LIST_HEAD(&item->li_cil);
979 * Wake up processes waiting for log space after we have moved the log tail.
981 void
982 xfs_log_space_wake(
983 struct xfs_mount *mp)
985 struct xlog *log = mp->m_log;
986 int free_bytes;
988 if (XLOG_FORCED_SHUTDOWN(log))
989 return;
991 if (!list_empty_careful(&log->l_write_head.waiters)) {
992 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994 spin_lock(&log->l_write_head.lock);
995 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
996 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
997 spin_unlock(&log->l_write_head.lock);
1000 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1001 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1003 spin_lock(&log->l_reserve_head.lock);
1004 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1005 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1006 spin_unlock(&log->l_reserve_head.lock);
1011 * Determine if we have a transaction that has gone to disk that needs to be
1012 * covered. To begin the transition to the idle state firstly the log needs to
1013 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1014 * we start attempting to cover the log.
1016 * Only if we are then in a state where covering is needed, the caller is
1017 * informed that dummy transactions are required to move the log into the idle
1018 * state.
1020 * If there are any items in the AIl or CIL, then we do not want to attempt to
1021 * cover the log as we may be in a situation where there isn't log space
1022 * available to run a dummy transaction and this can lead to deadlocks when the
1023 * tail of the log is pinned by an item that is modified in the CIL. Hence
1024 * there's no point in running a dummy transaction at this point because we
1025 * can't start trying to idle the log until both the CIL and AIL are empty.
1028 xfs_log_need_covered(xfs_mount_t *mp)
1030 struct xlog *log = mp->m_log;
1031 int needed = 0;
1033 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1034 return 0;
1036 if (!xlog_cil_empty(log))
1037 return 0;
1039 spin_lock(&log->l_icloglock);
1040 switch (log->l_covered_state) {
1041 case XLOG_STATE_COVER_DONE:
1042 case XLOG_STATE_COVER_DONE2:
1043 case XLOG_STATE_COVER_IDLE:
1044 break;
1045 case XLOG_STATE_COVER_NEED:
1046 case XLOG_STATE_COVER_NEED2:
1047 if (xfs_ail_min_lsn(log->l_ailp))
1048 break;
1049 if (!xlog_iclogs_empty(log))
1050 break;
1052 needed = 1;
1053 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1054 log->l_covered_state = XLOG_STATE_COVER_DONE;
1055 else
1056 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1057 break;
1058 default:
1059 needed = 1;
1060 break;
1062 spin_unlock(&log->l_icloglock);
1063 return needed;
1067 * We may be holding the log iclog lock upon entering this routine.
1069 xfs_lsn_t
1070 xlog_assign_tail_lsn_locked(
1071 struct xfs_mount *mp)
1073 struct xlog *log = mp->m_log;
1074 struct xfs_log_item *lip;
1075 xfs_lsn_t tail_lsn;
1077 assert_spin_locked(&mp->m_ail->xa_lock);
1080 * To make sure we always have a valid LSN for the log tail we keep
1081 * track of the last LSN which was committed in log->l_last_sync_lsn,
1082 * and use that when the AIL was empty.
1084 lip = xfs_ail_min(mp->m_ail);
1085 if (lip)
1086 tail_lsn = lip->li_lsn;
1087 else
1088 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1089 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1090 atomic64_set(&log->l_tail_lsn, tail_lsn);
1091 return tail_lsn;
1094 xfs_lsn_t
1095 xlog_assign_tail_lsn(
1096 struct xfs_mount *mp)
1098 xfs_lsn_t tail_lsn;
1100 spin_lock(&mp->m_ail->xa_lock);
1101 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1102 spin_unlock(&mp->m_ail->xa_lock);
1104 return tail_lsn;
1108 * Return the space in the log between the tail and the head. The head
1109 * is passed in the cycle/bytes formal parms. In the special case where
1110 * the reserve head has wrapped passed the tail, this calculation is no
1111 * longer valid. In this case, just return 0 which means there is no space
1112 * in the log. This works for all places where this function is called
1113 * with the reserve head. Of course, if the write head were to ever
1114 * wrap the tail, we should blow up. Rather than catch this case here,
1115 * we depend on other ASSERTions in other parts of the code. XXXmiken
1117 * This code also handles the case where the reservation head is behind
1118 * the tail. The details of this case are described below, but the end
1119 * result is that we return the size of the log as the amount of space left.
1121 STATIC int
1122 xlog_space_left(
1123 struct xlog *log,
1124 atomic64_t *head)
1126 int free_bytes;
1127 int tail_bytes;
1128 int tail_cycle;
1129 int head_cycle;
1130 int head_bytes;
1132 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1133 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1134 tail_bytes = BBTOB(tail_bytes);
1135 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1136 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1137 else if (tail_cycle + 1 < head_cycle)
1138 return 0;
1139 else if (tail_cycle < head_cycle) {
1140 ASSERT(tail_cycle == (head_cycle - 1));
1141 free_bytes = tail_bytes - head_bytes;
1142 } else {
1144 * The reservation head is behind the tail.
1145 * In this case we just want to return the size of the
1146 * log as the amount of space left.
1148 xfs_alert(log->l_mp,
1149 "xlog_space_left: head behind tail\n"
1150 " tail_cycle = %d, tail_bytes = %d\n"
1151 " GH cycle = %d, GH bytes = %d",
1152 tail_cycle, tail_bytes, head_cycle, head_bytes);
1153 ASSERT(0);
1154 free_bytes = log->l_logsize;
1156 return free_bytes;
1161 * Log function which is called when an io completes.
1163 * The log manager needs its own routine, in order to control what
1164 * happens with the buffer after the write completes.
1166 void
1167 xlog_iodone(xfs_buf_t *bp)
1169 struct xlog_in_core *iclog = bp->b_fspriv;
1170 struct xlog *l = iclog->ic_log;
1171 int aborted = 0;
1174 * Race to shutdown the filesystem if we see an error.
1176 if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1177 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1178 xfs_buf_ioerror_alert(bp, __func__);
1179 xfs_buf_stale(bp);
1180 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1182 * This flag will be propagated to the trans-committed
1183 * callback routines to let them know that the log-commit
1184 * didn't succeed.
1186 aborted = XFS_LI_ABORTED;
1187 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1188 aborted = XFS_LI_ABORTED;
1191 /* log I/O is always issued ASYNC */
1192 ASSERT(XFS_BUF_ISASYNC(bp));
1193 xlog_state_done_syncing(iclog, aborted);
1196 * drop the buffer lock now that we are done. Nothing references
1197 * the buffer after this, so an unmount waiting on this lock can now
1198 * tear it down safely. As such, it is unsafe to reference the buffer
1199 * (bp) after the unlock as we could race with it being freed.
1201 xfs_buf_unlock(bp);
1205 * Return size of each in-core log record buffer.
1207 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1209 * If the filesystem blocksize is too large, we may need to choose a
1210 * larger size since the directory code currently logs entire blocks.
1213 STATIC void
1214 xlog_get_iclog_buffer_size(
1215 struct xfs_mount *mp,
1216 struct xlog *log)
1218 int size;
1219 int xhdrs;
1221 if (mp->m_logbufs <= 0)
1222 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1223 else
1224 log->l_iclog_bufs = mp->m_logbufs;
1227 * Buffer size passed in from mount system call.
1229 if (mp->m_logbsize > 0) {
1230 size = log->l_iclog_size = mp->m_logbsize;
1231 log->l_iclog_size_log = 0;
1232 while (size != 1) {
1233 log->l_iclog_size_log++;
1234 size >>= 1;
1237 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1238 /* # headers = size / 32k
1239 * one header holds cycles from 32k of data
1242 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1243 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1244 xhdrs++;
1245 log->l_iclog_hsize = xhdrs << BBSHIFT;
1246 log->l_iclog_heads = xhdrs;
1247 } else {
1248 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1249 log->l_iclog_hsize = BBSIZE;
1250 log->l_iclog_heads = 1;
1252 goto done;
1255 /* All machines use 32kB buffers by default. */
1256 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1257 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1259 /* the default log size is 16k or 32k which is one header sector */
1260 log->l_iclog_hsize = BBSIZE;
1261 log->l_iclog_heads = 1;
1263 done:
1264 /* are we being asked to make the sizes selected above visible? */
1265 if (mp->m_logbufs == 0)
1266 mp->m_logbufs = log->l_iclog_bufs;
1267 if (mp->m_logbsize == 0)
1268 mp->m_logbsize = log->l_iclog_size;
1269 } /* xlog_get_iclog_buffer_size */
1272 void
1273 xfs_log_work_queue(
1274 struct xfs_mount *mp)
1276 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1277 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1281 * Every sync period we need to unpin all items in the AIL and push them to
1282 * disk. If there is nothing dirty, then we might need to cover the log to
1283 * indicate that the filesystem is idle.
1285 void
1286 xfs_log_worker(
1287 struct work_struct *work)
1289 struct xlog *log = container_of(to_delayed_work(work),
1290 struct xlog, l_work);
1291 struct xfs_mount *mp = log->l_mp;
1293 /* dgc: errors ignored - not fatal and nowhere to report them */
1294 if (xfs_log_need_covered(mp)) {
1296 * Dump a transaction into the log that contains no real change.
1297 * This is needed to stamp the current tail LSN into the log
1298 * during the covering operation.
1300 * We cannot use an inode here for this - that will push dirty
1301 * state back up into the VFS and then periodic inode flushing
1302 * will prevent log covering from making progress. Hence we
1303 * synchronously log the superblock instead to ensure the
1304 * superblock is immediately unpinned and can be written back.
1306 xfs_sync_sb(mp, true);
1307 } else
1308 xfs_log_force(mp, 0);
1310 /* start pushing all the metadata that is currently dirty */
1311 xfs_ail_push_all(mp->m_ail);
1313 /* queue us up again */
1314 xfs_log_work_queue(mp);
1318 * This routine initializes some of the log structure for a given mount point.
1319 * Its primary purpose is to fill in enough, so recovery can occur. However,
1320 * some other stuff may be filled in too.
1322 STATIC struct xlog *
1323 xlog_alloc_log(
1324 struct xfs_mount *mp,
1325 struct xfs_buftarg *log_target,
1326 xfs_daddr_t blk_offset,
1327 int num_bblks)
1329 struct xlog *log;
1330 xlog_rec_header_t *head;
1331 xlog_in_core_t **iclogp;
1332 xlog_in_core_t *iclog, *prev_iclog=NULL;
1333 xfs_buf_t *bp;
1334 int i;
1335 int error = -ENOMEM;
1336 uint log2_size = 0;
1338 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1339 if (!log) {
1340 xfs_warn(mp, "Log allocation failed: No memory!");
1341 goto out;
1344 log->l_mp = mp;
1345 log->l_targ = log_target;
1346 log->l_logsize = BBTOB(num_bblks);
1347 log->l_logBBstart = blk_offset;
1348 log->l_logBBsize = num_bblks;
1349 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1350 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1351 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1353 log->l_prev_block = -1;
1354 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1355 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1356 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1357 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1359 xlog_grant_head_init(&log->l_reserve_head);
1360 xlog_grant_head_init(&log->l_write_head);
1362 error = -EFSCORRUPTED;
1363 if (xfs_sb_version_hassector(&mp->m_sb)) {
1364 log2_size = mp->m_sb.sb_logsectlog;
1365 if (log2_size < BBSHIFT) {
1366 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1367 log2_size, BBSHIFT);
1368 goto out_free_log;
1371 log2_size -= BBSHIFT;
1372 if (log2_size > mp->m_sectbb_log) {
1373 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1374 log2_size, mp->m_sectbb_log);
1375 goto out_free_log;
1378 /* for larger sector sizes, must have v2 or external log */
1379 if (log2_size && log->l_logBBstart > 0 &&
1380 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1381 xfs_warn(mp,
1382 "log sector size (0x%x) invalid for configuration.",
1383 log2_size);
1384 goto out_free_log;
1387 log->l_sectBBsize = 1 << log2_size;
1389 xlog_get_iclog_buffer_size(mp, log);
1392 * Use a NULL block for the extra log buffer used during splits so that
1393 * it will trigger errors if we ever try to do IO on it without first
1394 * having set it up properly.
1396 error = -ENOMEM;
1397 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1398 BTOBB(log->l_iclog_size), 0);
1399 if (!bp)
1400 goto out_free_log;
1403 * The iclogbuf buffer locks are held over IO but we are not going to do
1404 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1405 * when appropriately.
1407 ASSERT(xfs_buf_islocked(bp));
1408 xfs_buf_unlock(bp);
1410 /* use high priority wq for log I/O completion */
1411 bp->b_ioend_wq = mp->m_log_workqueue;
1412 bp->b_iodone = xlog_iodone;
1413 log->l_xbuf = bp;
1415 spin_lock_init(&log->l_icloglock);
1416 init_waitqueue_head(&log->l_flush_wait);
1418 iclogp = &log->l_iclog;
1420 * The amount of memory to allocate for the iclog structure is
1421 * rather funky due to the way the structure is defined. It is
1422 * done this way so that we can use different sizes for machines
1423 * with different amounts of memory. See the definition of
1424 * xlog_in_core_t in xfs_log_priv.h for details.
1426 ASSERT(log->l_iclog_size >= 4096);
1427 for (i=0; i < log->l_iclog_bufs; i++) {
1428 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1429 if (!*iclogp)
1430 goto out_free_iclog;
1432 iclog = *iclogp;
1433 iclog->ic_prev = prev_iclog;
1434 prev_iclog = iclog;
1436 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1437 BTOBB(log->l_iclog_size), 0);
1438 if (!bp)
1439 goto out_free_iclog;
1441 ASSERT(xfs_buf_islocked(bp));
1442 xfs_buf_unlock(bp);
1444 /* use high priority wq for log I/O completion */
1445 bp->b_ioend_wq = mp->m_log_workqueue;
1446 bp->b_iodone = xlog_iodone;
1447 iclog->ic_bp = bp;
1448 iclog->ic_data = bp->b_addr;
1449 #ifdef DEBUG
1450 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1451 #endif
1452 head = &iclog->ic_header;
1453 memset(head, 0, sizeof(xlog_rec_header_t));
1454 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455 head->h_version = cpu_to_be32(
1456 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457 head->h_size = cpu_to_be32(log->l_iclog_size);
1458 /* new fields */
1459 head->h_fmt = cpu_to_be32(XLOG_FMT);
1460 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1462 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1463 iclog->ic_state = XLOG_STATE_ACTIVE;
1464 iclog->ic_log = log;
1465 atomic_set(&iclog->ic_refcnt, 0);
1466 spin_lock_init(&iclog->ic_callback_lock);
1467 iclog->ic_callback_tail = &(iclog->ic_callback);
1468 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1470 init_waitqueue_head(&iclog->ic_force_wait);
1471 init_waitqueue_head(&iclog->ic_write_wait);
1473 iclogp = &iclog->ic_next;
1475 *iclogp = log->l_iclog; /* complete ring */
1476 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1478 error = xlog_cil_init(log);
1479 if (error)
1480 goto out_free_iclog;
1481 return log;
1483 out_free_iclog:
1484 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1485 prev_iclog = iclog->ic_next;
1486 if (iclog->ic_bp)
1487 xfs_buf_free(iclog->ic_bp);
1488 kmem_free(iclog);
1490 spinlock_destroy(&log->l_icloglock);
1491 xfs_buf_free(log->l_xbuf);
1492 out_free_log:
1493 kmem_free(log);
1494 out:
1495 return ERR_PTR(error);
1496 } /* xlog_alloc_log */
1500 * Write out the commit record of a transaction associated with the given
1501 * ticket. Return the lsn of the commit record.
1503 STATIC int
1504 xlog_commit_record(
1505 struct xlog *log,
1506 struct xlog_ticket *ticket,
1507 struct xlog_in_core **iclog,
1508 xfs_lsn_t *commitlsnp)
1510 struct xfs_mount *mp = log->l_mp;
1511 int error;
1512 struct xfs_log_iovec reg = {
1513 .i_addr = NULL,
1514 .i_len = 0,
1515 .i_type = XLOG_REG_TYPE_COMMIT,
1517 struct xfs_log_vec vec = {
1518 .lv_niovecs = 1,
1519 .lv_iovecp = &reg,
1522 ASSERT_ALWAYS(iclog);
1523 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1524 XLOG_COMMIT_TRANS);
1525 if (error)
1526 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1527 return error;
1531 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1532 * log space. This code pushes on the lsn which would supposedly free up
1533 * the 25% which we want to leave free. We may need to adopt a policy which
1534 * pushes on an lsn which is further along in the log once we reach the high
1535 * water mark. In this manner, we would be creating a low water mark.
1537 STATIC void
1538 xlog_grant_push_ail(
1539 struct xlog *log,
1540 int need_bytes)
1542 xfs_lsn_t threshold_lsn = 0;
1543 xfs_lsn_t last_sync_lsn;
1544 int free_blocks;
1545 int free_bytes;
1546 int threshold_block;
1547 int threshold_cycle;
1548 int free_threshold;
1550 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1552 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1553 free_blocks = BTOBBT(free_bytes);
1556 * Set the threshold for the minimum number of free blocks in the
1557 * log to the maximum of what the caller needs, one quarter of the
1558 * log, and 256 blocks.
1560 free_threshold = BTOBB(need_bytes);
1561 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1562 free_threshold = MAX(free_threshold, 256);
1563 if (free_blocks >= free_threshold)
1564 return;
1566 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1567 &threshold_block);
1568 threshold_block += free_threshold;
1569 if (threshold_block >= log->l_logBBsize) {
1570 threshold_block -= log->l_logBBsize;
1571 threshold_cycle += 1;
1573 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1574 threshold_block);
1576 * Don't pass in an lsn greater than the lsn of the last
1577 * log record known to be on disk. Use a snapshot of the last sync lsn
1578 * so that it doesn't change between the compare and the set.
1580 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1581 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1582 threshold_lsn = last_sync_lsn;
1585 * Get the transaction layer to kick the dirty buffers out to
1586 * disk asynchronously. No point in trying to do this if
1587 * the filesystem is shutting down.
1589 if (!XLOG_FORCED_SHUTDOWN(log))
1590 xfs_ail_push(log->l_ailp, threshold_lsn);
1594 * Stamp cycle number in every block
1596 STATIC void
1597 xlog_pack_data(
1598 struct xlog *log,
1599 struct xlog_in_core *iclog,
1600 int roundoff)
1602 int i, j, k;
1603 int size = iclog->ic_offset + roundoff;
1604 __be32 cycle_lsn;
1605 xfs_caddr_t dp;
1607 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1609 dp = iclog->ic_datap;
1610 for (i = 0; i < BTOBB(size); i++) {
1611 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1612 break;
1613 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1614 *(__be32 *)dp = cycle_lsn;
1615 dp += BBSIZE;
1618 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1619 xlog_in_core_2_t *xhdr = iclog->ic_data;
1621 for ( ; i < BTOBB(size); i++) {
1622 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1623 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1624 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1625 *(__be32 *)dp = cycle_lsn;
1626 dp += BBSIZE;
1629 for (i = 1; i < log->l_iclog_heads; i++)
1630 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1635 * Calculate the checksum for a log buffer.
1637 * This is a little more complicated than it should be because the various
1638 * headers and the actual data are non-contiguous.
1640 __le32
1641 xlog_cksum(
1642 struct xlog *log,
1643 struct xlog_rec_header *rhead,
1644 char *dp,
1645 int size)
1647 __uint32_t crc;
1649 /* first generate the crc for the record header ... */
1650 crc = xfs_start_cksum((char *)rhead,
1651 sizeof(struct xlog_rec_header),
1652 offsetof(struct xlog_rec_header, h_crc));
1654 /* ... then for additional cycle data for v2 logs ... */
1655 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1656 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1657 int i;
1659 for (i = 1; i < log->l_iclog_heads; i++) {
1660 crc = crc32c(crc, &xhdr[i].hic_xheader,
1661 sizeof(struct xlog_rec_ext_header));
1665 /* ... and finally for the payload */
1666 crc = crc32c(crc, dp, size);
1668 return xfs_end_cksum(crc);
1672 * The bdstrat callback function for log bufs. This gives us a central
1673 * place to trap bufs in case we get hit by a log I/O error and need to
1674 * shutdown. Actually, in practice, even when we didn't get a log error,
1675 * we transition the iclogs to IOERROR state *after* flushing all existing
1676 * iclogs to disk. This is because we don't want anymore new transactions to be
1677 * started or completed afterwards.
1679 * We lock the iclogbufs here so that we can serialise against IO completion
1680 * during unmount. We might be processing a shutdown triggered during unmount,
1681 * and that can occur asynchronously to the unmount thread, and hence we need to
1682 * ensure that completes before tearing down the iclogbufs. Hence we need to
1683 * hold the buffer lock across the log IO to acheive that.
1685 STATIC int
1686 xlog_bdstrat(
1687 struct xfs_buf *bp)
1689 struct xlog_in_core *iclog = bp->b_fspriv;
1691 xfs_buf_lock(bp);
1692 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1693 xfs_buf_ioerror(bp, -EIO);
1694 xfs_buf_stale(bp);
1695 xfs_buf_ioend(bp);
1697 * It would seem logical to return EIO here, but we rely on
1698 * the log state machine to propagate I/O errors instead of
1699 * doing it here. Similarly, IO completion will unlock the
1700 * buffer, so we don't do it here.
1702 return 0;
1705 xfs_buf_submit(bp);
1706 return 0;
1710 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1711 * fashion. Previously, we should have moved the current iclog
1712 * ptr in the log to point to the next available iclog. This allows further
1713 * write to continue while this code syncs out an iclog ready to go.
1714 * Before an in-core log can be written out, the data section must be scanned
1715 * to save away the 1st word of each BBSIZE block into the header. We replace
1716 * it with the current cycle count. Each BBSIZE block is tagged with the
1717 * cycle count because there in an implicit assumption that drives will
1718 * guarantee that entire 512 byte blocks get written at once. In other words,
1719 * we can't have part of a 512 byte block written and part not written. By
1720 * tagging each block, we will know which blocks are valid when recovering
1721 * after an unclean shutdown.
1723 * This routine is single threaded on the iclog. No other thread can be in
1724 * this routine with the same iclog. Changing contents of iclog can there-
1725 * fore be done without grabbing the state machine lock. Updating the global
1726 * log will require grabbing the lock though.
1728 * The entire log manager uses a logical block numbering scheme. Only
1729 * log_sync (and then only bwrite()) know about the fact that the log may
1730 * not start with block zero on a given device. The log block start offset
1731 * is added immediately before calling bwrite().
1734 STATIC int
1735 xlog_sync(
1736 struct xlog *log,
1737 struct xlog_in_core *iclog)
1739 xfs_buf_t *bp;
1740 int i;
1741 uint count; /* byte count of bwrite */
1742 uint count_init; /* initial count before roundup */
1743 int roundoff; /* roundoff to BB or stripe */
1744 int split = 0; /* split write into two regions */
1745 int error;
1746 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1747 int size;
1749 XFS_STATS_INC(xs_log_writes);
1750 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1752 /* Add for LR header */
1753 count_init = log->l_iclog_hsize + iclog->ic_offset;
1755 /* Round out the log write size */
1756 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1757 /* we have a v2 stripe unit to use */
1758 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1759 } else {
1760 count = BBTOB(BTOBB(count_init));
1762 roundoff = count - count_init;
1763 ASSERT(roundoff >= 0);
1764 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1765 roundoff < log->l_mp->m_sb.sb_logsunit)
1767 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1768 roundoff < BBTOB(1)));
1770 /* move grant heads by roundoff in sync */
1771 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1772 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1774 /* put cycle number in every block */
1775 xlog_pack_data(log, iclog, roundoff);
1777 /* real byte length */
1778 size = iclog->ic_offset;
1779 if (v2)
1780 size += roundoff;
1781 iclog->ic_header.h_len = cpu_to_be32(size);
1783 bp = iclog->ic_bp;
1784 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1786 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1788 /* Do we need to split this write into 2 parts? */
1789 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1790 char *dptr;
1792 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1793 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1794 iclog->ic_bwritecnt = 2;
1797 * Bump the cycle numbers at the start of each block in the
1798 * part of the iclog that ends up in the buffer that gets
1799 * written to the start of the log.
1801 * Watch out for the header magic number case, though.
1803 dptr = (char *)&iclog->ic_header + count;
1804 for (i = 0; i < split; i += BBSIZE) {
1805 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1806 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1807 cycle++;
1808 *(__be32 *)dptr = cpu_to_be32(cycle);
1810 dptr += BBSIZE;
1812 } else {
1813 iclog->ic_bwritecnt = 1;
1816 /* calculcate the checksum */
1817 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1818 iclog->ic_datap, size);
1820 bp->b_io_length = BTOBB(count);
1821 bp->b_fspriv = iclog;
1822 XFS_BUF_ZEROFLAGS(bp);
1823 XFS_BUF_ASYNC(bp);
1824 bp->b_flags |= XBF_SYNCIO;
1826 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1827 bp->b_flags |= XBF_FUA;
1830 * Flush the data device before flushing the log to make
1831 * sure all meta data written back from the AIL actually made
1832 * it to disk before stamping the new log tail LSN into the
1833 * log buffer. For an external log we need to issue the
1834 * flush explicitly, and unfortunately synchronously here;
1835 * for an internal log we can simply use the block layer
1836 * state machine for preflushes.
1838 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1839 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1840 else
1841 bp->b_flags |= XBF_FLUSH;
1844 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1845 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1847 xlog_verify_iclog(log, iclog, count, true);
1849 /* account for log which doesn't start at block #0 */
1850 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1852 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1853 * is shutting down.
1855 XFS_BUF_WRITE(bp);
1857 error = xlog_bdstrat(bp);
1858 if (error) {
1859 xfs_buf_ioerror_alert(bp, "xlog_sync");
1860 return error;
1862 if (split) {
1863 bp = iclog->ic_log->l_xbuf;
1864 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1865 xfs_buf_associate_memory(bp,
1866 (char *)&iclog->ic_header + count, split);
1867 bp->b_fspriv = iclog;
1868 XFS_BUF_ZEROFLAGS(bp);
1869 XFS_BUF_ASYNC(bp);
1870 bp->b_flags |= XBF_SYNCIO;
1871 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1872 bp->b_flags |= XBF_FUA;
1874 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1875 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1877 /* account for internal log which doesn't start at block #0 */
1878 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1879 XFS_BUF_WRITE(bp);
1880 error = xlog_bdstrat(bp);
1881 if (error) {
1882 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1883 return error;
1886 return 0;
1887 } /* xlog_sync */
1890 * Deallocate a log structure
1892 STATIC void
1893 xlog_dealloc_log(
1894 struct xlog *log)
1896 xlog_in_core_t *iclog, *next_iclog;
1897 int i;
1899 xlog_cil_destroy(log);
1902 * Cycle all the iclogbuf locks to make sure all log IO completion
1903 * is done before we tear down these buffers.
1905 iclog = log->l_iclog;
1906 for (i = 0; i < log->l_iclog_bufs; i++) {
1907 xfs_buf_lock(iclog->ic_bp);
1908 xfs_buf_unlock(iclog->ic_bp);
1909 iclog = iclog->ic_next;
1913 * Always need to ensure that the extra buffer does not point to memory
1914 * owned by another log buffer before we free it. Also, cycle the lock
1915 * first to ensure we've completed IO on it.
1917 xfs_buf_lock(log->l_xbuf);
1918 xfs_buf_unlock(log->l_xbuf);
1919 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1920 xfs_buf_free(log->l_xbuf);
1922 iclog = log->l_iclog;
1923 for (i = 0; i < log->l_iclog_bufs; i++) {
1924 xfs_buf_free(iclog->ic_bp);
1925 next_iclog = iclog->ic_next;
1926 kmem_free(iclog);
1927 iclog = next_iclog;
1929 spinlock_destroy(&log->l_icloglock);
1931 log->l_mp->m_log = NULL;
1932 kmem_free(log);
1933 } /* xlog_dealloc_log */
1936 * Update counters atomically now that memcpy is done.
1938 /* ARGSUSED */
1939 static inline void
1940 xlog_state_finish_copy(
1941 struct xlog *log,
1942 struct xlog_in_core *iclog,
1943 int record_cnt,
1944 int copy_bytes)
1946 spin_lock(&log->l_icloglock);
1948 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1949 iclog->ic_offset += copy_bytes;
1951 spin_unlock(&log->l_icloglock);
1952 } /* xlog_state_finish_copy */
1958 * print out info relating to regions written which consume
1959 * the reservation
1961 void
1962 xlog_print_tic_res(
1963 struct xfs_mount *mp,
1964 struct xlog_ticket *ticket)
1966 uint i;
1967 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1969 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1970 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1971 "bformat",
1972 "bchunk",
1973 "efi_format",
1974 "efd_format",
1975 "iformat",
1976 "icore",
1977 "iext",
1978 "ibroot",
1979 "ilocal",
1980 "iattr_ext",
1981 "iattr_broot",
1982 "iattr_local",
1983 "qformat",
1984 "dquot",
1985 "quotaoff",
1986 "LR header",
1987 "unmount",
1988 "commit",
1989 "trans header"
1991 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1992 "SETATTR_NOT_SIZE",
1993 "SETATTR_SIZE",
1994 "INACTIVE",
1995 "CREATE",
1996 "CREATE_TRUNC",
1997 "TRUNCATE_FILE",
1998 "REMOVE",
1999 "LINK",
2000 "RENAME",
2001 "MKDIR",
2002 "RMDIR",
2003 "SYMLINK",
2004 "SET_DMATTRS",
2005 "GROWFS",
2006 "STRAT_WRITE",
2007 "DIOSTRAT",
2008 "WRITE_SYNC",
2009 "WRITEID",
2010 "ADDAFORK",
2011 "ATTRINVAL",
2012 "ATRUNCATE",
2013 "ATTR_SET",
2014 "ATTR_RM",
2015 "ATTR_FLAG",
2016 "CLEAR_AGI_BUCKET",
2017 "QM_SBCHANGE",
2018 "DUMMY1",
2019 "DUMMY2",
2020 "QM_QUOTAOFF",
2021 "QM_DQALLOC",
2022 "QM_SETQLIM",
2023 "QM_DQCLUSTER",
2024 "QM_QINOCREATE",
2025 "QM_QUOTAOFF_END",
2026 "SB_UNIT",
2027 "FSYNC_TS",
2028 "GROWFSRT_ALLOC",
2029 "GROWFSRT_ZERO",
2030 "GROWFSRT_FREE",
2031 "SWAPEXT"
2034 xfs_warn(mp,
2035 "xlog_write: reservation summary:\n"
2036 " trans type = %s (%u)\n"
2037 " unit res = %d bytes\n"
2038 " current res = %d bytes\n"
2039 " total reg = %u bytes (o/flow = %u bytes)\n"
2040 " ophdrs = %u (ophdr space = %u bytes)\n"
2041 " ophdr + reg = %u bytes\n"
2042 " num regions = %u",
2043 ((ticket->t_trans_type <= 0 ||
2044 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2045 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2046 ticket->t_trans_type,
2047 ticket->t_unit_res,
2048 ticket->t_curr_res,
2049 ticket->t_res_arr_sum, ticket->t_res_o_flow,
2050 ticket->t_res_num_ophdrs, ophdr_spc,
2051 ticket->t_res_arr_sum +
2052 ticket->t_res_o_flow + ophdr_spc,
2053 ticket->t_res_num);
2055 for (i = 0; i < ticket->t_res_num; i++) {
2056 uint r_type = ticket->t_res_arr[i].r_type;
2057 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2058 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2059 "bad-rtype" : res_type_str[r_type-1]),
2060 ticket->t_res_arr[i].r_len);
2063 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2064 "xlog_write: reservation ran out. Need to up reservation");
2065 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2069 * Calculate the potential space needed by the log vector. Each region gets
2070 * its own xlog_op_header_t and may need to be double word aligned.
2072 static int
2073 xlog_write_calc_vec_length(
2074 struct xlog_ticket *ticket,
2075 struct xfs_log_vec *log_vector)
2077 struct xfs_log_vec *lv;
2078 int headers = 0;
2079 int len = 0;
2080 int i;
2082 /* acct for start rec of xact */
2083 if (ticket->t_flags & XLOG_TIC_INITED)
2084 headers++;
2086 for (lv = log_vector; lv; lv = lv->lv_next) {
2087 /* we don't write ordered log vectors */
2088 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2089 continue;
2091 headers += lv->lv_niovecs;
2093 for (i = 0; i < lv->lv_niovecs; i++) {
2094 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2096 len += vecp->i_len;
2097 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2101 ticket->t_res_num_ophdrs += headers;
2102 len += headers * sizeof(struct xlog_op_header);
2104 return len;
2108 * If first write for transaction, insert start record We can't be trying to
2109 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2111 static int
2112 xlog_write_start_rec(
2113 struct xlog_op_header *ophdr,
2114 struct xlog_ticket *ticket)
2116 if (!(ticket->t_flags & XLOG_TIC_INITED))
2117 return 0;
2119 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2120 ophdr->oh_clientid = ticket->t_clientid;
2121 ophdr->oh_len = 0;
2122 ophdr->oh_flags = XLOG_START_TRANS;
2123 ophdr->oh_res2 = 0;
2125 ticket->t_flags &= ~XLOG_TIC_INITED;
2127 return sizeof(struct xlog_op_header);
2130 static xlog_op_header_t *
2131 xlog_write_setup_ophdr(
2132 struct xlog *log,
2133 struct xlog_op_header *ophdr,
2134 struct xlog_ticket *ticket,
2135 uint flags)
2137 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2138 ophdr->oh_clientid = ticket->t_clientid;
2139 ophdr->oh_res2 = 0;
2141 /* are we copying a commit or unmount record? */
2142 ophdr->oh_flags = flags;
2145 * We've seen logs corrupted with bad transaction client ids. This
2146 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2147 * and shut down the filesystem.
2149 switch (ophdr->oh_clientid) {
2150 case XFS_TRANSACTION:
2151 case XFS_VOLUME:
2152 case XFS_LOG:
2153 break;
2154 default:
2155 xfs_warn(log->l_mp,
2156 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2157 ophdr->oh_clientid, ticket);
2158 return NULL;
2161 return ophdr;
2165 * Set up the parameters of the region copy into the log. This has
2166 * to handle region write split across multiple log buffers - this
2167 * state is kept external to this function so that this code can
2168 * be written in an obvious, self documenting manner.
2170 static int
2171 xlog_write_setup_copy(
2172 struct xlog_ticket *ticket,
2173 struct xlog_op_header *ophdr,
2174 int space_available,
2175 int space_required,
2176 int *copy_off,
2177 int *copy_len,
2178 int *last_was_partial_copy,
2179 int *bytes_consumed)
2181 int still_to_copy;
2183 still_to_copy = space_required - *bytes_consumed;
2184 *copy_off = *bytes_consumed;
2186 if (still_to_copy <= space_available) {
2187 /* write of region completes here */
2188 *copy_len = still_to_copy;
2189 ophdr->oh_len = cpu_to_be32(*copy_len);
2190 if (*last_was_partial_copy)
2191 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2192 *last_was_partial_copy = 0;
2193 *bytes_consumed = 0;
2194 return 0;
2197 /* partial write of region, needs extra log op header reservation */
2198 *copy_len = space_available;
2199 ophdr->oh_len = cpu_to_be32(*copy_len);
2200 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2201 if (*last_was_partial_copy)
2202 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2203 *bytes_consumed += *copy_len;
2204 (*last_was_partial_copy)++;
2206 /* account for new log op header */
2207 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2208 ticket->t_res_num_ophdrs++;
2210 return sizeof(struct xlog_op_header);
2213 static int
2214 xlog_write_copy_finish(
2215 struct xlog *log,
2216 struct xlog_in_core *iclog,
2217 uint flags,
2218 int *record_cnt,
2219 int *data_cnt,
2220 int *partial_copy,
2221 int *partial_copy_len,
2222 int log_offset,
2223 struct xlog_in_core **commit_iclog)
2225 if (*partial_copy) {
2227 * This iclog has already been marked WANT_SYNC by
2228 * xlog_state_get_iclog_space.
2230 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2231 *record_cnt = 0;
2232 *data_cnt = 0;
2233 return xlog_state_release_iclog(log, iclog);
2236 *partial_copy = 0;
2237 *partial_copy_len = 0;
2239 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2240 /* no more space in this iclog - push it. */
2241 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2242 *record_cnt = 0;
2243 *data_cnt = 0;
2245 spin_lock(&log->l_icloglock);
2246 xlog_state_want_sync(log, iclog);
2247 spin_unlock(&log->l_icloglock);
2249 if (!commit_iclog)
2250 return xlog_state_release_iclog(log, iclog);
2251 ASSERT(flags & XLOG_COMMIT_TRANS);
2252 *commit_iclog = iclog;
2255 return 0;
2259 * Write some region out to in-core log
2261 * This will be called when writing externally provided regions or when
2262 * writing out a commit record for a given transaction.
2264 * General algorithm:
2265 * 1. Find total length of this write. This may include adding to the
2266 * lengths passed in.
2267 * 2. Check whether we violate the tickets reservation.
2268 * 3. While writing to this iclog
2269 * A. Reserve as much space in this iclog as can get
2270 * B. If this is first write, save away start lsn
2271 * C. While writing this region:
2272 * 1. If first write of transaction, write start record
2273 * 2. Write log operation header (header per region)
2274 * 3. Find out if we can fit entire region into this iclog
2275 * 4. Potentially, verify destination memcpy ptr
2276 * 5. Memcpy (partial) region
2277 * 6. If partial copy, release iclog; otherwise, continue
2278 * copying more regions into current iclog
2279 * 4. Mark want sync bit (in simulation mode)
2280 * 5. Release iclog for potential flush to on-disk log.
2282 * ERRORS:
2283 * 1. Panic if reservation is overrun. This should never happen since
2284 * reservation amounts are generated internal to the filesystem.
2285 * NOTES:
2286 * 1. Tickets are single threaded data structures.
2287 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2288 * syncing routine. When a single log_write region needs to span
2289 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2290 * on all log operation writes which don't contain the end of the
2291 * region. The XLOG_END_TRANS bit is used for the in-core log
2292 * operation which contains the end of the continued log_write region.
2293 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2294 * we don't really know exactly how much space will be used. As a result,
2295 * we don't update ic_offset until the end when we know exactly how many
2296 * bytes have been written out.
2299 xlog_write(
2300 struct xlog *log,
2301 struct xfs_log_vec *log_vector,
2302 struct xlog_ticket *ticket,
2303 xfs_lsn_t *start_lsn,
2304 struct xlog_in_core **commit_iclog,
2305 uint flags)
2307 struct xlog_in_core *iclog = NULL;
2308 struct xfs_log_iovec *vecp;
2309 struct xfs_log_vec *lv;
2310 int len;
2311 int index;
2312 int partial_copy = 0;
2313 int partial_copy_len = 0;
2314 int contwr = 0;
2315 int record_cnt = 0;
2316 int data_cnt = 0;
2317 int error;
2319 *start_lsn = 0;
2321 len = xlog_write_calc_vec_length(ticket, log_vector);
2324 * Region headers and bytes are already accounted for.
2325 * We only need to take into account start records and
2326 * split regions in this function.
2328 if (ticket->t_flags & XLOG_TIC_INITED)
2329 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2332 * Commit record headers need to be accounted for. These
2333 * come in as separate writes so are easy to detect.
2335 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2336 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2338 if (ticket->t_curr_res < 0)
2339 xlog_print_tic_res(log->l_mp, ticket);
2341 index = 0;
2342 lv = log_vector;
2343 vecp = lv->lv_iovecp;
2344 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2345 void *ptr;
2346 int log_offset;
2348 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2349 &contwr, &log_offset);
2350 if (error)
2351 return error;
2353 ASSERT(log_offset <= iclog->ic_size - 1);
2354 ptr = iclog->ic_datap + log_offset;
2356 /* start_lsn is the first lsn written to. That's all we need. */
2357 if (!*start_lsn)
2358 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2361 * This loop writes out as many regions as can fit in the amount
2362 * of space which was allocated by xlog_state_get_iclog_space().
2364 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2365 struct xfs_log_iovec *reg;
2366 struct xlog_op_header *ophdr;
2367 int start_rec_copy;
2368 int copy_len;
2369 int copy_off;
2370 bool ordered = false;
2372 /* ordered log vectors have no regions to write */
2373 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2374 ASSERT(lv->lv_niovecs == 0);
2375 ordered = true;
2376 goto next_lv;
2379 reg = &vecp[index];
2380 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2381 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2383 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2384 if (start_rec_copy) {
2385 record_cnt++;
2386 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2387 start_rec_copy);
2390 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2391 if (!ophdr)
2392 return -EIO;
2394 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2395 sizeof(struct xlog_op_header));
2397 len += xlog_write_setup_copy(ticket, ophdr,
2398 iclog->ic_size-log_offset,
2399 reg->i_len,
2400 &copy_off, &copy_len,
2401 &partial_copy,
2402 &partial_copy_len);
2403 xlog_verify_dest_ptr(log, ptr);
2405 /* copy region */
2406 ASSERT(copy_len >= 0);
2407 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2408 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2410 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2411 record_cnt++;
2412 data_cnt += contwr ? copy_len : 0;
2414 error = xlog_write_copy_finish(log, iclog, flags,
2415 &record_cnt, &data_cnt,
2416 &partial_copy,
2417 &partial_copy_len,
2418 log_offset,
2419 commit_iclog);
2420 if (error)
2421 return error;
2424 * if we had a partial copy, we need to get more iclog
2425 * space but we don't want to increment the region
2426 * index because there is still more is this region to
2427 * write.
2429 * If we completed writing this region, and we flushed
2430 * the iclog (indicated by resetting of the record
2431 * count), then we also need to get more log space. If
2432 * this was the last record, though, we are done and
2433 * can just return.
2435 if (partial_copy)
2436 break;
2438 if (++index == lv->lv_niovecs) {
2439 next_lv:
2440 lv = lv->lv_next;
2441 index = 0;
2442 if (lv)
2443 vecp = lv->lv_iovecp;
2445 if (record_cnt == 0 && ordered == false) {
2446 if (!lv)
2447 return 0;
2448 break;
2453 ASSERT(len == 0);
2455 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2456 if (!commit_iclog)
2457 return xlog_state_release_iclog(log, iclog);
2459 ASSERT(flags & XLOG_COMMIT_TRANS);
2460 *commit_iclog = iclog;
2461 return 0;
2465 /*****************************************************************************
2467 * State Machine functions
2469 *****************************************************************************
2472 /* Clean iclogs starting from the head. This ordering must be
2473 * maintained, so an iclog doesn't become ACTIVE beyond one that
2474 * is SYNCING. This is also required to maintain the notion that we use
2475 * a ordered wait queue to hold off would be writers to the log when every
2476 * iclog is trying to sync to disk.
2478 * State Change: DIRTY -> ACTIVE
2480 STATIC void
2481 xlog_state_clean_log(
2482 struct xlog *log)
2484 xlog_in_core_t *iclog;
2485 int changed = 0;
2487 iclog = log->l_iclog;
2488 do {
2489 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2490 iclog->ic_state = XLOG_STATE_ACTIVE;
2491 iclog->ic_offset = 0;
2492 ASSERT(iclog->ic_callback == NULL);
2494 * If the number of ops in this iclog indicate it just
2495 * contains the dummy transaction, we can
2496 * change state into IDLE (the second time around).
2497 * Otherwise we should change the state into
2498 * NEED a dummy.
2499 * We don't need to cover the dummy.
2501 if (!changed &&
2502 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2503 XLOG_COVER_OPS)) {
2504 changed = 1;
2505 } else {
2507 * We have two dirty iclogs so start over
2508 * This could also be num of ops indicates
2509 * this is not the dummy going out.
2511 changed = 2;
2513 iclog->ic_header.h_num_logops = 0;
2514 memset(iclog->ic_header.h_cycle_data, 0,
2515 sizeof(iclog->ic_header.h_cycle_data));
2516 iclog->ic_header.h_lsn = 0;
2517 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2518 /* do nothing */;
2519 else
2520 break; /* stop cleaning */
2521 iclog = iclog->ic_next;
2522 } while (iclog != log->l_iclog);
2524 /* log is locked when we are called */
2526 * Change state for the dummy log recording.
2527 * We usually go to NEED. But we go to NEED2 if the changed indicates
2528 * we are done writing the dummy record.
2529 * If we are done with the second dummy recored (DONE2), then
2530 * we go to IDLE.
2532 if (changed) {
2533 switch (log->l_covered_state) {
2534 case XLOG_STATE_COVER_IDLE:
2535 case XLOG_STATE_COVER_NEED:
2536 case XLOG_STATE_COVER_NEED2:
2537 log->l_covered_state = XLOG_STATE_COVER_NEED;
2538 break;
2540 case XLOG_STATE_COVER_DONE:
2541 if (changed == 1)
2542 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2543 else
2544 log->l_covered_state = XLOG_STATE_COVER_NEED;
2545 break;
2547 case XLOG_STATE_COVER_DONE2:
2548 if (changed == 1)
2549 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2550 else
2551 log->l_covered_state = XLOG_STATE_COVER_NEED;
2552 break;
2554 default:
2555 ASSERT(0);
2558 } /* xlog_state_clean_log */
2560 STATIC xfs_lsn_t
2561 xlog_get_lowest_lsn(
2562 struct xlog *log)
2564 xlog_in_core_t *lsn_log;
2565 xfs_lsn_t lowest_lsn, lsn;
2567 lsn_log = log->l_iclog;
2568 lowest_lsn = 0;
2569 do {
2570 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2571 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2572 if ((lsn && !lowest_lsn) ||
2573 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2574 lowest_lsn = lsn;
2577 lsn_log = lsn_log->ic_next;
2578 } while (lsn_log != log->l_iclog);
2579 return lowest_lsn;
2583 STATIC void
2584 xlog_state_do_callback(
2585 struct xlog *log,
2586 int aborted,
2587 struct xlog_in_core *ciclog)
2589 xlog_in_core_t *iclog;
2590 xlog_in_core_t *first_iclog; /* used to know when we've
2591 * processed all iclogs once */
2592 xfs_log_callback_t *cb, *cb_next;
2593 int flushcnt = 0;
2594 xfs_lsn_t lowest_lsn;
2595 int ioerrors; /* counter: iclogs with errors */
2596 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2597 int funcdidcallbacks; /* flag: function did callbacks */
2598 int repeats; /* for issuing console warnings if
2599 * looping too many times */
2600 int wake = 0;
2602 spin_lock(&log->l_icloglock);
2603 first_iclog = iclog = log->l_iclog;
2604 ioerrors = 0;
2605 funcdidcallbacks = 0;
2606 repeats = 0;
2608 do {
2610 * Scan all iclogs starting with the one pointed to by the
2611 * log. Reset this starting point each time the log is
2612 * unlocked (during callbacks).
2614 * Keep looping through iclogs until one full pass is made
2615 * without running any callbacks.
2617 first_iclog = log->l_iclog;
2618 iclog = log->l_iclog;
2619 loopdidcallbacks = 0;
2620 repeats++;
2622 do {
2624 /* skip all iclogs in the ACTIVE & DIRTY states */
2625 if (iclog->ic_state &
2626 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2627 iclog = iclog->ic_next;
2628 continue;
2632 * Between marking a filesystem SHUTDOWN and stopping
2633 * the log, we do flush all iclogs to disk (if there
2634 * wasn't a log I/O error). So, we do want things to
2635 * go smoothly in case of just a SHUTDOWN w/o a
2636 * LOG_IO_ERROR.
2638 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2640 * Can only perform callbacks in order. Since
2641 * this iclog is not in the DONE_SYNC/
2642 * DO_CALLBACK state, we skip the rest and
2643 * just try to clean up. If we set our iclog
2644 * to DO_CALLBACK, we will not process it when
2645 * we retry since a previous iclog is in the
2646 * CALLBACK and the state cannot change since
2647 * we are holding the l_icloglock.
2649 if (!(iclog->ic_state &
2650 (XLOG_STATE_DONE_SYNC |
2651 XLOG_STATE_DO_CALLBACK))) {
2652 if (ciclog && (ciclog->ic_state ==
2653 XLOG_STATE_DONE_SYNC)) {
2654 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2656 break;
2659 * We now have an iclog that is in either the
2660 * DO_CALLBACK or DONE_SYNC states. The other
2661 * states (WANT_SYNC, SYNCING, or CALLBACK were
2662 * caught by the above if and are going to
2663 * clean (i.e. we aren't doing their callbacks)
2664 * see the above if.
2668 * We will do one more check here to see if we
2669 * have chased our tail around.
2672 lowest_lsn = xlog_get_lowest_lsn(log);
2673 if (lowest_lsn &&
2674 XFS_LSN_CMP(lowest_lsn,
2675 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2676 iclog = iclog->ic_next;
2677 continue; /* Leave this iclog for
2678 * another thread */
2681 iclog->ic_state = XLOG_STATE_CALLBACK;
2685 * Completion of a iclog IO does not imply that
2686 * a transaction has completed, as transactions
2687 * can be large enough to span many iclogs. We
2688 * cannot change the tail of the log half way
2689 * through a transaction as this may be the only
2690 * transaction in the log and moving th etail to
2691 * point to the middle of it will prevent
2692 * recovery from finding the start of the
2693 * transaction. Hence we should only update the
2694 * last_sync_lsn if this iclog contains
2695 * transaction completion callbacks on it.
2697 * We have to do this before we drop the
2698 * icloglock to ensure we are the only one that
2699 * can update it.
2701 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2702 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2703 if (iclog->ic_callback)
2704 atomic64_set(&log->l_last_sync_lsn,
2705 be64_to_cpu(iclog->ic_header.h_lsn));
2707 } else
2708 ioerrors++;
2710 spin_unlock(&log->l_icloglock);
2713 * Keep processing entries in the callback list until
2714 * we come around and it is empty. We need to
2715 * atomically see that the list is empty and change the
2716 * state to DIRTY so that we don't miss any more
2717 * callbacks being added.
2719 spin_lock(&iclog->ic_callback_lock);
2720 cb = iclog->ic_callback;
2721 while (cb) {
2722 iclog->ic_callback_tail = &(iclog->ic_callback);
2723 iclog->ic_callback = NULL;
2724 spin_unlock(&iclog->ic_callback_lock);
2726 /* perform callbacks in the order given */
2727 for (; cb; cb = cb_next) {
2728 cb_next = cb->cb_next;
2729 cb->cb_func(cb->cb_arg, aborted);
2731 spin_lock(&iclog->ic_callback_lock);
2732 cb = iclog->ic_callback;
2735 loopdidcallbacks++;
2736 funcdidcallbacks++;
2738 spin_lock(&log->l_icloglock);
2739 ASSERT(iclog->ic_callback == NULL);
2740 spin_unlock(&iclog->ic_callback_lock);
2741 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2742 iclog->ic_state = XLOG_STATE_DIRTY;
2745 * Transition from DIRTY to ACTIVE if applicable.
2746 * NOP if STATE_IOERROR.
2748 xlog_state_clean_log(log);
2750 /* wake up threads waiting in xfs_log_force() */
2751 wake_up_all(&iclog->ic_force_wait);
2753 iclog = iclog->ic_next;
2754 } while (first_iclog != iclog);
2756 if (repeats > 5000) {
2757 flushcnt += repeats;
2758 repeats = 0;
2759 xfs_warn(log->l_mp,
2760 "%s: possible infinite loop (%d iterations)",
2761 __func__, flushcnt);
2763 } while (!ioerrors && loopdidcallbacks);
2766 * make one last gasp attempt to see if iclogs are being left in
2767 * limbo..
2769 #ifdef DEBUG
2770 if (funcdidcallbacks) {
2771 first_iclog = iclog = log->l_iclog;
2772 do {
2773 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2775 * Terminate the loop if iclogs are found in states
2776 * which will cause other threads to clean up iclogs.
2778 * SYNCING - i/o completion will go through logs
2779 * DONE_SYNC - interrupt thread should be waiting for
2780 * l_icloglock
2781 * IOERROR - give up hope all ye who enter here
2783 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2784 iclog->ic_state == XLOG_STATE_SYNCING ||
2785 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2786 iclog->ic_state == XLOG_STATE_IOERROR )
2787 break;
2788 iclog = iclog->ic_next;
2789 } while (first_iclog != iclog);
2791 #endif
2793 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2794 wake = 1;
2795 spin_unlock(&log->l_icloglock);
2797 if (wake)
2798 wake_up_all(&log->l_flush_wait);
2803 * Finish transitioning this iclog to the dirty state.
2805 * Make sure that we completely execute this routine only when this is
2806 * the last call to the iclog. There is a good chance that iclog flushes,
2807 * when we reach the end of the physical log, get turned into 2 separate
2808 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2809 * routine. By using the reference count bwritecnt, we guarantee that only
2810 * the second completion goes through.
2812 * Callbacks could take time, so they are done outside the scope of the
2813 * global state machine log lock.
2815 STATIC void
2816 xlog_state_done_syncing(
2817 xlog_in_core_t *iclog,
2818 int aborted)
2820 struct xlog *log = iclog->ic_log;
2822 spin_lock(&log->l_icloglock);
2824 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2825 iclog->ic_state == XLOG_STATE_IOERROR);
2826 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2827 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2831 * If we got an error, either on the first buffer, or in the case of
2832 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2833 * and none should ever be attempted to be written to disk
2834 * again.
2836 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2837 if (--iclog->ic_bwritecnt == 1) {
2838 spin_unlock(&log->l_icloglock);
2839 return;
2841 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2845 * Someone could be sleeping prior to writing out the next
2846 * iclog buffer, we wake them all, one will get to do the
2847 * I/O, the others get to wait for the result.
2849 wake_up_all(&iclog->ic_write_wait);
2850 spin_unlock(&log->l_icloglock);
2851 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2852 } /* xlog_state_done_syncing */
2856 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2857 * sleep. We wait on the flush queue on the head iclog as that should be
2858 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2859 * we will wait here and all new writes will sleep until a sync completes.
2861 * The in-core logs are used in a circular fashion. They are not used
2862 * out-of-order even when an iclog past the head is free.
2864 * return:
2865 * * log_offset where xlog_write() can start writing into the in-core
2866 * log's data space.
2867 * * in-core log pointer to which xlog_write() should write.
2868 * * boolean indicating this is a continued write to an in-core log.
2869 * If this is the last write, then the in-core log's offset field
2870 * needs to be incremented, depending on the amount of data which
2871 * is copied.
2873 STATIC int
2874 xlog_state_get_iclog_space(
2875 struct xlog *log,
2876 int len,
2877 struct xlog_in_core **iclogp,
2878 struct xlog_ticket *ticket,
2879 int *continued_write,
2880 int *logoffsetp)
2882 int log_offset;
2883 xlog_rec_header_t *head;
2884 xlog_in_core_t *iclog;
2885 int error;
2887 restart:
2888 spin_lock(&log->l_icloglock);
2889 if (XLOG_FORCED_SHUTDOWN(log)) {
2890 spin_unlock(&log->l_icloglock);
2891 return -EIO;
2894 iclog = log->l_iclog;
2895 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2896 XFS_STATS_INC(xs_log_noiclogs);
2898 /* Wait for log writes to have flushed */
2899 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2900 goto restart;
2903 head = &iclog->ic_header;
2905 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2906 log_offset = iclog->ic_offset;
2908 /* On the 1st write to an iclog, figure out lsn. This works
2909 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2910 * committing to. If the offset is set, that's how many blocks
2911 * must be written.
2913 if (log_offset == 0) {
2914 ticket->t_curr_res -= log->l_iclog_hsize;
2915 xlog_tic_add_region(ticket,
2916 log->l_iclog_hsize,
2917 XLOG_REG_TYPE_LRHEADER);
2918 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2919 head->h_lsn = cpu_to_be64(
2920 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2921 ASSERT(log->l_curr_block >= 0);
2924 /* If there is enough room to write everything, then do it. Otherwise,
2925 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2926 * bit is on, so this will get flushed out. Don't update ic_offset
2927 * until you know exactly how many bytes get copied. Therefore, wait
2928 * until later to update ic_offset.
2930 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2931 * can fit into remaining data section.
2933 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2934 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2937 * If I'm the only one writing to this iclog, sync it to disk.
2938 * We need to do an atomic compare and decrement here to avoid
2939 * racing with concurrent atomic_dec_and_lock() calls in
2940 * xlog_state_release_iclog() when there is more than one
2941 * reference to the iclog.
2943 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2944 /* we are the only one */
2945 spin_unlock(&log->l_icloglock);
2946 error = xlog_state_release_iclog(log, iclog);
2947 if (error)
2948 return error;
2949 } else {
2950 spin_unlock(&log->l_icloglock);
2952 goto restart;
2955 /* Do we have enough room to write the full amount in the remainder
2956 * of this iclog? Or must we continue a write on the next iclog and
2957 * mark this iclog as completely taken? In the case where we switch
2958 * iclogs (to mark it taken), this particular iclog will release/sync
2959 * to disk in xlog_write().
2961 if (len <= iclog->ic_size - iclog->ic_offset) {
2962 *continued_write = 0;
2963 iclog->ic_offset += len;
2964 } else {
2965 *continued_write = 1;
2966 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2968 *iclogp = iclog;
2970 ASSERT(iclog->ic_offset <= iclog->ic_size);
2971 spin_unlock(&log->l_icloglock);
2973 *logoffsetp = log_offset;
2974 return 0;
2975 } /* xlog_state_get_iclog_space */
2977 /* The first cnt-1 times through here we don't need to
2978 * move the grant write head because the permanent
2979 * reservation has reserved cnt times the unit amount.
2980 * Release part of current permanent unit reservation and
2981 * reset current reservation to be one units worth. Also
2982 * move grant reservation head forward.
2984 STATIC void
2985 xlog_regrant_reserve_log_space(
2986 struct xlog *log,
2987 struct xlog_ticket *ticket)
2989 trace_xfs_log_regrant_reserve_enter(log, ticket);
2991 if (ticket->t_cnt > 0)
2992 ticket->t_cnt--;
2994 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995 ticket->t_curr_res);
2996 xlog_grant_sub_space(log, &log->l_write_head.grant,
2997 ticket->t_curr_res);
2998 ticket->t_curr_res = ticket->t_unit_res;
2999 xlog_tic_reset_res(ticket);
3001 trace_xfs_log_regrant_reserve_sub(log, ticket);
3003 /* just return if we still have some of the pre-reserved space */
3004 if (ticket->t_cnt > 0)
3005 return;
3007 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3008 ticket->t_unit_res);
3010 trace_xfs_log_regrant_reserve_exit(log, ticket);
3012 ticket->t_curr_res = ticket->t_unit_res;
3013 xlog_tic_reset_res(ticket);
3014 } /* xlog_regrant_reserve_log_space */
3018 * Give back the space left from a reservation.
3020 * All the information we need to make a correct determination of space left
3021 * is present. For non-permanent reservations, things are quite easy. The
3022 * count should have been decremented to zero. We only need to deal with the
3023 * space remaining in the current reservation part of the ticket. If the
3024 * ticket contains a permanent reservation, there may be left over space which
3025 * needs to be released. A count of N means that N-1 refills of the current
3026 * reservation can be done before we need to ask for more space. The first
3027 * one goes to fill up the first current reservation. Once we run out of
3028 * space, the count will stay at zero and the only space remaining will be
3029 * in the current reservation field.
3031 STATIC void
3032 xlog_ungrant_log_space(
3033 struct xlog *log,
3034 struct xlog_ticket *ticket)
3036 int bytes;
3038 if (ticket->t_cnt > 0)
3039 ticket->t_cnt--;
3041 trace_xfs_log_ungrant_enter(log, ticket);
3042 trace_xfs_log_ungrant_sub(log, ticket);
3045 * If this is a permanent reservation ticket, we may be able to free
3046 * up more space based on the remaining count.
3048 bytes = ticket->t_curr_res;
3049 if (ticket->t_cnt > 0) {
3050 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051 bytes += ticket->t_unit_res*ticket->t_cnt;
3054 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3057 trace_xfs_log_ungrant_exit(log, ticket);
3059 xfs_log_space_wake(log->l_mp);
3063 * Flush iclog to disk if this is the last reference to the given iclog and
3064 * the WANT_SYNC bit is set.
3066 * When this function is entered, the iclog is not necessarily in the
3067 * WANT_SYNC state. It may be sitting around waiting to get filled.
3071 STATIC int
3072 xlog_state_release_iclog(
3073 struct xlog *log,
3074 struct xlog_in_core *iclog)
3076 int sync = 0; /* do we sync? */
3078 if (iclog->ic_state & XLOG_STATE_IOERROR)
3079 return -EIO;
3081 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3082 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3083 return 0;
3085 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3086 spin_unlock(&log->l_icloglock);
3087 return -EIO;
3089 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3090 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3092 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3093 /* update tail before writing to iclog */
3094 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3095 sync++;
3096 iclog->ic_state = XLOG_STATE_SYNCING;
3097 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3098 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3099 /* cycle incremented when incrementing curr_block */
3101 spin_unlock(&log->l_icloglock);
3104 * We let the log lock go, so it's possible that we hit a log I/O
3105 * error or some other SHUTDOWN condition that marks the iclog
3106 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3107 * this iclog has consistent data, so we ignore IOERROR
3108 * flags after this point.
3110 if (sync)
3111 return xlog_sync(log, iclog);
3112 return 0;
3113 } /* xlog_state_release_iclog */
3117 * This routine will mark the current iclog in the ring as WANT_SYNC
3118 * and move the current iclog pointer to the next iclog in the ring.
3119 * When this routine is called from xlog_state_get_iclog_space(), the
3120 * exact size of the iclog has not yet been determined. All we know is
3121 * that every data block. We have run out of space in this log record.
3123 STATIC void
3124 xlog_state_switch_iclogs(
3125 struct xlog *log,
3126 struct xlog_in_core *iclog,
3127 int eventual_size)
3129 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3130 if (!eventual_size)
3131 eventual_size = iclog->ic_offset;
3132 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3133 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3134 log->l_prev_block = log->l_curr_block;
3135 log->l_prev_cycle = log->l_curr_cycle;
3137 /* roll log?: ic_offset changed later */
3138 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3140 /* Round up to next log-sunit */
3141 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3142 log->l_mp->m_sb.sb_logsunit > 1) {
3143 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3144 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3147 if (log->l_curr_block >= log->l_logBBsize) {
3148 log->l_curr_cycle++;
3149 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3150 log->l_curr_cycle++;
3151 log->l_curr_block -= log->l_logBBsize;
3152 ASSERT(log->l_curr_block >= 0);
3154 ASSERT(iclog == log->l_iclog);
3155 log->l_iclog = iclog->ic_next;
3156 } /* xlog_state_switch_iclogs */
3159 * Write out all data in the in-core log as of this exact moment in time.
3161 * Data may be written to the in-core log during this call. However,
3162 * we don't guarantee this data will be written out. A change from past
3163 * implementation means this routine will *not* write out zero length LRs.
3165 * Basically, we try and perform an intelligent scan of the in-core logs.
3166 * If we determine there is no flushable data, we just return. There is no
3167 * flushable data if:
3169 * 1. the current iclog is active and has no data; the previous iclog
3170 * is in the active or dirty state.
3171 * 2. the current iclog is drity, and the previous iclog is in the
3172 * active or dirty state.
3174 * We may sleep if:
3176 * 1. the current iclog is not in the active nor dirty state.
3177 * 2. the current iclog dirty, and the previous iclog is not in the
3178 * active nor dirty state.
3179 * 3. the current iclog is active, and there is another thread writing
3180 * to this particular iclog.
3181 * 4. a) the current iclog is active and has no other writers
3182 * b) when we return from flushing out this iclog, it is still
3183 * not in the active nor dirty state.
3186 _xfs_log_force(
3187 struct xfs_mount *mp,
3188 uint flags,
3189 int *log_flushed)
3191 struct xlog *log = mp->m_log;
3192 struct xlog_in_core *iclog;
3193 xfs_lsn_t lsn;
3195 XFS_STATS_INC(xs_log_force);
3197 xlog_cil_force(log);
3199 spin_lock(&log->l_icloglock);
3201 iclog = log->l_iclog;
3202 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3203 spin_unlock(&log->l_icloglock);
3204 return -EIO;
3207 /* If the head iclog is not active nor dirty, we just attach
3208 * ourselves to the head and go to sleep.
3210 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3211 iclog->ic_state == XLOG_STATE_DIRTY) {
3213 * If the head is dirty or (active and empty), then
3214 * we need to look at the previous iclog. If the previous
3215 * iclog is active or dirty we are done. There is nothing
3216 * to sync out. Otherwise, we attach ourselves to the
3217 * previous iclog and go to sleep.
3219 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3220 (atomic_read(&iclog->ic_refcnt) == 0
3221 && iclog->ic_offset == 0)) {
3222 iclog = iclog->ic_prev;
3223 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3224 iclog->ic_state == XLOG_STATE_DIRTY)
3225 goto no_sleep;
3226 else
3227 goto maybe_sleep;
3228 } else {
3229 if (atomic_read(&iclog->ic_refcnt) == 0) {
3230 /* We are the only one with access to this
3231 * iclog. Flush it out now. There should
3232 * be a roundoff of zero to show that someone
3233 * has already taken care of the roundoff from
3234 * the previous sync.
3236 atomic_inc(&iclog->ic_refcnt);
3237 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3238 xlog_state_switch_iclogs(log, iclog, 0);
3239 spin_unlock(&log->l_icloglock);
3241 if (xlog_state_release_iclog(log, iclog))
3242 return -EIO;
3244 if (log_flushed)
3245 *log_flushed = 1;
3246 spin_lock(&log->l_icloglock);
3247 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3248 iclog->ic_state != XLOG_STATE_DIRTY)
3249 goto maybe_sleep;
3250 else
3251 goto no_sleep;
3252 } else {
3253 /* Someone else is writing to this iclog.
3254 * Use its call to flush out the data. However,
3255 * the other thread may not force out this LR,
3256 * so we mark it WANT_SYNC.
3258 xlog_state_switch_iclogs(log, iclog, 0);
3259 goto maybe_sleep;
3264 /* By the time we come around again, the iclog could've been filled
3265 * which would give it another lsn. If we have a new lsn, just
3266 * return because the relevant data has been flushed.
3268 maybe_sleep:
3269 if (flags & XFS_LOG_SYNC) {
3271 * We must check if we're shutting down here, before
3272 * we wait, while we're holding the l_icloglock.
3273 * Then we check again after waking up, in case our
3274 * sleep was disturbed by a bad news.
3276 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3277 spin_unlock(&log->l_icloglock);
3278 return -EIO;
3280 XFS_STATS_INC(xs_log_force_sleep);
3281 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3283 * No need to grab the log lock here since we're
3284 * only deciding whether or not to return EIO
3285 * and the memory read should be atomic.
3287 if (iclog->ic_state & XLOG_STATE_IOERROR)
3288 return -EIO;
3289 if (log_flushed)
3290 *log_flushed = 1;
3291 } else {
3293 no_sleep:
3294 spin_unlock(&log->l_icloglock);
3296 return 0;
3300 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3301 * about errors or whether the log was flushed or not. This is the normal
3302 * interface to use when trying to unpin items or move the log forward.
3304 void
3305 xfs_log_force(
3306 xfs_mount_t *mp,
3307 uint flags)
3309 int error;
3311 trace_xfs_log_force(mp, 0);
3312 error = _xfs_log_force(mp, flags, NULL);
3313 if (error)
3314 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3318 * Force the in-core log to disk for a specific LSN.
3320 * Find in-core log with lsn.
3321 * If it is in the DIRTY state, just return.
3322 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3323 * state and go to sleep or return.
3324 * If it is in any other state, go to sleep or return.
3326 * Synchronous forces are implemented with a signal variable. All callers
3327 * to force a given lsn to disk will wait on a the sv attached to the
3328 * specific in-core log. When given in-core log finally completes its
3329 * write to disk, that thread will wake up all threads waiting on the
3330 * sv.
3333 _xfs_log_force_lsn(
3334 struct xfs_mount *mp,
3335 xfs_lsn_t lsn,
3336 uint flags,
3337 int *log_flushed)
3339 struct xlog *log = mp->m_log;
3340 struct xlog_in_core *iclog;
3341 int already_slept = 0;
3343 ASSERT(lsn != 0);
3345 XFS_STATS_INC(xs_log_force);
3347 lsn = xlog_cil_force_lsn(log, lsn);
3348 if (lsn == NULLCOMMITLSN)
3349 return 0;
3351 try_again:
3352 spin_lock(&log->l_icloglock);
3353 iclog = log->l_iclog;
3354 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3355 spin_unlock(&log->l_icloglock);
3356 return -EIO;
3359 do {
3360 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3361 iclog = iclog->ic_next;
3362 continue;
3365 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3366 spin_unlock(&log->l_icloglock);
3367 return 0;
3370 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3372 * We sleep here if we haven't already slept (e.g.
3373 * this is the first time we've looked at the correct
3374 * iclog buf) and the buffer before us is going to
3375 * be sync'ed. The reason for this is that if we
3376 * are doing sync transactions here, by waiting for
3377 * the previous I/O to complete, we can allow a few
3378 * more transactions into this iclog before we close
3379 * it down.
3381 * Otherwise, we mark the buffer WANT_SYNC, and bump
3382 * up the refcnt so we can release the log (which
3383 * drops the ref count). The state switch keeps new
3384 * transaction commits from using this buffer. When
3385 * the current commits finish writing into the buffer,
3386 * the refcount will drop to zero and the buffer will
3387 * go out then.
3389 if (!already_slept &&
3390 (iclog->ic_prev->ic_state &
3391 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3392 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3394 XFS_STATS_INC(xs_log_force_sleep);
3396 xlog_wait(&iclog->ic_prev->ic_write_wait,
3397 &log->l_icloglock);
3398 if (log_flushed)
3399 *log_flushed = 1;
3400 already_slept = 1;
3401 goto try_again;
3403 atomic_inc(&iclog->ic_refcnt);
3404 xlog_state_switch_iclogs(log, iclog, 0);
3405 spin_unlock(&log->l_icloglock);
3406 if (xlog_state_release_iclog(log, iclog))
3407 return -EIO;
3408 if (log_flushed)
3409 *log_flushed = 1;
3410 spin_lock(&log->l_icloglock);
3413 if ((flags & XFS_LOG_SYNC) && /* sleep */
3414 !(iclog->ic_state &
3415 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3417 * Don't wait on completion if we know that we've
3418 * gotten a log write error.
3420 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3421 spin_unlock(&log->l_icloglock);
3422 return -EIO;
3424 XFS_STATS_INC(xs_log_force_sleep);
3425 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3427 * No need to grab the log lock here since we're
3428 * only deciding whether or not to return EIO
3429 * and the memory read should be atomic.
3431 if (iclog->ic_state & XLOG_STATE_IOERROR)
3432 return -EIO;
3434 if (log_flushed)
3435 *log_flushed = 1;
3436 } else { /* just return */
3437 spin_unlock(&log->l_icloglock);
3440 return 0;
3441 } while (iclog != log->l_iclog);
3443 spin_unlock(&log->l_icloglock);
3444 return 0;
3448 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3449 * about errors or whether the log was flushed or not. This is the normal
3450 * interface to use when trying to unpin items or move the log forward.
3452 void
3453 xfs_log_force_lsn(
3454 xfs_mount_t *mp,
3455 xfs_lsn_t lsn,
3456 uint flags)
3458 int error;
3460 trace_xfs_log_force(mp, lsn);
3461 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3462 if (error)
3463 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3467 * Called when we want to mark the current iclog as being ready to sync to
3468 * disk.
3470 STATIC void
3471 xlog_state_want_sync(
3472 struct xlog *log,
3473 struct xlog_in_core *iclog)
3475 assert_spin_locked(&log->l_icloglock);
3477 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3478 xlog_state_switch_iclogs(log, iclog, 0);
3479 } else {
3480 ASSERT(iclog->ic_state &
3481 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3486 /*****************************************************************************
3488 * TICKET functions
3490 *****************************************************************************
3494 * Free a used ticket when its refcount falls to zero.
3496 void
3497 xfs_log_ticket_put(
3498 xlog_ticket_t *ticket)
3500 ASSERT(atomic_read(&ticket->t_ref) > 0);
3501 if (atomic_dec_and_test(&ticket->t_ref))
3502 kmem_zone_free(xfs_log_ticket_zone, ticket);
3505 xlog_ticket_t *
3506 xfs_log_ticket_get(
3507 xlog_ticket_t *ticket)
3509 ASSERT(atomic_read(&ticket->t_ref) > 0);
3510 atomic_inc(&ticket->t_ref);
3511 return ticket;
3515 * Figure out the total log space unit (in bytes) that would be
3516 * required for a log ticket.
3519 xfs_log_calc_unit_res(
3520 struct xfs_mount *mp,
3521 int unit_bytes)
3523 struct xlog *log = mp->m_log;
3524 int iclog_space;
3525 uint num_headers;
3528 * Permanent reservations have up to 'cnt'-1 active log operations
3529 * in the log. A unit in this case is the amount of space for one
3530 * of these log operations. Normal reservations have a cnt of 1
3531 * and their unit amount is the total amount of space required.
3533 * The following lines of code account for non-transaction data
3534 * which occupy space in the on-disk log.
3536 * Normal form of a transaction is:
3537 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3538 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3540 * We need to account for all the leadup data and trailer data
3541 * around the transaction data.
3542 * And then we need to account for the worst case in terms of using
3543 * more space.
3544 * The worst case will happen if:
3545 * - the placement of the transaction happens to be such that the
3546 * roundoff is at its maximum
3547 * - the transaction data is synced before the commit record is synced
3548 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3549 * Therefore the commit record is in its own Log Record.
3550 * This can happen as the commit record is called with its
3551 * own region to xlog_write().
3552 * This then means that in the worst case, roundoff can happen for
3553 * the commit-rec as well.
3554 * The commit-rec is smaller than padding in this scenario and so it is
3555 * not added separately.
3558 /* for trans header */
3559 unit_bytes += sizeof(xlog_op_header_t);
3560 unit_bytes += sizeof(xfs_trans_header_t);
3562 /* for start-rec */
3563 unit_bytes += sizeof(xlog_op_header_t);
3566 * for LR headers - the space for data in an iclog is the size minus
3567 * the space used for the headers. If we use the iclog size, then we
3568 * undercalculate the number of headers required.
3570 * Furthermore - the addition of op headers for split-recs might
3571 * increase the space required enough to require more log and op
3572 * headers, so take that into account too.
3574 * IMPORTANT: This reservation makes the assumption that if this
3575 * transaction is the first in an iclog and hence has the LR headers
3576 * accounted to it, then the remaining space in the iclog is
3577 * exclusively for this transaction. i.e. if the transaction is larger
3578 * than the iclog, it will be the only thing in that iclog.
3579 * Fundamentally, this means we must pass the entire log vector to
3580 * xlog_write to guarantee this.
3582 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3583 num_headers = howmany(unit_bytes, iclog_space);
3585 /* for split-recs - ophdrs added when data split over LRs */
3586 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3588 /* add extra header reservations if we overrun */
3589 while (!num_headers ||
3590 howmany(unit_bytes, iclog_space) > num_headers) {
3591 unit_bytes += sizeof(xlog_op_header_t);
3592 num_headers++;
3594 unit_bytes += log->l_iclog_hsize * num_headers;
3596 /* for commit-rec LR header - note: padding will subsume the ophdr */
3597 unit_bytes += log->l_iclog_hsize;
3599 /* for roundoff padding for transaction data and one for commit record */
3600 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3601 /* log su roundoff */
3602 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3603 } else {
3604 /* BB roundoff */
3605 unit_bytes += 2 * BBSIZE;
3608 return unit_bytes;
3612 * Allocate and initialise a new log ticket.
3614 struct xlog_ticket *
3615 xlog_ticket_alloc(
3616 struct xlog *log,
3617 int unit_bytes,
3618 int cnt,
3619 char client,
3620 bool permanent,
3621 xfs_km_flags_t alloc_flags)
3623 struct xlog_ticket *tic;
3624 int unit_res;
3626 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3627 if (!tic)
3628 return NULL;
3630 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3632 atomic_set(&tic->t_ref, 1);
3633 tic->t_task = current;
3634 INIT_LIST_HEAD(&tic->t_queue);
3635 tic->t_unit_res = unit_res;
3636 tic->t_curr_res = unit_res;
3637 tic->t_cnt = cnt;
3638 tic->t_ocnt = cnt;
3639 tic->t_tid = prandom_u32();
3640 tic->t_clientid = client;
3641 tic->t_flags = XLOG_TIC_INITED;
3642 tic->t_trans_type = 0;
3643 if (permanent)
3644 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3646 xlog_tic_reset_res(tic);
3648 return tic;
3652 /******************************************************************************
3654 * Log debug routines
3656 ******************************************************************************
3658 #if defined(DEBUG)
3660 * Make sure that the destination ptr is within the valid data region of
3661 * one of the iclogs. This uses backup pointers stored in a different
3662 * part of the log in case we trash the log structure.
3664 void
3665 xlog_verify_dest_ptr(
3666 struct xlog *log,
3667 char *ptr)
3669 int i;
3670 int good_ptr = 0;
3672 for (i = 0; i < log->l_iclog_bufs; i++) {
3673 if (ptr >= log->l_iclog_bak[i] &&
3674 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3675 good_ptr++;
3678 if (!good_ptr)
3679 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3683 * Check to make sure the grant write head didn't just over lap the tail. If
3684 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3685 * the cycles differ by exactly one and check the byte count.
3687 * This check is run unlocked, so can give false positives. Rather than assert
3688 * on failures, use a warn-once flag and a panic tag to allow the admin to
3689 * determine if they want to panic the machine when such an error occurs. For
3690 * debug kernels this will have the same effect as using an assert but, unlinke
3691 * an assert, it can be turned off at runtime.
3693 STATIC void
3694 xlog_verify_grant_tail(
3695 struct xlog *log)
3697 int tail_cycle, tail_blocks;
3698 int cycle, space;
3700 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3701 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3702 if (tail_cycle != cycle) {
3703 if (cycle - 1 != tail_cycle &&
3704 !(log->l_flags & XLOG_TAIL_WARN)) {
3705 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3706 "%s: cycle - 1 != tail_cycle", __func__);
3707 log->l_flags |= XLOG_TAIL_WARN;
3710 if (space > BBTOB(tail_blocks) &&
3711 !(log->l_flags & XLOG_TAIL_WARN)) {
3712 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3713 "%s: space > BBTOB(tail_blocks)", __func__);
3714 log->l_flags |= XLOG_TAIL_WARN;
3719 /* check if it will fit */
3720 STATIC void
3721 xlog_verify_tail_lsn(
3722 struct xlog *log,
3723 struct xlog_in_core *iclog,
3724 xfs_lsn_t tail_lsn)
3726 int blocks;
3728 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3729 blocks =
3730 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3731 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3732 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3733 } else {
3734 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3736 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3737 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3739 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3740 if (blocks < BTOBB(iclog->ic_offset) + 1)
3741 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3743 } /* xlog_verify_tail_lsn */
3746 * Perform a number of checks on the iclog before writing to disk.
3748 * 1. Make sure the iclogs are still circular
3749 * 2. Make sure we have a good magic number
3750 * 3. Make sure we don't have magic numbers in the data
3751 * 4. Check fields of each log operation header for:
3752 * A. Valid client identifier
3753 * B. tid ptr value falls in valid ptr space (user space code)
3754 * C. Length in log record header is correct according to the
3755 * individual operation headers within record.
3756 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3757 * log, check the preceding blocks of the physical log to make sure all
3758 * the cycle numbers agree with the current cycle number.
3760 STATIC void
3761 xlog_verify_iclog(
3762 struct xlog *log,
3763 struct xlog_in_core *iclog,
3764 int count,
3765 bool syncing)
3767 xlog_op_header_t *ophead;
3768 xlog_in_core_t *icptr;
3769 xlog_in_core_2_t *xhdr;
3770 xfs_caddr_t ptr;
3771 xfs_caddr_t base_ptr;
3772 __psint_t field_offset;
3773 __uint8_t clientid;
3774 int len, i, j, k, op_len;
3775 int idx;
3777 /* check validity of iclog pointers */
3778 spin_lock(&log->l_icloglock);
3779 icptr = log->l_iclog;
3780 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3781 ASSERT(icptr);
3783 if (icptr != log->l_iclog)
3784 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3785 spin_unlock(&log->l_icloglock);
3787 /* check log magic numbers */
3788 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3789 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3791 ptr = (xfs_caddr_t) &iclog->ic_header;
3792 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3793 ptr += BBSIZE) {
3794 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3795 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3796 __func__);
3799 /* check fields */
3800 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3801 ptr = iclog->ic_datap;
3802 base_ptr = ptr;
3803 ophead = (xlog_op_header_t *)ptr;
3804 xhdr = iclog->ic_data;
3805 for (i = 0; i < len; i++) {
3806 ophead = (xlog_op_header_t *)ptr;
3808 /* clientid is only 1 byte */
3809 field_offset = (__psint_t)
3810 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3811 if (!syncing || (field_offset & 0x1ff)) {
3812 clientid = ophead->oh_clientid;
3813 } else {
3814 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3815 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3816 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3817 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3818 clientid = xlog_get_client_id(
3819 xhdr[j].hic_xheader.xh_cycle_data[k]);
3820 } else {
3821 clientid = xlog_get_client_id(
3822 iclog->ic_header.h_cycle_data[idx]);
3825 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3826 xfs_warn(log->l_mp,
3827 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3828 __func__, clientid, ophead,
3829 (unsigned long)field_offset);
3831 /* check length */
3832 field_offset = (__psint_t)
3833 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3834 if (!syncing || (field_offset & 0x1ff)) {
3835 op_len = be32_to_cpu(ophead->oh_len);
3836 } else {
3837 idx = BTOBBT((__psint_t)&ophead->oh_len -
3838 (__psint_t)iclog->ic_datap);
3839 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3840 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3841 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3842 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3843 } else {
3844 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3847 ptr += sizeof(xlog_op_header_t) + op_len;
3849 } /* xlog_verify_iclog */
3850 #endif
3853 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3855 STATIC int
3856 xlog_state_ioerror(
3857 struct xlog *log)
3859 xlog_in_core_t *iclog, *ic;
3861 iclog = log->l_iclog;
3862 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3864 * Mark all the incore logs IOERROR.
3865 * From now on, no log flushes will result.
3867 ic = iclog;
3868 do {
3869 ic->ic_state = XLOG_STATE_IOERROR;
3870 ic = ic->ic_next;
3871 } while (ic != iclog);
3872 return 0;
3875 * Return non-zero, if state transition has already happened.
3877 return 1;
3881 * This is called from xfs_force_shutdown, when we're forcibly
3882 * shutting down the filesystem, typically because of an IO error.
3883 * Our main objectives here are to make sure that:
3884 * a. if !logerror, flush the logs to disk. Anything modified
3885 * after this is ignored.
3886 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3887 * parties to find out, 'atomically'.
3888 * c. those who're sleeping on log reservations, pinned objects and
3889 * other resources get woken up, and be told the bad news.
3890 * d. nothing new gets queued up after (b) and (c) are done.
3892 * Note: for the !logerror case we need to flush the regions held in memory out
3893 * to disk first. This needs to be done before the log is marked as shutdown,
3894 * otherwise the iclog writes will fail.
3897 xfs_log_force_umount(
3898 struct xfs_mount *mp,
3899 int logerror)
3901 struct xlog *log;
3902 int retval;
3904 log = mp->m_log;
3907 * If this happens during log recovery, don't worry about
3908 * locking; the log isn't open for business yet.
3910 if (!log ||
3911 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3912 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913 if (mp->m_sb_bp)
3914 XFS_BUF_DONE(mp->m_sb_bp);
3915 return 0;
3919 * Somebody could've already done the hard work for us.
3920 * No need to get locks for this.
3922 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3923 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3924 return 1;
3928 * Flush all the completed transactions to disk before marking the log
3929 * being shut down. We need to do it in this order to ensure that
3930 * completed operations are safely on disk before we shut down, and that
3931 * we don't have to issue any buffer IO after the shutdown flags are set
3932 * to guarantee this.
3934 if (!logerror)
3935 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3938 * mark the filesystem and the as in a shutdown state and wake
3939 * everybody up to tell them the bad news.
3941 spin_lock(&log->l_icloglock);
3942 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943 if (mp->m_sb_bp)
3944 XFS_BUF_DONE(mp->m_sb_bp);
3947 * Mark the log and the iclogs with IO error flags to prevent any
3948 * further log IO from being issued or completed.
3950 log->l_flags |= XLOG_IO_ERROR;
3951 retval = xlog_state_ioerror(log);
3952 spin_unlock(&log->l_icloglock);
3955 * We don't want anybody waiting for log reservations after this. That
3956 * means we have to wake up everybody queued up on reserveq as well as
3957 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3958 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959 * action is protected by the grant locks.
3961 xlog_grant_head_wake_all(&log->l_reserve_head);
3962 xlog_grant_head_wake_all(&log->l_write_head);
3965 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966 * as if the log writes were completed. The abort handling in the log
3967 * item committed callback functions will do this again under lock to
3968 * avoid races.
3970 wake_up_all(&log->l_cilp->xc_commit_wait);
3971 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3973 #ifdef XFSERRORDEBUG
3975 xlog_in_core_t *iclog;
3977 spin_lock(&log->l_icloglock);
3978 iclog = log->l_iclog;
3979 do {
3980 ASSERT(iclog->ic_callback == 0);
3981 iclog = iclog->ic_next;
3982 } while (iclog != log->l_iclog);
3983 spin_unlock(&log->l_icloglock);
3985 #endif
3986 /* return non-zero if log IOERROR transition had already happened */
3987 return retval;
3990 STATIC int
3991 xlog_iclogs_empty(
3992 struct xlog *log)
3994 xlog_in_core_t *iclog;
3996 iclog = log->l_iclog;
3997 do {
3998 /* endianness does not matter here, zero is zero in
3999 * any language.
4001 if (iclog->ic_header.h_num_logops)
4002 return 0;
4003 iclog = iclog->ic_next;
4004 } while (iclog != log->l_iclog);
4005 return 1;